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1 Introduction
Since Schumpeter's seminal conjectures about the importance of technological ri-
valry and market power for the dynamics of innovation processes, the relationship
between market structure and innovative activity has attracted a great deal of
theoretical and empirical research. Modern game-theoretic models in the Industrial
Organization literature treat technological competition as a dynamic stochastic pro-
cess. Firms are assumed to invest in R&D projects over time without being certain
whether, or when, the projects will be successfully completed.

One of the most convincing approaches of modeling the innovation process is the
game-theoretic innovation-race approach as originally introduced by Loury (1979),
Dasgupta and Stiglitz (1980) and Lee and Wilde (1980). Especially the Lee and
Wilde model is heavily used as a basic concept for multi-dimensional extensions
in the Industrial Organization literature as well as in macroeconomic analyses of
endogenous growth and trade. The model assumes that identical �rms compete
for a given innovation that, due to perfect patent protection, only yields pro�ts
to the �rst �rm that introduces the new product or the new technology. While
the winner of the race takes all, the losers get nothing and therefore su�er a loss
given by the invested R&D expenditures which are cancelled as soon as the race
is �nished. From an empirical point of view, the standard innovation race relies on
at least two inappropriate assumptions. Firstly, no �rm participating in the race
realizes �ow pro�ts in the pre-innovation market. Secondly, since innovations are
considered as being drastic, the prize for the winner is not only exogenously given,
but also independent of the post-innovation number of �rms in the market. For the
same reason, the losers cannot reap any pro�ts which again implies that the number
of �rms does not in�uence pro�ts in the post-innovation market.

For these reasons, we follow Delbono and Denicolo (1991) in assuming that �rms
realize pro�ts during and after each innovtion race where, of course, the pro�ts of
the winner will increase and the pro�ts of the losers will decrease. Hence, at any
point in time, pro�ts will depend on the number of �rms in the oligopoly market.
In their model with quantity-setting Cournot �rms, Delbono and Denicolo (1991)
show that the essential result derived by Lee and Wilde (1980), that an increase in
the number of identical �rms increases the Nash-equilibrium R&D activity, does not
generally hold anymore. Instead, they derive conditions under which R&D e�orts
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will decrease with a rising number of �rms. To a certain extent, this theoretical
ambiguity coincides which the empirical evidence on the relationship between mar-
ket power and innovative activity. As the empirical surveys by Baldwin and Scott
(1987), Cohen and Levin (1989) and Cohen (1995) show, the in�uence of rivalry on
innovative activity is, more than 60 years after Schumpeter's conjectures, still an
open question.

The objective of this paper is to theoretically and empirically reexamine the in-
�uence of technological rivalry, market power, technological opportunities, demand
expectations and further possible explanatory factors on the timing of innovations.
Using an available innovation data set at the �rm level, we are able to provide
some new insights about the importance of these variables in explaining the dy-
namics of innovations. We therefore develop an empirically motivated version of
the standard innovation race model which departs from the Delbono and Denicolo
(1991) scenario in three important ways and, hence, yields some novel theoretical
results interesting in their own right. Firstly, we distinguish between the number of
competitors in the pre-innovation market on the one hand and the number of tech-
nological rivals in the innovation race on the other hand. The distinction between
these kinds of rivalry, which can be justi�ed for example by �nancial constraints of
some �rms, is appropriate since our survey data show that these two variables usu-
ally do not coincide. Secondly, we prefer an oligopoly model of price competition in
heterogeneous markets since homogeneous markets are rarely found in reality. This
allows us thirdly to consider not only cost-reducing process innovations, but also
demand-stimulating product innovations. Both types of innovation are included in
our data set.

The remainder of the paper is organized as follows: In Section 2 we present our basic
innovation-race model which is further speci�ed in Section 3 to explain the expected
timing of innovations in terms of technological rivalry, market power, technologi-
cal opportunities and market size. In Section 4 we derive a tractable econometric
speci�cation which can be estimated using qualitative-dependent-variable models.
A description of the data is given in Section 5. Section 6 presents the empirical
results. Finally, Section 7 concludes.
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2 The Innovation-Race Model
Following the game-theoretic innovation-race approach as suggested by Lee and
Wilde (1980), we consider a given number of �rmsm, which compete for a product
or process innovation. The date at which �rm i's research project is completed is a
random variable Ti which follows the exponential distribution

Fi(t) = 1− e−h(xi)t.

