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Abstract: 
 

We examine the effect of competition on one aspect of software quality: time taken by software vendors 
to release patches to software vulnerabilities. We distinguish between two effects. The first is the direct 
competition effect: vendors with more competitors have more to lose from tardy patches.  However, even 
vendors that do not compete in the product market but whose products share a software vulnerability may 
nonetheless compete indirectly:  They implicitly increase the threat of disclosure for each other.  Our 
results demonstrate that a one unit increase in the number of competitors lowers expected patching times 
between 4% and 10%. We further demonstrate that an increase in the number of vendors sharing common 
software components also lowers patching times: A one unit increase in the number of such vendors 
lowers expected patching times between 4% and 5% days on an average. Further, firms with larger 
product sales patch faster: a 10% increase in installed base is associated with an earlier patch release by 
about 1.4%. Our results support the notion that increased competition, directly and indirectly, leads to 
faster patching times and improved consumer welfare.   
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1. Introduction 
Costs related to information security have recently had a large and increasing impact on the U.S. 

economy. A recent study put the annual cost of major software bugs to the U.S. economy at over $60 

billion (NIST 2002). Though there are not as yet any official U.S. government statistics on information 

security, several private groups have demonstrated the growth in security-related incidents and their 

antecedents. The number of information security incidents reported to CERT/CC, a large federally funded 

research laboratory that measures and researches Internet security problems, grew from 2412 in 1995 to 

137,529 in 2003.2 Meanwhile, the number of reported software security defects or “vulnerabilities”, one 

leading indicator of security incidents, grew from 171 in 1995 to 5990 in 2005.  

The rapid increase in the number of vulnerabilities discovered in software over the past several years has 

led many to argue that high levels of concentration and significant early mover advantages in software 

markets lead to an under-provision of security.  Since these vulnerabilities are due to defects in software, 

this is part of a more general issue of market structure and software quality, namely that firms with 

market power deliberately under-provide quality in an effort to maximize profits. However, others have 

argued that the link between market structure and provision of software quality has been exaggerated. For 

one, some studies have found that users are unwilling to pay for software quality because it is difficult for 

them to value it ex ante: If under provisioning of quality is due to lack of user willingness-to-pay then 

market structure may have little impact on quality. Moreover, incentives to provide quality will 

sometimes be influenced by vendors in related markets. Software products sold in different markets often 

share components.  This implies that they will sometimes be affected by the same vulnerability as well.  

This implies that a firm’s patching decisions will not only be affected by competition in its own market, 

but also by vendor behavior in technologically related markets as well.  

In this paper, we examine the relationship between competition and one dimension of software quality: 

the time taken by the vendor to release a patch for a known vulnerability. We begin by developing our 

hypotheses in a model of vendor patching behavior. Vendors make investments to lower patching times 

based on the extent to which they internalize end user losses. End user losses are increasing in the time 

elapsed between the initial disclosure of the vulnerability and the release of the patch. Increases in market 

competition increase vendor losses from unpatched vulnerabilities since competition increases the 

likelihood that vulnerabilities will influence customers to switch vendors. As a result, increases in market 

competition will lead to lower patching times. We label this direct impact of competition on patching 

times as the competition effect. Further, increases in the total number of vendors—both competitors and 

noncompetitors—that share the vulnerability will lead (in probability) to earlier initial public disclosure of 
                                                 
2 CERT/CC statistics are available at http://www.cert.org/stats/cert_stats.html.  
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the vulnerability. Since end user losses from unpatched software are increasing in the time the 

vulnerability remains unpatched and disclosed, increases in total vendors that share a vulnerability will 

lead to lower patching times. We label this relationship the disclosure effect. 

We formally derive this and other auxiliary hypotheses. We compare these hypotheses with actual data on 

vendor patching times. To empirically separate the effects of competition and disclosure on vendor 

patching times, we exploit two sources of variation in our data. First, we utilize the variation across 

vulnerabilities in the number of rivals and nonrivals affected. Increases in the number of direct rivals to 

the vendor will influence patching times through both the competition and disclosure effects, while 

increases in nonrivals will influence patching times only through disclosure. Second, we utilize variation 

across vulnerabilities in how vendors are informed of vulnerabilities. Vulnerabilities are publicly 

disclosed when a third party or another vendor announces the existence of a vulnerability, and they are 

privately disclosed when CERT/CC informs the vendor of the presence of a vulnerability while the 

vulnerability remains unknown to the general public. We identify the competition effect by examining 

how changes in the number of affected vendors influence average patching times when vulnerabilities are 

publicly disclosed. We identify the disclosure effect by comparing how changes in the number of affected 

vendors influence average patching times under private and public disclosure.  

Addressing our research goals requires detailed data on software vulnerabilities, vendor patching times, 

market structure, and software characteristics. We examine vendor responses to 241 vulnerabilities 

reported to CERT/CC from September 2000 to August 2003. These data are among the most complete of 

their kind that are available. We supplement these data with information on market size obtained using a 

market survey conducted by Harte Hanks Market Intelligence, a commercial market research firm.  

Our results demonstrate that competition and disclosure each have an economically and statistically 

significant impact on patching times. We show that a one unit increase in the number of rivals lowers 

expected patching times by between 4% and 10%; this translates to an average decline of 7 to 17 days due 

to the direct effects of competition. Disclosure also plays a role: a one unit increase in vendors from 

unrelated markets (non-rivals) that share the same vulnerability will lead to a decrease in expected 

patching times between 4% and 5%, or a decline of 7 to 8 days. We infer that changes in structure to own 

and technologically related markets induce changes in quality provision. Last, we also show that changes 

in market size will also increase quality provision: a 10% increase in vendor installed base will lead to a 

1.3% to 1.4% decline in patching times.  

Our research is unique in demonstrating how products with common technological inputs can influence 

output market competition even when buyers perceive these markets as unrelated. Recent work on 

information technology markets has emphasized strategic interactions among vendors producing products 
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that are complements in demand or which share a common platform (e.g., Bresnahan and Greenstein 

1999; Bresnahan and Yin 2006; Gawer and Henderson 2005). Like this prior literature, we emphasize 

how firms that share common components have interrelated output market decisions. However, in 

contrast to this prior work, we do not require these firms to produce in markets that are substitutes or 

complements in demand.  

Our findings also inform the debates on how to best encourage provision of software quality. For one, our 

research demonstrates that despite high levels of concentration in many software markets, the threat of 

disclosure from vendors in complementary markets works to reduce patching times almost as much as 

increases in the number of direct competitors. Further, our research informs recent debates on whether 

third-party information security agencies such as CERT/CC should inform the public of new 

vulnerabilities, or whether they should instead disclose them only to affected vendors. Our results show 

that the threat of potential disclosure provides powerful incentives for vendors to invest in software 

patching.   

2. Related Literature  
This paper is related to three streams of research: competition and quality provision; vertical and 

horizontal differentiation strategies in markets undergoing rapid technological change; as well as the 

economics of information security.  

Competition and Quality Provision. While a rich theory literature has examined the link between 

competition and quality, empirical work has been limited due to the inherent challenges of measuring 

product quality.3 In general, prior work has demonstrated that increases in competition leads to better 

quality provision. Demberger and Sherr (1989) provide evidence that deregulation in the legal services 

industry leads to greater customer satisfaction. Dranove and White’s (1994) literature survey suggests that 

higher market concentration leads to lower quality in hospital markets. Borenstein and Netz (1999) note 

that airlines were less likely to schedule their flights at passengers’ most preferred times during the period 

of price regulation. Hoxby (2000) finds that metropolitan areas with more schools districts produce higher 

quality measures in terms of student achievements. Mazzeo (2003) provides evidence of longer flight 

delays in more concentrated airline markets, while Cohen and Mazzeo (2004) find evidence of higher 

quality when banks face multi-market bank competitors.  

While prior work has demonstrated a link between competition and product quality, it has not studied the 

interaction between firms in technologically related markets as we do. Bresnahan and Greenstein 1999 

                                                 
3 Prior theory work has demonstrated that increases in concentration can lead to an increase or decrease in product 
quality. For examples, see Gal-Or (1983), Levhari and Peles (1973), Schmalensee (1979), Swan (1970), and Spence 
(1975).  
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argue that changes in industry structure in related markets can have long run implications for product 

market competition. In our research we argue that changes in structure to markets that share common 

inputs will have important implications for vendors’ quality decisions. Such changes are likely to be 

particularly salient in software markets, where vendors in different market segments increasingly share 

common modules.  

Product differentiation in technology markets. Our research also builds upon recent empirical work that 

has studied quality provision and horizontal and vertical differentiation strategies in markets undergoing 

rapid technological change. Bresnahan, Stern, and Trajtenberg (1997) study two dimensions of product 

differentiation among personal computer manufacturers: branding and location on the technological 

frontier. Greenstein (2000) examines geographic variation in the provision of quality among U.S. Internet 

Service Providers, highlighting in particular whether these firms offer services such as broadband service, 

hosting, or web design. Greenstein and Markovich (2006) study business models and the determinants of 

market value among vendors providing Internet hosting services. While these studies are similar to ours in 

their study of quality provision in information technology markets, they do not explicitly examine the link 

between market structure and quality. 

Economics of Information Security. One active area of theory research in information security has 

studied the economic impacts of vulnerability disclosure and the optimal timing of disclosure for society. 

