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Abstract

This paper contributes a theoretical analysis of the e¤ects of regulation
on the timing of monopoly investment under certainty in a setting with
lumpy investment outlays. We distinguish between price-based regulation
and cost-based regulation. To motivate investment, we focus on wear and
tear leading to replacement investment and on demand growth resulting
in expansion investment. For replacement investment, price-based regu-
lation may work just �ne, if properly applied, but it does not work well
for expansion investment. Cost-based regulation accelerates investment
compared to price-based regulation, but this may not always be e¢cient.
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1 Introduction

The early 1980s witnessed a paradigm shift in monopoly regulation, such as the
regulation of energy, telecommunications, and transportation networks. Start-
ing in the UK with the reforms of British Telecom, the regulatory model changed
from traditional cost-based regulation, e.g. di¤erent forms of rate-of-return reg-
ulation, to price-based regulation, known in di¤erent variations as price caps,
revenue caps, or RPI-X, and, in its extreme form, yardstick regulation (cf., e.g.,
Armstrong, Cowan, Vickers, 1994; Jamasb and Pollitt, 2000).
The main drivers for change have been well formulated by Beesley and Lit-

tlechild (1989). Price-based regulation is claimed to require less information,
as it relies less strongly on cost information, to allow more �exibility in the
price structure enhancing welfare, and to create stronger incentives to improve
productive e¢ciency (aka X-e¢ciency) than cost-based regulation. The latter
point has received most attention. In the era of liberalization, the companies to
be regulated were regarded as X-ine¢cient, and the scope for improvement was
expected to be considerable. The incentive structure is straightforward, since
price-based regulation delinks regulated prices from underlying actual costs.
Therefore, if the regulated �rm manages to reduce costs beyond the expecta-
tions of the regulator, it does not have to reduce prices and can retain the
e¢ciency improvement as pro�ts.
The similarities and di¤erences between cost-based regulation and price-

based regulation have been discussed extensively (see, in particular, Joskow,
1989). To put it in a nutshell, they can be attributed to the regulatory lag. The
regulatory lag is the period in which the regulator does not change the rules
that determine allowed prices or revenues.1 If the regulatory lag is short and
endogeneous, we tend to think of cost-based regulation, whereas, if the regula-
tory lag is long and exogenous, we tend to call a speci�c regulation price-based.
Thinking in terms of polar cases, under cost-based regulation, allowed revenues
vary with the �rm�s underlying costs in order to retain a reasonable �xed pro�t
margin, whereas, under price-based regulation, allowed revenues or prices are
independent of the �rm�s own costs. They are determined by something exter-
nal instead, for example a weighted average of the costs of other �rms in the
same industry, which leads to the regulatory practice of benchmarking.
The experience with the ability of incentive regulation to improve productive

e¢ciency is impressive (cf., e.g., Jamasb and Pollitt, 2000). However, after
two decades of a regulation which sets strong short-run incentives to cut costs,
concern starts to arise about long-run incentives, or, in other words, incentives
for adequate investment (cf. Brunekreeft and McDaniel, 2005; Vogelsang, 2009).
Thus, it is not by coincidence that the discussion about the latest regulatory
periods in energy networks in the UK is dominated by investment needs. The
regulator, Ofgem, takes pride in having allowed investment budgets of more
than £12 billion in total in the course of 5 years. More importantly, Ofgem
introduced a menu of sliding scales for the regulation of the investment needs of

1Note that, within the control period, prices and revenues as such can change, but following
predetermined rules set by the regulator.
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electricity distribution networks to address the information asymmetry between
�rms and the regulator (cf. Joskow, 2006; Brunekreeft, 2009). Furthermore,
we observe similar concerns about e¢cient infrastructure investment incentives
under regulation in other countries as well. For instance, regulators in Australia,
in the Netherlands, in New Zealand, Norway, and not the least in the United
States, work actively on this issue.
The theoretical literature on the relationship between regulation and e¢-