The hazard rate h(xi) = Ḟi(t)/(1− Fi(t)) de�nes the conditional probability of an
innovation success in the marginal time interval [t; t + dt] given that no success
occured until this time. The hazard rate is assumed to be an increasing function
of variable R&D expenditures xi. Even if Lee and Wilde (1980) originally allowed
for the possibility of initial increasing returns to R&D, we adopt the standard text
book version of the model assuming a global concave function (see, e.g. Tirole 1988,
Martin 1993). For concreteness, we speci�y the square root function

h(xi) = 2µx0.5
i , (1)

where µ represents the productivity of R&D activities re�ecting the technologi-
cal opportunities in the innovation race. The expected time of completion of the
innovation project can then be calculated as

E[Ti] =

∫ ∞

0

th(xi)e
−h(xi)tdt = 1/h(xi) = (1/2)µ−1x−0.5

i . (2)

The greater a �rm's research e�ort, the sooner is the expected time of completion.
In game-theoretic R&D models, research activities depend strategically on the ac-
tivities of their rivals. To keep the model tractable, we follow Delbono and Denicolo
(1991) by assuming that all �rms realize an equal pre-innovation pro�t �ow and
that only one further innovation is considered. The expected discounted pro�ts of
a �rm i, net of R&D expenditures, can then be written as

Πi(xi) =

∫ ∞

0

e−(r+hi+ĥi)t
[
hiπW /r + ĥiπL/r + π0 − xi

]
dt

=
hiπW /r + ĥiπL/r + π0 − xi

r + hi + ĥi

, i = 1, . . . , m, (3)
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where π0 is the pro�t �ow of all symmetric incumbent �rms in the pre-innovation
market, πW is the post-innovation pro�t �ow accruing forever to the winner of the
innovation race, πL is the corresponding post-innovation pro�t �ow of the non-
participants and the losers in the race, ĥi =

∑
j 6=i h(xj) is the instantaneous prob-

ability that one of the (m − 1) rivals of �rm i innovates and r is the constant
interest rate. Maximizing the pro�t function (3) and using the hazard-rate function
(1) yields the �rst-order conditions

µ̃(2m− 1)x∗ − [2µ̃2(m− 1)(πW − πL)− 1]x∗0.5 − µ̃(πW − π0) = 0 (4)

in the symmetric Nash-equilibrium, where µ̃ ≡ µ/r. Equation (4) determines the
equilibrium R&D expenditures x∗ as a function of the technological opportunities
µ, the interest rate r, the intensity of technological rivalrym, and the �ow pro�ts
πL < π0 < πW . The term (πW − π0) measures the pure �pro�t incentive�, i.e., the
incentive to invest in R&D in the absence of rivalry. The term (πW − πL) re�ects
the �competitive threat� (Beath et al. 1989) in the innovation race. Each �rm has
to recognize that, should it fail to innovate, one of its rivals will succeed in realizing
the innovation. In contrast to the Lee and Wilde (1980) model where there are no
pre-innovation pro�ts and no post-innovation pro�ts of the losers, the presence of
pre-innovation pro�ts and the assumption that even the losers can realize pro�ts in
the post-innovation market induces �rms to delay the expected date of innovation.

It can be shown that the symmetric equilibrium is unique and locally stable pro-
vided that ∂N/∂x∗ < 0, N denoting the left-hand side of (4), whereby this stability
condition is generelly met for a wide class of hazard-rate functions including our
speci�cation (see Nti (1999). Thus, by implicitly di�erentiating (4), we derive the
following unambiguous comparative-static e�ects on the equilibrium R&D expendi-
tures and, taking (2) into account, the expected completion dates of the innovations
E[Ti]

∗:

Hypothesis 1: An increase in the technological opportunitiesµ or a decrease in the
interest rate r will increase the equilibrium R&D e�ort and decrease the expected
innovation dates of each �rm (∂E[Ti]

∗/∂µ̃ < 0).