Schneier (2000) argues that losses from attacks are not only influenced by the intensity of attacks, but also 

on how long the vulnerability remains unpatched. Arora, Telang and Xu (2004) show that early disclosure 

of vulnerabilities is not necessarily socially optimal, though it will engender earlier releases of patches. 

Cavusaglu et al (2005) use a multi-vendor model to examine the socially optimal disclosure of 

vulnerabilities. Nizovtsev and Thursby (2005) examine the factors that influence a benign identifiers’ 

decision to disclose vulnerabilities to CERT instead of disclosing them publicly. Choi, Fershtman and 

Gandal (2005) examine how vulnerabilities affect vendor and consumer behavior in the software market. 

They conclude that vendors are likely to disclose vulnerabilities when the probability of an attacker 

exploiting a vulnerability is relatively high. Further, they note that vendors may disclose vulnerabilities 

even when it is socially suboptimal. 

Empirical work examining vulnerability disclosure is rarer. Arora, Nandkumar and Telang (2004) provide 

empirical evidence on the impact of vulnerability publication when disclosure is not accompanied by 

patches. They find that undisclosed vulnerabilities attract the least number of attempts to breach a host, 

while vulnerabilities that are disclosed without a patch attract the most number of attempts to breach a 

host. To the extent that such breaches are correlated with monetary losses, early disclosure could result in 

substantial economic losses. Arora, Krishnan, Telang and Yang (2005) use a dataset assembled from 
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CERT/CC’s vulnerability notes and SecurityFocus database to show that early disclosure leads to faster 

patching times. Telang and Wattal (2004) use an event study methodology to show that vulnerability 

disclosure leads to a loss of market value. Our research is similar to prior work in that we examine the 

economic outcomes from vulnerability disclosure. However, to our knowledge, no prior work has studied 

how competition influences vendors’ strategic response to vulnerability disclosure.  

3.1 Software vulnerabilities and patches 

Unlike many physical goods, the problems related to software can be mitigated even after product release. 

Vendors try to introduce the product relatively early in the product development cycle even though early 

release might entail greater investments in ex post support (Arora, Caulkins and Telang 2005). This 

makes both vulnerabilities in software as well as patches that fix vulnerabilities intrinsic to any “shrink 

wrapped” software. The probability of a malicious attacker exploiting a specific vulnerability to 

compromise end user computers is positively correlated with the amount of time the vulnerabilities 

remain without a fix. Thus, the timing of patches critically determines the extent of end user losses, and 

patches are perceived as a very important part of ex-post customer support. Two considerations drive the 

timing of the vendor’s patch: (1) the extent to which of end user losses affect the future demand for the 

product and (2) the cost of fixing the vulnerability. Typically, an early fix entails higher costs but also 

reduce customer losses and, hence also, reduce loss of future sales.  

In many cases, a newly discovered vulnerability could affect many different products (for future reference 

we label these common vulnerabilities). For instance, a stack buffer overflow vulnerability in Sendmail (a 

commonly used mail transfer agent), disclosed in 2003, affected the following vendors:  Apple, 

Conectiva, Debian, FreeBSD, Fujitsu, Gentoo, Linux, Hewlett-Packard, IBM, MandrakeSoft, Mirapoint, 

NetBSD, Nortel Networks, OpenBSD, OpenPKG, Red Hat, SCO, Sendmail Inc., Sequent (IBM), SGI, 

Slackware, Sun Microsystems, SuSE, The Sendmail Consortium, Wind River Systems, Wirex.  Some of 

these products potentially compete with the while others are in very distinct markets.4 For instance, Wirex 

and Mirapoint produced email products, Wind River produces embedded software, while many of the 

other products are operating systems.  Even among the latter, there is considerable variation in the 

hardware platforms. However, all these products use Sendmail code, and hence, were affected by the 

vulnerability in it. 

A common vulnerability is typically an artifact of a shared code base or design specification or due to a 

proprietary extension of a widely used software component.  When a vulnerability is known to be 

common to many products, if one vendor releases a patch for its product it effectively publicly discloses 

                                                 
4 Given the number VU#897604 by CERT,  See http://www.kb.cert.org/vuls/id/897604 (accessed 22 Sept, 2006.) 

 6

http://www.kb.cert.org/vuls/id/897604
http://www.kb.cert.org/vuls/id/897604


the vulnerability in the rivals’ products as well. As public disclosure of the vulnerability provides 

information to attackers, the end user losses of the rivals are higher after disclosure. In short, increases in 

the number of vendors sharing a vulnerability potentially leads to earlier disclosure and greater end user 

losses, other things equal. We label the relationship between such increases and patching times as the 

disclosure effect; all else equal, the disclosure effect should lead to shorter patching times.  

Increases in the number of direct competitors will also decrease patching times. As noted above, the 

literature on product quality and competition suggests that when there are many competing products, end 

users have more choices, and thus, future sales of a product are likely to be more sensitive to perceived 

quality. In our context, this implies that end users can compare vendor responses and penalize laggards. 

Thus a greater number of competitors is also expected to reduce expected patching times. We label the 

impact of increased direct competition on patching times as the competition effect. In the paper, we 

identify these effects separately and show how competition and disclosure threat influences vendors’ time 

to patch vulnerabilities.  

4. Model 
We develop a simple model of firm investment in one dimension of product quality, the time to release of 

patches for software vulnerabilities. We use this model to develop empirically relevant hypotheses. This 

model builds upon prior work by Arora, Telang, and Xu (2004). However, in contrast to this prior work, 

we examine how patching behavior is influenced by market competition, size, and disclosure threat. For 

purposes of illustration, we consider the case in which there are two vulnerable vendors, however proofs 

are presented for the general case of multiple vulnerable vendors. All proofs are in Appendix 1.  

4.1 Model Set-up  

There are 5 main players is the model: vendor i, vendor j, (the other vendor that shares the vulnerability 

with vendor i), an intermediary like CERT (which provides a protected period T to the vendors to come 

up with a patch), the attacker and the end user.  We refer to vendor j as “other vendor” which is also 

affected by same vulnerability and the set of all vendors affected the same vulnerability as “vulnerable 

vendors”. Vendor j is affected by the same vulnerability as vendor i but may or may not be competing in 

the same market. End users suffer losses from vulnerabilities due to exploits from attackers. 

Intermediaries inform vulnerable vendors about the presence of a common vulnerability and provides 

them with a protected period. 

The scenario considered by our model is as follows: A vulnerability that affects multiple products is first 

discovered by an identifier, who informs the intermediary. The intermediary then informs all vulnerable 

vendors and gives them a protected period by keeping the vulnerability secret until all the vulnerable 
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vendors fix the vulnerability. The vendor and other vulnerable vendor(s) then commit to a one-time 

decision on when they will release a patch for the vulnerability5. We assume that patches are homogenous 

and completely remove vulnerabilities. Thus, vendors choose only when to patch and not the quality of 

the patch that they release. 

Some of the other assumptions of the model are as follows: First, we model disclosure as a binary 

outcome: Either all of the details of a vulnerability are disclosed or none at all. Second, we assume that 

when a vulnerability is patched for one vendor it is immediately disclosed for the other vendor. Third, end 

users are exposed to malicious attacks until the patches are released by the vendor. Stated otherwise, 

customers do not take action to remove the threat from vulnerabilities independent of the patches issued 

by vendors. Fourth, for simplicity, we assume that upon patch release end users immediately install 

patches. We also do not model the end user costs to install patches. 

4.2 Vendor Objective Function 

In this subsection, we develop the objective function for vendor i; the objective function for vendor j is 

symmetric. For simplicity, we begin with the case in which patching times are deterministic: Vendors can 

specify exactly the time it takes to develop a patch. We consider the stochastic case in the next subsection. 

Vendors use two pieces of information to decide the optimal time to release patch – end user loss and 

patch development cost. End user loss is a function of loss per customer, internalization factor and the 

number of product installations, or quantity.  

),,( sjii ττθ  denotes the cumulative loss incurred by an end user as a result of being exposed to the 

vulnerability. Third party disclosure takes place at time s, which is the time when an attacker or the 

intermediary makes vulnerability information public before the vendor releases the patch to the 

vulnerability. If third party disclosure takes place at time s and the patch is released at τi, then end users 

are exposed for the duration τi - s. The end user loss in such a case is denoted by )( sL i −τ . L(.) is 

assumed to be increasing and convex in the end user’s exposure and L(0) = 0. Since third party disclosure 

is an uncertain event, we denote the probability of a third party disclosing the vulnerability before iτ  as a 

distribution function F(.).6 When vendor i is first to release a patch for the vulnerability, end users of the 

vendor incur losses only upon third party disclosure. Thus the end user loss function is given by  

                                                                          (1) ∫ −= i dssdFsL ii

τ
τθ

0
)()(

                                                 
5 The model does not consider a scenario in which the vendor and competitors make real-time adjustments to their 
pre-committed patch release dates, which may be an extension to the model.  
6The protected period is embedded in the distribution of s.  In other words, if the protected period is T, then in the 
notation of the model, F(T) = 1. This way of modeling CERT economizes on notation.  
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However, when vendor i patches after the other vulnerable vendor, vendor j, there are two possible 

scenarios. First, third party disclosure could happen before vendor j releases its patch.  In this case the 

end user losses are the same as in equation (1). Second, vendor j may release its patch to the vulnerability 

prior to third party disclosure (before s). Since the act of the other vulnerable vendor releasing its patch 

implicitly constitutes disclosure of the vulnerability to vendor i, end user losses are )( jiL ττ − .  The 

probability that the other vendor releases patch before third party disclosure is given 

by )(1)Pr(1 jj Fs ττ −=≤− .  Hence the end user loss is this case is simply (1 ( )) ( )j i jF Lτ τ τ− − .  