cient investment incentives is surprisingly thin and is only just emerging. A
recent overview of the literature on regulation and investment is provided by
Guthrie (2006). This overview leaves the impression that much of the litera-
ture concentrates on one of three problems. Many authors look at the e¤ects
of rate-of-return regulation on investment following the seminal approach of
Averch and Johnson (1962). Others address the regulation of network charges
in a more general setting and the e¤ects on vertical foreclosure; this line of lit-
erature was inspired strongly by the trend towards vertical re-integration in the
telecommunications sector in the United States some time around 2000. Still
others analyze the short-term incentives of and the price structures resulting
from price-based regulation models focussing on the reduction of costs, whereas
the e¤ects of price-based regulation models on investment incentives, i.e. the
long-term incentives, were short of attention for a long time; this literature has
started to develop only recently.
In particular, we �nd very little on the timing of monopoly investment under

regulation. One line going in this direction is Dobbs (2004) and following up
on that Nagel and Rammerstorfer (2009), where investment takes place under
uncertainty. These models rely on the real options literature. Another line
follows from a debate in Australia resulting in the concept of access holidays
(cf. Gans and Willams 1999, Gans and King, 2004). Ultimately, this line of
work examines the regulatory non-commitment problem, which was explored
in a game-theoretical setting by Gilbert and Newbery (1994) and also relies on
uncertainty as a driver.
Our paper contributes an analysis of the e¤ects of regulation on the timing of

monopoly investment under certainty. In an intertemporal model, analytically
relying on Katz and Shapiro (1987), Gans and Williams (1999), Brunekreeft
and Newbery (2006) and, in particular, Borrmann and Brunekreeft (2009),2

we analyze the behavior of a monopoly �rm in di¤erent settings. We address
the cases of a �rm maximizing discounted social welfare, an unregulated �rm
maximizing discounted pro�ts, a �rm maximizing discounted pro�ts subject to
an extreme form of price-based regulation, i.e. yardstick regulation, and a �rm
maximizing discounted pro�ts subject to cost-based regulation. To motivate
investment, we distinguish between two di¤erent scenarios: wear and tear, which
is assumed to increase marginal production costs in time, while marginal costs
are constant in output at any single point in time, and demand growth, which
a¤ects the demand function. Wear and tear leads to replacement investment,

2At the moment of writing the manuscript, Borrmann and Brunekreeft (2009) is under
revision. The mimeo can be received from the authors upon request.
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whereas demand growth results in expansion investment. For the direction of
the e¤ects on the timing of investment under regulation, the di¤erence between
replacement investment and expansion investment is crucially important. We
exclude the possibility of a race for investment, or even stronger, of strategic
investment to deter entry. We note that such an additional dimension is likely
to a¤ect results, but leave this for further research.
The structure of the paper is as follows. Section 2 �rst brie�y sets out

the general properties of our approach and characterizes the di¤erence between
price-based regulation and cost-based regulation. Section 3 concentrates on the
case of wear and tear and thereby on replacement investment. Section 4 analyzes
the case of demand growth and thus concentrates on expansion investment.
Section 5 concludes.

2 The general model

We consider a single-product monopoly �rm aiming to invest in productive as-
sets once. Investing necessitates an initial outlay, I, with I 2 R+, at a single
point in time without any additional outlays afterwards. The discount rate is
denoted by r, with r 2 R+. The �rm has to make several decisions simultane-
ously. It has to decide which outputs to set before investment, which outputs
to set after investment, when to invest in the assets and how long to use them,
i.e. how long to produce. Investment is completely irreversible in the sense that
there is no alternative use for the assets after investing. Investment is lumpy in
the following sense. Only the investment date is a decision variable in our opti-
mization problem (say, timing), while the quantity choice (say, capacity) and the
quality choice (say, technology) are exogenous to the model. Capacity and tech-
nology are given. Moreover, we do not impose a priori restrictions on the size
of the inital outlay, I, although, implicitly, the key driver of the timing problem
is su¢ciently large investment. If investment in small increments is possible,
the timing problem becomes trivial and loses relevance. However, if investment
is large, implying that investment takes place occasionally and the investment
sequence reduces until eventually only one investment remains, timing is an is-
sue. Then, di¤erent optimization approaches under varying constraints lead to
di¤erent results. Therefore, we assume su¢ciently large investment outlays, I,
so that investment takes place only once. This is compatible with our aim to
analyze the regulation of (natural) monopoly where large lumpy investment is
the rule rather than exception. Thus, we consider two periods, i = 1; 2, only.
We call the period before investment (ante-investment) period 1, and we call
the period after investment (post-investment) period 2.

