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Abstract

I estimate a Bayesian factor-augmented vector autoregression model using
a large panel of macroeconomic and credit spread data from the United
States for the period 1926-2009. The model has time varying parameters and
volatilities. I identify a number of episodes with high volatility in the com-
mon component of credit spreads. Often, though not always, these episodes
coincide with (or lead) NBER recessions. I find that, during these episodes,
credit spread shocks and monetary policy shocks have much stronger effects
on macroeconomic variables than on average. The degree of amplification
of those responses reaches at its peak a factor of up to ten. These amplified
responses tend to exhibit a larger persistence.1
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1 Introduction

The recent disruptions in the financial market, its spread to a variety of other
asset markets and the subsequent contraction in the real economy has centered
attention on the linkages of financial factors and real activity explaining business
cycle fluctuations. The compelling response by monetary and fiscal authorities
around the globe witnessed by means of sharp interest rate cuts, introduction of
new alternative monetary policy instruments and extraordinary financial stimu-
lus packages suggests its potential importance.

In this paper I address the following questions: To what extent do credit
spread shocks2 and monetary policy shocks in the presence of credit market
frictions contribute to business cycle fluctuations? Is the relationship between
the credit market, the real economy and the transmission mechanism of shocks
constant or subject to changes in both, parameters and volatilities governing the
dynamics?

Since the Great Depression the U.S. economy has been characterized by sub-
stantial changes in institutions, shifts in the structure of the economy, changes
in macroeconomic policy regimes and varying volatility of the real, nominal and
financial sector. Particular prominent periods are the ”Great Events” such as the
”Great Depression” which marked the severest financial crisis and recession in
the U.S. history. The ”Great Inflation”3 describes the period covering the 70s and
early 80s characterized by simultaneous high inflation, high interest rates and
high macroeconomic volatility with large swings in the real and nominal cycle
coinciding with non-active monetary policy responding weakly to inflation. The
”Great Moderation” is characterized by a decline in the volatility of output growth
and inflation starting from the mid 1980’s after the Chairmanship of Paul Vol-
cker and his disinflationary monetary policy regime, see Kim and Nelson (1999),
McConnel and Pérez-Quirós (2000) and Stock and Watson (2002). Recently the
term ”Great Contraction” has been recoined by Kenneth Rogoff to describe the
contraction experienced in the most recent recession preceded by the financial
market turmoil.

To shed light on the linkages and mechanisms at play during the past cen-
tury I analyze a large panel of U.S. macroeconomic data and credit spreads from
corporate bond yields covering the period 1926-2009. To cope with the different
sources of changes in U.S. business cycle I employ a structural Bayesian factor-

2By credit spread shock I mean a widening in a common factor describing the key common
movement of a large panel of nominal bond yields data of major groups at different ratings from
which a proxy for the risk free rate has been subtracted.

3See Blanchard and Simon (2001), Stock and Watson (2002), Sims and Zha (2006), Primiceri
(2005) and Cogley and Sargent (2005) for a discussion about the causes of the Great Inflation.
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augmented vector autoregression (henceforth FAVAR) model with time varying
parameters and volatilities. I identify different states in the evolution of the re-
spective sector volatility which are converging in some periods, e.g. during the
Great Depression overall volatilities increase, and diverging in others, e.g. like
during the Great Moderation where macroeconomic volatility decreases while fi-
nancial market indicators’ volatility increases. Furthermore I identify the effects
of credit spread shocks and monetary policy shocks to quantity their impact
and contribution in explaining fluctuations in the real economy at business cycle
frequencies.

I identify a number of episodes with high volatility in the common compo-
nent of credit spreads. During many recession periods and financial disruptions
these episodes coincide with or are led by a widening in the credit spread fac-
tor. I find that, during these episodes, credit spread shocks and monetary policy
shocks have much stronger effects on macroeconomic variables than on aver-
age. The degree of amplification of those responses reaches at its peak a factor
of up to ten. Simultaneously these responses exhibit a larger persistence at the
three year horizon considered. The highest volatility periods of the credit spread
factor are during the Great Depression, the decade of the 70s and the current
crisis labeled as the ”Great Contraction”. However the impact on real variables
during the Great Depression is much stronger than during the recent recession
period. There is clear evidence on changes in the transmission mechanism of
both shocks analyzed affecting the amplification and propagation. During the
periods of strong responses to both monetary policy and credit spread shocks
the variation explained in business cycle fluctuations is significantly higher. Com-
paring different pairs of periods I find evidence on changes in the persistence of
inflation and output growth. The recent decade compared to the Great Moder-
ation period shows a high probability of an increase in the persistence of infla-
tion. These considered recent years coincide with an increase in the volatility of
macroeconomic, nominal and financial factors.

For the analysis of financial factors and shocks I focus on credit spreads.
Changes in the spread reflects changes in ”pay off”, ”default risk” or ”liquidity
risk” affecting the external financing position of firms through which effects can
be feed back amplified to the real economy. The theoretical foundation for the
particular importance of credit market frictions comes from the concept of the ”fi-
nancial accelerator” introduced to the literature most prominently by the work
of Bernanke and Gertler (1989), Bernanke, Gertler and Gilchrist (1996,1999). This
concept relates fixed income asset prices and real output through the external
finance premium. This measure is defined as the difference between the costs of
raising external funds to the opportunity costs of internal funds faced by a bor-
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rower. Assuming financial frictions the external finance premium is positive and
depends inversely on the strength of the borrower’s financial position. A widen-
ing in the external finance premium is related to a widening in credit spreads.
A higher external finance premium - or equivalently, a deterioration in the cash
flow and balance sheet positions of a borrower - makes borrowing more costly,
reduces investment and thus overall aggregate economic activity creating a chan-
nel through which otherwise short lived economic or monetary policy shocks
may have long-lasting effects. Furthermore the financial accelerator is known to
deliver the credit channel of monetary policy providing the theoretical underpin-
ning why a monetary contraction might have accelerated real effects through a
tightening in effect in credit conditions. This is the building block of many recent
theoretical attempts to model financial frictions in DSGE models like Christiano,
Motto and Rostagno (2003,2007), De Fiore and Uhlig (2005), Gertler and Gertler
and Kiyotaki (2009). Other recent promising attempts to model credit frictions in
theoretical models are the work of Curdia and Woodford (2009a,b,c) who model
credit frictions and credit spreads within the standard New Keynesian model
describing implications for optimal monetary policy. Gilchrist, Yankov and Za-
krajasek (2009) also identify credit market shocks and its impact on economic
fluctuations. They employ a FAVAR model for the U.S. economy covering the
period 1990-2008 with constant paramters. My approach differs from the ones
previously mentioned because, firstly I am not only considering the credit mar-
ket as a channel amplifying and propagating monetary policy shocks but also
the impact of perturbations originating directly in the credit market. Secondly, I
consider a much longer time period of the U.S. business cycle and finally I ex-
plicitely allow for different sources of nonlinearities that are important in order
to detect and charecterize potential changes in the transmission mechanism of
shocks and their contribution to business cycle fluctuations.

Recent advances in empirical macroeconomics have emphasized the role of
dynamic factor analysis and FAVARs for the analysis of large panels of disaggre-
gated data to capture the key driving factors that explain business cycle fluctu-
ations in a parsimonious and flexible way. See Stock and Watson (2002a,b,2005),
Bernanke and Boivin (2003), Bernanke, Boivin and Eliasz (2005). Bayesian ap-
proaches to the large scale dynamic factor analysis employing likelihood-based
Markov Chain Monte Carlo (MCMC) methods have been provided first by
Otrok and Whiteman (1998). Amir Ahmadi and Uhlig (2009) combine a Bayesian
FAVAR model with sign restrictions for an improoved identification of monetary
policy shocks. The first authors to consider time variation in the context of dy-
namic factor analysis are Del Negro and Otrok (2008). The analysis of monetary
policy in the time varying framework goes back to the work by Sims and Zha
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(2006), Cogley and Sargent (2005) and Primiceri (2005). Sims and Zha (2006) em-
ploy a Markov-Switching VAR and find a key role for drifts in Volatilities only.
In the paper by Cogley and Sargent (2005) and Primiceri (2005) there is some
evidence on some changes also in parameters and not only volatilities.

Literature on the interaction of financial factors, monetary policy and busi-
ness cycle fluctuations is rare particularly considering the long run that is sub-
ject to several instabilities in the economic structure. The few papers to analyze
interwar U.S. data are Ritschl and Woitek (2004) employing a Bayesian VAR
with time varying parameters and Amir Ahmadi and Ritschl (2009) employing
a monetary FAVAR model. To the best knowledge of the author, this paper is the
first attempt to incorporate the role of financial factors on business cycle fluctu-
ations covering data from the Great depression up to now, explicitly modeling
the changes in volatilities and parameters. My approach allows characterizing
changes in the transmission mechanism of financial and monetary policy shocks
covering a number of recessions and crisis in the U.S. business cycle.

2 Empirical Strategy

The key idea behind dynamic factor analysis and FAVAR models is to parsimo-
niously represent the comovements in a large set of cross-sectional data by only
a limited number of unobserved latent factors. These models involve dimension
reduction techniques which allow to represent the dynamics in both the common
component - represented by these factors and their respective factor loadings -
and the variable-specific idiosyncratic component in a parsimonious way. The
factor-augmented vector autoregression (henceforth FAVAR) model is a hybrid
between a dynamic factor model (henceforth DFM) and the standard structural
VAR model: a joint VAR is specified for some series of interest f y

t and some fac-
tors f m

t that are extracted from a large panel of informational time series xt. The
working hypothesis of the FAVAR model is that while a narrow set of variables
f y
t , notably the policy instrument of the central bank, are perfectly observable

and have pervasive effects on the economy, the underlying dynamics of the econ-
omy are less perfectly observable, and hence a VAR in just a few key variables
would potentially suffer from omitted variable bias. As increasing the size of
a VAR is impractical due to problems of dimensionality, the FAVAR approach
aims to extract the common dynamics from a wide set of informational indica-
tor series xm

t , and to include these in the VAR, represented by a small number of
factors f m

t . This approach is well suited for structural analysis such as impulse
response analysis and variance decomposition (in particular for the problem at
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hand). For the estimation procedure the model has to be cast in a state-space
representation. The informational variables xt included in the observation equa-
tion are assumed to be driven by observable variables with pervasive effects on
the economy (e.g. the central bank’s policy instrument), f y

t , a small number of
unobservable common factors, f m

t , which together represent the main ”driving
forces” of the economy, and an idiosyncratic component et.