Thus the total expected loss is given by  

( )0
( ) ( ) 1 ( ) (i

i i j iL s dF s F L
τ

)jθ τ τ= − + − −∫ τ τ                   (2) 

Vendors do not internalize all customer losses. The proportion of losses internalized by a vendor depends 

on the extent to which end users penalize the vendor for losses. For example, users may decide not to 

purchase the vendor’s product in the future. We consider two factors that influence the fraction of 

consumer losses internalized by the vendor. First, some fraction of losses will be internalized, 

independent of the number of competitors in the market. For example, some users may decide simply to 

stop using the product. We refer to this factor as iω . Second, when there are rivals to the vendor, an 

additional source of internalization may arise. End users may compare responses and penalize the 

laggards. For example, slow patching times may cause end users to switch vendors. We denote this factor 

as iλ in the model. The proportion of end user losses internalized by the vendor is thus ii λω + . Thus if j 

is a rival of vendor i the proportion of end user losses internalized vendor i is higher than if j is not a rival.  

The patch development cost depends on the resources allocated by vendors to produce a patch for the 

vulnerability. Since earlier patches require the vendor to devote more resources, the patch development 

cost for vendor i, )( iC τ  is decreasing in iτ . We further assume that )( iC τ  is convex in iτ  because the 

marginal utility of freed resources is decreasing. Hence marginal cost will be increasing with respect to 

iτ . Due to these assumptions, 0)(
<

∂
∂

i

iC
τ
τ

and 0)(
2

2

>
∂

∂

i

iC
τ
τ

.  

Let denotes the number of customers (quantity) of vendor i. A higher qi would imply greater losses for 

vendors from the vulnerability.  

iq

We are now in a position to characterize the vendor’s objective function.  It is given by 

iiiiii qCV )()( ωλθτ ++=                                                                                   (3) 
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The vendor chooses iτ to minimize  giveniV jτ . Both firms simultaneously choose their patching times.  

Since, the strategic case under certainty is not particularly insightful, especially to derive empirically 

testable hypotheses, we modify the model to incorporate uncertainty (with respect to patch release date) 

and derive testable hypotheses.  

4.3 Strategic interaction under uncertainty: 

In practice, it is unlikely that vendors will be able to determine precisely when a patch will be ready for 

the software. In order to accommodate this reality, we allow for stochastic patching times. Let denote 

the random variable that denotes the actual patch release date of the vendor. The expected patch date of 

the vendor is given by

ix

iixE τ=][ . We assume that x has the distribution function G(x; τ). The amount of 

resources allotted by vendors towards patching the vulnerability determines the expected patching time. 

Higher amount of resources are associated with earlier patching times.  Vendors choose an optimal *τ , 

given the distribution of others vendors’ patching times.  We look for a symmetric Nash Equilibrium in 

which vendors simultaneously commit to an expected patch release dateτ.. 

Under uncertainty the vendor’s cost function is given by: 