Hypothesis 2: An increase in the intensity of technological rivalrym will increase
the equilibrium R&D e�ort and decrease the expected innovation date of each �rm
(∂E[Ti]

∗/∂m < 0).
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As long as π0, πW and πL do not depend on m, the derivatives of the competitive-
threat and the pro�t-incentive terms with respect tom are zero and the market-
structure e�ect is unambiguous. However, as Delbono and Denicolo (1991) have
pointed out, if these �ow pro�ts also depend onm, the impact of rivalry on inno-
vative e�orts becomes ambiguous. To further analyze the model in this case, they
derive reduced-form pro�t �ows resulting from a Cournot oligopoly. In order to de-
velop an empirically tractable version of the innovation-race model, we follow their
modeling strategy but depart from some crucial assumptions in three ways: Firstly,
we distinguish between the number of competitorsn in the pre-innovation market
and the number of technological rivalsm in the innovation race and assumem ≤ n.
This extension is necessary to account for our survey data which show that these
two explanatory variables usually do not coincide. Accordingly, the �ow pro�ts in
the theoretical model depend on n but not on m. This can be theoretically justi-
�ed for example by �nancial constraints which hinder some of the competitors in
the pre-innovation market from participating in the race. Secondly, since all �rms
in our survey data set operate in more or less heterogeneous markets, we cannot
deal with homogenous markets. Therefore, we present an empirically appropriate
oligopoly model of price competition in heterogeneous markets which complements
the Cournot model used by Delbono and Denicolo (1991). The extension to het-
erogeneous markets allows us thirdly to consider not only cost-reducing process
innovations but also demand-stimulating product innovations accounting for the
fact that both variables are included in our data set.

3 An Illustrative Model of Price Competition
To analyze the subgame-perfect equilibrium of the two-stage game wherem �rms
participate in the R&D race in the �rst stage and n �rms compete in prices in
the second stage, we have to derive the reduced-form pro�t �owsπ0, πW and πL.
For reasons of simplicity and comparability, we assume linear demand functions
Di(p) = si − pi + (1/(n − 1))

∑
j 6=i pj, i, j = 1, ..., n, i 6= j, and constant marginal

(and average) production cost ci, leading to �ow pro�ts

πi = (p− ci)(si − pi + (1/(n− 1))
∑

j 6=i

pj). (5)
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Within the symmetric structure of the pre-innovation market, where ci = c and
si = s∀i, we derive the reduced-form �ow pro�ts as

π0 = s2, (6)

where the demand parameter s can be interpreted as an indicator of the size of
the market. Since variables for product as well as process innovations are included
in our data set, we consider two versions of the model. In the case of product
innovations, we assume that the winner's demand parameter rises from s to sW

where ds ≡ sW − s > 0 represents the size of the product innovation. Since the
extreme case of a drastic innovation is already covered in the standard patent race
model, we assume that the product innovation is non-drastic. This implies that
the losers as well as the non-participants of the race, while still facing the demand
parameter s, will remain active in the post-innovation market. As a result, the �ow
pro�ts of the winner and the loosers in the asymmetric equilibrium can be derived
as

πW =

[
s +

n

2n− 1
ds

]2

, πL =

[
s +

1

2n− 1
ds

]2

. (7)

In the alternative case of process innovations, we assume that the winner of the
innovation race reduces its average production cost fromc to cW where dc ≡ c−cW >

0 represents the size of the process innovation. Again, we concentrate on non-drastic
innovations. The corresponding �ow pro�ts can be derived as

πW =

[
s +

n− 1

2n− 1
dc

]2

, πL =

[
s− 1

2n− 1
dc

]2

. (8)

Since prices are strategic complements, a demand-stimulation product innovation
makes the winner soft, while a cost-reducing process innovation makes him tough.
In the �rst case, all prices and pro�ts increase, of course those of the winner more
than those of the rivals. Since ∂(πW − π0)/∂n < 0 and ∂(πW − πL)/∂n > 0, an
increasing number of competitors in the market lowers the pro�t incentive but
raises the competitive threat. In second case, the pro�ts of the winner rise even
if its price is reduced, but prices and pro�ts of the rivals decline. The derivatives
∂(πW − π0)/∂n > 0 and ∂(πW − πL)/∂n < 0 are of the opposite signs compared to
the case of product innovations, so that an increasing number of competitors in the
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market now raises the pro�t incentive but lowers the competitive threat. Thus, the
reduced-form pro�t speci�cations in (7) and (8) enable us to additionally set up:

Hypothesis 3: The impact of an increase in the number of �rms n in the pre-
innovation market on the equilibrium R&D e�ort and the expected innovation date
of each �rm is ambiguous (∂E[Ti]

∗/∂n ≷ 0).

Implicitly di�erentiating (4) with respect to the market size s, making use of (7)
and (8), �nally yields:

Hypothesis 4: An increase in the size of the market s will increase the equilibrium
R&D e�ort and decrease the expected innovation date of each �rm (∂E[Ti]

∗/∂s <

0).