The objective function of the �rm is either discounted social welfare, or dis-
counted pro�ts, either unregulated or under some speci�ed form of regulation.
The investment allows the �rm to attain strictly positive discounted social wel-
fare or strictly positive discounted pro�ts. Thus, we distinguish between four
cases using superscripts:

SW .....discounted social welfare maximization,
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�........unregulated discounted pro�t maximization,
Y R.....discounted pro�t maximization under yardstick regulation (as the ex-

treme case of price-based regulation), following the seminal work of Shleifer
(1985), and

CB.....discounted pro�t maximization under cost-based regulation, which
means that the price of the good produced is allowed to increase after invest-
ment.
In our dynamic approach, we model two investment drivers explicitly. The

�rst investment driver is wear and tear leading to replacement investment. The
second investment driver is demand growth leading to expansion investment.

In order to be able to analyze the e¤ects of wear and tear and the e¤ects
of demand growth separately, we consider two di¤erent scenarios. In the case
of wear and tear, we assume that marginal costs, which are constant in output,
increase at a constant rate, �, in time, with 0 < � < 1, and that the relationship
between output and price, i.e. the demand function, does not change. Thus,
in this case, there is only a driver for replacement investment, and there is no
driver for expansion investment. In the case of demand growth, the relationship
between output and costs, i.e. the cost function, does not change, and the
quantity demanded at a given price grows at a constant rate, g, with 0 < g < 1.
This implies that, in the case of demand growth, there is only a driver for
expansion investment, and there is no driver for replacement investment. We
assume � < r and g < r.
The general structure of the maximization problem, let it be either con-

strained in a regulated setting or unconstrained in an unregulated setting, is
always as follows:

max
T
V (T ) =

T
Z

0

x1 (t) e
�rtdt+

TS
Z

T

x2 (t) e
�rtdt� Ie�rT ; (1)

(possibly) subject to one or two regulatory constraints. In Eq.(1), V (�), is the
objective, which is a function of T , i.e. the investment date. The functions
xi (�), which depend upon time, t, where i = 1; 2 denotes the periods, will be
speci�ed for the di¤erent cases. These functions represent either social welfare
or pro�ts. In this maximization problem, TS is an analytical cut-o¤ point, where
a rational producer stops producing altogether. This is particularly important
for the case of wear and tear, where, by assumption, at any single point in
time constant marginal costs increase in time and approach in�nity, if time goes
to in�nity, and no further investment takes place. Therefore, we identify and
substitute in each case the point where production stops. We refer to Borrmann
and Brunekreeft (2009) for a more detailed analysis.

2.1 The cost function and wear and tear

Production costs, C (�; �; �), excluding the capital costs of investment, are a func-
tion of the outputs, Q1, before investment, of the outputs, Q2, after investment,
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and of time, t. At any point in time, marginal costs are constant in Q1 and Q2,
respectively. The age of the existing assets at t = 0 is denoted by T . Over time,
either the relationship between output and costs does not change, i.e. � = 0, or
marginal costs increase at a constant rate, 0 < � < 1, due to wear and tear, as
the assets of the �rm get older. Without loss of generality, we neglect any �xed
costs of the assets prior to investment. The investment of I at the investment
date, T , brings marginal cost back to its original level:

C (Q1; Q2; t) =

(

ce�(t+T)Q1; t < T

ce�(t�T )Q2; T � t;
(2)

where c 2 R
+ and Q1; Q2; T ; T; t 2 R

+
0 . This cost function exhibits (cost)

economies of scale.

2.2 The demand function and demand growth

Inverse demand, P (�; �), is a function of output, Q, and of time, t. At any point
in time, demand is linear. Over time, either the relationship between output
and price does not change, i.e. g = 0, or the quantity demanded at a given price
grows at a constant rate, g, with 0 < g < 1:

P (Q; t) = a� be�gtQ; (3)

where a; b 2 R+ and Q; t 2 R+0 .