( ) iiiiii qCV
~~~
θωλ ++=                                               (4) 

The expected cost function under uncertainty is given by 

):()(
0

~

ii

R

ii xdGxCC τ∫≡                                         (5) 

The end user loss under uncertainty for vendor i is given by 

(∫ ∫ Φ−≡
R x

iijii
i xdGNszdzxL

0 0

~
):(),,:()( ττθ )       (6) 

where  and Φ(.) is the distribution of z.  },,...,,min{ 21 sxxxz j≡

Intuitively, a commitment to early patching by a rival will increase the payoff to the firm from patching 

quickly as well.  This suggests lemma 1 below that the reaction functions are upward sloping i.e., the 

patch release times are strategic complements (Milgrom and Roberts, 1994?).  (All proofs are in the Web 

Appendix.) 

Lemma: The reaction functions are upward sloping. Or 0*
>

∂
∂

j

i

τ
τ

 ij ≠∀ .  

Theorem 1: There exists a unique Nash equilibrium in pure strategy.   

 10



A direct consequence of the upward sloping reaction functions and the symmetric nature of the 

equilibrium is that when there are more vulnerable vendors, the threat of rival disclosure is greater and as 

a consequence the vendor’s expected loss is higher. This induces the vendor to allocate more resources to 

patching the vulnerability which results in an earlier patch release.  

The model yields three empirically testable propositions.   

Result 1: An increase in the number of vendors that share a common vulnerability increases the 

disclosure threat and leads to declines in the optimal expected patching time *τ .  

 

 

τj

τiτ*i

τ*j

τj(τi)

τi(τj)

45º

τj

τiτ*i

τ*j

τj(τi)

τi(τj)

45º

 
 
 
 
 
 
 
 
 
 
 
Figure 1: The effect of an increase in disclosure threat 

Figure 1 shows the effect of disclosure threat. The solid line represents the upward sloping reaction 

functions when there are N-1 vendors. The reaction functions intersect at (τi , τj) which is the equilibrium 

at low disclosure threat. An increase in the number of vendors affected from N-1 to N increases disclosure 

threat makes the reaction functions shift down, and as a result the new equilibrium patch release times are 

much earlier at (τi*, τj*). Thus the heightened disclosure threats results in an earlier patch release by both 

vendors affected by the vulnerability. 

An increase in iλ  increases the expected losses to vendor i and hence results in an earlier patch release by 

both vendors. Higherλ  (which happens when vendor j is also a rival) results in a pre-commitment to 

patch earlier. Given a commitment by one of the vendors to release patch early, all the other vendors that 

are affected by the vulnerability are also likely to pre-commit to an earlier patch release date. In this 

paper, we refer to the effect ofλ as the effect of competition.  

Result 2: An increase in the number of rivals that share a common vulnerability increases λ  (in addition 

to also increasing the disclosure threat) and leads to declines in the optimal expected patching time *τ .   
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Also the expected losses that vendors face is higher when faced with larger market share, and thus, such 

vendors will patch quicker.  

Result 3: τ * for a vendor is decreasing in quantity.  

We now use the data on software vulnerabilities to empirically test these results. Before describing our 

results, we provide a detailed description of our sample and the variables contained therein. 

5. Data and variables:  

We assembled our data set of vulnerabilities from publications of the CERT Coordination Center 

(CERT/CC), for the period September 2000 to August 2003.  Not all vulnerabilities reported to CERT/CC 

are eventually published and included in our sample. When a vulnerability is reported to CERT/CC, it 

researches the vulnerability and contacts the vendor if the vulnerability is authentic and exceeds 

CERT/CC’s minimum threshold value for severity, as measured by the CERT METRIC (which is 

described later). Vendors then decide whether to respond to CERT/CC’s notification of the vulnerability. 

If the vendor decides to respond to CERT/CC’s notification, the typical response takes one of three forms. 

First, the vendor may acknowledge the presence of the vulnerability. In this case, CERT/CC lists the 

product’s status as “vulnerable”. Second, the vendor may report that the product is not vulnerable, in 

which case CERT/CC lists the vendor’s status as “not vulnerable”. Third, the vendor may choose not to 

respond to the vulnerability; in this case, CERT/CC records the vendor’s status as “unknown”. CERT/CC 

is widely regarded as the premier source of information on software vulnerabilities and patches.7 On an 

average, in a year, about 3000 vulnerabilities get reported to CERT/CC of which only about 10%, those 

deemed technically or economically significant, are published.  

Our unit of observation is a vendor – vulnerability pair. CERT/CC published 526 vulnerability notes over 

our sample period, with 622 different vendors affected by these vulnerabilities. Each vulnerability note 

may contain information on multiple vulnerabilities. In all, these vulnerability notes included 4659 

observations (vendor-vulnerability pairs). Of these, 762 were listed as “not vulnerable”, 2182 were 

“unknown,” while 1714 were listed as “vulnerable”. We retained only observations with “status 

vulnerable” for the purpose of empirical analysis. 

We additionally drop observations that would introduce heterogeneity into the sample and obscure our 

efforts to identify the relationship between market structure and patching times. We dropped observations 

from non commercial, vendors (such as universities), typically offering open-source products, since these 

vendors may not adhere to traditional notions of profit maximization. We further dropped vendors that are 

                                                 
7 Other data sources such as online forums commonly include only information on vulnerabilities that were instantly 
disclosed. Other sources also do not verify vulnerabilities in the same way that CERT does.  
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not headquartered in US, as they may compete against other non-US firms for which we have no data, 

influencing our measures of competition and market share. We also removed protocol vulnerabilities from 

the data, as patches to these vulnerabilities typically involved protocol changes whose scope extends 

beyond a particular product. Further, we dropped observations wherein the vendors discovered and 

disclosed the vulnerability to CERT/CC of its own accord along with a patch. (Our results are robust to 

inclusion of these observations). This left us with a sample consisting of 241 distinct vulnerabilities and 

461 observations. However, the dropped vendors were included on our independent variable that proxies 

for competition and disclosure threats.  

One way that we separately identify the effects of competition and disclosure is by examining how the 

marginal effects of increasing direct rivals and non-rivals (other vendors with the vulnerability in 

common) influences patching times under different disclosure regimes. We label vulnerabilities as 

instantly disclosed when the security agency CERT/CC informs the vendor of the presence of the 

vulnerability even though the existence of the vulnerability had been publicly disclosed (by some third 

party). We label vulnerabilities as non-instantly disclosed when CERT/CC discloses a vulnerability that 

had previously not been publicly disclosed. In the next two sections, we provide descriptive statistics for 

dependent and independent variables under both types of disclosure.  

5.1 Independent Variables 

In this section we discuss the construction of our independent variables. A description of all variables is 

included in Table 1.  

Competition. To determine how threats from competition and disclosure influence patching times, we 

construct two variables. VENDORS is equal to the total number of vendors listed as “vulnerable” by 

CERT for a specific vulnerability. RIVALS is equal to the number of vendors that CERT lists as 

vulnerable and that operate in the same market as the vendor in the vendor-vulnerability pair. 

NONRIVALS is equal to the number of vendors that are vulnerable but which operate in different markets. 

We determined rivals and nonrivals using market definitions in the Harte Hanks CI Technology database 

(see next section). In those cases where the product was obscure and not included in the CI Technology 

database, we examined product manuals to identify product classification. As an example, suppose the 

vendor-vulnerability pair in an observation was Microsoft-Windows XP and the vulnerability influenced 

products produced by Red Hat and Oracle. In this case, total RIVALS would include Red Hat but not 

Oracle, NONRIVALS would include Oracle, while total VENDORS would include both Red Hat and 

Oracle. We plot histograms of number of vendors, rivals and nonrivals for vulnerabilities in appendix-I. 

 13



Quantity. Data on installations of software was collected using the Harte-Hanks CI Technology Database 

(hereafter CI database). From 2000-2002, the survey had responses from about 58,094 organizations in 

the United States.  Our data contains the stock of IT hardware and software reported by establishments, 

with over 100 employees, in December of each year.  The CI database is one of the richest sources of data 

on U.S. business IT investment available.  However, establishments in the sample report only binary 

decisions of software use: details on number of licenses are not reported. To develop a measure of the 

total installed base of the software, we use the number of establishments that indicated use of the product 

weighted by the number of employees in the organization. For instance if 1000 establishments own at 

least 1 licensed copy of Red Hat Linux, and each establishment has 500 employees, our measure for 

quantity would be 500,000., which is the aggregate number of employees in those establishments. This 

puts more weight on products used in larger organizations, and arguably provides us a more accurate 

proxy for quantity. Since the CI database oversamples certain industry sectors we follow Forman, 

Goldfarb, and Greenstein (2005) and weight our data using County Business Patterns data from the U.S. 

Census. For details on this procedure, see Appendix III. To compute our final measure of quantity, we 

multiply the number of employees by the establishment weights and sum across establishments. Because 

the distribution of quantity is highly skewed, we take the log of installed base for our analysis. We label 

this variable LOGQUANTITY.  

Other variables. In order to account for differences in severity of vulnerabilities we use the log of (one 

plus) CERT/CC’s severity measure, which is a number between 0 and 180.8 We label this variable 

LOGSEVERITY. Anecdotal evidence from industry sources suggest that quality testing of patches on 

multiple versions consumes additional time in the patch development process. Thus, we also control for 

the log of the number of software versions that have been produced.  In addition, we control for market 

fixed effects to address unobserved differences across product markets in factors such as intensity of 