The comparative statics indicate that the probability of an expected product or
process innovation within a speci�c time interval from the present depends positively
on the intensity of rivalrym, technological opportunitiesµ and market size s, while
the in�uence of market power as measured by the (inverse) number of competitors
n is ambiguous. All these hypotheses will now be econometrically tested with our
data set.

4 Econometric Speci�cation
According to the theoretical model, each �rm decides on R&D expenditures and,
hence, the expected innovation date E[Ti]

∗ = 1/h(x∗i ). In our data set, these deci-
sions cannot be observed directly. Instead, we can only observe whether or not a �rm
intends to introduce an innovation within the next two years, implying whether or
not E[Ti]

∗ falls into this given time interval. Therefore, we have to treat the expected
innovation dates as continuous latent variables and de�ne

TD =

{
1, i� E[Ti]

∗ ≤ 2

0, i� E[Ti]
∗ > 2.

(9)

The structural equation for the latent variable is speci�ed as

E[Ti]
∗ = β′yi + εi, (10)
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where the exogenous variables are summarized in the vectoryi and the stochastic
error term εi is added to account for random unobserved heterogeneities. For our
econometric model this implies that a �rm's probability of introducing an innovation
within this given time period is a function of the explanatory variablesµ, m, n, and
s.

If we assume the error term ε to be independently and normally distributed, we
obtain the conditional probabilities of the random variableTD given the exogenous
variables y:

P (TD = 1|y,β) = Φ

(
2− β′y

σ

)
, (11)

where Φ denotes the standard normal distribution function. To be able to iden-
tify the parameters, the variance σ2 has to be restricted to unity. In addition, the
threshold value and the constant term need to be combined so that

P (TD = 1|y,β) = Φ(−β′y). (12)

With the available observations from individual �rms on TD and also on the re-
gressor variables y, we can formulate a likelihood function and maximize it with
respect to the parameter vector β. This is the standard probit model. As will be
shown in the next section, some of the regressors are ordinally scaled. We deal with
this problem in three di�erent ways. Firstly, as is common practice in applied re-
search, we transform these variables into dummy variables implying that they can
be treated as nominally scaled variables. Secondly, we replace the ordinal coding
of y = 1, . . . , y = l by E(y∗|y = 1), . . . ,E(y∗|y = l) as suggested by Terza (1987).
Thirdly, we follow an estimation procedure developed in Kukuk (2002) and applied
in Kukuk and Stadler (2001) to account for the ordinal scale of the regressors. All
results are presented to demonstrate the robustness of our results.

5 The Data
For our empirical analysis we use data from an innovation survey of German in-
dustrial �rms. The survey was conducted by the Centre for European Economic
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Research (ZEW), Mannheim, in cooperation with infas Sozialforschung, Bonn, in
1994 and is part of the European Community Innovation Survey (CIS) initiated by
Eurostat. For a detailed description of the survey refer to Janz et al. (2001). The
CIS frame questionnaire is closely related to the OECD recommendations for �rm
level innovation surveys summarized in the OSLO Manual (1992). Following the
OSLO Manual recommendation, a postal survey was designed and the question-
naire was sent out to approximately 11,500 �rms in the German industrial sector
strati�ed by �rm size groups and branches. On average, about 25% to 30% of the
�rms responded which is comparable to other national CIS innovation surveys. For
the 1994 wave a sample of 3065 �rms is obtained.

The approach is to ask at the �rm level, for instance, whether or not a prod-
uct and/or a process innovation is planned to be introduced within the next two
years. De�nitions for these types of innovations are given to help the respondents
to classify themselves. In addition to these questions about innovative activities,
each panel wave had at least one block of varying topics. We use the second wave
(1994) conducted in 1995 since it is the only questionnaire asking for the number of
competitors and for the development of the intensity of technological rivalry in the
�rms' relevant markets. It is the combination of innovation and market structure
data which makes our available data set extremely appropriate to empirically in-
vestigate the relationship between rivalry and the timing of innovations. According
to the number of competitors, which we interpret as an inverse measure of market
power, the �rms responded whether they had one to �ve competitors (category 1),
six to ten (category 2), or more than ten (category 3). In addition, the �rms were
asked to appraise the intensity of technological rivalry for the future on a �ve-point
Likert scale. We gather this information into three categories, according to whether
�rms face a reduced (category 1), an unchanged (category 2) or a strengthened (cat-
egory 3) intensity of rivalry. As a �rst attempt, we record bivariate and conditional
frequencies of technological rivalry and planned innovations in Table 1. Obviously,
the �rms in markets with a high intensity of rivalry (category 3) are more likely to
plan to introduce an innovation within the next two years. This result will continue
to hold in our econometric analysis in the next section.