2.1 Modeling Choices

In order to have a flexible model that allows for the previously mentioned drifts
in parameters and volatilities. A decision has to be made as to where to model
dynamics and time variation. I will model time variation in the factor coeffi-
cients and stochastic volatility in the factors residual covariance matrix and time
variation in the contemporaneous relation of the shocks following augments put
forward by Primiceri (2005) in the VAR framework. The parameters are modeled
as driftless random walk processes as proposed in Cogley and Sargent (2005) for
a VAR model. Stochastic volatilities follow a driftless geometric random walk.
This follows the belief that changes due to policy, structure or luck, are perma-
nent rather than transitory hence this specification is preferred over a stationary
process as in Del Negro and Otrok (2008). Unlike Del Negro and Otrok (2008) I
model all the time varying dynamics in the process for the common factors and
leave the parameters and hyperparameters in the observation equation constant.
The motivation comes from the different questions addressed in this paper. Here
I aim to capture changes in the structure of the economy and the conduct of pol-
icy that are common across the informational variables rather than detecting
shifts in idiosyncratic forces. Therefore the flexibility im terms of time varia-
tion is devoted to the state equation only. Adding time variation and stochastic
volatility in the process of the idiosyncratic components comes at high computa-
tional cost, and aggravates on the degree of freedom problem without explicitly
adding insights to the questions at hand. The drawback of imposing the stability
condition of the process for the state equation over a rather long period can be
computationally high and forces to choose to short lag length a priori.

2.2 The Econometric Model

The model to be derived here is a Bayesian FAVAR with both time-varying coef-
ficients and multivariate stochastic volatility in the common factors residual co-
variance matrix set up in a general (parametric) state space form. These different
sources of time variation are designed to capture possible nonlinearities in the
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process of the factors driving the key common dynamics of the potentially large
panel of data. The time-variation in the coefficients is meant to capture nonlin-
earities in the lag structure of the model, e.g. possible changes in policy regimes
and institutional changes affecting the propagation mechanism. The latter inde-
pendent source of variation is designed to capture possible heteroskedasticity
of the exogenous (structural) shocks and nonlinearities in the simultaneous rela-
tions among the common factors of the model affecting the size of shocks and
hence determines the scale of the impulse of shocks4. The objective is to propose
a likelihood estimation approach to capture the rich interrelations of the real,
nominal and financial sector in a parsimonious model in order to identify and
analyse the different sources of nonlinearity and its transmission mechanism.
The model takes the form

xt = λc f m
t + λy f y

t + λcs f cs
t + et (2.1)

et ∼ N(0, R)

where xt = (xm
t
′, xy

t
′
, xcs

t
′)
′

of dimension [(Nm + Ny + Ncs)× 1] denotes the time
t grouped data vector containing macroeconomic data xm

t , core VAR data xy
t and

credit spread data xcs
t .5 The total number of time series is denoted by N = (Nm +

Ny + Ncs). The factor loading matrices λm, λy and λcs of respective dimension
[N× Km], [N× Ky] and [N× Kcs] relate the observable data in xt to the common

time t factors ft = ( f m
t
′, f y

t
′
, f cs

t
′)
′

of dimension [Km × 1], [Ky × 1] and [Kcs × 1]
respectively which themselves follow a time-varying parameter VAR(P) process
with stochastic volatility. The time t observation residual is denoted by the vector
et = (em

t
′, 0Ny×1

′, ecs
t
′)
′ of dimension [N × 1]. The innovation term et has mean 0

and covariance R, which is assumed to be diagonal and including zero elements
for the variances of the core VAR process f y

t in the FAVAR. Hence the error
terms of the observable variables are mutually uncorrelated at all leads and lags,
namely

E[ei,t ft] = 0

E[ei,tej,s] = 0

where the latter hold for ∀i, j = 1, . . . , N ∧ t, s = 1, . . . , T and i 6= j ∧ t 6= s. The
joint dynamics of the factors ft are given by the following VAR(P) process with

4See Primiceri (2005) for a detailed description of these modeling features for a VAR model
on which the introduced nonlinearities of my model draw.

5Throughout the paper the superscript m, y and cs will denote the reference to macroeco-
nomic data, the core VAR and credit spread data respectively unless explicitly stated.
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drifting parameters and volatilities

ft = ∑P
p=1Bt,p ft−p + ut (2.2)

ut ∼ N(0, Qt)

where

Qt = A−1
t Σt A−1

t
′

ut = A−1
t Σ.5

t νt

Et[νtν
′
t] = IK

where ut is the time t vector of innovations and νt is the time t vector of structural
shock both of dimension [K × 1]. The contemporaneous relations of the shocks
and the factors are represented through the matrix At of dimension [K × K].
From the above triangular reduction it follows that

At =


1 0 · · · 0

a21,t 1 . . . ...
... . . . . . . 0

aK1,t · · · aKK−1,t 1

 , Σt =


σ1, t 0 · · · 0

0 σ2, t . . . ...
... . . . . . . 0
0 · · · 0 σK, t

 .

The dimensions of the factors are [Km × 1],[Ky × 1] and [Kcs × 1] respectively,
where K = [Km + Ky + Kcs] denotes the total number of factors including the
perfectly observables ones. Please note that Ky ≡ Ny as it represents an identity
in the companion form of the state space representation of the model to be
estimated.

The model in the state space form is given by equation (2.2) and (2.3). Vectorizing
and stacking the coefficients in the state equation (2.3) delivers bt = (b1,t, . . . , bP,t)

where the time t lag p vectorized matrix of coefficients is given by bp,t = vec(Bp,t).
Similarly the diagonal elements of the time t stochastic volatility matrix Σ.5

t and
the time t lower diagonal and non one elements of At row-wise stacked denoted
by at are given by log(σt) = (log(σ1,t), . . . , log(σK,t)),at = (a21,t, . . . , aKK−1,t)

respectively. The drifting parameters and log volatilities follow a driftless
random walk process of the form

bt = bt−1 + ωb
t

at = at−1 + ωa
t

log(σt) = log(σt−1) + ωσ
t .
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The vector of all innovations in the model is given by εt = (et, νt, ωb
t , ωa

t , ωσ
t ) and

is assumed to be jointly normally distributed given by

εt = N




0
0
0
0
0

 ,


R 0 0 0 0
0 IK 0 0 0
0 0 Ωb 0 0
0 0 0 Ωa 0
0 0 0 0 Ωσ



 .

Note that the R, Ωb, Ωa, Ωσ are positive definite matrices. As pointed out by Prim-
iceri (2005) the implied restrictions of block diagonal structure are not essential
and could be easily abstracted from6. However considering a more generic cor-
relation structure of the covariance matrix of the vector of shocks is not of direct
interest for the economic questions at hand and goes beyond the scope of this
paper.

2.3 Identification of Macroeconomic and Credit Spread Factors

Identification of the model against rotational indeterminacy requires normaliza-
tion and additional restrictions. For better exemplification of the factor identifi-
cation I will restate the observation equation in (2.2) with the model in mind and
the resulting implied zero restrictions on the factor loading matrix. xm

t
xy

t
xcs

t

 =

 λm λy 0
0 IKy 0
0 0 λcs


 f m

t
f y
t

f cs
t

+

 em
t
0

ecs
t

 .

In what follows I partly follow the approach of Bernanke, Boivin and Eliasz
[2005] and normalize the upper [Km×Km] block of λm to the identity matrix and
restrict the upper [Kc × Ny] block of λy to only contain zeros.

In dynamic factor analysis and therefore also in the FAVAR approach it is of
great importance to impose further restrictions for the model parameters and the
factors to be uniquely identified against rotational, scale and sign indeterminacy.
This task is of crucial importance as the likelihood is salient about the specific
unique rotation that separately identifies factors, loadings and parameters. Dif-
ferent rotations are observationally equivalent resulting with the same likelihood
although the model can be very different. There are different assumptions one
can impose depending on the purpose of the analysis. One standard approach
to the identification of factor models is the approach goes back to Geweke and

6For a discussion see Primiceri (2005)
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Zhou [1996]. They restrict the upper K × K (where K denotes the total number
of factors) block of the factor loading matrix λ to be lower triangular. See also
Mönch [2006] for an implementation in the FAVAR framework. Alternatively
one could impose the upper K× K to be identity as is done in Bernanke, Boivin
and Eliasz [2005]. Note that this restriction is over-identified however very con-
venient as no further restrictions are required for the scale and sign determinacy.
A third alternative is to group the data according to some model the researcher
has in mind e.g. blocking the data according to some regional concepts and
extract the respective factors solely from these predefined blocks of data. This
approach has implied restrictions on the factor loading matrix resulting in over-
identification from a purely statistically sense but required given the possibility
to label the factors according to some economic model the researcher has in
mind. One possibility is to impose restrictions on the factor loading matrix such
that the factors refer to specific economic concepts, like economic activity or in-
flation factors the data refers to (see Belviso and Milani [2006]) or distinguish
between economic concepts geographical aggregates, like world, regional and
country specific business cycles as in Otrok and Whiteman (1998) and Del Negro
and Otrok (2004,2008). In this paper I employ a semi-structural identification of
the factors due to the pre-blocking of the data and the imposed block-diagonal
restrictions on the loading matrix are designed to deliver ”macro factors” and
”credit spread factor”. It is furthermore required to set the first [Ki × Ki] where Ki
denotes the number of factors to be sampled from the respective block, to iden-
tity as a normalization. The data is ordered and blocked according to respective
economic concepts designed to reflect. Note that the grouping of the data and
the block-diagonality assumptions are additional restrictions imposed for the
factors to represent solely the economic concepts. Hence the structure of the fac-
tor loading imposed combines the normalization and the additional restrictions.
For unique identification of factors and loadings it is sufficient to set the upper
[K× K] block to identity and no further restrictions are required. But then there
is no interpretation of the factors as economic concepts which is not what we
want. For that the additional assumptions of block diagonality according to the
respective groups of data is required. This way the extracted factors are consis-
tent with the respective economic concept as each data block only loads with
one of the corresponding factors.
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2.4 Identification of Structural Shocks

2.4.1 Factor generalization of Cholesky Identification

In order to identify the effects of monetary policy shocks and credit spread
shocks identifying assumptions have to be made to allow for structural interpre-
tation. I employ the Cholesky identification imposing a contemporaneous recur-
sive structure where the macroeconomic factors f m

t are ordered first before the
core VAR factors f y

t and ordering last the credit spread factor f cs
t endogenizing

its contemporaneous response. The ordering in the core VAR of the benchmark
case industrial production is ordered first before CPI inflation and the policy
instrument is ordered last in f y

t . Note that the time t reduced form errors ut are
parameterized as

ut = A−1
t Σ.5

t νt

A−1
t Σt A−1

t
′

= Qt

where the structural time t shocks is assumed to be νt ∼ N(0, I). Here (A−1
t is

lower triangular and captures the time t the contemporaneous relation of the
shocks. I compute the impulse response functions for a pre-specified horizon h
at each point in time therefore up to t + h based on the current time t sampled
factors, states parameters and hyperparameters of the MCMC algorithm.