competition, ability of customers to change suppliers and ease of developing patches.  Finally, we also 

include firm dummies for 7 leading vendors, which jointly account for about 74% of the observations in 

our sample. 

Descriptive statistics for all of the independent variables are included in Table 2. Table 2 also shows how 

these summary statistics vary by disclosure type. Vulnerabilities that are instantly disclosed have overall a 

                                                 
8 The set of criteria that determines the measure includes whether  (i)information about the vulnerability is widely 
available (ii)the vulnerability being exploited in the incidents reported to US-CERT? (iii) Is the Internet 
Infrastructure at risk because of this vulnerability? (iv) How many systems on the Internet are at risk from this 
vulnerability? (v) What is the impact of exploiting the vulnerability? (vi) How easy is it to exploit the vulnerability?  
www.kb.cert.org/vuls/html/fieldhelp  
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slightly lower number of vendors than non-instantly disclosed vulnerabilities (7.87 v. 11.65) as well as 

lower rivals (5.38 v. 7.31) and nonrivals (2.47 v. 4.30). 

Table 1: Variable Descriptions 
Variable Description 

DURATION Time taken by vendors to patch vulnerabilities 
LOGDURATION Log of DURATION  
VENDOR Total number of vulnerable vendors 
RIVAL The number of vulnerable rivals 
NONRIVAL The number of vulnerable non-rivals 
INSTANT Instant disclosure 
NONINSTANT Non-instant disclosure 
LOGQUANTITY Log(1+ Total # of employees at customers (those that used the software) sites) 
LOGVERSIONS Log of number of versions 
LOGSEVERITY 1+Log of CERT/CC metric.  
LEADER First vendor(s) to patch the vulnerability.  
HARDWARE Vendors that also manufacture computer hardware 

Table 2: Descriptive statistics 

Variable N Mean Std. Dev 
Full Sample    
LOGDURATION  461 3.43 2.13 
VENDORS 461 9.02 8.04 
RIVALS 461 5.96 5.87 
NONRIVALS 461 3.03 3.65 
LOGQUANTITY 461 13.95 2.26 
LOGVERSIONS 461 0.22 0.50 
LOGSEVERITY   461 22.52 20.34 
    
Instant Disclosure Sample    
LOGDURATION  321 3.60 2.30 
VENDORS 321 7.88 7.32 
RIVALS 321 5.38 5.54 
NONRIVALS 321 2.47 2.81 
LOGQUANTITY 321 14.07 2.19 
LOGVERSIONS 321 0.19 0.48 
SEVERITY 321 22.67 21.18 
    
Non-instant disclosure Sample    
LOGDURATION  182 3.05 1.63 
VENDORS   140 11.65 8.97 
RIVALS 140 7.31 6.37 
NONRIVALS 140 4.30 4.87 
LOGQUANTITY 140 13.68 2.41 
LOGVERSIONS 140 0.31 0.51 
SEVERITY 140 22.18 18.35 
 

5.2 Dependent variable  
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Our dependent variable is DURATION, the elapsed days from the date when the vendor came to know of 

the vulnerability until the vendor released a patch.  DURATION depends on the regime of disclosure – 

instant or non-instant disclosure. If the vulnerability is instantly disclosed, DURATION is the elapsed 

time in days between when the vulnerability was publicly disclosed and the time the vulnerability was 

patched by the vendor. If the vulnerability was non-instantly disclosed, DURATION is the elapsed time 

between when CERT/CC informed the vendor of the existence of the vulnerability and when the vendor 

issued a patch. For the empirical analysis we use the log of one plus the number of elapsed days as our 

dependent variable.  We label this variable LOGDURATION. 

The final sample comprises 461 observations relating to 241 distinct vulnerabilities. Of these, 4.2%, or 

about 20 observations, had no patch. For these unpatched observations, we assign the maximum value of 

the dependent variable (8.27).  As we will show below, our results are unchanged when we redo the 

analysis by using a tobit model that treats these observations as right censored. From Table 2 average 

LOGDURATION is higher under instant disclosure than under noninstant disclosure (3.60 v. 3.05).  

5.3 Statistical Method and Identification 

In this section, we describe our method for identifying how competition and disclosure influence vendor 

patching times. Our goal is to examine how the log of duration of patching times for vendor i in market m 

facing vulnerability v varies with changes in competition, disclosure, and quantity. To do this, one may 

estimate the linear model  

0 1 2 3

1 2

imv imv v im

i v iv

LOGDURATION COMPETITION DISCLOSURE LOGQUANTITY
X Z
β β β β

θ θ ε
= + + + +

+ +
  (7) 

Where Xi is a vector of vendor controls that includes vendor and market fixed effects and Zv is a vector of 

vulnerability controls that includes severity metric. Our interest is in identifying the parameters β1 through 

β3 which reflect the effects of competition, disclosure, and market size, respectively. In practice, we use 

RIVALSiv to proxy for COMPETITIONiv and RIVALSiv + NONRIVALSiv to proxy for DISCLOSUREiv, 

giving us 

0 1 2 3

1 2

( )imv imv imv imv im

i v iv

LOGDURATION RIVALS RIVALS NONRIVALS LOGQUANTITY
X Z
β β β β

θ θ ε
= + + + + +

+ +
 (8) 

In the following three sections, we discuss alternative ways of estimating β1 through β3. Each of these 

models will make slightly different identification assumptions. By employing alternative identification 

assumptions, we hope to explore the robustness of our results.  
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5.3.1 Estimation using RIVALS and NONRIVALS 

Our first approach estimates a variant of equation (8) that includes market-level and vendor fixed effects 

fixed effects, and vulnerability random effects, giving us the estimating equation 

0 1 2 3

1 2

imv imv imv im

i v v iv

LOGDURATION RIVALS NONRIVALS LOGQUANTITY
X Z
β α β β

θ θ µ ε
= + + + +

+ + +
  (9) 

If RIVALSiv and NONRIVALSiv influence LOGDURATIONiv linearly as assumed, then β2 identifies the 

effects of disclosure, α1 identifies the combined effects of disclosure and competition, and α1- β2 identifies 

the effect of competition. β3 identifies how market size influences patching speed. Xi includes a vector of 

vendor fixed effects,9 while Zv includes controls for LOGSEVERITY, LOGVERSIONS, and a set of market 

fixed effects.10 µv is a vulnerability random effect.  

Identification of this model rests on several assumptions. First, identification of the effects of competition 

assumes linearity of LOGDURATION with respect to RIVALS and NONRIVALS. Prior empirical research 

in industrial organization has demonstrated that the impact of the marginal entrant on price competition is 

declining in the number of entrants (Bresnahan and Reiss 1991, Mazzeo 2002). If the influence of entry of 

quality competition is similarly nonlinear, then our estimates of the marginal effect of competition and 

disclosure will be inconsistent. Estimates of the model that take logs of RIVALS and NONRIVALS yield 

qualitatively similar results; however these alternative estimates do not allow us to recover the structural 

estimates of the marginal effect of increasing competition. Our estimates also depend on measurement of 

RIVALS and NONRIVALS. That is, they require us to accurately measure market boundaries. If RIVALS 

and NONRIVALS are measured inaccurately this will likely produce a bias towards zero in the estimates.   

Identification in the model arises from variation in RIVALS and NONRIVALS within vendors that 

participate in multiple markets, and within markets that have multiple vendors. For example, consider a 

vulnerability in Util-linux package.  This utility is not packaged in all LINUX variants but only in Red 

Hat, SCO and Sun. But then this package is also packaged in products by Juniper and Cisco. Hence for 

this vulnerability, the vendors listed vulnerable are - Red Hat, SCO, Sun, Juniper and Cisco.  So for Sun, 

                                                 
9 These are Apple, HP (includes HP, Compaq, and Digital), Microsoft, Sun, SCO, RedHat, and IBM (includes 
Lotus, iPlanet, and IBM). The omitted category includes a number of smaller vendors for which we have insufficient 
observations to identify a separate fixed effect. Appendix-I, Table A1 displays the distribution of proportions for 
vendor fixed effects. 26% of observations are from vendors that do not have a separate fixed effect. Vendors that do 
not have fixed effects are Adobe, Allaire, Compaq, Macromedia, Netscape, Network Associates, Novell, Oracle, 
SGI, Symantec, Trend Micro, and Veritas. 
10 These are for operating systems, web browsers, application development software, database management, 
groupware software, and web server software. Each category includes a minimum of 15 observations. The omitted 
category includes small markets for which we have insufficient observations to identify a separate fixed effect. 
Appendix Table 1 includes the distribution of proportions.  5.09% of observations are from markets that do not have 
a separate fixed effect.  
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Red Hat and SCO, RIVALS =2 while For Juniper and Cisco RIVALS =1. NONRIVALS for Cisco and 

Juniper is 3 and NONRIVALS for Red Hat, Sun and SCO is 2. 

So with Rivals and NonRivals the variation is between and within vulnerabilities. Moreover, a percentage 

(26%) of observations are for vendors appears infrequently in our sample and so do not have a separate 

fixed effect, so our estimates will also reflect a small amount of cross-vendor variation. We retain these 

observations to maintain a sample that reflects the distribution of vendor sizes across the population, 

however as a robustness check we re-estimate the model using only vendors for which we can estimate 

separate fixed effects for each vendor and show that the results are qualitatively similar.  

Our model also assumes that LOGQUANTITY is statistically exogenous. In support of this assumption we 

note that LOGQUANTITY reflects the stock of installations in the CI database in 2002, rather than the 

purchase quantity in any particular year. However, we recognize that LOGQUANTITY may reflect in part 

recent demand for software products. If so, then this would lead to a downward bias on our estimate 

of 3β ; that is, it would lead us to overstate the relationship between market size and quality provision.  

Unreported estimates, which exclude LOGQUANTITY , yield very similar estimates for other variables, 

indicating that the bias, if any, does not extend to other estimates.  

5.3.2 Estimation using instant disclosure 

While our first model relied on measurement of RIVALS and NONRIVALS and a linearity assumption to 

identify competition and disclosure, our second model utilizes variation in the vulnerability disclosure 

regime to to place bounds on the structural parameters β1 and β2. The effect of the marginal vendor on 

disclosure is equal to zero under instant disclosure since the vulnerability has already been disclosed. 

Using this information, we can decompose the effect of number of vendors on patching times as follows: 

0 1 2 3

4 1 2

(1 ) *imv iv v iv v

im i v v iv

LOGDURATION VENDORS INSTANT VENDORS INSTANT
LOGQUANTITY X Z
β β β β
β θ θ µ ε
= + + − + +

+ + + +
      (10) 

where INSTANT is a binary variable that is equal to one when a vulnerability is instantly disclosed. Note 

that the effect of the marginal vendor on disclosure is equal to zero when INSTANT=1 since the 

vulnerability has already been disclosed. We estimate the following model: 

0 1 2 3

3 1 2

*imv iv v iv v

im i v v iv

LOGDURATION VENDORS INSTANT VENDORS INSTANT
