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Abstract

This paper proposes a pragmatic, discrete time indicator to gauge the performance of port-
folios over time. Integrating the shortage function (Luenberger, 1995) into a Luenberger
portfolio productivity indicator (Chambers, 2002), this study estimates the changes in the
relative positions of portfolios with respect to the traditional Markowitz mean-variance effi-
cient frontier, as well as the eventual shifts of this frontier over time. Based on the analysis
of local changes relative to these mean-variance and higher moment (in casu, mean-variance-
skewness) frontiers, this methodology allows to neatly separate between on the one hand
performance changes due to portfolio strategies and on the other hand performance changes
due to the market evolution. This methodology is empirically illustrated using a mimicking
portfolio approach (Fama and French 1996; 1997) using US monthly data from January 1931
to August 2007.

Keywords: shortage function, mean-variance, mean-variance-skewness, efficient portfolios, Lu-
enberger portfolio productivity indicator

1 Introduction

Since Markowitz (1952) foundational work, every investor knows that to gauge the performance
of portfolio management risk must be considered in addition to return levels. This dual objective
of maximizing returns and minimizing risks turns performance evaluation into a complicated
and controversial task. Indeed, no method that is currently available in the literature seems
to be universally approved. There is an ever growing literature on this topic in traditional
investment contexts (for surveys, see Cuthbertson, Nitzsche, and O’Sullivan (2008) or Le Sourd
(2007)), as well as in the specific context of hedge fund management (for instance, Eling and
Schuhmacher (2007)), and even a meta-literature criticizing these methods as well (see, for
example, Amenc and Le Sourd (2005)).

Performance appraisal is linked to the theory of optimal investment choices, i.e., to the
ability of investors to manage assets so as to maximize a utility function (i.e., a function based
on a set of various moments characterizing the portfolios’ return distributions). In other words,
performance evaluation analyzes the efficiency of an investment at least in terms of a traditional
return-risk relationship. It is often assumed in this context that all investors have similar
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behaviors towards these dimensions (representative agent paradigm). The risk characteristics
in the utility function depend upon various parameters like investor’s objectives, preferences,
time horizon,.... These simplifications are acceptable in cases where aggregate results suffice,
but these are simply problematic in other cases. The methodology proposed in this paper allows
for heterogeneity among investors and therefore answers quite a few of these issues.

We explicitly restrict this contribution to the traditional mean-variance (MV) model and a
more recently introduced mean-variance-skewness (MVS) framework (see Briec, Kerstens, and
Jokung (2007)) for performance evaluation, ignoring any further higher moments. On the one
hand, while the MV approach is still a popular reference for practitioners and academics alike,
its restrictive nature may lead to erroneous weights in portfolio selection. While some proposals
are around allowing investors to maximize a utility function including higher moments (see, for
example, Chunhachinda, Dandapani, Hamid, and Prakash (1997) or Jondeau and Rockinger
(2003)), the empirical evidence provides mixed support at best. Nevertheless, enlarging the
classical framework with a MVS model is a potentially interesting improvement for fund man-
agers. On the other hand, the method developed in this research can be easily extended to
consider higher moments.

Recently, a new approach has been proposed in the investment literature by Cantaluppi and
Hug (2000) that directly measures the performance of a portfolio by reference to its maximum
potential on the (ex-ante or ex-post) portfolio frontier. Their proposal is in fact intimately
related to some explicit efficiency measures transposed from production theory into the context
of portfolio benchmarking by Morey and Morey (1999) in the operations research literature.
Informally speaking, their first measure computes the maximum mean return expansion while
the risk is fixed at its current level, while an alternative risk contraction function measures the
maximum proportionate reduction of risk while fixing the mean return level.1

These explicit efficiency approaches are generalized by Briec, Kerstens, and Lesourd (2004)
who integrate the shortage function (Luenberger (1995)) as an efficiency measure into the MV
model and also develop a dual framework to assess the degree of satisfaction of investors pref-
erences. Similar to developments in other fields, this leads to a decomposition of portfolio
performance into allocative and portfolio efficiency. The advantage is that this shortage func-
tion is compatible with general investor preferences and that it can be extended to higher
dimensional spaces (e.g., MVS space: see Briec, Kerstens, and Jokung (2007)).

This paper tackles the problem of tracing the performance of portfolios in discrete time
with respect to the ever changing portfolio frontiers by borrowing from recent developments in
the theory of productivity indices (see Diewert (2005) for a review). Employing the shortage
function, a Luenberger portfolio productivity indicator (Chambers (2002)) is introduced that
allows for the estimation of the relative positions of portfolios with respect to changes in the
efficient frontier, and that offers an accurate local measure of the eventual shifts of this fron-
tier over time. The proposed methodology for fund performance appraisal in discrete time is
therefore founded in a well-established theoretical framework. We show later on that the Lu-
enberger portfolio productivity indicator and especially its decomposition provide an excellent
measurement tool to reconsider the traditional performance attribution question: what is the
individual contribution of fund managers to portfolio performance and what is due to changes
in the financial market. To the best of our knowledge, this contribution is the first to integrate
recent developments in index theory into the portfolio perfomance evaluation framework.

By positioning ourselves into an extended Markowitz-like approach, we do not impose the
much stronger assumptions usually maintained in the CAPM context. While the advantage of
using a frontier as a benchmarking tool may be obvious, one should be aware of the fundamental
relative nature of this frontier with respect to the selected asset universe.2 Thus, we do not

1Cantaluppi and Hug (2000) talk similarly about return loss and surplus risk.
2Obviously, all empirical work within a CAPM framework refers as a matter of fact to geographically limited

parts of a potentially universal financial market.
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claim our method is a new test of the efficiency of a given portfolio relative to an equilibrium
theory of financial markets as proposed in the more traditional literature (e.g., Gibbons, Ross,
and Shanken (1989)). We rather propose a method to identify ex-ante or ex-post improvements
that can be attributed to funds managers when they optimize their positions relative to a limited
asset universe. Indeed, one should notice that the qualification of efficiency is conditioned on its
timing. Ex-post efficiency refers to an appraisal of performance once returns (consequently, all
moments) are known, while ex-ante efficiency refers to a similar task based on expected returns.
Obviously, prospective benchmarking is surrounded with a multitude of problems related to
the fundamental uncertainties in the data requiring special attention in terms of statistical
inference on the eventual efficiency status of ex-ante decisions regarding the ex-post results (see
Markowitz (1952)).

The next section is devoted to a brief presentation of the relevant literature concerning
portfolio performance evaluation and the more recently introduced efficiency measures operating
relative to the portfolio frontier. Section 3 introduces the basic theoretical building blocks for
the analysis. In particular, it introduces the shortage function as proposed by Luenberger (1992)
and studies its axiomatic properties. Thereafter, the Luenberger portfolio productivity indicator
and its decomposition are presented. Section 4 presents some technical and strategic aspects of
the empirical procedures and discusses the choice of data set. Empirical results are provided in
Section 5. Conclusions and issues for future work are summarized in the final section.

2 Performance Measurement in Investment: A Brief Review

2.1 Traditional Performance Measures

An enormous literature on portfolio performance evaluation derives more or less directly from
the initial work of Markowitz (1952) and the founders of Modern Portfolio Theory with the
development of asset pricing theories (e.g., the CAPM). During these early years, performance
appraisal evolved from total-risk foundations (e.g., the standard deviation or variance of returns)
to performance indexes where the returns in excess of the risk-free rate are matched with some
risk measure. Among these early contributions, two classics are on the one hand the Sharpe ratio
and on the other hand the Treynor ratio, which gauge performance without any benchmark.
More recently, these indicators have taken benefit from the development of value at risk (VaR)
techniques (especially in the hedge fund industry context: see Gregoriou and Gueyie (2003)).
Another popular performance indicator is Jensen’s α, whereby performance is measured by
the excess return over the equilibrium reward calculated with the CAPM. Since it does use a
benchmark, it is more relative in nature.

This early tradition has received a wide variety of criticisms because of the supposed weak-
nesses of the underlying equilibrium models on which performance indicators were build and
the implicit assumption that financial asset returns are normally, independently and identically
distributed, among others.3

The first series of objections touches upon several issues. One is the irrelevance of uncon-
ditional performance evaluation: investors are supposed to form expectations about returns
irrespective of their expectations over the states of the economy, which may lead to various
distortions in performance levels or stability. It has meanwhile been acknowledged that agents
use information to condition their expectations (see Fama and French (1989)), making uncon-
ditional evaluation techniques rather irrelevant. More generally, the question of the benchmark
choice is also clearly central in portfolio performance gauging, especially when funds have differ-
ent management styles. When the reference point is inappropriate, then the measure is biased
(see Grinblatt and Titman (1994)). For instance, the evaluated portfolio might be over-rated

3See, for instance, the debate around CAPM in Fama and French (2004).
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if the benchmark is inefficient (see Roll (1978)). Potential solutions consist in improving the
model by which expected returns are calculated (using APT or multi-factor models, such as
Fama and French (1992; 1993)), or to obtain performance evaluation independent from the
market model (for instance, Cornell (1979) or Grinblatt and Titman (1993)). For example, the
Fama and French (1993) three-factor model has been developed because the CAPM proved to
perform poorly in explaining realized returns.4

Another series of problems with the underlying equilibrium models (recognized ever since
Jensen (1972)) come from the non-stability of risk-free rates or the volatility of betas. In these
cases, performance evaluation is clearly biased because equilibrium returns are misevaluated or
simply because a constant beta is irrelevant. One answer is to allow for time-varying betas in
equilibrium models (e.g., Shanken (1990) or Ferson and Schadt (1996)). Another answer to this
issue and the corresponding misevaluation of Jensen’s α has been proposed by Grinblatt and
Titman (1989), among others.