2.4.2 Alternative Identification of Shocks via Sign Restrictions

Amir Ahmadi and Uhlig (2009) have shown that within large scale factor models
the identification of monetary policy shocks leads to unreasonable price puzzles
particularly when controlling for monetary policy regime consistent periods like
the post-Volcker disinflation period. They suggest to combine dynamic factor
analysis and sign restrictions for a successful identification of monetary policy
shocks. It turns out that the results look more reasonable and the combined
approach allows for a robustness check of identification avoiding the puzzling
ambiguous effect of output to a contractionary monetary policy shock. Eliciting
sign restriction priors related to the financial accelerator could be done by cal-
ibrating or estimating a model that explicitly involves the financial accelerator
like the one by Bernanke, Gertler and Gilchrist (1999). I solved the model and cal-
culated impulse responses to a monetary policy shock, a government spending
shock and a technology shock which can be seen in figure (18) from which sign
restrictions could be derived to be imposed on the empirical model. For more
details regarding sign restrictions see Uhlig (2005), Mountford and Uhlig (2008),
Canova and DeNicoló (2002) and amir Ahmadi and Uhlig (2009).
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2.5 Bayesian Estimation and MCMC Algorithm

Bayesian analysis treats the parameters of the model as random variables. In or-
der to conserve notation let us define the space of parameters, hyperparameters
and volatilities of the observation model and the state model respectively as:

ΘState ≡ (BT, AT, ΣT, Ωb, Ωa, Ωσ)

ΘObs ≡ (λ, R)

We are interested in inference on the parameter space Θ ≡ (ΘState, ΘObs) and
the factors FT. Multi move Gibbs Sampling alternately samples the parameters
Θ and the factors Ft, given the data. We use the multi move version of the Gibbs
sampler because consisting of three blocks. The task is to derive the joint poste-
rior density of:

p(FT, Θ)

which requires to empirically approximate the marginal posterior densities of F
and Θ given the history of the data XT:

p(FT) =
∫

p(FT, Θ | XT)dΘ

p(Θ) =
∫

p(FT, Θ | XT)dFT

The procedure applied to obtain the empirical approximation of the posterior
distribution is the previously mentioned multi move version of the Gibbs sam-
pling technique by Carter and Kohn [1994] and Fruhwirth-Schnatter [1994]7.

2.5.1 Estimation Summary

In order to estimate the model we first start to set some set of starting values
(FT

0 , ΘState
0 , ΘObs

0 ) and then cycle through the three blocks until convergence has
been achieved. In order to further exemplify the basic estimation procedure I
will briefly summarize the three blocking steps:

BLOCK 1: p(FT | XT, ΘObs, ΘState) .Conditional on the data XT and a set of
previous draws Θi−1 we simulate factors given the model (1)-(17). Here I employ
the widespread version by Kim and Nelson (1999).

7For a survey and more details see Kim and Nelson [1999]
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BLOCK 2: p(ΘObs | XT, FT) . Conditional on the data XT and the loadings
and idiosyncratic component’s variance follow a normal-inverse Gamma density
equation by equation due to the diagonality assumption of R.

BLOCK 3: p(ΘState | XT, FT) . Conditional on the data XT and the simulated
factors I estimate the sample, parameters, hyperparmameters and volatilities
of the state equation. The AR coefficients bt and αt are simulated via forward-
filtering backward-sampling procedure described before after redefining the
state space respectively (See Kim and Nelson (1999) for details). Hyperparam-
eters Ωa and Ωa are drawn from the inverse Wishart distribution and each di-
agonal element of Ωσ is drawn from the inverse gamma distribution. The log
volatilities ln(Σt) are drawn by the mixture of normals approach as described in
Kim, Shepard and Chib (1998).

Summary of Steps at each Iteration .

Step 0: Initialize p(F0, λ0, R0, Bt
0, At

0, Σt
0, Ωb, Ωa, Ωσ)

Step 1: Sample FT, p(FT
g | XT, λg−1, Rg−1, Bt

g−1, At
g−1, Σt

g−1, Ωb
g−1, Ωa

g−1, Ωσ
g−1)

Step 2: Sample R, p(Rg | XT, FT
g )

Step 3: Sample λ, p(λg | XT, FT
g , Rg)

Step 4: Sample BT, p(BT
g | XT, FT

g , At
g−1, Σt

g−1, Ωb
g−1)

Step 5: Sample AT, p(AT
g | XT, FT

g , At
g−1, Σt

g−1, Ωa
g−1)

Step 6: Sample ΣT, p(ΣT
g | XT, FT

g , At
g−1, Ωσ

g−1)

Step 7: Sample Hyperparameters Ωb
g, Ωa

g from the inverse-Wishart density and the
diagonal elements of Ωσ

g from the inverse-Gamma density

Step 8: Set g = g + 1 and repeat iteration Step 1 to Step 7 many times until the
chain has reached its ergodic distribution.

2.5.2 Choosing the Starting Values Θ0

In general one can start the iteration cycle with any arbitrary randomly drawn set
of parameters, as the joint and marginal empirical distributions of the generated
parameters will converge at an exponential rate to its joint and marginal target
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distributions as S→ ∞. This has been shown by Geman and Geman [1984]. Since
Gelman and Rubin [1992] have shown that a single chain of the Gibbs sampler
might give a ”false sense of security ”, it has become common practice to try out
different starting values. We check our results based on four different strategies
regarding the set of starting values. One out of many convergence diagnostics
involves testing the fragility of the results with respect to the starting values. For
the results to be reliable, estimates based on different stating values should not
differ. Strictly speaking, the different chains should represent the same target
distribution. In order to verify we start our Gibbs sampler with the following
summarized starting values respectively.

1. Randomly draw Θ0 from (over)dispersed distribution

2. Set Θ0 to results from principal component analysis.8In such a way the
number of draws required for convergence can be reduced considerably.

3. Set Θ0 to parameters of the last iteration of the previous run appending
the chain.

2.5.3 Prior Specification

Regarding the choice of the priors I closely follow Primiceri (2005) as regards
the states, parameters and hyperparameters of the state equation. In order to
calibrate the priors for the estimation I rely on estimating a training sample on
the initial 5 years of the data for a constant FAVAR model. This is standard
practice. The details of the prior and posterior derivation can be found in the
appendix.

3 Empirical Evidence

In this section I present the main results of the paper. In particular, I identify
the episodes with high volatility in the common component of credit spreads.
Furthermore I find that, though not always, these episodes coincide with (or
lead) NBER recessions. During these episodes, credit spread shocks and mone-
tary policy shocks have much stronger effects on macroeconomic variables than
on average. The degree of amplification of those responses reaches at its peak

8This strategy is particularly suited for large models as the ones studied here and has been
proposed by Eliasz (2005).
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a factor of up to ten simultaneously exhibiting a larger persistence in those re-
sponses. Before proceeding, however, I begin with a brief discussion of the data
used.

3.1 Data

In this paper I will analyze two different data set which differ in the time pe-
riod the cover and the cross sectional dimension. The first data set consist of 20

macroeconomic, interest rate, corporate, industrial and utility bond yield time
series from January 1919 to August 2009 for the U.S. economy in monthly fre-
quency. As a second step to check the robustness of the results and whether they
are subject to omitted variable bias I redo the exercise by compiling a larger data
set that includes the first on and adds a number of additional macroeconomic
indicators. In total I have 55 time series for the second data set. However these
are available only from January 1959 to August 2009. Note that the key results
are not in conflict with the ones from the long term time span. The data on nom-
inal bond of major groups is available for different (quality) ratings according to
Moody’s. The appendix provides the details along with the classification codes.
To induce stationary, some of the data series were transformed. Again the details
are provided in the appendix.

Table 1: Estimated R2s from regressions of individual series on Factors.

Description R2 Description R2

Consumption 1.00 Wages 0.65

PPI Inflation 1.00 CPI Inflation 0.71

Federal Funds Rate 1.00 Income 0.53

Industrial Production 0.93 Unemployment 0.85

Average Credit Spread 0.81 ISM Manufacturing Index 0.89

Data show the variance decomposition of the factors through the estimated R2s for se-
lected series based on 7 factors for the post-WW II data set.

3.2 Model Specification

For the first long term data set I sample a single factor from the credit spreads.
The core VAR in the FAVAR equation consists of industrial production, CPI infla-
tion and the three month Treasury Bill. From the rest of the macroeconomic time
series I sample the factor that explains the key variation in the data. This results
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in a total number of K = 5 factors in the FAVAR equation. For the second data
set results are reported from the model with Km = 3 macroeconomic factors and
Kcs = 1 the credit spread factor. The core VAR in the FAVAR equation consists
of industrial production, CPI inflation and the Federal Funds Rate resulting in
a total number of 7 factors K = 7. Due to the long time period and the stabil-
ity condition in the first data set I impose the stability condition on the drifting
process of the factors coefficients. Therefore I am forced to have a rather short
lag length. This is standard in the time varying parameter literature. Due to the
computational burden and the additional problem with the stability condition
I chose to set the lag length to 1. Therefore I report results based on a single
lag. However I experimented increasing the number of lags to two but the key
results did not change.

3.3 Reduced Form Evidence

3.3.1 Model Fit

In order to assure that the methodology can represent the data in an adequate
manner I report results that pursue to assess the models fit to the data. The
first obvious check is to see how well the factors represent our panel of data
series. To this end, I estimated the R2 statistics from regressing the respective
series onto the respective factors. Results are some selected series can be found
in table (tab:R2Table) below. As can be seen, the overall fit is high; the factors
do seem to capture the variance in the individual series very well. Hence, the
factor model is informative in the sense that it describes the common compo-
nents of the business cycle that I am interested in. Thus, a VAR in these factors
or common components should not suffer from omitted variable bias, which im-
plies that adding individual series to the FAVAR in above does not alter results
substantially.