LOGQUANTITY X Z

β γ γ γ
β θ θ µ ε

= + + +
+ + + + +

           (11) 

where γ1= β1+β2 identifies how increases in the number of vendors will lower patching times through 

increases in competition, while γ2= -β2 identifies how increases in the number of vendors leads to lower 

patching times through disclosure. Because some vendors will not be rivals, VENDORS overestimates the 
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number of rivals so that γ1= β1+β2 is an underestimate of the competition effect, while -γ2 is an unbiased 

estimate of the disclosure effect.  

We next contrast the identification assumptions of model (11) with model (9). In contrast to model (9), 

model (11) does not rely on accurate identification of RIVALS and NONRIVALS. Moreover, while we do 

assume that LOGDURATION is linear in VENDORS, the identification strategy is robust to alternate 

functional form assumptions, e.g., using the log of vendors yields similar results. However, this flexibility 

comes at some cost. First, as noted above, we are able only to place a lower bound on the competition 

effect using this model. Second, this model introduces the possibility that INSTANT is endogenous: 

instantly disclosed vulnerabilities may differ in some unobservable way that influences patching times. 

To control for this potential source of endogeneity, we present the results of instrumental variable (IV) 

regressions that use data on theB identity of the identifier of the vulnerability as instruments for 

INSTANT. Our results suggest that the endogeneity, if any, is minor and the IV estimates are similar to the 

featured estimates.  

The effect of LOGQUANTITY on patching times may be different for software vendors that also sell 

hardware than for other firms since such firms may also internalize the effect of vulnerable software on 

related hardware sales. For example, vulnerabilities in Sun’s Solaris operating system may influence sales 

of its workstations too, shifting the relationship between installed base of Solaris and patching times as 

compared to other software firms. To capture these potential differences, we interact LOGQUANTITY 

with a vendor hardware dummy that is equal to one when a software vendor also sells hardware (like 

IBM, HP, Sun)  

5.3.3 Estimation using rivals, nonrivals, and instant disclosure 

Our third model combines both approaches, identifying the competition and disclosure effects using rivals 

and nonrivals. We used equation (9) to demonstrate how competition could be identified using variations 

in the number of rivals and nonrivals. Since the effects of disclosure will only be felt under noninstant 

disclosure, we can rewrite equation (9) as  

ivvvimv

imvimvimv
imv ZXYLOGQUANTIT

NONRIVALSRIVALSINSTANTRIVALS
NLOGDURATIO

εµθθβ
βαβ

++++
++−++

=
213

210 )(*)1(      (12) 

Collecting terms gives us the following estimation equation 
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where γ1= β1+β2. Equation (13) suggests that the model is over-identified. We test for and are unable to 

reject the over-identification restrictions that the coefficient on NONRIVALS is equal to that of 

INSTANT*NONRIVALS and that the coefficient on INSTANT*RIVALS is equal to that of 

INSTANT*NONRIVALS. Thus, we estimate two sets of models: one with no over-identification 

restrictions and one in which we constrain the coefficients of NONRIVALS, INSTANT*NONRIVALS, and 

INSTANT*RIVALS to be equivalent to one another. 

6. Result and Discussion 

We begin with some simple comparison of conditional means and then proceed with the regression 

analysis. 

6.1 Analysis of conditional means 

In table 3, we provide some preliminary evidence on the effects of competition and disclosure through an 

examination of conditional means. We categorize VENDORS as “high” if the natural log of number of 

VENDORS for a vulnerability was above the median and “low” otherwise. As noted above, increases in 

vendors under instant disclosure will influence patching times only through their effect on competition. 

Thus, under instant disclosure the difference in the sample means of LOGDURATION between categories 

identifies the effect of increasing competition on patching times: an increase in the number of vendors 

from below the median to above the median lowers LOGDURATION by a statistically significant 0.58. 

Changes in disclosure regime will lower patching times due to the disclosure effect;. thus, differences in 

LOGDURATION across the disclosure regimes provide an estimate of the disclosure threat effect.  

Moreover, the disclosure threat increases with the number of vendors. Column (3) shows that the data 

support these hypotheses: instant disclosure leads to a reduction in DURATION by about 0.93 when 

VENDORS is high and by about 0.60 when VENDORS is low. All of these differences are statistically 

significant.  

Table 3: Comparison of conditional mean of LOGDURATION  
             Disclosure                   
 
No of Vendors  

Instant disclosure 
(1) 

Non instant disclosure 
(2) 

Disclosure effect 
(3) 

High (Above Median) 
 

      3.42***  (0.21)       2.49***  (0.16)         -0.93***(0.29)   

Low  (Below Median) 
 

      4.00 *** (0.17)         3.40***  (0.24) -0.60**  (0.29) 

Competition effect       -0.58***(0.27) Disclosure+ competition 
effect = -0 .81   

  

Notes: Cells demonstrate mean of DURATION conditional on different combinations of disclosure and number of 
vendors. Standard errors in parentheses. Sample median of vulnerable vendors=6. * Significant at 90% confidence 
level. ** Significant at 95% confidence level. *** Significance at 99% confidence level. 
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6.2 Regression results using rivals and nonrivals 

We begin by estimating an OLS regression with clustering in standard errors by vendor. We then estimate 

a GLS model with random effects at the vulnerability level. Since our results are qualitatively similar 

across the two models, we use the random effects model as our baseline in this section and throughout the 

rest of the paper. As a robustness check to our treatment of right-censored observations, we also estimate 

a random effects tobit model in which unpatched observations are treated as right-censored. Last, we 

estimate a vendor fixed effects model with only the top 7 vendors.   

Table 4: Identification using Rivals and Nonrivals - Model (9)  

Variable OLS with 
cluster 

correction 
(1) 

Random effects 
GLS  

 
(2) 

Random 
effects Tobit 

 
(3) 

Random effects 
GLS, Sample of 
“fixed effects” 
vendors  (4) 

RIVALS α1= β1+β2  -0.07***(0.04) -0.08*** (0.03) -0.08***(0.02) -0.07***(0.03) 
NONRIVALS (β2) -0.06      (0.04) -0.08***(0.02) -0.08*** (0.03) -0.05**  (0.03) 

LOGQUANTITY (β3) -0.18** (0.06) -0.13***(0.05) -0.14***(0.05) -0.07    (0.08) 
LOGVERSIONS  0.65*** (0.20)  0.29**  (0.13)  0.31**  (0.18)  0.16    (0.21) 
LOGSEVERITY -0.27    (0.23) -0.12    (0.13) -0.15    (0.14) -0.12    (0.15) 
HARDWARE*LOGQUANTITY  0.31*** (0.15)  0.27*** (0.11)  0.28**  (0.13)  0.21*   (0.12) 
Constant  8.01*** (1.09)  6.86*** (0.89)  7.28***(0.85)  6.86*** (0.89) 
N 461 461 461 340 
R-squared 0.17 0.15 - 0.09 
Log Likelihood - - -905.75 - 
R-squared (between) - 0.13 - 0.10 
#vulnerabilities 241 241 241 213 
Market fixed effects  2 2 2 2 
Vendor Fixed effects  7 7 7 7 
σu - 1.71 1.76 1.66 

Standard errors in parentheses. * Significant at 90% confidence level. ** Significant at 95% confidence level.  
*** Significance at 99% confidence level. 

 

Table 4 shows that, the number of nonrivals has a significantly negative effect (at the 1% level) on 

patching times across all specifications, except the OLS model. One additional nonrival will lower 

patching times by between 8 and 13 days, or by about 5-8%, depending on the specification. The direct 

effects of competition appear to be small. The coefficient estimate on RIVALS is negative and statistically 

significant (at the 1% level) in all models. However, the coefficient estimates are similar in magnitude to 

those for NONRIVALS. As noted above the structural parameter estimate for competition is equal to β1, 

the difference between the coefficient for rivals and non-rivals. This estimate of β1 is small in magnitude 

and statistically insignificant, ranging from -0.01 to -0.02. These estimates imply that although one 

additional rival is associated with between a 5% and 8% decline in duration times, the contribution from 

the competition effect is modest and insignificant.  
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Columns (1) through (3) show that increase in LOGQUANTITY has a statistically significant negative 

effect on patching times for non-hardware vendors. The effect LOGQUANTITY is lower for the 

subsample of large vendors. Large vendors in our sample are disproportionately hardware vendors. Thus, 

the different estimate in column (4) may reflect in part the smaller sample11 from which we are estimating 

this parameter. Columns (1) through (3) imply that a 10% increase in quantity is associated with between 

a 1.1% and 1.8% decline in duration. In contrast, for hardware vendors, increases in LOGQUANTITY 

have no significant effect on patching times, and may even modestly increase patching times.  

6.3 Regression results using instant disclosure  

In this section we identify the effects of competition, disclosure, and installed base using variation in 

disclosure (Equation (11)). The results are presented in Table 5.   

Table 5 - Results for identification using Instant Disclosure – Model (11) 

Variable Random effects 
GLS   
 
(1) 

Random 
effects Tobit  
 
(2)  

Random 
effects IV 

 
(3) 

Sample of “fixed 
effects” vendors 

 
(4) 

INSTANT -0.20    (0.33) -0.16   (0.34)  0.38     (1.44) -0.09   (0.39) 
VENDORS (γ1= β1+ β2) -0.10***(0.03) -0.11***(0.03) -0.09*   (0.04) -0.09***(0.03) 
INSTANT*VENDORS (γ2 = −β2)  0.06**   (0.03)  0.05*  (0.03)  0.04     (0.06)  0.07** (0.03) 
LOGQUANTITY (β3) -0.14***(0.05) -0.16***(0.05) -0.14*** (0.06) -0.08   (0.08) 
LOGVERSIONS  0.30*   (0.17)  0.33*   (0.13)  0.35*    (0.20)  0.21    (0.26) 
LOGSEVERITY -0.13    (0.13) -0.15    (0.13) -0.13    (0.13) -0.14    (0.14) 
HARDWARE*LOGQUANTITY  0.27**  (0.12)  0.28**  (0.12)  0.29**  (0.13)  0.20    (0.15) 
Constant  7.07***(0.82)  7.46*** (0.85)  6.71*** (1.19)  5.87*** (1.19) 
N 461 461 461 340 
R-squared 0.16 - 0.17 0.12 
Log Likelihood - -903.13 - - 
R-squared (between) 0.14 - 0.15 0.11 
#vulnerabilities 241 241 241 213 
Market fixed effects 2 2 2 2 
Vendor Fixed effects  7 7 7 7 
σu 1.71 1.76 1.57 1.64 
Standard errors in parentheses. * Significant at 90% confidence level. ** Significant at 95% confidence level.  
*** Significance at 99% confidence level. 

Columns (1) and (2) show that estimates of the disclosure effect using random effects GLS and Tobit 

models yield results that are qualitatively similar to the estimates in section 6.2. One additional vendor is 

associated with between a 4% and 7% decline in duration times12 due to disclosure threat. The estimate of 

the competition effect (β1) can be recovered by adding the coefficient estimate of INSTANT*VENDORS to 

that of VENDORS. The estimates for β1 are marginally significant and suggest that one additional vendor 
                                                 
11 There are 112 observations comprising of hardware vendors. 