Another source of problems is the non-Gaussian nature of stock returns due to dynamic
trading strategies (for instance, hedge funds are especially concerned by this issue). Problematic
here is the underestimation of risk in performance appraisal. With asymmetric distributions
or fat tails, performance gauging must take into account higher order moments (skewness,
kurtosis or even beyond: see Ang and Chua (1979)) or lower partial moments (e.g., the Sortino
ratio is based on a target return and semi-variance). More recently, various other proposals
have been formulated: some of these derive from VaR (Gregoriou and Gueyie (2003)), some
are extensions of the Sharpe ratio (Madan and McPhail (2000)) or the Sortino ratio (Kaplan
and Knowles (2004)). Others propose generalized methods such as the Omega measure (see
Kazemi, Schneeweis, and Gupta (2004)). Finally, in relation to model specification issues in
a non-normal world, Harvey and Siddique (2000) have proposed to incorporate a conditional
skewness measure to take into account the necessary reward for systematic skewness in funds
returns.

Many of these traditional performance measures are frequently associated with a prominent
question in the investment industry, namely performance attribution. While it is in blatant
contradiction with CAPM theory, performance appraisal is linked to stock picking and market
timing. In other terms, the investment industry is always looking for tools to trace good fund
managers that can regularly exploit market anomalies and that could pick stocks in the market
to obtain an alpha that is significantly different from zero and manage their portfolios’ betas
dynamically.

Summing up, the standard approaches to investment performance appraisal may appear
unsatisfactory with respect to at least three generic shortcomings: (i) these may yield under- or
over-estimations because of the selection of an inappropriate benchmark or equilibrium models
for expected returns, (ii) these may be biased due to the non-normal nature of return distribu-
tions or unknown utility functions for investors when higher moments have to be considered,
and (iii) these may be unstable because of the dependency of the measure with the time-frame
in which it is computed. One could also add that these measures usually rely upon other strong
assumptions, such as the uniqueness of investor’s preferences. We now turn to the rather recent
frontier-based measures that may be a solution for some of these shortcomings.

2.2 Frontier-Based Efficiency Measures

Frontier-based measures of fund performance have gained some limited popularity since the
late nineties. One of the seminal articles in the finance literature is the work of Cantaluppi

4In this model, Ri, the return of fund i, is explained by a combination of market risk factor in excess of the
risk free rate and two additional factors, respectively size risk (measured as the difference of the returns between
a portfolio composed of small firms and one composed of big firms) and value risk (measured as the difference
between the returns of two portfolios, one composed of firms with high book-to-market ratios and one with low
book-to-market ratios).
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and Hug (2000) who propose an efficiency ratio in relation to the MV efficient frontier.5 In
fact, their contribution is similar to the one of Morey and Morey (1999) in the operations
research literature. In their search for a more universal approach to portfolio performance
measurement, Cantaluppi and Hug (2000) contest the relative nature of most current proposals
that define performance with respect to some other, supposedly relevant, portfolio or index.
Instead, they suggest looking for the maximum performance that could have been achieved by a
given portfolio relative to a relevant portfolio frontier, i.e., a frontier resulting from a particular
choice of investment universe and satisfying any additional constraints imposed on the investor.
Basically, it is a matter of utilizing the traditional ex-ante computation of optimal portfolios in
an ex-post fashion. Ex-ante, one first selects the investment universe; then one determines the
investment horizon with corresponding estimates for future returns, risks, and correlations for
the asset universe; and finally one computes an efficient frontier based on these estimates and
the investment restrictions. This same process can be executed ex-post to benchmark portfolios:
computations are then simply performed with historical rather than expected values. Since a
portfolio manager that ex-ante would have had perfect foresight could have invested in a frontier
optimal portfolio, the ex-post efficient frontier provides a natural benchmark for performance
gauging and Cantaluppi and Hug (2000) informally present both a return loss and a surplus
risk efficiency measure.
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Figure 1: Sharpe Ratio vs. Efficiency Measures

We illustrate this basic point with Figure 1 (in the spirit of Cantaluppi and Hug (2000))
which compares the Sharpe ratio and the efficiency ratio. This figure is drawn in the mean-
standard deviation space and depicts three portfolios A, B, and C with respect to a common
portfolio frontier. Starting with the Sharpe ratio, it is clear that portfolio C enjoys a higher
Sharpe ratio compared to portfolios A and B (i.e., the slope of the line S1 being greater than
the slope of S∗), despite the fact that the latter portfolios are part of the Markowitz frontier
(EFF1) while portfolio C is not. To remedy this problem, the efficiency ratio approach suggests
measuring the inefficiency of portfolio C using either a return loss efficiency measure (vertical
projection line, towards point F), or a surplus risk efficiency measure (horizontal projection line,
towards point E).

To contrast existing viewpoints, we explicitly position our contribution relative to a seminal
article by Gibbons, Ross, and Shanken (1989) proposing a test of the efficiency of a given
portfolio within a CAPM framework. Reconsidering Figure 1, when a risk-free asset is available,
then the portfolio frontier is a straight line (EFF2) with a slope τ2, which is tangent to the
so-called market portfolio at point E. Thus, τ2 is the ex-post price of risk as measured within
this sample. To evaluate the ex-ante efficiency of portfolio C, considering that it earns a risk
price τ1 (i.e., the slope of S1), Gibbons, Ross, and Shanken (1989) propose a test statistic based
on φ = (

√
1 + τ2

2 )/(
√

1 + τ2
1 ) to measure portfolio performance. The bottom line is that the

5As stated by these authors, this is not strictly speaking a new method since it has been employed by, e.g.,
Kandel and Stambaugh (1995) as well.
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slopes τ1 and τ2 have to be statistically different if one wants to reject the hypothesis of ex-
ante efficiency for portfolio C, even if it is clearly situated both under EFF1 and EFF2. In
other terms, ex-post efficiency can be used as an ex-ante efficiency proxy, but this raises serious
statistical problems.

Notice that mathematical formulations in this contribution are expressed in terms of ex-
pected (forward looking) returns, while the empirical part uses historical returns for illustrative
purposes. This raises the traditional ex-ante/ex-post performance appraisal issue. Two reasons
justify this choice. First, in view of the efficient market hypothesis, one can view historical
returns as a simplified (although weak, see for example, Elton (1999)) mechanism to gener-
ate expected return information. Another solution consists in obtaining such expected returns
information from scenario analysis or from specialized firms (e.g., the I/B/E/S databases of
Thomson Financial that reflect consensus estimates). In a similar vein, we maintain the hy-
pothesis of historical volatility stability instead of using stochastic volatility models or implied
volatility derived from option pricing models. This same logic also applies to the higher mo-
ment information employed in this research. Second, this ex-ante/ex-post problem is taken into
account by mixing several shortage functions based on forward and backward returns (see page
9).

Morey and Morey (1999) are the first to give a precise formal definition of the return loss and
surplus risk efficiency measures also proposed by Cantaluppi and Hug (2000).6 In the same vein,
Briec, Kerstens, and Lesourd (2004) are the first to develop a link between portfolio efficiency
measures and MV utility, which leads them to propose an efficiency measure that simultaneously
seeks to improve the return and to reduce the variance of a given portfolio.7 In Figure 1, this
leads -intuitively speaking- to the projection of portfolio C into a diagonal direction towards
the Markowitz frontier. Theoretically, these contributions bring portfolio theory in line with
developments in production theory and elsewhere in micro-economics, where distance functions
as functional representations of choice sets are proven concepts related to efficiency measures
that allow to develop dual relations with economic (e.g., MV utility) support functions.

More or less independently, a variety of authors have been transposing efficiency measures,
that are related to distance functions from production theory into finance. This literature em-
ploys mathematical programming techniques to estimate non-parametric frontiers of choice sets
and positions any observation with respect to the boundary of these choice sets.8 This has
sometimes been accompanied with the utilization of frontiers to rate, for instance, the perfor-
mance of mutual funds along a multitude of dimensions (rather than mean and variance solely).
The -to the best of our knowledge- seminal article of Murthi, Choi, and Desai (1997) employs
return as a desirable output to be increased and risk and a series of transaction costs as an input
to be reduced, and measure the performance of each mutual fund with respect to a piecewise
linear frontier (rather than a traditional non-linear portfolio frontier). More recently, Choi and
Murthi (2001) employ a similar framework and compare the resulting efficiency measures to the
traditional Sharpe ratio. The same idea has been employed in the context of asset selection,
whereby changes in stock performance are related to changes in productive efficiency (see the
seminal article of Chu and Lim (1998)). Preliminary results suggest that changes in productive
efficiency are at least partially translated into changes in stock prices (see also Edirisinghe and
Zhang (2007) for a recent development).

Therefore, it is possible to state that frontier-based portfolio benchmarking methods at
least partially remedy some of the generic shortcomings of traditional performance measures
mentioned earlier: (i) these select an appropriate benchmark in terms of the ex-post portfolio
frontier, and (ii) these can be perfectly generalized to higher moments in case of non-normal

6Even though Morey and Morey (1999) and Cantaluppi and Hug (2000) seem to be unaware of one another.
Sengupta (1989) is to our knowledge the first author to transpose the idea of a return loss efficiency measure into
a MV frontier context.

7A generalization of the same approach into MVS space is developed in Briec, Kerstens, and Jokung (2007).
8This approach is often referred to with the moniker Data Envelopment Analysis (DEA).
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return distributions. It remains to be seen how these behave under extensive stress testing.
This contribution aims to remedy to some extent the third defect mentioned in the previous
subsection, i.e., the instability of performance measures because of the dependency of these
measures with respect to the time-frame in which these are computed. We resolve this at least
partially by defining a portfolio productivity indicator based upon general efficiency measures
that allows tracking the evolution in financial markets in discrete time. This is -to the best of
our knowledge- the first contribution drawing upon index theory to resolve practical portfolio
benchmarking issues.