3 Wear and tear: replacement investment

3.1 Maximization of social welfare and pro�ts

In this section, we use the formulation and derivation in Borrmann and Brune-
kreeft (2009). Building on Eq.(2) and Eq.(3) and assuming g = 0, we de�ne
social welfare, SW (�; �; �), for the case of wear and tear at any point in time,
not taking into account investment outlays, I, as a function of the outputs, Q1,
before investment, of the outputs, Q2, after investment, and of time, t. It is the
sum of consumer surplus and pro�ts:

SW (Q1; Q2; t) =

(

� b
2Q

2
1 +

�

a� ce�(t+T)
�

Q1; t < T

� b
2Q

2
2 +

�

a� ce�(t�T )
�

Q2; T � t;
(4)

where a; b; c 2 R+ and Q1; Q2; T; t 2 R
+
0 . Partially di¤erentiating the objective

function with respect to Q1 and Q2 and setting the results equal to zero leads
to the welfare-optimal quantities, QSW1 (�) and QSW2 (�), which are functions of
time, t:

QSW1 (t) =
a� ce�(t+T)

b
(5)
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and

QSW2 (t) =
a� ce�(t�T )

b
: (6)

Denote social welfare in period 1, given the optimal quantities, by SW1 (�); it is
a function of time, t. Analogously, denote social welfare in period 2, given the
optimal quantities, by SW2 (�); it is also a function of time, t.
Alternatively, again building on Eq.(2) and Eq.(3) and assuming g = 0, we

de�ne pro�ts, �(�; �; �), for the case of wear and tear at any point in time, not
taking into account investment outlays, I, as a function of the outputs, Q1,
before investment, of the outputs, Q2, after investment, and of time, t:

�(Q1; Q2; t) =

(

�bQ21 +
�

a� ce�(t+T)
�

Q1; t < T

�bQ22 +
�

a� ce�(t�T )
�

Q2; T � t;
(7)

where a; b; c 2 R+ and Q1; Q2; T; t 2 R
+
0 . The optimal quantities, Q

�
1 (�) and

Q�2 (�), for this case, i.e. unregulated pro�t maximization, can easily be found.
They are also functions of time, t:

Q�1 (t) =
a� ce�(t+T)

2b
(8)

and

Q�2 (t) =
a� ce�(t�T )

2b
: (9)

Denote pro�ts in period 1, given the optimal quantities, by �1 (�); they are a
function of time, t. Analogously, denote pro�ts in period 2, given the optimal
quantities, by �2 (�); they are also a function of time, t.
As noted above, our approach allows to invest only once. For the case of wear

and tear, this creates a problem, if t gets large. Since marginal costs increase
in time, at some point, marginal costs will be so high that a rational producer
stops producing altogether. As explained in detail in Borrmann and Brunekreeft
(2009), we can determine a cut-o¤ point, TS , beyond which no production takes
place anymore, i.e. Q = 0. In particular,

TS = T +
ln
�

a
c

�

�
; (10)

where T is the investment date. This formula applies both to a �rm maximizing
discounted social welfare and to a �rm maximizing discounted pro�ts.
We �rst derive the optimal investment date for the case of discounted social

welfare maximization, i.e.

max
T
V SW (T ) =

T
Z

0

SW1 (t) e
�rtdt+

TS
Z

T

SW2 (t) e
�rtdt� Ie�rT : (11)

7



After di¤erentiating with respect to T , setting the result equal to zero, and
rearranging, we can characterize the investment date, TSW , which maximizes
discounted social welfare:

1

2b

�

�c2e2�(T
SW+T) + 2ace�(T

SW+T) �  
�

= rI; (12)

where  is given by:  =

a2 + a2

 

e�r
ln( ac )

� � 1

!

+ 2acr
��r

 

e(��r)
ln( ac )

� � 1

!

� c2r
2��r

 

e(2��r)
ln( ac )

� � 1

!

.

Using e�
ln( ac )

� = a
c
, e2�

ln( ac )
� = a2

c2
, and e�r

ln( ac )
� = 1

( ac )
r
�
we can express  

in a more convenient way:

 =
a2 + 2a2r

��r
� ra2

2��r
�

a
c

�
r
�

�
2acr

�� r
+

c2r

2�� r
: (13)

In Eq.(12), substitute T for TSW and denote the LHS as fSW (T ).
Repeating this for unregulated discounted pro�t maximization gives:

max
T
V � (T ) =

T
Z

0

�1 (t) e
�rtdt+

TS
Z

T

�2 (t) e
�rtdt� Ie�rT : (14)

Now, we can describe the investment date, T�, which maximizes discounted
pro�ts:

1

4b

�

�c2e2�(T
�+T) + 2ace�(T

�+T) �  
�

= rI: (15)

Note that, in Eq.(15),  is equivalent to  in Eq.(12).
In Eq.(15), substitute T for T� and denote the LHS as f� (T ).
Comparing discounted social welfare maximization and discounted unregu-

lated pro�t maximization then gives the following proposition.