10

Table 1: Relative Frequencies of Rivalry and Planned Innovations

Rivalry Planned Innovations Sum
No Yes

category 1 1.98 2.56 4.53
[43.61] [56.39] [100]

category 2 6.71 8.73 15.44
[43.49] [56.51] [100]

category 3 23.21 56.82 80.03
[29.00] [71.00] [100]

Sum 31.90 68.10 100
Note: Relative frequencies in % are recorded. N=2934.

Conditional relative frequencies in brackets.

6 Empirical Results
According to our theoretical model, we are interested in analyzing the e�ects of
technological rivalrym, market power n, technological opportunities µ, and market
size s on the planned dates of product and process innovations. Fortunately, the
survey questions we use for our empirical work come close to the decisive variables
in our innovation-race model.

As a �rst step, we explain planned innovations in Table 2 where we do not di�eren-
tiate between product and process innovations. Starting with the common practice
method, it can be seen that the third category of market power has a negative pa-
rameter which is only weakly signi�cant. The market power variable is measured by
three categories in the data set. The �rst category serves as the reference group. The
parameter for the second group is smaller in absolute terms than the parameter of
the third category underlining the ordinal nature of this variable and also the linear
e�ect this variable has on the dependent variable. In the second approach using
the conditional expected value for the truncated latent variable, the market power
variable is still (weakly) signi�cantly negative. However, in the indirect inference
approach which is reported in the last column, market power is slightly positive but
insigni�cant. This di�erence in estimates is due to the error-in-variables problem in
the �rst two approaches.

With respect to technological rivalry, all three approaches �nd a strong positive
e�ect on the planned timing of innovations reproducing the result of Table 1.
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Table 2: Estimation Results for Planned Product and/or Process Innovations

Explanatory variables Dummies Terza's method Indirect inf.
Parameter Parameter Parameter
(t-value) (t-value) (t-value)

C -0.7773 0.33631 0.71980
(-3.26) (1.521) (2.525)

Log(numb. of empl.) 0.11337 0.11427 0.02571
(5.26) (5.302) (1.065)

Innovation in the past 1.38126 0.84865 0.92436
(22.78) (22.783) (22.151)

Market size -0.1107 0.12343 0.05559
(-1.14) (3.829) (2.271)
0.15267
(2.07)

Market power -0.02448 -0.05774 0.02487
(-0.28) (-1.650) (0.638)

-0.10226
(-1.36)

Intensity of rivalry -0.1065 0.11957 0.09741
(-0.71) (3.703) (3.204)
-0.2169
(2.66)

East-Germany -0.1270 -0.13994 -0.13485
(-1.98) (-2.176) (-1.533)

Organizational Changes 0.2659 0.24922 0.23930
(3.13) (2.897) (3.039)

Part of a trust 0.0066 0.00499 0.00261
(0.10) (0.073) (0.034)

Dummies for branches included but not reported
Number of observations 2775 2775 2775
Log-Likelihood -1211.7 -1208.9
R2

V Z 0.485 0.486
Note: R2

V Z denotes a pseudo coe�cient of determination (Veall and
Zimmermann, 1996). In the dummies approach, reference groups are
category 1 for market power and the unchanged categories for rivalry
and market size, respectively.
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The current innovation status as a measure for technological opportunities is highly
signi�cant and accounts for a large portion of the explanatory power of the esti-
mation. Flaig and Stadler (1994, 1998) interpreted it as the success breeds success
hypothesis. Compared to the services sector which is analyzed in Kukuk and Stadler
(2001) the technological opportunities have a stronger impact in the industrial sec-
tor. There is also evidence for demand pull in all the di�erent methods since the
expected demand variable1 shows the correct sign signi�cantly. Surprisingly, the
�rm size measured by the (log of the) number of employees is not signi�cant in the
indirect estimation. An explanation is that the current innovation status already
captures the �rm size. Since we simulate the latent variable2 of the ordinal innova-
tion indicator, the log of the number of employees does not carry the appropriate
�rm size information to explain more than the latent innovation variable.

The dummy variable for East-German �rms is negative in all three approaches
indicating that even four years after reuni�cation the technological opportunities
of those �rms were lagging behind. We also controlled for organizational changes.
About 15% of �rms had a major change in the �rm structure. Our results indi-
cate that these changes have a positive e�ect on the planned innovations. We also
included dummy variables for 14 di�erent branches accounting for sector speci�c
innovation behavior, however to save space, we suppressed the results.