3 Static Portfolio Frontiers and Their Evolution in Discrete
Time

3.1 Static Portfolio Frontiers: The Shortage Function as Efficiency Measure

To introduce some basic notation and definitions, consider the problem of selecting a portfolio
from n financial assets at time period t. Let R1,t, ..., Rn,t be random returns of assets 1, ..., n in
period t. For each time period t, each of these assets is defined through some expected return
E [Ri,t] for 1, ..., n. Furthermore, returns of assets i and j are correlated, so that the variance-
covariance matrix Ωt for time period t is defined as Ωi,j,t = Cov [Ri,t, Rj,t] for i, j ∈ {1, ..., n}.

Notice that by adding the skewness-coskewness tensor, the extension to the MVS frontier
is rather straightforward. Indeed, the shortage function is compatible with general investor
preferences (favoring uneven moments and disliking even moments). Thus, in the MVS space
a shortage function is capable to look simultaneously for reductions in risk and augmentations
in return and skewness. In view of the familiarity of the traditional MV frontier notion and for
reasons of space, the formal analysis is limited to the MV case, while the interested reader is
referred to Briec, Kerstens, and Jokung (2007) for details on the use of the shortage function
relative to the MVS frontier.

A portfolio xt = (x1,t, · · · , xn,t) at time period t is simply a vector of weights specified over

these n financial assets that sums to unity

(
∑

i=1,··· ,n
xi,t = 1

)
. If shorting is impossible, then

these weights must satisfy the non-negativity conditions (xi,t ≥ 0). The return of portfolio xt

at time period t is given by Rt (xt) =
∑

i=1,...,n
xi,tRi,t. Therefore, the expected return of portfolio

xt is E [Rt (xt)] =
∑

i=1,··· ,n
xi,tE [Ri,t], and its variance is V [Rt (xt)] =

∑
i,j

xi,txj,tCov [Ri,t, Rj,t].

The set of admissible portfolios = can be written in general as:9

= =
{

x ∈ Rn :
∑

i=1,...,n

xi = 1, x ≥ 0
}

. (3.1)

Following the seminal approach by Markowitz (1952), one can define at time period t the
MV representation of the set ℵt of portfolios as:

ℵt =
{

(V [Rt (xt)] , E [Rt (xt)] ) : xt ∈ =
}

. (3.2)

Since such a representation cannot be used for quadratic programming because the subset ℵt

is non-convex (see Briec, Kerstens, and Lesourd (2004)), the above set is extended by defining
9In this contribution, = is time independent. However, this set of admissible portfolios can be modified to

include additional constraints (e.g., transaction costs) that can be written as linear functions of asset weights: see
Briec, Kerstens, and Lesourd (2004). These additional constraints could eventually be time dependent, thereby
imposing time dependency on =.
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a MV (portfolio) representation set through

<t = ℵt + R+ × (−R+). (3.3)

Briec, Kerstens, and Lesourd (2004) show that it is useful to rewrite the above subset as follows:

<t =
{(

V ′, E′) ∈ R+ × R : ∃xt ∈ =,
(−V ′, E′) ≤ (−V [Rt (xt)] , E [Rt (xt)] )

}
. (3.4)

The addition of the cone is necessary for the definition of a sort of “free-disposal hull” of the
MV representation of feasible portfolios and is compatible with the definition in (Markowitz
(1952)). It is of interest to focus on the basic properties of the subset <t on which we define the
shortage function below. Briec, Kerstens, and Lesourd (2004) have shown that <t is convex,
closed and satisfies a free disposal assumption. These properties of the representation set allow
defining an efficiency measure in the context of the Markowitz portfolio theory.

Before generalizing the well-known Markowitz approach, we introduce the shortage function
at time period t, a concept introduced by Luenberger 1992; 1995 in a production theory context
where it measures the distance between some point of the production possibility set and the
Pareto frontier.

Definition 3.1 The function St : =× R2
+ → R+ ∪ {+∞} defined by

St (xt; gt) = sup
{
δ :

(
V [Rt(xt)]− δgV,t , E[Rt(xt)] + δgE,t

) ∈ <t

}
,

is called the shortage function at time period t for portfolio xt in the direction of vector gt =
(gV,t, gE,t).

The shortage function looks for improvements in the direction of both an increased mean
return and a reduced risk. Notice that the efficiency improving direction vector gt depends on
time. The purpose of this time-dependency is to cater for the potentially changing preferences
of the investor over time. The pertinence of the shortage function as a portfolio management
efficiency indicator results from its properties. In particular, this indicator characterizes the
Markowitz frontier, is weakly monotonic and continuous on =, and generalizes the Morey and
Morey (1999) approaches who look either for return expansions or risk reductions only (see
Briec, Kerstens, and Lesourd (2004) for details). Notice that if gt = 0, then St(xt; gt) = +∞.
In general, we assume that gt 6= 0.

Markowitz (1952) also proposed an optimization program in a dual, MV utility based frame-
work to determine the portfolio corresponding to a given degree of risk aversion. To provide
a dual interpretation of the shortage function, Briec, Kerstens, and Lesourd (2004) also define
a MV indirect utility function as the support function of the Markowitz frontier. From the
duality result by Luenberger (1995), who connected expenditure and shortage functions, these
same authors derive the shortage function from the indirect MV utility function and conversely
through a dual pair of relationships. Following this dual relation, it is also possible to disen-
tangle between various efficiency notions when evaluating potential improvements in portfolios.
By analogy with other domains in economics, Briec, Kerstens, and Lesourd (2004) distinguish
formally between (i) Portfolio efficiency, (ii) Allocative efficiency, and (iii) Overall efficiency. For
reasons of space and since the empirical application ignores the utility approach, we provide
the intuition behind this duality relationship and the ensuing efficiency taxonomy in Appendix
1 and refer the reader to Briec, Kerstens, and Lesourd (2004) for details.

3.2 Portfolio Performance Change in Discrete Time: A Luenberger Portfolio
Productivity Indicator

This subsection is concerned with the dynamic study of portfolio performance in discrete time.
Using a recent Luenberger productivity indicator based on some combinations of shortage func-
tions (see Chambers (2002)), our new proposal applies this Luenberger indicator to measuring
dynamic portfolio performance.
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However, this requires an adaptation of Definition 3.1 of the shortage function to a dynamic
context.

Definition 3.2 Given two time periods a and b, the function Sb : = × R2
+ → R ∪ {−∞, +∞}

defined by

Sb (xa; ga) = sup
δ

{
δ :

(
V [Ra(xa)]− δgV,a, E [Ra (xa)] + δgE,a

) ∈ <b

}
, (3.5)

is called the shortage function at time period b in the direction of vector ga = (gV,a, gE,a) for
portfolio xa calculated at time period a.

Remark that E [Ra (xa)] stands for the expected return of portfolio xa calculated at time period
a, and an analogous interpretation applies to the variance. Notice also that if t = a = b,
then Definition 3.2 corresponds to Definition 3.1. In this case, the value of δ is always positive.
However, for different time periods, this need not be the case. As in Definition 3.1, the direction
vector ga is assumed to be distinct from zero in the general case, although the value of +∞
can be assigned to Sb(xa; 0). Furthermore, Sb(xa, ga) = −∞ if there is no scalar δ such that(
V [Ra (xa)]− δgVa , E [Ra (xa)] + δgE,a

) ∈ <b. In the following, we are especially interested in
the evolution of the shortage function for two consecutive periods, that is: (a, b) ∈ {t, t + 1} ×
{t, t + 1}.

The difference derived from expression (3.5) between two periods at a = t and a = t + 1,
given a representation set at b = t yields:

∆t(xt, xt+1; gt, gt+1) = St (xt; gt)− St (xt+1; gt+1) . (3.6)

This period t productivity indicator simply computes a difference in the distances between the
MV portfolio representations in periods t and t + 1 relative to the portfolio frontier in period t.
Considering the representation set at b = t + 1, we can compute a similar indicator:

∆t+1(xt, xt+1; gt, gt+1) = St+1 (xt; gt)− St+1 (xt+1; gt+1) . (3.7)

Relative to the portfolio frontier in period t+1, this period t+1 productivity indicator calculates
the difference in the distances between the MV portfolio representations in periods t and t + 1.

Notice that both these indicators mix various shortage functions which themselves are based
on forward and/or backward looking return and other moment information. For example, one
can consider St+1 (xt; gt) as the ex-ante error made by a portfolio manager in choosing his port-
folio weights at time t with respect to information available at time t+1, while St+1 (xt+1; gt+1)
expresses the counterpart ex-post error observed at time t + 1.