Proposition 1 For the case of wear and tear, the investment date under dis-

counted social welfare maximization is unambiguously earlier than the invest-

ment date under unregulated discounted pro�t-maximization: TSW < T�.

Proof. First, the relationships df
SW (T )
dT

> 0 and df�(T )
dT

> 0 hold for the relevant

ranges, a > ce�(T+T), beyond which no consumer is willing to consume anything
at the respective price. Second, fSW (T ) = 2f� (T ).

This result has already been derived and explained in Borrmann and Brune-
kreeft (2009). Describing a dynamic ine¢ciency in a general way, it can be
regarded as fundamental. An unregulated monopoly that maximizes discounted

8



pro�ts ine¢ciently decelerates the investment date compared to a monopoly
that maximizes discounted social welfare. In this paper, we do the proofs not
by solving for the investment date, but rather by comparing the f -functions.
Using the technique to proof Proposition 1, our two steps su¢ce.
Since we use this type of analysis throughout the paper, we have to explain

the idea more carefully. Consider Figure 1 below, which plots fSW and f�

as functions of T . Also, it plots the RHS of the optimality conditions: rI.
The optimal investment dates are to be found at TSW and T�, i.e. at the
points of intersection, where fSW (T ) = rI and f� (T ) = rI, respectively.
In this particular case, if we can show that fSW (T ) and f� (T ) are strictly
monotonically increasing in T in the relevant range and that fSW (T ) > f� (T ),
then the point of intersection, where fSW (T ) = rI, must be to the left of the
point of intersection, where f� (T ) = rI, and therefore TSW < T�. In the
proofs and analyses below, we will argue along these lines throughout.

 T

€

·
·
·
·
·
·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·
·
·
·
·
·

rI

f SW f II

TSW IIT

Figure 1: Illustration of fSW , f� and rI as functions of T

3.2 Wear and tear under regulation

We interpret the general approach of regulation, denoted by R, as �xing regu-
lated prices at pR1 and p

R
2 in period 1 and period 2, respectively. More realisti-

cally, pR1 and p
R
2 can be considered upper bounds, which are binding constraints.

This implies that pR1 and p
R
2 are always below the prices which the �rm would

choose left to its own devices. Furthermore, we distinguish between two di¤erent
forms of regulation, i.e. price-based regulation and cost-based regulation.
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We analyze price-based regulation by using a model of its most extreme
form, i.e. yardstick regulation, denoted by Y R. In this special case, regulated
prices are una¤ected by the choice between the alternative to invest and the
alternative not to invest. In other words, the regulated prices of a �rm subject
to yardstick regulation are independent of the underlying costs of the �rm.
Thus, for yardstick regulation, we assume

pY R = pR1 = pR2 ; (16)

where pY R is the regulated yardstick price, which depends on the costs of other
�rms in comparable markets.
In contrast, cost-based regulation, denoted by CB, means that the price of

the good produced is allowed to change after investment depending on the costs
incurred. Either the relationship pR1 = pR2 , or the relationship p

R
1 6= pR2 holds.

In particular, we focus on the case most relevant for practical purposes, where
pR2 > pR1 .

First, we develop the general approach, then we specify for price-based reg-
ulation and for cost-based regulation.

3.2.1 General approach

Following Borrmann and Brunekreeft (2009), we can determine a cut-o¤ point,
TRS , beyond which no production takes place, for the case of wear, when we �x
regulated prices at pR1 and p

R
2 in period 1 and period 2, respectively:

TRS = T + �R; (17)

where T is the investment date and �R is given by �R =
ln

�

pR
2

c

�

�
. This formula

applies both to a �rm maximizing discounted pro�ts subject to price-based regu-
lation and a �rm maximizing discounted pro�ts subject to cost-based regulation.
For given regulated prices, pRi , we derive the corresponding quantities from

the demand function, i.e. QRi
�

pRi
�

=
a�pRi
b
, i = 1; 2. The objective is to

maximize discounted pro�ts subject to the regulated prices:

max
T
V R (T ) =

T
Z

0

�R1 (t) e
�rtdt+

TRS
Z

T

�R2 (t) e
�rtdt� Ie�rT ; (18)

where

�R1 (t) =
�

pR1 � ce
�(t+T )

�

QR1
�

pR1
�

; (19)

and

�R2 (t) =
�

pR2 � ce
�(t�TR)

�

QR2
�

pR2
�

: (20)
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After di¤erentiating with respect to T , setting the result equal to zero and
rearranging, we can characterize the investment date, TR, which maximizes
V R (T ):

�
h

pR1 � ce
�(TR+T)

i

a�pR
1

b

�
h

pR2

�

e�r�
R

� 1
�

+
�

rc
��r

��

e(��r)�
R

� 1
�i

a�pR
2

b

= rI:

(21)

In Eq.(21), substitute T for TR and denote the LHS as fR (T ).