I performed several checks to see whether the model represents the data in an
adequate manner. The first obvious check is to obtain the goodness of fit of the
observation equation (2.2) for each series xt. Results are listed in Table (1) below.
As can be seen, the overall fit is high; the factors seem to capture the common
components of the business cycle well. Thus, a VAR in eq. (2.3) should not suffer
from omitted variable bias, which implies that adding individual series to the
FAVAR in above does not alter results substantially. As an additional check, I
increased the model dimensionality of the factors. However, the model fit did not
change much, and the subsequent VAR analysis remained basically unaffected.
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3.3.2 Credit Spread Factor

The upper panel of figure (3) shows the sampled credit spread factor covering
the period 1926-2009 with the NBER recession chronology depicted by the grey
shaded area. It is evident that most of the US recession periods either coincide or
are led by a widening in the credit spread factor which marks a tightening in the
credit market conditions. However during some periods there is a widening in
the credit spread factor such as during the mid 1980’s and around 1998 without
coinciding with a recession. These are particular events of international finan-
cial market disruptions such as the LTCM crisis, the Russian default crisis and
the Asian crisis without coinciding with severe declines in the U.S. real activity.
Only the widening in the credit spread factor during the Great Depression and
the current financial market starting (or the Great Recession) are comparable in
magnitude. The period preceding the peak of the spread during the Great De-
pression coincides with increasing number of bank suspensions. The lower panel
in figure (3) shows exactly the same credit spread factor marking some selected
events of financial distress with the a red line described in the caption of the
figure. Here it is evident how sudden widening coincides with events tightening
credit conditions. As an example one can see that the Penn central commercial
paper crisis in may 1970 and the oil shock in 1974 are led by a widening in the
spread.

3.3.3 Evidence on Time Variation

I provide evidence on time variation in both the coefficients and the factor resid-
ual covariance structure. In figure (1) I compare the prior mean of the coefficients
in the sate equation to its posterior mean that is subject to a drifting process. As
can be seen there some substantial time variation the process along the time par-
ticularly around the period covering the Great Depression and the periods from
1960-1980. To better track whether these changes are relevant from a statistical
point of view I provide in figure (2) a comparison a time invariant model versus
the time varying FAVAR. I plot the posterior median and the 68% equal tail error
bands of the coefficients of the state equation in the constant model versus the
ones resulting from the model allowing for time variation. The picture changes
somewhat in the sense that there a some reduced parameters that are substan-
tially subject to time variation whereas some others move with the error bands
hence do not change. The conclusion about time variation in the coefficients re-
mains. However it is important for a fair comparison to compare the constant
versus the time varying model rather comparing the prior and posterior out-
come of the same model to infer about the degree of time variation. This might
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overstate the underlying drifts at play.

3.3.4 Evolution of uncertainty and Volatility

Figure (5) plots a smoothed measure that can be interpreted as the total amount
of uncertainty entering the system that characterizes the economy at each point
in time. The smoothed estimates clearly shows that the overall uncertainty the
U.S. economy faced during the last century is clearly subject to substantial time
variation. The upward spikes coincide with the NBER business cycle chronology.
Furthermore the current recession of 2007, as well as the Great Depression, the
breakdown of Bretton Woods, the oil shocks, and the Volcker recession is clearly
visible by an increase in the measure.

Figure (4) reports the volatility of selected factor residuals over time. As re-
gards output and Inflation the volatility has been very high particularly during
the Great Depression. It is evident that the volatility is substantially higher than
the recent crisis in the wake of the financial disruptions. Also interesting is the
fact the decline of the volatility in inflation and output since the mid 80’s termed
as the Great Moderation shows signs of an increase suggesting the end of this
low volatility era. My results suggest since the beginning of the new Millennium
there is an upward trend in the volatility of inflation, interest rates and the credit
market. There is a surge in the volatility of output that coincides with the cur-
rent financial crisis. As expected there is a spike in the volatility series during
the Great Depression showing the strongest spikes in industrial production by
far.

3.3.5 Persistence and Predictability

Cogley, Sargent and Primiceri (2009) provide a time varying measure to access
the persistence at a give given date in a time varying VAR model. The proposed
measure requires to calculate the fraction of the total variation in a selected
variable of interest xn,t+j that is due to shocks inherited from the past relative
those that will occur in the future. They argue that this is equivalent to measure
1 minus the fraction of total variation due to future shocks. The measure relates
the conditional to the unconditional variance and is given by

R2
x,t|T = 1−

vart(e f ,t|T)

vart(ex,t|T)

vart(ex,t|T) =
∫ π

−π
fx,t|T(ω)d(ω)

vart(e f ,t|T) = 2πexp
{

1
2π

∫ π

−π
log[ fx,t|T(ω)d(ω)]

}
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where fx,t|T(ω) denotes the time varying spectral density of the selected series x
and is given by

fx,t|T(ω) = sx(IK − Bt|Teiω)−1 Qt|T
2π

[(IK − Bt|Teiω)−1]′s′x.

Note that sx is the selection vector for the series of interest. For a detailed expla-
nation see Colgey and Sargent (2005) and Primiceri, Colgey and Sargent (2009).

Figure (6) depicts results for persistence comparison of different selected
time spans. The idea is to access to the whether the persistence of the infla-
tion and output growth have changed over time. For that matter I compare pairs
of years and check whether the persistence has changed between the time spans.
I do this analysis for the following time spans: 1930− 1940,1940− 1960,1960−
1980,1980− 2000,2000− 2004,2004− 2009. What I find is that the persistence of
both inflation and output has been subject to changes. Particularly the persis-
tence of inflation has declined during the period of the Great moderation. How-
ever there is a tendency of increase in the persistence of inflation during the last
decade which coincides with an increase in the volatility.

4 Structural Analysis

4.1 Constant Model

To identify the reaction function of credit spread shocks covering the period
from the Great Depression up to the current period I first calculate the impulse
responses to a credit spread shock in constant parameter model. These results
serve as a benchmark to be compared with the nonlinear model that allows
for time variation. This way one can assess first, the contribution of drifts in
parameters and volatility states and report the degree of biased inference relying
on a constant model. In figure (7) you can see that following a widening of
the credit spread factor leads to a contraction in the U.S. economy. Industrial
Production declines for a period of up to 18 month. We see a clear decline in CPI
inflation that is persistent over the whole 2 year horizon and the 3 month T-Bill
rate declines also showing a high persistence over the entire horizon considered.

4.1.1 Credit Spread Shocks

Figure (7) shows the impulse responses to a shock in the credit spread factor for
a constant FAVAR model covering the period of 1964− 2009. Output contracts
following the unanticipated exogenous widening in the credit spread factor for
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a short period, reaching its maximum impact already after 3− 4 month revert-
ing back to its pre-shock level rather fast afterwards. The response of inflation
and the short term interest rate is immediate and shows a higher persistence.
Inflation reaches its maximum response also after 3 − 4 month following the
exogenous widening of the credit spread factor, but reverts much slower to the
pre-shock level than industrial production. The response of the short-term inter-
est rate declines more smoothly, reaching its maximum response at the end of
the 48 month horizon considered. Credit spread indicators increase and revert
back to the pre-shock level slowly after the 48 month horizon.

4.1.2 Monetary Policy Shocks

Figure (8) shows the impulse responses to a monetary policy shocks for a con-
stant FAVAR model covering the period of 1964− 2009. Industrial production im-
mediately declines following a concretionary monetary policy shock in a rather
persistent manner. This sharp and clear decline is in conflict with the standard
result that output reacts with a delay and in a hump shaped manner (see Chris-
tiano, Eichenbaum and Evans (1999).). Also it is in conflict with the Result by
Uhlig (2005) who shows that with a sign restriction approach the impact on
output is ambiguous. Amir Ahmadi and Uhlig (2009) show how this the sign
restriction approach combined with FAVAR analysis circumvents these puzzles
successfully leading to reasonable results. However keep in mind that there is a
substantial price puzzle in CPI inflation that persistently increases following a
monetary policy shock. I interpret this as an anomaly due to both the disregard
of nonlinearities and insufficient identification. On the other hand this could be
seen as a piece of evidence of the financial accelerator, that the presence of credit
market frictions amplify and propagate monetary policy shocks. In the following
I will show that the key problem is the disregarded nonlinearities in parameters
and volatilities that produce these results which are misleading.

4.2 Drifting Parameter Model

In this section I report the results for the model that explicitly allows for time
variation in parameters and volatilities. A large list of impulse responses and
forecast error variance decomposition are reported in the appendix (see figure
(9)-(17)). I report here the posterior mean impulse response function and the cor-
responding forecast error variance decomposition of selected series to a credit
spread shock over time. In figure (9)-(14) the upper two panels refer to the im-
pulse response function and the lower two panels refer to the forecast error
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variance decomposition. The respective right panels are the contour plots of the
left ones to better assess the degree of persistence in the responses.

Figure (9) reporst the results for unemployment. What is immediately clear
from the figure is that there is substantial variation both in the amplification and
propagation of unemployment to a widening in the credit spread factor shock.
According to the mean estimates during the decade of the 70s unemployment
increases much stronger than on average to a credit spread shock. During the
beginning 90s and the current financial crisis unemployment responses show on
average amplified responses though not as strong as during the high volatility
periods of the 70s but still very strong. Compared to the average along time,
the contour plot on the upper right panel shows that the unemployment re-
sponse has a higher persistence during the mid and end 70s and again during
the current recession indicating a change in the propagation of the credit spread
transmission mechanism. As can bee seen from the lower panels in figure (9), the
fraction of variance explained is substantially higher on average. The explained
varioation during the periods of amplified and propagated responses is substan-
tialy higher than the average fraction. Note that these periods coincide with an
overall higher volatility.

This pattern holds true for most of the real macroeconomic indicators. We
see a much higher increase in unemployment during the recession periods of
the seventies, the Volcker chairmanship and the mid nineties. The latter period
is of interest as this is not a NBER recession period but coincides with financial
disruptions. Furthermore there is a tendency that during those periods there is
a high sensitivity to fluctuations in the credit market, not only the responses
are stronger, they also exhibit a higher persistence. This also holds true for the
response of consumption and other real indicator and price indicators (see fig-
ure (10)-(14)) which contract after a credit spread shock during strong recession
periods in a much stronger manner. It holds also true that these specific periods
coincide with a high macroeconomic and/or high financial volatility. The respec-
tive forecast error variance decompositions show that the contribution of credit
market shocks and monetary policy shocks increase to a substantial amount
during those periods compared to times where there is no recession are to the
benchmark case assuming constant parameters.

Turning to the results for CPI (see figure (11)) I find again that the mean
estimates during the decade of the 70s the CPI declines much stronger than on
average to a credit spread shock. During the beginning 90s and 2001 recession
CPI responses show on average amplified responses though not as strong as
during the high volatility periods of the 70s. Compared to the average along
time, the contour plot on the upper right panel shows that the CPI response
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has a higher persistence during the mid and end 70s and again during the 2001
recession indicating a change in the propagation of the credit spread transmis-
sion mechanism. The fraction of variance explained in the two lower panels, is
substantially higher on average in those periods of amplified and propagated
responses. Note again that these are the periods that coincide with an overall
higher volatility in macroeconomic, nominal and financial volatility.