To avoid an arbitrary choice between time periods, it is natural (see, e.g., Chambers (2002))
to take the arithmetic mean of the two indicators defined above to obtain the discrete time
Luenberger portfolio productivity indicator of performance change

L(xt, xt+1; gt, gt+1) =
1
2
[
∆t(xt, xt+1; gt, gt+1) + ∆t+1(xt, xt+1; gt, gt+1)

]
, (3.8)

which is the portfolio analogue of a Luenberger productivity indicator.10 This portfolio perfor-
mance change can be equivalently decomposed as:

L(xt, xt+1; gt, gt+1) = E(xt, xt+1; gt, gt+1) + F (xt, xt+1; gt, gt+1), (3.9)
10Notice that the Luenberger productivity indicator does not satisfy circularity in this formulation. There are

various ways to make it circular. Furthermore, following Diewert (2005), observe that indexes are based on ratios,
while indicators are based on differences. Ratio and difference approaches to index numbers differ in terms of
basic properties of practical significance: e.g., (i) ratios are unit invariant, differences are not, (ii) differences are
invariant to changes in origin, ratios are not, (iii) ratios have difficulties handling zeros, differences have not, etc.
In general, a variety of well-known issues in index theory (see, e.g., Diewert (2005)) can probably shed light on
some new problems that may crop up when transposing index numbers into portfolio theory.
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with
E(xt, xt+1; gt, gt+1) = St(xt; gt)− St+1(xt+1; gt+1), (3.10)

and

F (xt, xt+1; gt, gt+1) =
1
2

[(
St+1(xt+1; gt+1)−St(xt+1; gt+1)

)
+

(
St+1(xt; gt)−St(xt; gt)

)]
. (3.11)

In this decomposition, E(xt, xt+1; gt, gt+1) measures the efficiency change of the shortage func-
tions between periods t and t + 1, while F (xt, xt+1; gt, gt+1) captures the average change in
portfolio performance between the two periods evaluated at the portfolio composition in t + 1
and at the portfolio composition in t. Hence, equation (3.9) decomposes portfolio performance
change into two components: one representing efficiency change relative to a moving portfolio
frontier (E(xt, xt+1; gt, gt+1)), another indicating the average change in the portfolio frontier
itself (F (xt, xt+1; gt, gt+1)). This decomposition offers a measurement framework for financial
market performance gauging because: on the one hand, E(xt, xt+1; gt, gt+1) captures the per-
formance of the fund managers over time relative to a shifting portfolio frontier, and on the
other hand, F (xt, xt+1; gt, gt+1) indicates how the financial market itself has locally changed
over time and enlarges or reduces the opportunities available to investors. When the Luen-
berger indicator of portfolio performance change L (xt, xt+1;xt, xt+1) or any of its components
(E(xt, xt+1; gt, gt+1) or F (xt, xt+1; gt, gt+1)) is positive (negative), then portfolio performance
increases (decreases) between the two time periods considered.

0.000 0.005 0.010 0.015

0
.0
0

0
.0
1

0
.0
2

0
.0
3

0
.0
4

0
.0
5

0
.0
6

Risk

R
e
tu
r
n

+ +
+

+

+
+

+

+

+

+

+
+

+
+ +

++

+

+

+

+

+

+

+

+

++

+
+

+

+
+

+

+

+

+
o

o
o

oo o

o

o

o

o
o
o

o
o

o o

o

o

o

o

o

o o

o

o

o
o

o

o

o

o

o

o

o

o

o

P6, W1

Frontier, W1

SH21

SH22

SH11

E(R)

V(R)

0.005 0.015

0.03

0.01

0.02

0.04

0.06

0

P6, W2

(-0.012, 0.038)

(-0.009, 0.029)

0.010

0.05

- 0.05- 0.010

+
+

SH12

+

Frontier, W2

Figure 2: Luenberger Portfolio Productivity Indicator & Its Decomposition: Portfolio Nr. 6

Figure 2 illustrates the above performance indicator with gs =
(
V [Rs(xs)], E[Rs(xs)]

)
for

s = t, t + 1. More precisely, we illustrate the Luenberger indicator and its decomposition with
the help of a certain portfolio 6 over two overlapping time windows W1 and W2.11 Figure
2 plots two MV frontiers computed with the returns in the sample over W1 and W2. Port-
folios are plotted using crosses in W1 and dots in W2, except P6 that is once plotted with
a black triangle in W1 and once with a gray square in W2. Arrows indicate the respec-
tive distances towards the frontiers in both periods (St (xt; gt), St+1 (xt; gt), St (xt+1; gt+1),
and St+1 (xt+1; gt+1) as defined before). The Luenberger indicator must be constructed from
its components: St (xt; gt) = 0.3795, St+1 (xt+1; gt+1) = 0.3475, St+1 (xt; gt) = 0.3053, and
St (xt+1; gt+1) = 0.4191. To obtain E(xt, xt+1; gt, gt+1) (see (3.10)), it suffices to compute:

11This example is drawn from the empirical analysis in sections 4 and 5. The two time windows range respec-
tively from 1934/01 till 1937/01 (W1) and 1934/02 till 1937/02 (W2).
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0.3795− 0.3475 = 0.0320. Clearly, this portfolio has moved closer to the portfolio frontier over
time yielding a positive E(xt, xt+1; gt, gt+1). Computing the F (xt, xt+1; gt, gt+1) (see (3.11)) re-
quires the following calculations: 0.5 ((0.3475− 0.4191) + (0.3053− 0.3795)) = −0.0729. This
negative number simply reflects the productivity decrease due to the inward shift of the port-
folio frontier around portfolio 6. Notice that this inward shift of the portfolio frontier is not
a global phenomenon: it does not affect the lower risk-return combinations. The Luenberger
indicator is simply the sum of these two components: 0.0320 + (−0.0729) = −0.0409. In this
case, the improvement of the E(xt, xt+1; gt, gt+1) is overruled by the local deterioration of the
F (xt, xt+1; gt, gt+1) and we end up with a negative portfolio frontier productivity change.

Turning to computational matters, the representation set <t (introduced in 3.3) is used to
directly compute the various shortage functions and thus the Luenberger indicators by recourse
to standard quadratic programming (QP). Assume a sample of m portfolios x1

t , x
2
t , ..., x

m
t are

observed over a given finite time horizon t = 1, ..., T . Now, consider a specific portfolio xk
t for

k ∈ {1, ..., m} at time period t whose performance needs gauging. To calculate the Luenberger
indicator, the four different shortage functions composing it must be computed by solving a QP
for each. To solve for St (xt; gt), the following basic QP must be computed:

max δ (3.12)

s.t. E [Rt(xt)] + δgE,t ≤
∑

i=1,...,n

yi,tE [Ri,t]

V [Rt(xt)]− δgV,t ≥
∑

i,j

Ωi,j,tyi,tyj,t

∑

i=1,...,n

yi,t = 1, yi,t ≥ 0, δ ≥ 0, i = 1, . . . , n,

where δ and yi,t, (i = 1, . . . , n) are decision variables. This QP is then solved for each portfolio
with respect to the portfolio set at periods t and t + 1. For the latter computation, one
simply replaces the left-hand side of the first two constraints by the return and risk of the
evaluated portfolio in period t + 1 and also the corresponding direction vector gt+1 to end up
with St (xt+1; gt+1). To compute the remaining two shortage functions, one proceeds as follows.
To obtain St+1 (xt+1; gt+1), all that is needed is to replace the subscript t by t + 1 everywhere
in (3.12). St+1 (xt; gt) is found by replacing the returns, variances and covariances at time
period t, occurring on the right-hand side of the first two constraints of model (3.12), by those
computed at time period t + 1.

We add two remarks on computational issues. First, while in principle several options
are available for the choice of direction vector (see Briec, Kerstens, and Lesourd (2004) for
details), we opt here to employ the observation under evaluation itself, that is, gt = (gV,t, gE,t) =
(V [Rt(xt)], |E[Rt(xt)]|).12 In this case, the shortage function measures the maximum percentage
of simultaneous risk reduction and expected return augmentation. Second, it is well known that
in certain cases the shortage function is not well-defined and achieves a value of infinity (e.g.,
Luenberger (1995)). Focusing on the choice of direction vector, Briec and Kerstens (2009)
show that the shortage function, one of the most general distance functions available in the
literature so far, may not achieve its distance in the general case where a point need not be
part of technology and where the direction vector can take any value. As a consequence, the
feasibility of the Luenberger productivity indicator can in general not be guaranteed.13 Apart
from reporting any eventual infeasibilities, these authors show that there is no easy solution in
general. Notice that the efficiency measures proposed by Morey and Morey (1999), as special
cases of the shortage function approach, are even more vulnerable to the infeasibility issue. Its
incidence in a portfolio context has never been reported.

12Absolute values for return allow for both positive and negative initial data.
13This is related to the property of determinateness in index theory which can be loosely stated as requiring

that an index remains well-defined when any of its arguments is not.
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Finally, though the Luenberger indicator is not based on a utility approach, it is important
to realize that the performance changes traced over time do reflect gains and losses in utility.
This interpretation is developed in Briec, Kerstens, and Lesourd (2004).

4 Research Methodology: Implementation Strategy and Data

For the purpose of illustrating how the Luenberger indicator and its components can serve to
track individual fund managers’ performance, we opt for using a mimicking portfolio approach
(Fama and French (1996)). This mimicking portfolio approach employs portfolios categorized
on some variable or combination of variables of interest (e.g., Fama and French (1996) form
portfolios on firm size and book-to-market equity, while Fama and French (1997) do the same
on industry). In our case, we employ portfolios formed on specific factors or styles. To compose
these portfolios and compute the corresponding value-weighted monthly returns, the underlying
universe of financial assets is restricted to all stocks listed on the main North American stock
markets (in particular, NYSE, AMEX and NASDAQ). In particular, we use a data set made
available by K. French consisting in series of monthly returns from January 1931 to August
2007 for 36 value-weighted (hence, potentially non-optimal) portfolios denoted P1, P2, ..., P36
and formed on specific factors or styles.14 More details are provided in Appendix 2.

This data set has four important characteristics: (i) the asset universe is common to all
portfolios and available over a long time period, (ii) portfolios are not handled by real fund
managers over a certain relatively short time span, but represent a variety of management
styles that could have been implemented over a long run by some idealized manager, (iii) the
value-weighted and non-optimized nature of the portfolios potentially allows for a wide scope
of inefficiencies, and (iv) the portfolios have a known time frame (i.e., a month), since they are
recomposed each month or each several months depending on factors or styles. By contrast,
real world funds have the disadvantage of having no such natural time unit (e.g., the frequency
of rescheduling is (i) hard to infer precisely from mission statements, (ii) can vary slightly over
time, and (iii) need not coincide across funds).