3.2.2 Replacement investment and price-based regulation

By substituting pY R = pR1 = pR2 into fR (T ) and calling this fY R (T ), we
can now characterize the outcome for the most extreme form of price-based
regulation, i.e. yardstick regulation. With this, we state Proposition 2.

Proposition 2 For the case of wear and tear and yardstick regulation, a lower

yardstick price accelerates the optimal investment date, TY R; i.e. @TYR

@pYR
> 0 in

the relevant range, where the optimality condition is ful�lled. This result holds

provided that the regulated price still allows full cost recovery of the investment.

Proof. Using the optimality condition, i.e. fY R (T ) = rI, we get:

�

�
a� pY R

b

��

pY Re�r�
YR

� ce�(T
YR+T) +

rc

�� r

�

e(��r)�
YR

� 1
�

�

= rI:

(22)
We denote the entire term between the squared brackets by gY R

�

TY R
�

. Di¤er-

entiating fY R
�

TY R
�

with respect to pY R gives:

@fY R
�

TY R
�

@pY R
=
1

b
gY R

�

TY R
�

�
a� pY R

b

@gY R
�

TY R
�

@pY R
; (23)

where

@gY R
�

TY R
�

@pY R
= e�r�

YR

�

1� rpY R
@�Y R

@pY R
+ rce��

YR @�Y R

@pY R

�

: (24)

Recall that �R =
ln

�

pR
2

c

�

�
, and therefore @�YR

@pYR
= 1

�pYR
. Furthermore,

e��
YR

= pYR

c
. Using this relationship we get

@gYR(TYR)
@pYR

= e�r�
YR

. Since

r > 0 and �Y R > 0, we can infer 0 <
@gYR(TYR)

@pYR
< 1. Moreover, as

fY R
�

TY R
�

=

�

�
a� pY R

b

�

gY R
�

TY R
�

= rI; (25)

and thus fY R
�

TY R
�

> 0, where the optimality condition is ful�lled, assum-

ing that this is possible, it follows that gY R
�

TY R
�

< 0, where the optimality

11



condition is ful�lled, i.e. in the relevant range, given that a > pY R. In total,

we conclude that
@fYR(TYR)

@pYR
< 0. As df

YR(T )
dT

> 0, it is obvious that fY R (T ) is

strictly monotonically increasing in T . This implies @TYR

@pYR
> 0 in the relevant

range, where the optimality condition is ful�lled. Obviously, the participation
constraint is only met, if the regulated price, pY R, allows full cost recovery of
the investment.

This proposition is non-trivial and a bit surprising at �rst sight. It says, in
words, that a lower yardstick accelerates the optimal replacement investment
date, not the other way around. This may seem counterintuitive. If the yardstick
price is lowered, the �rst intuition is that the discounted post-investment pro�ts
decrease. Therefore, at �rst glance, investment should take place later rather
than earlier as a result of a lower yardstick price.
However, we can see from Propostion 2 that the story is a bit more com-

plicated. To understand the result, two points have to be kept in mind. First,
one has to look at discounted pro�ts after investment and at discounted pro�ts
before investment. It is the sum of both which is of interest when looking for
the optimal investment date, TY R, for a given pY R. Second, if pY R is lowered,
we should compare the change of discounted pro�ts before and after investment
at the margin, i.e. the change of discounted pro�ts before and after investment
near pY R.
Indeed, a lower yardstick necessarily reduces discounted post-investment