12 Recall that the parameter estimate for the disclosure effect is γ2 = -β2, so these estimates are equal to -0.06 and      
-0.05 in columns 1 and 2.  
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is associated with between a 2% and 6% decline in duration times due to the competition effect.  The 

competition effect as estimated here is much larger (in absolute value) than that in section 6.1. This is 

surprising since our identification strategy in section 5.2 suggested that these estimates should 

overestimate the competition effect, although measurement error in measures of rivals and non-rivals may 

have biased the estimated competition effect towards zero. Estimates of QUANTITY variables are 

qualitatively similar to those in section 6.2.  

For the remainder of Table 5, we use instrumental variable techniques to examine the assumption of 

exogenous capabilities (column 3 and 4). We employ random effects instrumental variable models. We 

define eight instruments. First, we instrument for instant disclosure using four dummy variables 

indicating the source of disclosure: THIRD-PARTY-CONSULTANT, INDIVIDUAL, USER13, and 

UNIVERSITY. These groups have different incentive to publicly disclose vulnerabilities. For instance, a 

THIRD-PARTY-CONSULTANT is in general more likely to publicly disclose vulnerabilities as opposed to 

INDIVIDUAL identifiers who are more likely to work with either vendors or CERT. However, they are 

unlikely to be correlated with duration of patching times, conditional on our other right hand side 

variables. Next, we instrument for INSTANT*VENDORS by interacting the previous four instruments 

with VENDORS. We therefore have eight instruments for two endogenous variables (INSTANT, and 

INSTANT*VENDORS).  

The results of the instrumental variable regressions are in column (3). Overall, they are qualitatively 

similar to the results in columns (1) and (2), however, the parameter estimate of γ2 is smaller and no 

longer statistically significant suggesting that we are not able to measure any significant change in 

duration times due to the disclosure effect. Estimate on γ1 imply that one additional vendor is associated 

with about a 6% decline in duration times due to the competition effect.  Finally, column (4) reports the 

results for the sample of top 7 vendors, and shows similar results.  

6.4 Regression results using rivals, nonrivals, and instant disclosure 

In this section we combine the identification strategies from the prior two subsections and estimate 

Equation (13). They are reported in Table 6. In columns (1) and (2) we regress LOGDURATION on the 

independent variables in equation (13) while allowing all parameter estimates to be driven by the data; 

that is, we do not place any restrictions on the parameter estimates. Estimation of the unconstrained model 

yields several estimates of the disclosure effect. Only one of these estimates is significant: the coefficient 

estimate on the number of nonrivals. Using these coefficient estimates, a one unit increase in the number 

of nonrivals is associated with between 9% and 12% decline in duration times. To state it another way, an 

                                                 
13 An INDIVIDUAL is an identifier that is not a security consulting firm; A USER is an end-user of the software. 
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increase in one nonrival will lower patching times by about 15 to 20 days. Other estimates of the 

disclosure effect were small and generally statistically insignificant. The effect of QUANTITY is very 

similar to the earlier estimates; about 1.4% to 1.5% decrease in DURATION for a 10% increase in 

quantity. The competition effect (estimate on rivals) is between 8% to 12% or about 13 to 20 days.  

Table 6: Results for identification using Rivals, Nonrivals, and Instant Disclosure 

Variable Random effects 
unconstrained 
model 
(1) 

Random effects 
IV unconstrained 
model 
(2) 

Random 
Effects 
constrained 
model 
 
(3) 

Random Effects 
IV constrained 
model 
 
(4) 

INSTANT -0.13    (0.38)  0.05    (0.92) -0.21   (0.37)  0.75    (0.64) 
INSTANT*RIVALS (-β2)  0.01    (0.04)  0.06    (0.07) -0.05*  (0.03) -0.04***(0.01) 
INSTANT*NONRIVALS (-β2)   0.10*   (0.06)  0.04    (0.09) -0.05*  (0.03) -0.04***(0.01) 
RIVALS (β1) -0.08** (0.04) -0.11** (0.05) -0.10***(0.03) -0.04*   (0.03) 
NONRIVALS(β2) -0.12***(0.04) -0.09*  (0.05) -0.05*  (0.03) -0.04***(0.01) 
LOGQUANTITY(-β3) -0.15***(0.05) -0.14***(0.05) -0.13***(0.05) -0.14***(0.06) 
LOGVERSIONS -0.27    (0.17) -0.35*   (0.19) -0.27   (0.17) -0.32** (0.13) 
LOGSEVERITY -0.13    (0.13) -0.13   (0.13) -0.15   (0.13) -0.10    (0.14) 
HARDWARE*LOGQUANTITY  0.23** (0.13)  0.27***(0.12)  0.28** (0.12)  0.34***(0.11) 
Constant  7.06***(0.86)  6.91***(1.15)  6.81***(0.85)  6.33***(0.87) 
N 461 461 461 461 
R-squared 0.15 0.15   
Log Likelihood - -   
R-squared (between) 0.13 0.13   
#vulnerabilities 241 241 241 241 
Market fixed effects  2 2 2 2 
Vendor Fixed effects  7 7 7 7 
σu 1.73 1.73   

* Significant at 90% confidence level. ** Significant at 95% confidence level. *** Significance at 99% confidence 
level. § In columns (3) and (4) the coefficient of INSTANT*RIVALS and INSTANT*NONRIVALS are constrained to 
be equal to that of NONRIVALS. R-squared not reported for constrained models. 

 

As noted in section 5.3 the unconstrained model may be over-identified, and the small and generally 

insignificant estimates of INSTANT*RIVALS and INSTANT*NONRIVALS in columns (1) and (2) suggest 

that over-identification may be a problem. We conducted a series of hypothesis tests and failed to reject 

the constraints that the coefficient on NONRIVALS is equal to that of INSTANT*NONRIVALS (χ2 - 0.12; 

p-value 0.73 under Random Effects GLS and χ2 - 0.82; p-value 0.36 under random effects IV) and the 

coefficient on INSTANT*RIVALS is equal to that of INSTANT*NONRIVALS (χ2 – 1.39; p-value 0.24 

under random effects GLS and χ2 - 0.03; p-value 0.86 under random effects IV) We then estimated 

random effects GLS specification as well as a random effects IV specification constraining 

INSTANT*NONRIVALS to be equal to NONRIVALS and INSTANT*RIVALS to be equal to 

INSTANT*NONRIVALS.  
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Columns (3) and (4) provide the parameter estimates of the constrained models. These results are 

qualitatively similar to those in columns (1) and (2). A unit increase in the number of nonrivals is 

associated with a 4% to 5% decline in patch release times which is equivalent an expected decline of 7 to 

8 days due to the disclosure effect. A one unit increase in rivals is associated with a 4% to 10% decrease 

in duration due to competition effect.  This would lead to a decline of 7 to 17 days per rival. The results of 

increases in quantity are qualitatively similar to those shown in other sections. A 10% increase in 

LOGQUANTITY is associated with between a 1.3% and 1.4% decline in duration. 

6.5 Actual Disclosure and Threat of Disclosure 

The model in section 3 assumes that the vendors make one-time investment decisions to patch vulnerable 

software. Our results have demonstrated that competition and disclosure each influence patching times. 

Thus far, we have interpreted our disclosure results as reflecting the threat of potential disclosure: that is, 

increases in the number of vendors sharing a common vulnerability reduce patching times due to the 

expectation of earlier public disclosure. However, one alternative hypothesis is that our results reflect the 

impact of actual disclosure. That is, vendors may increase their investments in patching vulnerabilities 

once disclosure takes place. This alternative interpretation of our results is consistent with our primary 

hypothesis—that investment in software quality is influenced by changes in market structure—however it 

offers an explanation for this relationship that is different from that posited by our theory model.  

To explore the salience of this alternative interpretation, we examine the patching behavior of vendors 

that were the first to release patches for vulnerabilities. We label these vendors as “leaders.” Because we 

are explicitly selecting on vendors that were faster to patch than their competitors, estimates in this 

sample may overstate the competition effect if vendors in this sample are systematically more sensitive to 

competition. Further, if potential disclosure influences patching behavior, estimates from this sample may 

also overstate the disclosure effect. However, if potential disclosure does not influence patching behavior, 

then we should expect to see zero disclosure effect. Thus, these estimates will enable us to identify 

directionally of whether a disclosure effect exists, however the parameter estimates of its magnitude will 

in general be inconsistent.  

Recall that our sample had 241 vulnerabilities and 461 observations. Of the 241 vulnerabilities in our 

sample, 68 vulnerabilities had non-commercial/foreign vendors as leaders and hence we do not include 

them.  14 vulnerabilities had not patched at all. This led to a sample of 155 unique vulnerabilities and 179 

observations.  The number of observations is greater than the number of vulnerabilities because some 

vulnerabilities have multiple vendors that patch first on the same day.  
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In an analysis parallel to Table 3, we first split the number of nonrivals in this sample into “low” and 

“high” groups based on whether they were above or below the median. We then examined if LEADER 

were sensitive to the number of NONRIVALS for a vulnerability. Although the effect of disclosure threat 

in general is associated with an earlier patch release, the effect of disclosure threat among LEADERS is 

not statistically significant.  

Table 7 Impact of  number of NONRIVALS on LEADERS’ DURATION 
Severity High Low Ave. Disclosure threat 

NONRIVALS     3.33***(0.22)      3.59***(0.47) -0.26   (0.52) 
*** p < 0.01** p < 0.05*p<0.10. 

We further estimated multivariate regressions on this sample to test if leaders were sensitive to disclosure 

threat. About 110 vulnerabilities had no other affected vendors (only 1 vendor), and 45 consisted of 

vendors that faced more than one rival. Because of the small number of observations with a common 

vendor, we were unable to estimate random effects models and instead use OLS with standard errors 

corrected for clustering on vendors. In addition, there was relatively little variation in the number of 

vendors affected by the vulnerability. Thus, in this limited sample, we were only able to utilize our second 

identification strategy—instant disclosure using total vendors.   

Table 8- OLS with for the LEADER sample 
Variable OLS with cluster  

corrected standard 
errors 

(1) 

Tobit 
(2) 

IV with cluster 
corrected std. 

errors 
(3) 

INSTANT  0.72    (0.51)  0.91*   (0.51)  0.66    (1.01) 
INSTANT*VENDORS (γ2 =-β2)  0.05    (0.09)  0.03    (0.09)  0.02    (0.10) 
VENDORS (γ1= β1+ β2) -0.07***(0.03) -0.07*   (0.04) -0.06***(0.02) 
LOGQUANTITY (β3) -0.21***(0.08) -0.26***(0.10) -0.22***(0.09) 
LOGVERSIONS  1.09***(0.38)  1.25***(0.39)  1.09*** (0.39) 
LOGSEVERITY -0.06   (0.19) -0.09    (0.18) -0.04    (0.19) 
HARDWARE*LOGQUANTITY  0.44** (0.16)  0.52***(0.19)  0.43*** (0.17) 
Constant  7.13***(1.24)  8.00***(1.40)  7.35    (1.29) 