To test the capabilities of our new methodology for tracking these inefficiencies, we compute
the performance of these idealized funds over a series of sliding time windows with respect to a
common fund frontier composed of all selected mimicking portfolios. Since the reallocation of
assets within the sample of portfolios is at least partly asynchronous, the resulting heterogeneity
in portfolio performance under idealized circumstances forms a perfect level playing field to
assess the long run success of certain portfolio management strategies conditioned on styles or
factors. In particular, this framework allows to highlight two interesting perspectives in the
empirical part of this research that are specific to our methodological choices.

First, we can compare these portfolios in terms of the Luenberger indicator and its decom-
position over a very long time period and under identical circumstances and contrast it to more
traditional performance appraisal tools. Borrowing from the existing literature, we use the
Sharpe (Sharpe) and Sortino ratios (Sort) to evaluate the MV respectively the MVS models
employed. We now define their respective variations in discrete time to have a traditional ana-
logue to the difference-based Luenberger portfolio productivity indicator.15 To be explicit, the

14The following list provides succinct information on how these 36 portfolios have been composed: (1) Fama-
French Benchmark (P1–P6): below and above medium size market equity (ME) portfolios based on Growth,
Neutral and Value (according to book-to-market (BTM)) portfolios ; (2) Size (P7–P11): five portfolios (one per
quintile) based on size (ME); (3) Growth (P12–P16): five portfolios (one per quintile) based on BTM; (4) Dividend
Yield (P17–P21): five portfolios (one per quintile) based on dividend yield; (5) Momentum (P22): picking well-
performing stocks from the past; (6) Short Term Reversal (P23): picking poor-performing stocks from the near
past; (7) Long Term Reversal (P24): picking poor-performing stocks from the more distant past; and (8) Industry
Portfolios (P25–P36): portfolios mimicking returns in 12 different industries. More information is available on the
web pages of K. French: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

15We are unaware of any definitions of these variations on the Sharpe and Sortino ratios in the literature.
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change in Sharpe ratio and Sortino ratio are respectively defined as follows:

∆tSharpe = Sharpet+1 − Sharpet, ∆tSort = Sortt+1 − Sortt. (4.1)

Second, the decomposition of the Luenberger indicator provides a unique tool for the long run
assessment of the relative success of implementing different portfolio strategies (e.g., based on
various styles, factors, etc.). In particular, the efficiency change component (E(xt, xt+1; gt, gt+1))
provides an alternative, but particularly suitable measurement tool to detect the eventual ability
of fund managers for stock picking and market timing, since the measurement is not contam-
inated by the change in the financial market (i.e., it is separated from the frontier change
(F (xt, xt+1; gt, gt+1))).

With a given set of N portfolios, the minimal size for the time window is N +1 if one wants
to avoid the most dramatic estimation error in the variance-covariance matrix (see Disatnik and
Benninga (2007)): hence, all computations have been performed with the same time window of
37 months. The sliding tick for this window is one month. Therefore, since we dispose of 920
months in the data set, we end up with 883 time windows.16 We also use a 3-month T-Bill as
reference for the risk-free rate. These data have been obtained from the Federal Reserve Board
and are only available since January 1934. Consequently, changes in the traditional ratios (4.1)
can only be computed from January 1937 onwards. This difference in availability only affects
the comparisons between these traditional measures and the Luenberger portfolio productivity
indicator. Furthermore, these risk-free rates of returns were annualized and have been converted
to a monthly basis.

Thus, given that all 36 portfolios must be evaluated with 4 different shortage functions over
883 time windows, we end up with 127,152 optimizations in total for the MV model and an equal
amount for the MVS model. Recall that in the case of the MV (MVS) model, each portfolio is
projected using a shortage function simultaneously looking for return (and skewness) augmen-
tation and risk reduction. Notice the computational advantage of using efficiency measures,
since it would be more difficult to compare 883 complete MV frontiers with one another (while
ignoring the impossibility to do anything similar in the MVS case). The proposed approach
only needs the projections of these 36 portfolios in each of the 883 time windows (the remainder
of the MV or MVS frontiers can be safely neglected).

Notice furthermore that the incidence of the infeasibility problem mentioned before, turns
out to be rather minor: we observe infeasibilities for only 165 (i.e., 0.519% = 165/(883 × 36))
and 201 (i.e., 0.632% = 201/(883 × 36)) portfolios in the MV respectively the MVS model.
Thus, the problem seems to be rather small in this data base.

5 Empirical Results

This section scrutinises these portfolios in terms of their MV and MVS Luenberger portfolio
productivity indicators, and also compares these to the ∆tSharpe, respectively ∆tSort indica-
tors.

A first part of the analysis consists in searching for a common ground in the information
provided by this Luenberger productivity indicator and its counterpart traditional performance
measures. The idea is to identify whether or not these two categories of performance gauges
provide similar results. Rank correlations are computed over the period 02/1937 to 08/2007
(for data availability reasons) between: on the one hand, in MV space L(xt, xt+1; gt, gt+1) and
the ∆tSharpe indicator; and on the other hand, in MVS space between L(xt, xt+1; gt, gt+1) and
the ∆tSort indicator. To impose minimal assumptions, these correlations are evaluated by a
Spearman rho test. Results are presented in Table 1. Notice that we only report significant
results throughout this section.

16The first time window ranges over the interval [01/1931, 01/1934] and the last one over the interval [08/2004,
08/2007].
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Table 1: Portfolios with Significant Correlations between L(xt, xt+1; gt, gt+1) and ∆tSharpe
(MV) resp. ∆tSort (MVS) indicators

Portfolio Port. MV MVS Portfolio Port. MV MVS
Groups Nr ρ p-value ρ p-value Groups Nr ρ p-value ρ p-value

Fama & 1 0.0573 0.0958∗ – – Momentum 22 – – – –
French 4 0.1579 0.0000∗∗∗ 0.1495 0.0000∗∗∗ S.T. Rever. 23 – – 0.0730 0.0340∗∗

Bench. 5 0.1130 0.0011∗∗∗ 0.1457 0.0000∗∗∗ L.T. Rever. 24 – – 0.0760 0.0275∗∗

6 0.0988 0.0137∗∗ 0.0911 0.0088∗∗∗

Industry

25 0.0661 0.0547∗ – –

Size

7 0.1765 0.0000∗∗∗ 0.1327 0.0001∗∗∗ 26 0.0695 0.0456∗∗ – –
8 0.1222 0.0004∗∗∗ 0.1303 0.0001∗∗∗ 27 0.0655 0.0568∗ 0.0765 0.0264∗∗

9 0.0967 0.0049∗∗∗ 0.1115 0.0012∗∗∗ 32 – – 0.0590 0.0888∗

10 0.0686 0.0460∗∗ – – 33 0.0765 0.0271∗∗ 0.0595 0.0852∗

Growth
12 0.0677 0.0490∗∗ 0.0782 0.0229∗∗ 35 0.0618 0.0733∗ – –
16 0.0661 0.0557∗ 0.0695 0.0436∗∗ 36 0.0874 0.0112∗∗ – –

Dividend 17 0.0643 0.0619∗ – –
Yield 18 0.0814 0.0179∗∗ 0.0724 0.0359∗∗

Note: Spearman Correlation coefficient with H0: ρ = 0.
*, ** and *** signs represent 10%, 5% respectively 1% thresholds.

In Table 1, one observes that, for about 50% of portfolios, the Luenberger productivity
indicator is positively correlated with the ∆tSharpe indicator in the MV model. However, this
result is not uniformly observed across the 8 portfolio families (i.e. groups in Table 1). For
instance, the rank correlations are the strongest for the families 1 and 2 followed by 8 (i.e.,
Fama French Benchmark, Size, and Industry portfolios). By contrast, Short Term and Long
Term Reversal as well as Momentum portfolios do not appear at all in this table. In the MVS
world, less portfolios are significantly correlated. This last result is probably linked to two
reasons: (i) the portfolio mimicking approach is fundamentally a non-optimized diversification
strategy geared towards a MV framework, and (ii) the ∆tSort indicator does not offer an equally
theoretically founded performance measure compared to the Luenberger indicator, which builds
upon the shortage function that is suitable to characterize MVS portfolio sets.

Keeping in mind that traditional measures are unable to distinguish the contribution of
portfolio managers to the performance evolution, while the Luenberger portfolio productivity
indicator and its decomposition allow for such a distinction, we now try to test the relevance
of this decomposition. Two questions are considered at this point: (i) is the evolution of
L(xt, xt+1; gt, gt+1), E(xt, xt+1; gt, gt+1) and F (xt, xt+1; gt, gt+1) due to mere chance, and (ii) do
the series of L(xt, xt+1; gt, gt+1), E(xt, xt+1; gt, gt+1) and F (xt, xt+1; gt, gt+1) have a mean that
is different from zero? While the first question is concerned with the detection of any significant
influence of portfolio managers on the Luenberger and its components, the second question
focuses on the size of any eventual effect.

One basic idea here is simply to identify, if possible, some styles that perform well in terms
of efficiency over time (in line with a research stream pioneered by McDonald (1974)). More-
over, since all of these mimicking portfolios belong to a more general active management style
(these portfolios being rebalanced on some regular basis), our results could shed some light
on the controversy regarding the utility/vacuity of active management. While it is frequently
reported that actively managed portfolios fail to outperform passive counterpart strategies (see,
for example, Gruber (1996)), some researchers do find some value added for active mutual
fund management (e.g., Wermers (2000)). Thus, while we do not expect reporting portfolios
with significant non-zero L(xt, xt+1; gt, gt+1) (given efficient markets), we wonder whether some
styles could exhibit some non-zero E(xt, xt+1; gt, gt+1). Obviously, positive improvements in
E(xt, xt+1; gt, gt+1) could indicate expertise among some portfolio managers (at least over short
periods of time) to push portfolios towards the moving portfolio frontier target, while a negative
result could point to their inability to do so. This remark applies specifically to this mimicking
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portfolio approach, since in this case, virtual portfolio managers simply stick mechanically to
some predetermined investment style.