In the appendix several figures of posterior mean impulse response func-
tion to both monetary policy and credit spread shocks. Here I compare the re-
sponses of selected recession periods to assess which recessions are associated
with stronger and more persistent responses. I find that the responses during
the Great Depression are by far the strongest ones. During that period responses
show a significantly higher persistence. Again it holds true that in periods of
high volatility the contribution of credit spread shocks increases substantially
compared to the scale of normal times.

In figure (17) and (18) I report the impulse responses of selected series to a
credit spread shock and a contractionary monetary policy shock respectively.
The two figures compare the posterior median resonses at different selected
recession dates. The purpose is to assess the whether there are differences in
the transmission mechanism during different recession periods. From the figure
(17) it is evident that the Great Depression marks a particular recession period
in which the economy responses substantially stronger to unanticipated exoge-
nous changes in the credit spread factor.Reponses during the Great Depression
are much stronger on impact and show a much higher persistence all the se-
ries considered. Turning to the monetary policy shock, the distinction is not as
evident. The reponse of the credit spread factor to a contractionary monetary
policy shock is the strongest and most persistent one during the current crisis
compared to other recession periods. However note that the monetary policy
shocks shows strong price puzzles in the recession periods, which raises doubts
abou the correct identification. This is a indication for employing a better identi-
fication scheme, e.g. sign restrictions according to economic theory as is done in
Amir Ahmadi and Uhlig (2009), Uhlig (2005), Canova and DeNicolo (2002). This
is left for future research.

4.3 How does Monetary Policy React?

To assess the reaction of monetary policy when facing structural shocks I show in
figure (15) the posterior mean impulse response functions of the Federal Funds
rate to all the shocks in the time varying FAVAR system. Again you can see the
pattern of time variation in the responses of monetary policy to structural shocks
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reflecting potential changes in the sytematic component of monetary policy. Dur-
ing the 70s responses of the Federal Funds rate is even increasing on average fol-
lowing a posit price shocks to CPI. Note that these come with error bands and
that show that there is know clear declining response. This is an expected result
given the large empirical eviden on the loose reponse of the monetary authority
during the 70s. How much of the variation in the Federal Funds rate is explained
by the different structural shocks? From figure (16) you can see that a monetary
policy shock explain almost the whole variation in its own variation which is on
average over 80% and remains high over up to the 24 month considered. Inter-
estingly during the high volatility period the mid 70’s where monetary policy
is described as responding loosely to inflation and output growth violating the
Taylor principle and the Volcker disinflation period the degree of explanation
falls sharply the initial impact down to 40%. Also the persistence of the impulse
response function of the Federal Funds rate to it’s own show declines during the
first half of the 90’s and the 2001 crisis which coincided with the event of 9/11
and the dotcom bubble. It is also interesting to note that the variation in the
monetary policy instrument due to a credit spread shock of on average around
10% is rather. But the forecast error variance decomposition surge up during the
aforementioned crisis periods up to around 30% and 20% on average.

5 Conclusion

The recent disruptions in the financial market and the subsequent contraction
in the real economy have centered attention on the linkages of financial factors
and real activity explaining business cycle fluctuations. In this paper I address
the question to what extend this is true. Furthermore I ask whether this rela-
tionship is stable over time or subject to time variation. I employ a Bayesian
factor-augmented vector autoregression model using a large panel of macroeco-
nomic and credit spread data from the United States for the period 1926-2009.
The model has time varying parameters and volatilities. In my analysis I identify
a number of episodes with high volatility in the common component of credit
spreads. I find that the transmission mechanism of both, monetary policy and
credit spread shocks is subject to changes over time. I find real effects of both
credit spread shocks and monetary policy shocks. The effects are much stronger
on average during episodes of high financial and macroeconomic volatility. Of-
ten, though not always, these episodes coincide with (or lead) NBER recessions.
The degree of amplification of those responses reaches at its peak a factor of up
to ten while simultaneously exhibiting a larger persistence.
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A MCMC Algorithm and Model Estimation

Bayesian analysis treats the parameters of the model as random variables. In or-
der to conserve notation let us define the space of parameters, hyperparameters
and volatilities of the observation model and the state model respectively as:

ΘState ≡ (BT, AT, ΣT, ΩT
b , ΩT

a , ΩT
σ )

ΘObs ≡ (λT, R)

We are interested in inference on the parameter space Θ ≡ (ΘState, ΘObs) and
the factors FT. Multi move Gibbs Sampling alternately samples the parameters
Θ and the factors Ft, given the data. We use the multi move version of the Gibbs
sampler because consisting of three blocks. The task is to derive the joint poste-
rior density of:

p(FT, Θ)

which requires to empirically approximate the marginal posterior densities of F
and Θ given the history of the data XT:

p(FT) =
∫

p(FT, Θ | XT)dΘ

p(Θ) =
∫

p(FT, Θ | XT)dFT

The procedure applied to obtain the empirical approximation of the posterior
distribution is the previously mentioned multi move version of the Gibbs sam-
pling technique by Carter and Kohn [1994] and Frühwirth-Schnatter [1994]9.

A.1 Bayesian Inference

In this section we describe how to redefine the model in the respective state space
form whenever required and how to draw the posterior quantities of intereset.

A.2 Conditional density of the parameters θ given X̃T and F̃T

Sampling from the conditional distribution of the parameters p(θ | X̃T, F̃T) re-
quires the blocking of the parameters into the two parts that refer to the observa-
tion equation and to the state equation respectively. The blocks can be sampled
independently from each other conditional on the extracted factors and the data.

9For a survey and more details see Kim and Nelson [1999]
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A.3 Conditional density of the factors: p(FT | XT, ΘState, ΘObs)

In this subsection we want to sample from p(FT | XT, ΘState, ΘObs) assuming that
the data and parameter space Θ are given, hence we describe Bayesian inference
on the dynamic evolution of the factors FT conditional on data XT and Θ.

For the final state space we define the [N × KP] matrix Λ̃t =

(Λt, Λ̃1,t, . . . , Λ̃Q,t, 0N×K(P−1−Q)), the [KP× 1] vectors F̄t = (F′t , F′t−1, . . . , F′t−p+1)
′

and ūt = (u′t01×K(P−1))
′. Furthermore, let Bt be a [KP× KP] matrix defined by

Bt =


B1,t · · · · · · BP,t
IK 0K×K · · · 0K×K

. . . ...
0K×K IK 0K×K

 , Q̄t =

[
Qt 0K×K(P−1)

0K(P−1)×K 0K(P−1)×K(P−1)

]
,

Hence the final state space to estimate the unobserved factors is

X̃t = Λ̃t F̄t + et (A.1)

F̄t = Bt F̄t + ūt (A.2)

et ∼ N (0, R) (A.3)

ūt ∼ N (0, Q̄t) (A.4)

The conditional distribution, from which the state vector is generated, can be
expressed as the product of conditional distributions by exploiting the Markov
property of state space models in the following way

p(F̄T | XT, Θ) = p(F̄T | XT, Θ)
T−1

∏
t=1

p(F̄t | F̄t+1, XT, Θ)

The state space model is linear and Gaussian, hence we have according to Carter
and Kohn (1994) and Frühwirth-Schnatter (1994):

F̄t | F̄t+1, Θ ∼ N (F̄t|t+1, PF
t|t+1) (A.5)

F̄t|t+1 = E(F̄t | F̄t+1, XT, Θ) (A.6)

PF
t|t+1 = Var(F̄t | F̄t+1, XT, Θ) (A.7)

where (??) holds for the Kalman filter for t = 1, . . . , T and (??) holds for the
Kalman smoother for t = T − 1, T − 2, . . . , 1. Here F̄t|t refers to the expectation
of F̄t conditional on information dated t or earlier. We obtain F̄t|t and Pt|t for
t = 1, . . . , T by the forward Kalman Filter, conditional on Θ and the data XT10.

10See Kim and Nelson (1994) for the derivation.
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From the last iteration, we obtain F̄T|T and PT|T and using those, we can draw F̄t.
We can go backwards through the sample, deriving F̄T−1|T−1,F̄t

and PT−1|T−1,F̄t

by Kalman smoother, drawing F̄T−1 from (??), and so on for F̄t, t = T − 2, T −
3, . . . , 1. A modification of the Kalman filter procedure, as described in Kim and
Nelson (1999), is necessary when the number of lags p in (??) is greater than 1.

A.4 Conditional density of : p(λ, R | X̃T, F̃T)

Prior Distribution

p0(λn) = N
(

λ0,n, RnnV−1
0,λn

)
p0(Rnn) = IG

(
ν0,n

2
,

δ0,n

2

)
Posterior Distribution

p(λn | Rnn, XT, FT) = N (λT,n, RnnV̄−1
λ,n )

p(Rnn | XT, FT) = IG( ν̄n

2
,

δ̄n

2
)

subject to the following updating

ΛT,n = V̄−1
λn

(
V0,λn

−1λ0,n + (F̃′n F̃n)λ̂n

)
V̄λ,n = V0,λn + (F̃′n F̃n)

ν̄n = νn + T − K

δ̄n = δ0,n + (T − K)S2
n + (λ̂n − λ0,n)

′
[
V0,λn

−1 + (F̃′n F̃n)
−1
]−1

(λ̂n − λ0,n)

where

S2
n =

1
(T − K)

(X̃n − F̃λ̂n)
′(X̃n − F̃λ̂n)

This part refers to observation equation of the state space model which, con-
ditional on the estimated factors and the data, specifies the distribution of λ

and R. The errors of the observation equation are mutually orthogonal hence
R is diagonal. Therefore we can apply equation by equation OLS in order
to obtain λ̂ as the observation equation amounts to a set of independent re-
gressions. I assume conjugate priors which according to Bayesian results con-
form to the following conditional posterior distribution where prio specification
(δ0,n = 1, ν0,n = 10−3, λ0,n = 0K×1), V0,λn = IK results in an uninformative prior.
The regressors of the i-th equation are represented by F̃i

T and the fitted errors of
the i-th equation are represented by S2

n.
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A.5 Block 3: Drawing p(BT, AT, ΣT, VS | X̃T, F̃T)

A.5.1 Sample p(BT | AT, ΣT, VS, X̃T, F̃T)

The conditional distribution of the time-varying coefficients of the common fac-
tors p(BT | AT, ΣT, VS, X̃T, F̃T) can be factored as:

p(BT | AT, ΣT, VS, X̃T, F̃T) = p(BT | AT, ΣT, VS, X̃T, F̃T)
T−1

∏
t=1

p(Bt | Bt−1, AT, ΣT, VS, X̃T, F̃T)

according to Carter and Kohn (1994) and Frhwirth-Schnatter (1994) where

Bt | Bt+1, AT, ΣT, VS, X̃T, F̃T ∼ N (Bt|t+1, PB
t|t+1) (A.8)

Bt|t+1 = E(Bt | Bt+1, X̃T, F̃T, AT, ΣT, VS) (A.9)

PB
t|t+1 = Var(Bt | Bt+1, X̃T, F̃T, AT, ΣT, VS). (A.10)

The prior for the coefficients in the FAVAR equation following a VAR(P) process
are calibrated by estimating a fixed coeffient VAR model using data for the initial
5 years of the respective data set. For the first the training sample covers January
1919 - December 1924 and for the second data set the training sample covers
January 1959 - December 1964 resulting in the following prior

B0 ∼ N(B̂ols, 12× V̂B,ols) (A.11)

with B̂ols and V̂B,ols defining the respective maximum likelihood estimates for
the training sample based on a fixed coefficient VAR model.