In a next step we di�erentiate between product and process innovations and analyze
the determinants of the timing of their introduction. The results are recorded in
Table 3. The dummy variable approach usually obtains the same results as Terza's
method and is therefore omitted in the table. For both types of innovation we �nd
an insigni�cant positive e�ect of market power using the indirect inference. Terza's
method reveals that the negative e�ect is larger for product innovations. The log
of number of employees is signi�cant for process innovations whereas for product
innovations it is insigni�cant which drives the combined estimate of Table 2. All
the other results are similar in both innovation types. In the data set there are also
variables for the past development of demand and technological rivalry. We included
1 As the variable for technological rivalry, the market size variable is originally measured with �ve
categories, too. We summarize them into variables with three categories although estimation
results are very similar using the original variables.

2 Strongly monotonic transformations of the latent variable lead to the same ordinal observations
(Kukuk, 1994).
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Table 3: Estimation results for Planned Innovations
Explanatory variables Terza's method Indirect inference

Parameter t-value Parameter t-value

Dependent variable: Planned Process Innovation
C 0.12961 0.622 0.46451 2.352
Log(numb. of empl.) 0.13213 6.700 0.05814 2.602
Innovation in the past 0.71141 19.828 0.77625 14.335
Market size 0.11574 3.917 0.05400 2.297
Market power -0.04251 -1.330 0.02445 0.738
Intensity of rivalry 0.08898 2.968 0.07220 2.750
East-Germany -0.08698 -1.455 -0.07817 -1.195
Organizational changes 0.25674 3.370 0.25177 3.362
Part of a trust -0.06168 -1.001 -0.06505 -0.737
Dummies for branches included but not reported
Number of observations 2775
Log-Likelihood -1471.8
R2

V Z 0.393

Dependent variable: Planned Product Innovation
C -0.33401 -1.662 0.04245 0.162
Log(numb. of empl.) 0.09716 4.690 0.01139 0.378
Innovation in the past 0.82102 22.467 0.89455 22.387
Market size 0.12055 3.863 0.05439 2.208
Market power -0.06248 -1.851 0.01734 0.483
Intensity of rivalry 0.11273 3.583 0.09504 3.155
East-Germany -0.13037 -2.079 -0.12477 -1.486
Organizational changes 0.24000 2.941 0.23198 2.483
Part of a trust 0.03169 0.487 0.02832 0.446
Dummies for branches included but not reported
Number of observations 2775
Log-Likelihood -1301.9
R2

V Z 0.478
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them in another speci�cation to determine their e�ects although our model does
not suggest their inclusion. With the exception of past demand having a slightly
negative e�ect on process innovation these variable are insigni�cant.

The presented empirical results are consistent with the derived hypotheses that in-
tense rivalry, favorable technological opportunities and high demand expectations
spur innovative activity, while the e�ect of market power is ambiguous. Therefore,
it is not the number of �rms in the pre-innovation market but the number of tech-
nological rivals that signi�cantly in�uences the innovative activities of �rms.

7 Summary and Conclusion
The objective of this paper was to theoretically and empirically examine the in�u-
ence of technological rivalry, market power, technological opportunities and demand
expectations on the planned timing of innovations. Using an extended version of the
game-theoretic innovation-race model, we derived an estimation function where the
timing of innovations depends positively on technological rivalry, demand expec-
tations and technological opportunities but where the in�uence of market power,
measured by the number of �rms in the relevant market, is ambiguous.

The derived econometric speci�cation is estimated using 2775 �rms in the Ger-
man manufacturing sector. The empirical results, obtained with three conceptually
di�erent estimation procedures, show a signi�cant positive e�ect of technological
rivalry on the timing of innovations as suggested by our theoretical model. Further,
our results con�rm the technology-push and the demand-pull hypotheses since tech-
nological opportunities, measured by innovation successes in the past, and demand
expectations also show the predicted signs. The market power e�ect which is am-
biguous in our model also tends to spur the innovation process, however the e�ect
is not signi�cant throughout.

The derived results show that market structure is an important explanatory factor
when it comes to analyzing innovation behavior. However, it is not the number of
competitors in the pre-innovation market but the number of rivals, participating in
the innovation race, that strongly in�uences the innovative activities of �rms. This
insight supports the empirical relevance of the extended innovation-race models
which are heavily used in the Industrial Organization literature.
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