To answer the first question, we utilize a Wald-Wolfowitz run test. Results are proposed
in Table 4. Looking at the decomposition, a first major result is that most portfolios exhibit non-
random E(xt, xt+1; gt, gt+1) series in both MV and MVS models. By contrast, F (xt, xt+1; gt, gt+1)
appears to be almost completely random, as could be expected from efficient market theory.
Second, the Luenberger indicator L(xt, xt+1; gt, gt+1), as the sum of both above components, is
mainly non-random for the two first portfolio families. These are in particular, the Fama French
Benchmark portfolios 3 (not in MV), 4, 5 and 6 (i.e., mainly those that are above the median
size, whatever their position in terms of BTM) and portfolios 7, 8, 9 and 10 (not in MVS) (i.e.,
P7 to P9 are portfolios composed within the subset of the 60% smallest firms).

The second question is answered using a Wilcoxon test for differences. Over the whole time
period, we cannot report any portfolio that has non-zero performance indicators except P31 (a
significant L(xt, xt+1; gt, gt+1) in MV) and P23 (a significant E(xt, xt+1; gt, gt+1) in MVS). Of
course, this is in line with the efficient market hypothesis as well, since it is hard to imagine
that the portfolio mimicking approach could generate and sustain superior results over such a
long run. However, in a sufficiently short time horizon (1 to 3 years: see, for example, Brown
and Goetzmann (1995)) and sometimes over longer periods (5 to 10 years: e.g., Elton, Gruber,
S.Das, and Blake (1996)), one can imagine that some portfolios (e.g., styles, etc.) may have
performed well because, for a variety of reasons, their profile fits into some market niche favored
by the economy. Therefore, we look at the short run by fixing a period consisting of the last
ten years. The Wilcoxon test is now recomputed and results are reported in Table 2.

Table 2: Wilcoxon Tests for the Luenberger Indicator and its Components (last ten years)
Portfolio E(xt, xt+1; gt, gt+1) F (xt, xt+1; gt, gt+1) L(xt, xt+1; gt, gt+1)

Portfolio Group Port. Nr W p-value W p-value W p-value

Mean–Variance

FF. Benchmark
1 – – – – 0.0028 0.0643∗

2 – – 0.0058 0.0824∗ – –

Size 11 – – 0.0047 0.0967∗ 0.0059 0.0422∗∗

Growth 12 – – – – 0.0006 0.0994∗

Dividend Yield
19 – – 0.0075 0.0311∗∗ 0.0133 0.0367∗∗

20 – – 0.0091 0.0148∗∗ – –

Industry

25 – – 0.0077 0.0203∗∗ 0.0123 0.0607∗

29 – – 0.0108 0.0054∗∗∗ 0.0145 0.0178∗∗

31 – – – – −0.0002 0.0521∗

36 – – 0.0065 0.051∗ – –

Mean–Variance–Skewness

FF. Benchmark 1 – – 0.0108 0.0967∗ 0.0119 0.065∗

Dividend Yield 19 – – 0.0101 0.0698∗ 0.0164 0.0685∗

Industry

25 – – 0.0277 0.0517∗ – –
28 – – −0.0192 0.0580∗ −0.0186 0.0889∗

29 – – 0.0534 0.0841∗ 0.0571 0.0961∗

34 – – – – 0.0161 0.0967∗

35 0.0023 0.0736∗ – – – –

Note: Wilcoxon test with H0: Value is not different of 0.
*, ** and *** signs represent 10%, 5% respectively 1% thresholds.

While no portfolio gets a significant E(xt, xt+1; gt, gt+1) in MV, and only one (P35) in MVS,
quite a few obtain non-zero L(xt, xt+1; gt, gt+1) and F (xt, xt+1; gt, gt+1). Notice that not a
single portfolio obtains a non-zero ∆tSharpe or ∆tSort indicator over the same time span.
These portfolios obtain a significant Luenberger indicator value, not because of any capability
from the idealized manager, but simply due to changes in the market that temporarily and
locally favor certain niches in the portfolio set. Combining this information with the result
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regarding the first question, one can conjecture that the non-random E(xt, xt+1; gt, gt+1) found
there must be caused by some coincidentally favorable circumstances situated in some sub-
period(s) different from the last ten years. Among these results, one also notices that there
is no evidence supporting the relative interest to invest in high book-to-market portfolios (i.e.
value portfolios, P15 and P16). This result contrasts with Lakonishok, Shleifer, and Vishny
(1994) who provide contradictory illustrations. One explanation for this difference could be
the mechanical behavior of our virtual managers who consistently follow certain management
styles. This style consistency is known to be insufficient to achieve good performance levels (see
Asness, Friedman, Krail, and Liew (2000)): for instance, some appropriately timed rotation
between growth and value styles seems necessary to obtain such good results.

Finally, knowing that non-zero performance is at best only observable in the short-term, we
wonder whether there is any time-dependency within these indicator-based performance results
within the same ten year time span. This question relates to the more general issue of perfor-
mance persistence in portfolio management. An enormous literature has been devoted to this
subject ever since Jensen (1968) illustrated the virtual impossibility to outperform the market
over long periods and on a regular basis. Nevertheless, much of the more recent studies illustrate
possible persistence in performance for short periods of time, but these results frequently char-
acterize the persistence of poor performances (for example, Hendricks, Patel, and Zeckhauser
(1993) and Brown and Goetzmann (1995)). A series of articles has taken a closer look at the
linkage between style and performance in terms of persistence (see, e.g., Teo and Woo (2004)).
For instance, persistence and momentum strategies have provoked a great deal of interest (and
controversy) over the last fifteen years (Jegadeesh and Titman (1993), Carhart (1997), or Bar-
beris and Shleifer (2003)). In Table 3, we report a first-order autocorrelation regression for
efficiency change, frontier change, respectively the Luenberger indicator for both MV and MVS
models. Since few portfolios reveal non-zero short-term performance, we anticipate finding few,
if any, significant AR(1) processes. For the efficiency change component, Table 3 shows that
there is a negative persistence for most portfolios. This result partially contradicts Teo and
Woo (2004) who illustrate clear connections between styles (essentially value and momentum)
and persistence, since value portfolios (P15 an P16) only appear to be performance-persistent
for efficiency change in MV (P15) and frontier change in both MV and MVS (P16). This persis-
tence, as well as a possible persistence for a momentum effect (P22 being not significant except
in MV for frontier change), is not significant when considering the Luenberger indicator. Thus,
any non-zero performance in these non-optimized mimicking portfolios cannot be sustained over
time. For the frontier change component and the Luenberger indicator, Table 3 contains more
or less the same portfolios and indicate that most of these portfolios enjoy rather a positive
persistence. The latter results probably simply reflect the fact that market cycles cover a time
span substantially larger than the monthly tick size for the sliding windows in our analysis.

6 Conclusions

The main objective of this contribution is to introduce a general method for measuring the evo-
lution of portfolio efficiency over time inspired by developments in index theory. Benchmarking
portfolios by simultaneously looking for risk contraction and mean return (and skewness) aug-
mentation in the MV (MVS) model using the shortage function framework, we have defined
a new Luenberger discrete time portfolio productivity indicator. The cardinal virtues of this
approach are: (i) it does not require the complete estimation of the efficient frontier and tracing
its evolution over time, but simply projects the portfolios on the relevant part of the frontier
with the shortage function using non-parametric envelopment methods to obtain an easily in-
terpretable efficiency measure and an ensuing productivity indicator; (ii) the decomposition
of the Luenberger portfolio productivity indicator distinguishes between efficiency change and
portfolio frontier change. While the latter component measures the local changes in the frontier

16



movements induced by market volatility, the former can in principle capture efficiency changes
attributable to the investor or portfolio manager. This efficiency change component allows test-
ing in an alternative, but conceptually promising way the eventual ability of fund managers to
generate superior performances, since this measurement is not contaminated by any changes in
the financial market itself.

A simple empirical application on a limited sample of investment portfolios has illustrated
the computational feasibility of this general framework in both the MV and MVS frameworks.
Given the mimicking portfolio approach adopted, and the long time period available, we have
been able to shed some light on the question of the relative performance of implementing
different portfolio strategies (e.g., based on various styles, factors, etc.). Summarizing some
key empirical results, the Luenberger portfolio productivity indicator is correlated with its
counterpart traditional performance measures in both MV and MVS frameworks. Furthermore,
most portfolios exhibit non-random efficiency change series in both MV and MVS models, while
frontier change series are almost completely random. Additionally, the efficiency change series
does almost never yield a non-zero performance. By contrast, the frontier change component
of some portfolios can be significantly different from zero in the short run, because the market
coincidentally seems to create favorable circumstances. Overall, these results are perfectly
concordant with efficient market theory and are probably driven by the mimicking portfolio
approach which relies in the selected data base on non-optimized rules. Nevertheless, this
new framework opens up possibilities to systematically attribute performance and quantify any
eventual individual fund manager performance.

Obviously, the current work has some limitations. One restriction is that it does not account
for transaction costs, but assumes that portfolios can be reshuffled in every time period to remain
in track with the evolving portfolio frontiers. This can in principle be overcome at the cost of
complexifying the analysis slightly. However, we do not anticipate any fundamental problem
in extending the proposed Luenberger indicator, since all extensions of basic portfolio models
could in principle be fitted into the basic shortage function models. On the positive side, as
already pointed out in the text, extensions to higher moments are straightforward (following
Briec, Kerstens, and Jokung (2007)).