A.5.2 Sample p(AT | BT, ΣT, VS, X̃T, F̃T)

The state equation can be rewritten as:

At(Ft −
P

∑
p=1

Bp,tFt−1) = At F̂t (A.12)

At F̂t = Σtνt (A.13)

The final state-space for contemporaneous covariance state is

F̂t = F̆tαt + Σtνt (A.14)

αt = αt−1 + ωA
t (A.15)
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The conditional distribution of the simultaneous covariance states can be fac-
tored similar to the previous step where (1x) and (3x) form the state space repre-
sentation. Here:

αt | αt+1, BT, ΣT, Vs, X̃T, F̃T ∼ N (αt|t+1, Pα
t|t+1) (A.16)

αt|t+1 = E(αt | αt+1, BT, ΣT, Vs, X̃T, F̃T) (A.17)

Pα
t|t+1 = Var(αt | αt+1, BT, ΣT, Vs, X̃T, F̃T). (A.18)

Here the prior paramters are also taken from the fixed coefficient VAR model
resulting in

α0 ∼ N(α̂ols, 12× V̂α,ols). (A.19)

In order to set α̂ols I calculate the residual covariance matrix ΣOLS, calculate the
lower triangular Cholesky decomposition denoted by C̃ so that C̃C̃′ = ΣOLS, af-
ter dividing each column of C̃ by the corresponding element on the diagonal
and denote this matrix by C. The corresponding lower triangular non-zero and
non-one elements of C−1 are row-wise stacked in the vector α̂ols. The covariance
matrix V̂α,ols is assumed to be diagonal where its diagonal elements are multi-
plied by 12 the corresponding element in the vector α̂ols.

A.5.3 Sample Volatility states: p(ΣT | BT, AT, VS, X̃T, F̃T)

We take as given, BT, AT, VS, X̃T, F̃T and rewrite the state equation:

At(Ft −
P

∑
p=1

Bp,tFt−1) = Σtνt (A.20)

F∗t = Σtνt (A.21)

Note that according to Primiceri (2005) the above equation for F∗t is linerized by
taking logs of its square product. If follows:

F∗∗i,t = log[(F∗i,t)
2 + c̄] (A.22)

ei,t = log(ν2
i,t) (A.23)

hi,t = log(σi,t) (A.24)

F∗∗t = 2 ∗ ht + νt (A.25)

ht = ht−1 + ηt (A.26)
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Table 2: Selection of the mixing distribution to be χ2(1).

ω qj = Pr(ω = j) mj v2
j

1 0.00730 -10.12999 5.79596

2 0.10556 - 3.97281 2.61369

3 0.00002 -8.56686 5.17950

4 0.04395 2.777869 0.16735

5 0.32001 0.61942 0.64009

6 0.24566 1.79518 0.34023

7 0.25750 -1.08819 1.26261

Source: Kim, Shepard and Chip (1998).

Note that the above state-space is linear and non-Gaussian. The innovation et is
a log χ2(1) and the respective smoothing recursion is

ht | ht+1, BT, AT, ΣT, Vs, sT, X̃T, F̃T ∼ N (ht|t+1, PH
t|t+1) (A.27)

ht|t+1 = E(ht | ht+1, BT, AT, ΣT, Vs, sT, X̃T, F̃T) (A.28)

PH
t|t+1 = Var(ht | ht+1, BT, AT, ΣT, Vs, sT, X̃T, F̃T). (A.29)

where

Pr(si,t = j | y∗∗i,t , hi,t) ∝ qj fN(y∗∗i,t | 2hi,t + mj − 1.2704, ν2
j ) (A.30)

B Marginal Data Density

In this section I discuss alternative estimators to simulate the marginal likeli-
hood of large dimensional Sate Space models within the context of potentially
non-Gaussianty and nonlinearity. Potential pitfalls of the popular modified
harmonic mean estimator are discussed and an alternative method to overcome
drawing based on Bridge sampling is proposed.

What’s the purpose? In Bayesian Macroeconometrics do formal Model choice to
compare models. In particular within the estimation framework that relies on
posterior simulation this is a nontrivial task as there is no analytical solution to
estimate the marginal data density.

So far parameter and model estimation is well developed, for (B)VAR,
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TVP-BVAR, DFM, FAVAR,MS-VAR and DSGE estimation. However, the aspect
of model selection in particular in a potentially nonlinear and non-Gaussian
environment is not well understood and still subject to research. Sims, Wagoner
and Zha (2008) first try to provide a solution to potential non-Gaussianity
within the framework large multiple equation Markov-Switching models. They
rely on the on the approach of Gewekes’s modified harmonic estimator (MHM)
which goes back to a modification of the harmonic mean estimator proposed by
Gelfend and Dey (1996). The authors choose a truncated elliptical distribution
as a ”weighting” function as opposed to the truncated Gaussian distribution
to capture potential non-Gaussianity. The truncation is employed to ensure the
overlap the support of the ratios oth the respective distributions.

B.1 General Problem

Bridge sampling nests many different approaches to simulating normalizing con-
stants and was introduced into statistics by Meng and Wong (1996) as a simula-
tion based technique for computing ratios of normalizing constants. As in our
application we focus on the problem to simulate the marginal data density as
the key input to do model comparison via posterior odds ratio or Bayes factor.

B.2 Bridge Sampling: A nested Approach

The marginal data density (MDD) or marginal likelihood as it is sometimes ref-
ered to is defined by

p(YT) =
∫
(p(Y1), . . . , p(YT) | θ)p(θ)dθ (B.1)

where Yt, is the time t observation, YT = Y1, . . . , YT is the history of data, θ ∈ Θ
is some unknown parameter vector taking values in the parameter space Θ. It
is assumed that p(θ) is a proper prior density and the likelihood p(YT | θ) is
available.

It follows from above that the MDD is equal to the normalizing constant of
the posterior density

p(θ | YT) =
k(θ | YT)

p(YT)
(B.2)

where the posterior kernel is an unnormalized posterior density given by

k(θ | YT) = p(YT | θ)p(θ) (B.3)

∝ p(θ | YT) (B.4)

33



Let q(θ) denote a probability density function with known normalizing constant,
as chosen to be some simple approximation to the posterior density. We will refer
to q(θ) as an importance density. Furthermore let α(θ) be any arbitrary function
such that the following holds

Cα =
∫

α(θ)k(θ | YT)q(θ)dθ > 0 (B.5)∫
Θp∩Θq

k(θ | YT)q(θ)dθ > 0 (B.6)

0 < |
∫

Θp∩Θq
α(θ)k(θ | YT)q(θ)dθ| < ∞ (B.7)

Bridge sampling is based on the following result

1 =

∫
α(θ)p(θ | YT)q(θ)dθ∫
α(θ)p(θ | YT)q(θ)dθ

(B.8)

=
Eq[α(θ)p(θ | YT)]

Ep[α(θ)q(θ)]
(B.9)

where the expectation are taken with respect to the densities p(·) and q(·) respec-
tively as denoted by the subscript. After substituting for the posterior density
above we arrive at the following

p(Y) =
Eq[α(θ)k(θ | YT)]

Ep[α(θ)q(θ)]
. (B.10)

For estimating the MDD for a given function α(θ) we rely on Monte Carlo in-
tegration, hence the expectations are substituted by sample averages of Markov

chain Monte Carlo draws. The sequences
{

θ(g)
}G

g=1
,
{

θ̃(l)
}L

l=1
denote draws

from the posterior p(θ | YT) and i.i.d. draws from the importance density q(θ)
resulting in the ”general bridge-sampling” estimator.

p̂(Y) =
Êq[α(θ)k(θ | YT)]

Êp[α(θ)q(θ)]
(B.11)

=

L−1
L

∑
l=1

[α(θ̃(l))k(θ̃(l) | YT)]

G−1
G

∑
g=1

[α(θ̃(g))k(θ̃(g) | YT)]

(B.12)

This approach nest many approaches to simulate ratios of normalizing constants
as discussed in Meng and Wong (1996). The crucial part is the choice of the
function α(θ) that delivers the different estimators subsequently discussed.
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B.3 Optimal Choice of α(θ)

The asymptotically optimal choice of the function α(θ) that minimizes the ex-
pected relative error of the estimator of the MMD p̂(Y) for i.i.d. draws from
both densities p(θ | YT) and q(θ) is discussed in Meng and Wong (1996) and
results is

α(θ) ∝
1

Lq(θ) + Gp(θ | YT)
. (B.13)

Plugging the optimal choice for the function α in the general Bridge sampling
formula delivers the bridge sampling estimator p̂BS(YT). Note that for the opti-
mal choice of α(θ) depends on the normalized posterior. This led Meng and Wong
(1996) to propose an iterative procedure to obtain the estimator where at each it-
eration step the normalized posterior p(θ | YT) is approximated by normalizing
the posterior kernel with the bridge estimator of the previous step denoted by

p(θ | YT) = k(θ|YT)
p̂BS,t−1(YT)

. A new estimation of the bridge-sampling estimator leads
to the following recursion:

p̂BS,t(YT) = p̂BS,t−1(YT)

L−1
L

∑
l=1

 k
(

θ̃(l) | YT
)

Lq
(
θ̃(l)
)
+ Gp̂

(
θ̃(l) | YT

)


G−1
G

∑
g=1

 q
(

θ(g)
)

Lq
(
θ(g)

)
+ Gp̂

(
θ(g) | YT

)


(B.14)

B.4 Importance Estimator

In order to get the importance sampling estimator11 p̂IS(Y) we set

α(θ) =
1

q(θ)
(B.15)

resulting in

pIS(Y) = Eq

[
k(θ | YT)

q(θ)

]
(B.16)

p̂IS(Y) =
1
L

L

∑
l=1

k(θ̃(l) | YT)

q(θ̃(l))
(B.17)

where the pIS(Y) estimator only depends on i.i.d. samples
{

θ̃(l)
}L

l=1
from the

importance density q(θ).
11See Frhwirth-Schnatter (1996).
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B.5 Reciprocal Importance Sampling Estimator

In order to get the reciprocal importance sampling estimator12 p̂RIS(Y) we set

α(θ) =
1

k(θ | YT)
(B.18)

resulting in

pRIS(Y) =

(
Ep

[
q(θ)

k(θ | YT)

])−1

(B.19)

p̂RIS(Y) =

(
1
G

g

∑
g=1

q(θ̃(g))

k(θ̃(g) | YT)

)−1

(B.20)

where the p̂RIS(Y) estimator only depends on the posterior MCMC draws

θ(g) G
g=1.