pro�ts. Lowering the yardstick price must reduce the di¤erences between the
regulated price and marginal costs at any point in time after investment. In
addition, the increase in the quantity demanded at any point in time cannot
be large enough to compensate for this e¤ect. Otherwise, the regulated �rm
would have lowered its price below the yardstick price before, which is impos-
sible, since the constraint was binding before the change in the yardstick price.
Moreover, due to the lower price, the cut-o¤ point, TY RS , for yardstick regula-
tion is reached earlier. In other words, �Y R is reduced. On the other hand, an
analogous logic applies to the �rst period. The di¤erences between the regulated
price and marginal costs also become smaller before investment. Even worse for
the �rm, for a strictly positive discount rate, r, the e¤ect on discounted pro�ts
before investment, for a given change in pY R and a given period in time to be
considered, is even stronger than after investment due to discounting. In ad-
dition, due to the lower pY R, the optimal lenght of the ante-investment period
is indirectly shortened anyway, since �Y R is reduced, and to restore optimality,
there is a negative e¤ect on TY R. The net e¤ect of a lower pY R in total is given
by Proposition 2, i.e. a lower yardstick price accelerates the investment date in
the relevant range.
Note the following three points. First, Proposition 2 only holds for the case

of wear and tear, i.e. replacement investment. We will see below that the e¤ect
is in the opposite direction for expansion investment. Second, the yardstick
level should allow cost recovery of the investment. Otherwise, the investment
will not be undertaken at all. Third, using a bit of calibration we can see that

12



lowering the yardstick price may accelerate the investment date towards the
investment date maximizing discounted social welfare and, in fact, possibly to
an investment date before the social welfare maximizing date, even allowing cost
recovery.

Proposition 3 For the case of wear and tear and for yardstick regulation, there

may be a range, where the investment date, TY RCR , under yardstick regulation,

with pY R su¢ciently high to allow cost recovery, CR, is earlier than the invest-

ment date under discounted social welfare maximization: TY RCR < TSW .

Proof. One example for which the proposition holds su¢ces. Assume the
following parameter values: a = 100, b = 1, c = 40, I = 1000, r = 0:07,
� = 0:01, T = 10, and pY R = 50. Therefore, TY R t 4:7, V2

�

TY R
�

=
TYRS
R

TYR

�Y R2 (t) e�rtdt = 2621, Ie�rT
YR

= 722, which implies V2 � Ie�rT
YR

> 0.

Thus, TY RCR = TY R t 4:7. With TSW t 7, we get TY RCR < TSW .

This is a result which is relevant to current policy issues. It shows that
yardstick regulation can lead to ine¢ciently early replacement investment, even
under cost recovery.

3.2.3 Replacement investment and cost-based regulation

Now, we are able to compare price-based regulation to cost-based regulation.
Assume that allowed prices follow average costs. Then, strictly speaking, these
prices do not necessarily have to increase after investment. With wear and tear,
the decrease of variable costs per unit may actually be larger than the increase
in �xed costs per unit due to investment taking into account depreciation rules,
which we do not specify, and the value of time. Also, with demand growth, scale
e¤ects can lower unit costs. Yet, we consider such cases as exceptional. We
concentrate on the case where allowed prices increase after investment. Thus,
we assume that, under cost-based regulation, the following relationship holds:
pR2 > pR1 .

In order to be able to do the comparison, we transform price-based regula-
tion, re�ected by the yardstick price, pY R, to cost-based regulation, where the
allowed prices, i.e. the ante-investment price, pR1 , and the post-investment price,
pR2 , may vary between the two periods. We de�ne

pY R = 
pR1 + (1� 
)p
R
2 ; (26)

where 
 is an arbitrary weighting factor; 0 � 
 � 1. Thus, our reference yard-
stick is a weighted average of the ante-investment price and the post-investment
price. Rewriting Eq. (26) yields:

pR2 =
pY R � 
pR1
1� 


: (27)
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The reason for doing so is to be able to compare cost-based regulation
and yardstick regulation. If we use comparative statics and increase the post-
investment price, pR2 , the above de�nition guarantees that the ante-investment
price, p1, goes down, while the weighted average remains at p

Y R.

Proposition 4 For the case of wear and tear, cost-based regulation accelerates

the optimal investment date, TCB, compared to yardstick regulation where mar-

ginal revenues are non-positive. De�ning 4p = pR2 � pR1 , we can infer that
dTCB

d4p
< 0. Also, the so accelerated investment date can be earlier than the

investment date under discounted social welfare maximization.