N 179 179 179 
#vulnerabilities 155 155 155 
Market fixed effects  2 2 2 
Vendor Fixed effects  3 3 3 

*** p < 0.01** p < 0.05*p<0.10. ┼Cluster corrected on vulnerability. 

These results suggest that disclosure influenced the speed with which leaders in our sample patched 

vulnerabilities, although the parameter estimate is not statistically significant (estimate γ2). A unit increase 

in vendors is associated with a 2% to 5% decline in duration times due to disclosure threat. Stated 

otherwise the effect of disclosure among LEADERS is about 3 to 8 days per VENDOR. Thus, these results 

are suggestive that potential disclosure plays an important role in influence vendor patching behavior.  
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7. Discussion and conclusion 

In this study, we show how competition, disclosure, and market size influence decisions by software 

vendors to invest in one key area of product quality: the patching of software vulnerabilities. Table 8 

provides a summary of key findings from three models that use alternate identification strategies. We 

show that a one unit increase in the number of rivals reduce patching times between 7 to 17 days due to 

increasing internalization of customer losses. Perhaps more importantly, we demonstrate that changes in 

the number of nonrivals lower patching times through their impact on disclosure. The average effect of 

the presence of nonrivals lowers expected patching time from 7 to 8 days. Last, we demonstrate that 

increases in market size leads to lower patching times: a 10% increase in quantity leads to a 1.3% to 1.4% 

decline in patching times.  

Table 8: Average effect of competition and disclosure threat  

 Random Effects 
Model, Identification 

using Rivals and 
Nonrivals 

 
(2) 

Random Effects IV 
Model, 

Identification using 
Instant Disclosure 

 
(3) 

Random Effects IV 
Model, Identification 

using Rivals, 
Nonrivals, and Instant 

Disclosure 
(4) 

Competition Effect (A unit 
increase in number of 
competitors) 

7% 1% 4% 

Disclosure Effect (A unit 
increase in number of nonrivals) 

1% 6% 4% 

Disclosure Effect + Competition 
Effect 

8% 7% 8% 

Quantity Effect (10% increase in 
the quality sold) 

-1.3% -1.4% -1.4% 

Column (2) uses baseline GLS estimates in column (2) of Table 4, columns (3) and (4) use instrumental 
variable estimates in column (5) of Tables 5 and 6.  

 

This research provides evidence on how competition influences quality provision in information 

technology markets. More generally, we further recent efforts to understand how product market 

decisions are influenced by changes in market structure in technologically related markets (Bresnahan and 

Greenstein 1999). Empirical research on this topic remains relatively rare because of the difficulty in 

obtaining data sets with systematic variation in same and related markets.14 We provide a framework for 

understanding how vendors in one market may influence quality provision in another. Further, in contrast 

to prior research, we show that such linkages can be important even when vendors operate in unrelated 

output markets.  
                                                 
14 As a result, leading research in this area often uses a case study approach to collect evidence supporting or 
refuting hypotheses (e.g., Bresnahan and Greenstein 1999; Gawer and Henderson 2005; Gawer and Cusumano 
2002).  
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These results also have implications for the debate of how to improve software quality. Given the rapid 

increase in the number of reported software vulnerabilities and the consequent economic damages to end 

users, the factors that contribute to the timing of vendors’ patch release has been a matter of great interest 

among members of the software community. Many members of the security community have 

recommended regulation aimed at providing incentives for software vendors to minimize the time 

window of exposure to end users. However the type of regulation that would minimize social losses from 

vulnerabilities critically depends upon proper understanding of factors that condition the timing of patch 

release to vulnerabilities.  Our research demonstrates that despite high levels of concentration in many 

software markets, threat of disclosure from vendors in complementary markets works to reduce patching 

times almost as much as increases in the number of competitors. Our research also points to the fact that 

making markets more competitive by removing entry barrier does increase internalization factor λ (The 

alternative being to make vendors explicitly liable by regulating). 

By demonstrating that disclosure threat can be used as a tool to induce vendors to patch vulnerabilities 

faster, our results inform the debate on software quality in another way. Our results suggest that non-

instant disclosure could be more welfare-enhancing than instant disclosure.  In particular, our results 

suggest that for policy markets like CERT/CC, any disclosure policy should influence judicious use of 

disclosure threat to elicit faster vendor responses to vulnerabilities.  
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Appendix I - Proofs 

Suppose, there are a total of N vendors affected by the vulnerability. There are N-1 other vendors affected 
by the vulnerability. Let be the random variable that denotes the actual patch release date with  its 
realization. Under uncertainty the vendor cost function is given by  
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d) There exists a unique Nash equilibrium in pure strategy.   
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viii. The set for any real number is a convex set. Similarly 

,  Hence the payoff functions are quasi-concave.     
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continuous. Then )(...)()( 1 τβτβτβ NXX= be the Cartesian mapping is non-empty, compact and 
upper hemi-continuous. By Kakutani fixed point theorem, the best response correspondence is the 
Nash equilibrium.   
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e) Increase in number of other vendors affected by the vulnerability increases disclosure threat and 

hence expected end-user losses. 
Proof: 
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f) Increase in disclosure threat results in vendors patching earlier. 

Proof: 
Let the N+1th vendor be denoted by subscript x. There are now N other vendors affected by the 

vulnerability. We show that 0
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With N other vendors, from the FOC ,  0
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xV jxix ≠≠∀ ,  
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Totally differentiating the FOC 
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being the effect of disclosure 

threat of vendor x on vendor i’s marginal loss. Likewise for other j vendors, ij ≠∀ . Stability requires 
diagonal dominance in the co-efficient matrix. (Dixit,1986). Hence the denominators > 0. Hence 
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g)  A higher λ results in vendors releasing patch earlier. 
Proof: 
We prove that increase in λ results in an earlier τ for all firms in the case of a symmetric equilibrium. In 
other words, we show comparative static for a case where all vendors are confronted with a higher λ. 
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h) A higher q results in vendors releasing patch earlier. 
Proof: 
As with λ, we prove that increase in q results in an earlier τ for all firms in the case of a symmetric 
equilibrium. In other words, we show comparative static for a case where all vendors are confronted with 

a higher q. We know that ( ) 0
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Appendix II - Table 1: Additional Descriptive statistics 
Variable N Proportion 

Distribution of Markets 
Proportion of Anti-Virus vulnerabilities 5 1.08 
Proportion of Application Development vulnerabilities 3 0.65 
Proportion of Application Server Software vulnerabilities 12 2.60 
Proportion of Backup And Recovery vulnerabilities 1 0.22 

Proportion of Data Base Management vulnerabilities 11 2.39 
Proportion of Electronic Mail vulnerabilities 4 0.87 
Proportion of Groupware Software vulnerabilities 11 2.39 
Proportion of LAN Operating System vulnerabilities 2 0.43 
Proportion of Operating System vulnerabilities 365 79.18 
Proportion of Suites vulnerabilities 4 0.87 
Proportion of System Utilities vulnerabilities 1 0.22 
Proportion of System/Software Management vulnerabilities 1 0.22 
Proportion of Web Browser vulnerabilities 26 5.64 
Proportion of Web Design Tools vulnerabilities 1 0.22 
Proportion of Web Development Tools vulnerabilities 4 0.87 
Proportion of  Web Server Software vulnerabilities 11 2.39 

Distribution of Vendors 
Proportion Apple  26 5.64 
Proportion Hewlett Packard (includes DEC) 45 9.76 
Proportion IBM (includes Lotus & iPlanet) 39 8.45 
Proportion Microsoft  72 15.62 
Proportion SCO 55 11.93 
Proportion Sun Microsystems 43 9.33 
Proportion Redhat 60 13.02 
Distribution of Disclosure Types   
Proportion of vulnerabilities identified by CERT 18 3.90 
Proportion of vulnerabilities identified by University 27 5.86 
Proportion of vulnerabilities identified by Consulting company 147 33.41 
Proportion of vulnerabilities identified by end user 35 7.59 
Proportion of vulnerabilities identified by Vendor 85 18.44 
Proportion of vulnerabilities identified by individual 142 30.80 
Vulnerability statistics   
Total Vulnerabilities 241  
Vulnerabilities that have no other vendor affected by the same vulnerability 110  
Vulnerabilities that have a private vendor as the LEADER 155  
Vulnerabilities with non-private firms as LEADERS 54  
Vulnerabilities that have more than 1 LEADER 4  
Unpatched observations (vuln.-vendor pairs) 20  
Unpatched vulnerabilities 14  
 

 

Histogram of RIVALS, NONRIVALS, VENDORS and LOGQUANTITY  
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Appendix III: 
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Weighting establishment employees using Census county Business patterns (CBP) data: 

To obtain a representative sample for the number of employees in establishments we weighted the 
number of employees in establishments, using a weight that was calculated by comparing the number of 
census employees for a 3-digit NAICS code with the number of employees for the 3-digit NAICS code in 
our sample. If i represents an establishment that had a positive quantity of the vulnerable product and HH 
total employees denotes the number of employees in the CI database, the weight for the employees in 
establishments was calculated as: 

⎥
⎦

⎤
⎢
⎣

⎡
−

×⎥
⎦

⎤
⎢
⎣

⎡ −

=

(HH)totalNAICSemployeestotalHH
.employeestotalHH

employeestotalCensus
(Census)totalNAICSemployeestotalCensus

Weight i

iii employees*WeightmployeesWeighted_e =  

If p the vulnerable product for a vendor and Zip an indicator variable that takes a value of 1 if the 
establishment had positive quantity of the product, our weighted measure that proxies for quantity 
(QUANTITY), is given by  

∑= p iip employeesweighted*ZiQUANTITY  

Adjusting the number of establishments and quantity using these weights enables us to account for an 
over-sampling or under-sampling of specific industries in the HH data.  
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