B.6 Harmonic Rule

B.6.1 Harmonic Mean: Gelfend and Dey; Newton and Raftery (1994)

The harmonic mean is a special case of the reciprocal importance sampling esti-
mator where the importance density is chosen to be equal to the prior density
and it requires to set

α(θ) =
1

k(θ | YT)
, q(θ) = p(θ). (B.21)

B.6.2 Modified Harmonic Mean Estimator: Geweke

p̂MHM,G(Y) =

(
1
G

g

∑
g=1

h(θ)
k(θ̃(g) | YT)

)−1

(B.22)

h(θ) ∼ N
(
θ̄, Σ̄

)
× I{

(θ(g)−θ̄)′Σ−1(θ(g)−θ̄)≤F
χ2
(1−p)(ν)

} (B.23)

B.6.3 Modified Harmonic Mean Estimator: Sims, Waggoner and Zha
(2008,JoE)

Sims, Waggoner and Zha (2008) follow the approach of Geweke’s MHM esti-
mator with the distinction that the ”weighting” function h(θ) is not based on a

12See Gelfand and Dey (1994).
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truncated Gaussian density but instead on a truncated elliptical distribution.

p̂MHM,SWY(Y) =

(
1
G

g

∑
g=1

h(θ̃(g))

k(θ̃(g) | YT)

)−1

(B.24)

with

h(θ) =
χΘL (θ)

qL
g(θ) (B.25)

where

g(θ) =
Γ(k/2)

2π2/k ∣∣Ŝ∣∣ f (r)
rk−1 (B.26)

r =

√(
θ − θ̂

)′
Ω̂−1

(
θ − θ̂

)
(B.27)

f (r) =
vrv−1

bv − av (B.28)

ΘL =
{

θ : k(θ | YT) ≥ L
}

(B.29)
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C Data

Data are downloaded from the St. Lois FRED database in monthly frequency.
The abbreveiation TC stand for transfomation code where the entry 1 refers to
no transformation and 5 refers the first difference in logarithms. Slow moving
variables are denoted by the SC code set to 1 and 0 in case of financial market
data. All the variables are transformed to induce stationarity. The transfomation
code is abbreviated TC and refer to: 1: no transformation, 2: first difference, 3:
second differences, 4: logarithm, 5: first difference of logarithms and 6: second
difference of logarithms following the convention of Stock and Watson. The first
data set covers the period of January 1919 to August 2009. The second larger
data set covers the period January 1959 to August 2009.

C.1 Long-run Data Set: 01:1919 - 08:2009

Pos.
Mnemonic Description TC SC

1 PAYEMS Total Nonfarm Payrolls: All Employees 5 1

2 DSPIC96 Real Disposable Personal Income 5 1

3 NAPM ISM Manufacturing: PMI Composite Index 1 1

4 UNRATE Civilian Unemployment Rate 1 1

5 INDPRO Industrial Production Index 5 1

6 PCEC96 Real Personal Consumption Expenditures 5 1

7 CPIAUCSL Consumer Price Index For All Urban Consumers: All Items 5 1

8 PCEPI Personal Consumption Expenditures: Chain-type Price Index 5 1

9 PPIACO Producer Price Index: All Commodities 5 1

10 FEDFUNDS Effective Federal Funds Rate 1 0

11 Credit Spread: MOIAD Moody’s A Industrial Bond Yield 1 0

12 Credit Spread: MOIAAD Moody’s AA Industrial Bond Yield 1 0

13 Credit Spread: MOIBAAD Moody’s BAA Industrial Bond Yield 1 0

14 Credit Spread: MOUAD Moody’s A Utility Bonds Yield 1 0

15 Credit Spread: MOUAAD Moody’s AA Utility Bond Yield 1 0

16 Credit Spread: MOUBAAD Moody’s BAA Utility Bond Yield 1 0

17 Credit Spread: MOCORPD Moody’s Corporate Bond Composite Yield 1 0

18 Credit Spread: MOCAAAD Moody’s Corporate AAA Yield 1 0

19 Credit Spread: MOCAAD Moody’s Corporate AA Yield 1 0

20 Credit Spread: MOCAD Moody’s Corporate A Yield 1 0

21 Credit Spread: MOCBAAD Moody’s Corporate BAA Yield 1 0

22 Credit Spread: MOINDUD Moody’s Industrial Bond Yield 1 0

23 Credit Spread: MOUTILD Moody’s Utility Bond Yield 1 0

24 Credit Spread: INUSADJD Dow Jones Corporate Bond Yield 1 0

C.2 Post-WW II Data Set: 01:1959 - 08:2009

Pos.
Mnemonic Description TC SC

1 DSPIC96 Real Disposable Personal Income 5 1
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Pos. Mnemonic Description TC SC

2 NAPM ISM Manufacturing: PMI Composite Index 1 1

3 PCEC96 Real Personal Consumption Expenditures 5 1

4 USIPBUSEQM Industrial Production: Business Equipment (Index 2002=100: SA) 5 1

5 USIPCONGDM Industrial Production: Consumer Goods (Index 2002=100: SA) 5 1

6 USIPDCONGDM Industrial Production: Durable Consumer Goods (Index 2002=100: SA) 5 1

7 USIPDMATM Industrial Production: Durable Materials (Index 2002=100: SA) 5 1

8 USINDPROM Industrial Production Index (Index 2002=100: SA) 5 1

9 USIPFINALM Industrial Production: Final Products (Market Group) (Index 2002=100: SA) 5 1

10 USIPMATM Industrial Production: Materials (Index 2002=100: SA) 5 1

11 USIPNCONGDM Industrial Production: Nondurable Consumer Goods (Index 2002=100: SA) 5 1

12 USCOMPNFBQ Nonfarm Business Sector: Compensation Per Hour (Index 1992=100: SA) 5 1

13 USHOANBSQ Nonfarm Business Sector: Hours of All Persons (Index 1992=100: SA) 5 1

14 USIPDNBSQ Nonfarm Business Sector: Implicit Price Deflator (Index 1992=100: SA) 5 1

15 USOUTNFBQ Nonfarm Business Sector: Output (Index 1992=100: SA) 5 1

16 USOPHNFBQ Nonfarm Business Sector: Output Per Hour of All Persons (Index 1992=100: SA) 5 1

17 USCOMPRNFBQ Nonfarm Business Sector: Real Compensation Per Hour (Index 1992=100: SA) 5 1

18 USULCNFBQ Nonfarm Business Sector: Unit Labor Cost (Index 1992=100: SA) 5 1

19 USUNLPNBSQ Nonfarm Business Sector: Unit Nonlabor Payments (Index 1992=100: SA) 5 1

20 USPAYEMSM Total Nonfarm Payrolls: All Employees (Thous.: SA) 5 1

21 USUNEMPLOYM Unemployed (Thous.: SA) 5 1

22 USHCOMPBSQ Business Sector: Compensation Per Hour (Index 1992=100: SA) 5 1

23 USHOABSQ Business Sector: Hours of All Persons (Index 1992=100: SA) 5 1

24 USIPDBSQ Business Sector: Implicit Price Deflator (Index 1992=100: SA) 5 1

25 USOUTBSQ Business Sector: Output (Index 1992=100: SA) 5 1

26 USOPHPBSQ Business Sector: Output Per Hour of All Persons (Index 1992=100: SA) 5 1

27 USRCPHBSQ Business Sector: Real Compensation Per Hour (Index 1992=100: SA) 5 1

28 USULCBSQ Business Sector: Unit Labor Cost (Index 1992=100: SA) 5 1

29 USUNLPBSQ Business Sector: Unit Nonlabor Payments (Index 1992=100: SA) 5 1

30 USCE16OVM Civilian Employment (Thous.: SA) 5 1

31 USEMRATIOM Civilian Employment-Population Ratio (%: SA) 1 1

32 USCLF16OVM Civilian Labor Force (Thous.: SA) 5 1

33 USCIVPARTM Civilian Participation Rate (%: SA) 1 1

34 USUEMP5TO14M Civilian Unemployed for 5-14 Weeks (Thous.: SA) 5 1

35 USUEMP15OVM Civilians Unemployed - 15 Weeks & Over (Thous.: SA) 5 1

36 USUEMPLT5M Civilians Unemployed - Less Than 5 Weeks (Thous.: SA) 5 1

37 USUEMP15T26M Civilians Unemployed for 15-26 Weeks (Thous.: SA) 5 1

38 USUEMP27OVM Civilians Unemployed for 27 Weeks and Over (Thous.: SA) 5 1

39 USMANEMPM Employees on Nonfarm Payrolls: Manufacturing (Thous.: SA) 5 1

40 UNUSAM United States Unemployment Rate 1 1

41 USCONSM All Employees: Construction (Thous.: SA) 5 1

42 USDMANEMPM All Employees: Durable Goods Manufacturing (Thous.: SA) 5 1

43 USEHSM All Employees: Education & Health Services (Thous.: SA) 5 1

44 USFIREM All Employees: Financial Activities (Thous.: SA) 5 1

45 USGOODM All Employees: Goods-Producing Industries (Thous.: SA) 5 1

46 USGOVTM All Employees: Government (Thous.: SA) 5 1

47 USINFOM All Employees: Information Services (Thous.: SA) 5 1

48 USLAHM All Employees: Leisure & Hospitality (Thous.: SA) 5 1
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49 USMINEM All Employees: Natural Resources & Mining (Thous.: SA) 5 1