References

Amenc, N., and V. Le Sourd (2005): “Rating the Ratings,” EDHEC Working paper, 14,
361–384.

Ang, J., and J. Chua (1979): “Composite Measures for the Evaluation of Investment Perfor-
mance,” Journal of Financial and Quantitative Analysis, 14(2), 361–384.

Asness, C., J. Friedman, R. Krail, and J. Liew (2000): “Style Timing: Value versus
Growth,” Journal of Portfolio Management, 26(3), 50–60.

Barberis, N., and A. Shleifer (2003): “Style Investing,” Journal of Financial Economics,
68(2), 161–199.

Briec, W., and K. Kerstens (2009): “Infeasibilities and Directional Distance Functions:
With Application to the Determinateness of the Luenberger Productivity Indicator,” Journal
of Optimization Theory and Applications, forthcoming.

Briec, W., K. Kerstens, and O. Jokung (2007): “Mean-Variance-Skewness Portfolio Per-
formance Gauging: A General Shortage Function and Dual Approach,” Management Science,
53(1), 135–149.

17



Briec, W., K. Kerstens, and J.-B. Lesourd (2004): “Single Period Markowitz Portfo-
lio Selection, Performance Gauging and Duality: A Variation on the Luenberger Shortage
Function,” Journal of Optimization Theory and Applications, 120(1), 1–27.

Brown, S., and W. Goetzmann (1995): “Performance Persistence,” Journal of Finance,
50(2), 679–698.

Cantaluppi, L., and R. Hug (2000): “Efficiency Ratio: A New Methodology for Performance
Measurement,” Journal of Investing, 9(2), 1–7.

Carhart, M. (1997): “On the Persistence in Mutual Fund Performance,” Journal of Finance,
52(1), 57–82.

Chambers, R. (2002): “Exact Nonradial Input, Output, and Productivity Measurement,”
Economic Theory, 20(4), 751–765.

Choi, Y., and B. Murthi (2001): “Relative Performance Evaluation of Mutual Funds: A
Non-Parametric Approach,” Journal of Business Finance and Accounting, 28(7–8), 853–876.

Chu, S., and G. Lim (1998): “Share Performance and Profit Efficiency of Banks in an
Oligopolistic Market: Evidence from Singapore,” Journal of Multinational Financial Man-
agement, 8(2–3), 155–168.

Chunhachinda, P., K. Dandapani, S. Hamid, and A. J. Prakash (1997): “Portfolio
Selection and Skewness: Evidence from International Stock Markets,” Journal of Banking
and Finance, 21(2), 143–167.

Cornell, B. (1979): “Asymmetric Information and Portfolio Performance Measurement,”
Journal of Financial Economics, 7(4), 381–390.

Cuthbertson, K., D. Nitzsche, and N. O’Sullivan (2008): “UK Mutual Fund Perfor-
mance: Skill or Luck?,” Journal of Empirical Finance, 15(4), 613–634.

Diewert, W. (2005): “Index Number Theory Using Differences Rather than Ratios,” American
Journal of Economics and Sociology, 64(1), 347–395.

Disatnik, D., and S. Benninga (2007): “Shrinking the Covariance Matrix – Simpler is
Better,” Journal of Portfolio Management, 33(4), 56–63.

Edirisinghe, N., and X. Zhang (2007): “Generalized DEA Model of Fundamental Analysis
and Its Application to Portfolio Optimization,” Journal of Banking and Finance, 31(11),
3311–3335.

Eling, M., and F. Schuhmacher (2007): “Does the Choice of Performance Measure Influence
the Evaluation of Hedge Funds?,” Journal of Banking and Finance, 31(9), 2632–2647.

Elton, E. (1999): “Presidential Address: Expected Return, Realized Return and Asset Pricing
Tests,” Journal of Finance, 54(4), 1199–1220.

Elton, E., M. Gruber, S.Das, and C. Blake (1996): “The Persistence of Risk-adjusted
Mutual Fund Performance,” Journal of Business, 69(2), 133–157.

Fama, E., and K. French (1989): “Business Conditions and Expected Returns on Stocks and
Bonds,” Journal of Financial Economics, 25(1), 23–49.

(1992): “The Cross-Section of Expected Stock Returns,” Journal of Finance, 47(2),
427–465.

18



(1993): “Common Risk Factors in the Returns on Stocks and Bonds,” Journal of
Financial Economics, 33(1), 3–56.

(1996): “Multifactor Explanations of Asset Pricing Anomalies,” Journal of Finance,
51(1), 55–84.

(1997): “Industry Costs of Equity,” Journal of Financial Economics, 43(2), 153–193.

(2004): “The Capital Asset Pricing Model: Theory and Evidence,” Journal of Eco-
nomic Perspectives, 18(3), 25–46.

Ferson, W., and R. W. Schadt (1996): “Measuring Fund Strategy and Performance in
Changing Economic Conditions,” Journal of Finance, 51(2), 425–461.

Gibbons, M., S. Ross, and J. Shanken (1989): “A Test of the Efficiency of a Given Portfo-
lio,” Econometrica, 57(5), 1121–1152.

Gregoriou, G., and J.-P. Gueyie (2003): “Risk-Adjusted Performance of Funds of Hedge
Funds Using a Modified Sharpe ratio,” Journal of Wealth Management, 6(3), 77–83.

Grinblatt, M., and S. Titman (1989): “Portfolio Performance Evaluation: Old Issues and
New Insights,” Review of Financial Studies, 2(3), 393–421.

(1993): “Performance Measurement without Benchmarks: An Examination of Mutual
Fund Returns,” Journal of Business, 66(1), 47–68.

(1994): “A Study of Monthly Mutual Fund Returns and Performance Evaluation
Techniques,” Journal of Financial and Quantitative Analysis, 29(3), 419–444.

Gruber, M. (1996): “Another Puzzle: The Growth in Actively Managed Mutual Funds,”
Journal of Finance, 51(3), 783–810.

Harvey, C., and A. Siddique (2000): “Conditional Skewness in Asset Pricing Tests,” Journal
of Finance, 55(3), 1263–1295.

Hendricks, D., J. Patel, and R. Zeckhauser (1993): “Hot Hands in Mutual Funds: Short-
run Persistence of Relative Performance,” Journal of Finance, 48(1), 93–130.

Jegadeesh, N., and S. Titman (1993): “Returns to Buying Winners and Selling Losers:
Implications for Stock Market Efficiency,” Journal of Finance, 48(1), 65–91.

Jensen, M. (1968): “The Performance of Mutual Funds in the Period 1945-1964,” Journal of
Finance, 23(2), 389–416.

Jensen, M. (1972): Mathematical Methods in Investment and Finance chap. Optimal Utiliza-
tion of Market Forecasts and the Evaluation of Investment Performance, pp. 310–335. G.P.
Szego and K. Shell (eds), Amsterdam, elsevier edn.

Jondeau, E., and M. Rockinger (2003): “How Higher Moments Affect the Allocation of
Assets,” Finance Letters, 1(2).

Kandel, S., and R. F. Stambaugh (1995): “Portfolio Inefficiency and the Cross Section of
Expected Returns,” Journal of Finance, 50(1), 157–184.

Kaplan, P., and J. Knowles (2004): “Kappa: A Generalized Downside Risk-Adjusted Per-
formance Measure,” Journal of Performance Measurement, 8(3), 42–54.

Kazemi, H., T. Schneeweis, and B. Gupta (2004): “Omega as a Performance Measure,”
Journal of Performance Measurement, 8(3), 16–25.

19



Lakonishok, J., A. Shleifer, and R. Vishny (1994): “Contrarian Investment, Extrapola-
tion, and risk,” Journal of Finance, 49(5), 1541–1578.

Le Sourd, V. (2007): “Performance Measurement for Traditional Investment: Literature
Survey,” Discussion paper, Edhec.

Luenberger, D. (1992): “Benefit Function and Duality,” Journal of Mathematical Economics,
21(5), 461–481.

(1995): Microeconomic Theory. McGraw-Hill, New York.

Madan, D., and G. S. McPhail (2000): “Investing in Skews,” Journal of Risk Finance, 2(1),
10–18.

Markowitz, H. (1952): “Portfolio Selection,” Journal of Finance, 7(1), 77–91.

McDonald, J. (1974): “Objectives and Performance of Mutual Funds, 1960-1969,” Journal
of Financial and Quantitative Analysis, 9(3), 311–333.

Morey, M., and R. Morey (1999): “Mutual Fund Performance Appraisals: A Multi-Horizon
Perspective With Endogenous Benchmarking,” Omega, 27(2), 241–258.

Murthi, B., Y. Choi, and P. Desai (1997): “Efficiency of Mutual Funds and Portfolio
Performance Measurement: A Non-Parametric Approach,” European Journal of Operational
Research, 98(2), 408–418.

Roll, R. (1978): “Ambiguity When Performance is Measured by the Security Market Line,”
Journal of Finance, 38(4), 1051–1069.

Sengupta, J. (1989): “Nonparametric Tests of Efficiency of Portfolio Investment,” Journal of
Economics, 50(3), 1–15.

Shanken, J. (1990): “Intertemporal Asset Pricing: An Empirical Investigation,” Journal of
Econometrics, 45(1–2), 99–120.

Teo, M., and S. Woo (2004): “Style Effects in the Cross-section of Stock Returns,” Journal
of Financial Economics, 74(2), 367–398.

Wermers, R. (2000): “Mutual Fund Performance: An Empirical Decomposition into Stock-
Picking Talent, Style, Transactions Costs, and Expenses,” Journal of Finance, 55(4), 1655–
1696.