50 USNDMANEMPM All Employees: Nondurable Goods Manufacturing (Thous.: SA) 5 1

51 USSERVM All Employees: Other Services (Thous.: SA) 5 1

52 USPBSM All Employees: Professional & Business Services (Thous.: SA) 5 1

53 USTRADEM All Employees: Retail Trade (Thous.: SA) 5 1

54 USSRVPRDM All Employees: Service-Providing Industries (Thous.: SA) 5 1

55 USPRIVM All Employees: Total Private Industries (Thous.: SA) 5 1

56 USTPUM All Employees: Trade: Transportation & Utilities (Thous.: SA) 5 1

57 USWTRADEM All Employees: Wholesale Trade (Thous.: SA) 5 1

58 USUEMPMEANM Average (Mean) Duration of Unemployment (Weeks: SA) 5 1

59 USAHECONSM Average Hourly Earnings: Construction ($ per Hour: NSA) 5 1

60 USAHEMANM Average Hourly Earnings: Manufacturing ($ per Hour: NSA) 5 1

61 USAWHMANM Average Weekly Hours: Manufacturing (Hours: SA) 5 1

62 WPUSAM USA Producer Price Index–All Commodities 5 1

63 WPUSAICM USA Producer Price Index-Industrial Commodities 5 1

64 USPPICPEM Producer Price Index Finished Goods: Capital Equipment (Index 1982=100: SA) 5 1

65 USPPICRMM Producer Price Index: Crude Materials for Further Processing (Index 1982=100: SA) 5 1

66 USPPIFCFM Producer Price Index: Finished Consumer Foods (Index 1982=100: SA) 5 1

67 USPPIFCGM Producer Price Index: Finished Consumer Goods (Index 1982=100: SA) 5 1

68 USPFCGEFM Producer Price Index: Finished Consumer Goods Excluding Foods (Index 1982=100: SA) 5 1

69 USPPIFGSM Producer Price Index: Finished Goods (Index 1982=100: SA) 5 1

70 USPPIENGM Producer Price Index: Fuels & Related Products & Power (Index 1982=100: NSA) 5 1

71 USPPIITMM Producer Price Index: Intermediate Materials: Supplies & Components (Index 1982=100:
SA)

5 1

72 USCPIAUCSLM Consumer Price Index For All Urban Consumers: All Items (Index 1982-84=100: SA) 5 1

73 USCPILEGNSM Consumer Price Index for All Urban Consumers: All Items Less Energy (Index 1982-
84=100: NSA)

5 1

74 USCPILEGSLM Consumer Price Index for All Urban Consumers: All Items Less Energy (Index 1982-
84=100: SA)

5 1

75 USCPIULFNSM Consumer Price Index for All Urban Consumers: All Items Less Food (Index 1982-84=100:
NSA)

5 1

76 USCPIULFSLM Consumer Price Index for All Urban Consumers: All Items Less Food (Index 1982-84=100:
SA)

5 1

77 USCPILFENSM Consumer Price Index for All Urban Consumers: All Items Less Food & Energy (Index
1982-84=100: NSA)

5 1

78 USCPILFESLM Consumer Price Index for All Urban Consumers: All Items Less Food & Energy (Index
1982-84=100: SA)

5 1

79 USCPIENGNSM Consumer Price Index for All Urban Consumers: Energy (Index 1982-84=100: NSA) 5 1

80 USCPIENGSLM Consumer Price Index for All Urban Consumers: Energy (Index 1982-84=100: SA) 5 1

81 USCPIUFDNSM Consumer Price Index for All Urban Consumers: Food (Index 1982-84=100: NSA) 5 1

82 USCPIUFDSLM Consumer Price Index for All Urban Consumers: Food (Index 1982-84=100: SA) 5 1

83 CS: MOIAD Moody’s A Industrial Bond Yield 1 0

84 CS: MOIAAD Moody’s AA Industrial Bond Yield 1 0

85 CS: MOIBAAD Moody’s BAA Industrial Bond Yield 1 0

86 CS: MOUAD Moody’s A Utility Bonds Yield 1 0

87 CS: MOUAAD Moody’s AA Utility Bond Yield 1 0

88 CS: MOUBAAD Moody’s BAA Utility Bond Yield 1 0

89 CS: MOCORPD Moody’s Corporate Bond Composite Yield 1 0
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90 CS: MOCAAAD Moody’s Corporate AAA Yield 1 0

91 CS: MOCAAD Moody’s Corporate AA Yield 1 0

92 CS: MOCAD Moody’s Corporate A Yield 1 0

93 CS: MOCBAAD Moody’s Corporate BAA Yield 1 0

94 CS: MOINDUD Moody’s Industrial Bond Yield 1 0

95 CS: MOUTILD Moody’s Utility Bond Yield 1 0

96 CS: INUSADJD Dow Jones Corporate Bond Yield 1 0
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Figure 1: Credit Spread Factor

The credit spread factor sampled from the bond spread data of major groups represents the
common component of credit spreads. Areas shaded in grey mark recessions according to the
NBER chronology. The red vertical lines in the lower panel mark specific events associated fi-
nancial disruptions or institutional changes. In chronological order the red lines refer to periods
of financial turmoil: Stock market crash October 1929, first banking panic December 1930, Ger-
man debt and reparations moratorium July 1931, Britain’s departure from the Gold Standard,
Roosevelt’s bank closure March 1933, Penn central commercial paper crisis May 1970, Oil shock
November 1973, Stock market crash October 1987, Iraq invasion August 1990, Asian Crisis April
1997, LTCM crisis July 1997, New economy bubble 2001, Subprime mortgage crisis August 2008.
Almost all NBER recession periods and financial market disruptions either coincide or are led
by a widening in the credit spread factor.

D Figures
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Figure 2: Posterior median innovation volatility of industrial production, infla-
tion, interest rate and the credit spread factor.
These plots show the posterior median of the U.S. innovation volatility of industrial production,
inflation, interest rate and the credit spread factor from 1926-2009. The Gray shaded are refer
to NBER recession dates. The figures show a very high volatility of all innovations during the
period of the great depression. For industrial production and inflation the difference between
the subsequent periods and recession is substantially lower. The short term interest rate and the
credit spread factor however show an even higher volatility during the event of the 80s which
coincides with the disinflationary policy of Paul Volcker to combat high inflation. Interestingly
the credit spread factor surges during the current crises in magnitude almost as strong as during
the Great Depression.
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Figure 3: Scatter plot of the joint distribution of R2
1,1930, R2

1,1940, R2
1,1960, R2

1,1980,
R2

1,2000, R2
1,2004 and R2

1,2009. probability of changes in the persistence of indus-
trial production and inflation for selected pairs of time periods.

The scatter plot refers to the probability of a change in the persistence of either
industrial production (upper panels) or CPI inflation (lower panels). The legends
between the panels refer to both the panel directly below and above. Both the
blue diamonds and the red squares refer to the pair of years considered as in-
dicated by the subscript of the legend. Note that the first mentioned refers to
the x-axis and the second refers to the y-axis. Scatters concentrated above the 45
degree line indicate a higher probability of change in the persistence for the pair
of years under consideration.
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Industrial Production CPI Inflation

Interest Rate Credit Spread (Rating A)

Figure 4: Impulse response functions to a positive credit spread shock in the
constant parameter FAVAR covering the period 1926-2009
This figure reports impulse response function of industrial production, CPI, short term interest
rate and a corporate bond spread rated A according to Moody’s to a positive credit spread shock
100 basis points in size. Results are based on U.S. data covering the period 1926-2009. The gray
line reports the posterior median responses with the equal tail error bands covering the 9 deciles.
The lightest gray shaded area covers the 80% equal tail posterior distribution and the darkest
shaded area covers the 50% equal tail posterior distribution and the dark grey line refers to
the posterior median. Following a positive credit spread shock industrial production contracts,
CPI declines and interest rates decline. The response of output is rather short lived whereas the
remaining responses are more persistent.
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Unemployment

Figure 5: Posterior mean impulse response and forecast error variance decom-
position to a positive credit spread shock of unemployment.
This figure reports on the upper left panel the posterior mean impulse response to a positive
credit spread factor shock, at each point in time 100 basis points in size, to unemployment iden-
tified via a Cholesky decomposition over the entire time period covering 1964-2009. The upper
right panel shows the respective contour plot improving the visual inspections regarding timing
and the degree of persistence of the amplified and propagated shocks. According to the mean
estimates during the decade of the 70s unemployment increases much stronger than on average
to a credit spread shock. During the beginning 90s and the current financial crisis unemployment
responses show on average amplified responses though not as strong as during the high volatil-
ity periods of the 70s but still very strong. Compared to the average along time, the contour plot
on the upper right panel shows that the unemployment response has a higher persistence during
the mid and end 70s and again during the current recession indicating a change in the propaga-
tion of the credit spread transmission mechanism. The lower left panel show the posterior mean
of fraction of the h-step ahead forecast revision explained by a the respective credit spread shock
at each point in time. The horizon considered is h = 24. The lower right panel, again refers to
the contour plot of the lower left panel. The fraction of variance explained is substantially higher
on average those periods of amplified and propagated responses. Note that that are periods that
coincide with an overall higher volatility.
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Figure 6: Impulse responses to a positive credit spread shock during selected
recession periods.
This figure reports impulse responses to a positive credit spread shock, identified via a Cholesky
decomposition at different selected recession periods to selected series of interest. Results are
based on U.S. data covering the period 1926-2009. The gray line reports the posterior median
responses in 2009 with the equal tail error bands covering the 9 deciles. The gray line reports the
posterior median responses with the equal tail error bands covering the 9 deciles. The lightest
gray shaded area covers the 80% equal tail posterior distribution and the darkest shaded area
covers the 50% equal tail posterior distribution. Most strikingly the responses during the Great
Depression are incomparably stronger that during other recession periods. Also the persistence
of the responses are on average higher.
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Figure 7: Impulse responses to a contractionary monetary policy shock during
selected recession periods.
This figure reports impulse responses to a contractionary monetary policy shock of 100 basis
points in size, identified via a Cholesky decomposition at different selected recession periods
to selected series of interest. Results are based on U.S. data covering the period 1926-2009. The
gray line reports the posterior median responses in 2009 with the equal tail error bands covering
the 9 deciles. The gray line reports the posterior median responses with the equal tail error
bands covering the 9 deciles. The lightest gray shaded area covers the 80% equal tail posterior
distribution and the darkest shaded area covers the 50% equal tail posterior distribution. The
figure shows periods of selected series to a monetary policy shock comparing different episodes
of recessions and high overall volatility covering the period 1926-2009
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