20



Table 3: AR(1) Model for E(xt, xt+1; gt, gt+1), F (xt, xt+1; gt, gt+1) and L(xt, xt+1; gt, gt+1)

Portfolio Port. E(xt, xt+1; gt, gt+1) F (xt, xt+1; gt, gt+1) L(xt, xt+1; gt, gt+1)
Group Nr ρ p-value ρ p-value ρ p-value

Mean–Variance

F.F. Benchmarks
1 – – 0.2176 0.0487∗∗ 0.4218 0.0001∗∗∗

3 – – 0.2462 0.0233∗∗ 0.2461 0.0233∗∗

4 – – 0.1933 0.0764∗ – –

Size
7 – – – – 0.2533 0.0201∗∗

10 – – – – 0.2276 0.0376∗∗

11 – – – – 0.3391 0.0018∗∗∗

Growth
12 – – 0.2448 0.0259∗∗ 0.3222 0.0030∗∗∗

15 0.1952 0.0728∗ – – – –
16 – – 0.2059 0.0582∗ – –

Dividend Yield
17 – – 0.2502 0.0220∗∗ 0.2546 0.0193∗∗

19 0.2352 0.0330∗∗ – – – –

Momentum 22 – – 0.2223 0.0409∗∗ – –

S.T. Rever. 23 −0.1892 0.0826∗ – – – –

Industry

25 – – – – −0.3278 0.0041∗∗∗

29 0.2900 0.0090∗∗∗ – – – –
30 – – 0.3165 0.0032∗∗ – –
31 – – 0.2923 0.0069∗∗∗ 0.2555 0.0181∗∗

32 – – 0.2075 0.0565∗ – –
33 – – 0.2039 0.0633∗ – –
35 −0.1834 0.0930∗ – – – –
36 – – 0.2312 0.0341∗∗ – –

Mean–Variance–Skewness

F.F. Benchmarks
1 −0.3416 0.0016∗∗∗ – – – –
3 – – 0.2733 0.0140∗∗ – –

Size 7 – – 0.2221 0.0412∗∗ 0.2385 0.0322∗∗

Growth 16 – – 0.2181 0.0447∗∗ – –

Dividend Yield
17 – – 0.2456 0.0257∗∗ 0.1827 0.0965∗

18 −0.2162 0.0466∗∗ – – – –
19 −0.1946 0.0779∗ – – – –

S.T. Reversal 23 −0.3515 0.0010∗∗∗ – – – –

L.T. Reversal 24 −0.3593 0.0008∗∗∗ – – – –

Industry

25 −0.4731 0.0000∗∗∗ – – −0.3686 0.0007∗∗∗

27 −0.2778 0.0123∗∗ – – – –
28 −0.3025 0.0059∗∗∗ – – – –
32 – – 0.2073 0.0570∗∗ – –
34 – – −0.2888 0.0418∗∗ – –

Note: *, ** and *** signs represent 10%, 5% respectively 1% thresholds.
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Appendices

1. The Shortage Function and Duality in a Mean-Variance Utility Based
Framework: A Decomposition

Markowitz (1952) also proposed a dual, MV utility based framework to determine the portfolio
corresponding to a given degree of risk aversion.

Definition: The direct MV utility function at time period t is defined by

Uρ,µ,t(xt) = µE[Rt(xt)]− ρV [Rt(xt)], (6.1)

with µ ≥ 0 and ρ ≥ 0. The function U?
t (ρ, µ) = sup{Uρ,µ,t(xt) : xt ∈ =} is called the indirect

MV utility function at time period t.

Thus, the support function of the Markowitz frontier is given by the indirect utility function
U?

t (ρ, µ). The quadratic optimization program needed to obtain the indirect MV utility function
can simply be written as:

sup Uρ,µ,t (xt) = µE [Rt (xt)]− ρV [Rt (xt)] (6.2)

s.t.
∑

i=1,...,n

xi,t = 1, xt ≥ 0.

The ratio ϕ = ρ/µ ∈ [0, +∞] is known as the risk aversion.
Following the dual relation between shortage function and MV utility function, it is also

possible to disentangle between various efficiency notions when evaluating potential improve-
ments in portfolios: (i) Portfolio efficiency (PEFF ), (ii) Allocative efficiency (AEFF ), and (iii)
Overall efficiency (OEFF ) (see Briec, Kerstens, and Lesourd (2004) for technical details).

Starting from a portfolio under evaluation, portfolio efficiency guarantees only reaching a
point on the Markowitz frontier using the shortage function. However, this point need not
necessarily coincide with a portfolio maximizing the investor’s indirect MV utility function.
Starting again from a portfolio under evaluation, it is possible to define another efficiency mea-
sure that guarantees reaching the point on the Markowitz frontier maximizing the MV utility
function. For this purpose, the overall efficiency is the ratio between, (i) the difference between
indirect MV utility and the value of the MV utility function for the evaluated portfolio, and
(ii) a normalization based on the direction vector. Finally, since the overall efficiency notion is
clearly more demanding than the portfolio efficiency concept, one can define a residual notion
of allocative efficiency which is simply the difference between overall efficiency and portfolio effi-
ciency. Thus, allocative efficiency measures the needed portfolio reallocation along the portfolio
frontier to achieve the maximum of the indirect MV utility function.

For a given time period, this approach is illustrated in Figure 3 in MV space. The shortage
function looks for improvements in the direction of both an increased mean return and a reduced
risk. For instance, the inefficient portfolio A is projected onto the MV frontier at point B.
Furthermore, given the knowledge about the investor’s risk-aversion, one can establish the ideal
point on the portfolio frontier conforming to his/her preferences (i.e., the tangency point of the
MV utility function and the Markowitz frontier). In Figure 3, point D maximizes the direct
utility function. To illustrate the above decomposition starting from the portfolio denoted by
point A, it can be shown that

OEFF =
| CA |
| OA | , PEFF =

| BA |
| OA | , and AEFF =

| CB |
| OA | .

23



A

B

C

D

E

E(R)

V(R)
0

Maximum direct utility

Figure 3: Shortage Function & OE Decomposition

2. Description of K. French Database

The following list provides essential information on how these 36 portfolios have been composed
by K. French:

(1) Fama-French Benchmark (P1–P6): These portfolios combine stocks with respect to
two main characteristics. The first one is their book-to-market ratio (BTM). On this
basis, 3 categories are established (Growth, Neutral and Value portfolios). The second
characteristic is the size of the firm proxied by its market equity (ME). Mixing these
categories results in 6 profiles (see Table 5).17

Table 5: Portfolio Profile

30% Smallest BTM In-Between BTM 30% Biggest BTM
Below median
size

Buy + Growth
Firms (P1)

Buy + Neutral
Firms (P2)

Buy + Value
Firms (P3)

Above median
size

Sell + Growth
Firms (P4)

Sell + Neutral
Firms (P5)

Sell + Value
Firms (P6)

Note: Breakpoints for each category are computed over the NYSE data,
although each portfolio combines stocks from NYSE, AMEX, and NASDAQ.

(2) Size (P7–P11): Five portfolios (one per quintile) based on firms’ size composing each
portfolio. Size is proxied by market equity. For instance, P7 is based on the 20% smallest
firms listed on the NYSE, the AMEX, and the NASDAQ while P11 draws on the 20%
biggest firms.

(3) Growth (P12–P16): Same logic as for size-based portfolios, but book-to-market (BTM)
serves as a proxy for growth opportunity. In other words, P12 is a portfolio composed of
the smallest firms while P16 combines the biggest ones.

17It could be interesting to compare these with the Morningstar classification system which is based on the
same criteria. ME is divided in 3 categories, therefore each fund receives a pictogram indicating its synthetic
position in a 3× 3 matrix. In this research we only have a 3× 2 matrix.
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(4) Dividend Yield (P17–P21): Ibidem, with dividend yields (DY) replacing ME or BTM.

(5) Momentum (P22): We focus here on the more typical momentum portfolio. For each
month t, stocks are included in this portfolio provided (i) these are ranked in the 10%
most performing stocks in terms of return at the end of the previous month (t− 1), and
(ii) these were already listed one year and a month before (t − 13).18 Some investors
believe that well performing stocks in the past will deliver the well performing stocks of
the future, whence they play a momentum strategy.

(6) Short Term Reversal (P23): Similarly to the Momentum portfolio (P22). P23 is a typ-
ical short term reversal portfolio. For each month t, stocks are included in this portfolio
provided (i) these have been ranked in the 10% least performing stocks in terms of return
at the end of the previous month (t− 1), and (ii) these were already listed one month be-
fore (t− 2).19 Contrary to the beliefs of momentum traders, short term reversal investors
think that returns inevitably tend to revert to the mean over time. Therefore, it is worth
buying poorly performing stocks to benefit from their possible appreciation in the short
term.

(7) Long Term Reversal (P24): Same logic as for P23, but stocks are now picked (i) on the
basis of their poor performance observed in t− 13, and (ii) provided these were listed five
years before (t− 61).20

(8) Industry Portfolios (P25–P36): Portfolios are based on all stocks listed on NYSE,
AMEX and NASDAQ with respect to their four-digit SIC. These portfolios simply aim at
mimicking industry returns. These are coded by a number ranging from 25 to 36 corre-
sponding to (i) Non Durable Goods, (ii) Durable Goods, (iii) Manufactured Goods, (iv)
Energy, (v) Chemicals, (vi) Business Equipment, (vii) Telecommunication, (viii) Utils,
(ix) Shops, (x) Health, (xi) Money, and (xii) Others.

18P22 corresponds to the last quintile portfolio in the data file Momentum Portfolio.
19P23 corresponds to the first quintile portfolio in the data file Short-Term Reversal Portfolio.
20P24 corresponds to the first quintile portfolio in the data file Long-Term Reversal Portfolio.
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