Proof. Reformulate the original maximization problem, as de�ned by Eq.(18),
in more general terms:

max
T
V R (T ) = V1 (T ) + V2 (T )� Ie

�rT ; (28)

where V1 (T ) =
T
R

0

�R1 (t) e
�rtdt and V2 (T ) =

TRS
R

T

�R2 (t) e
�rtdt. De�ne 
 (T ) =

dV2(T )
dT

erT and bear in mind that 
 (T ) < 0. Furthermore, note that �R1 (T ) =
dV1(T )
dT

erT . Then, we get the optimality condition:

�

�

TR
�

��R1
�

TR
�

= rI; (29)

where e�rT
R

was deleted. De�ne z
�

TR
�

= �

�

TR
�

��R1
�

TR
�

. We would

like to know what happens if, starting at pY R, we increase pR2 and, subsequently,

decrease pR1 . Thus, we examine:
@z(TR)
@pR

2

= �
@
(TR)
@pR

2

�
@�R

1 (T
R)

@pR
2

. Assuming,

without loss of generality, 
 = 0:5, from Eq.(26), we know that
dpR

1

dpR
2

= �1,which

leads to:
@z
�

TR
�

@pR2
= �

@

�

TR
�

@pR2
+
@�R1

�

TR
�

@pR1
: (30)

Note the minus sign in front of the �rst term on the RHS. From the second
part in squared brackets times Q in Eq.(21), it is straightforward to deduce that



�

TR
�

=

�

pR2

�

e�r�
R

� 1
�

+

�

rc

�� r

�

�

e(��r)�
R

� 1
�

�

a� pR2
b

: (31)

Now, we need to determine
@
(TR)
@pR

2

:

@

�

TR
�

@pR2
= �

1

b (r � �)

�

�

a� 2pR2
�

(r � �)
�

1� e�r�
R
�

+ r
�

er�
R

c� pR2

�

e�r�
R
�

:

(32)

As er�
R

c�pR2 =
�

pR
2

c

�
r
�

c�pR2 > 0 for r > �, and since r > � by assumption,

we can infer that
@
(TR)
@pR

2

< 0 for pR2 �
a
2 , i.e. where marginal revenues are non-

positive.
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For �R1
�

TR
�

, as a special case of Eq.(19), we �nd:

@�R1
�

TR
�

@pR1
=
a� 2pR1 + ce

�(TR+T )

b
: (33)

Obviously,
@�R

1 (T
R)

@pR
1

> 0 for pR1 �
a
2 , i.e. where marginal revenues are non-

positive.

Substituting
@
(TR)
@pR

2

and
@�R

1 (T
R)

@pR
1

into Eq.(30), we conclude that

@z
�

TR
�

@pR2
> 0; (34)

if marginal revenues are non-positive (as a su¢ciency condition).

The next step in the proof is to see that
d�R

1
(T )

dTR
< 0 and d
(T )

dTR
= 0. There-

fore, given that
@z(TR)
@pR

2

> 0, we �nd that T must go down to restore the opti-

mality condition. This completes the proof of the �rst part of the proposition.
In order to prove the second part of the proposition, a numerical example

su¢ces. Using the parameter values as above, i.e. a = 100, b = 1, c = 40,
I = 1000, r = 0:07, � = 0:01 as well as T = 10, and using pY R = 60, gives
TY R t 7:8. Introducing a cost-based approach, with pCB1 = 58 and pCB2 = 62,
we �nd that TCB t 2:6 < TSW t 7.

The su¢ciency condition to derive the result, i.e. that marginal revenues
are non-positve, makes perfect sense. Proposition 4 holds at least, if marginal
revenues are below zero. As we are dealing with cases of binding regulation,
this is absolutely reasonable. For large values of marginal revenues, the e¤ect
reverses. If the yardstick price is at the monopoly level, a further increase of pR2
would actually decrease post-investment pro�ts (and the other way around for
ante-investment pro�ts). In other words, there is a level of the yardstick price
beyond which an increase of pR2 and the subsequent decrease of p

R
1 is not useful.

We dismiss these cases as irrelevant.
The intuition of this proposition is fairly straightforward. Under the type

of cost-based regulation introduced above, an investment triggers higher post-
investment prices, while, by mechanism, ante-investment pro�ts are suppressed.
It is thus intuitive that early investment is attractive. In other words, if quick
investment has political priority, in contrast to e¢ciency considerations, cost-
based regulation is preferred over yardsticks. Note, however, that investment
may also be ine¢ciently early.
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4 Demand growth: expansion investment

4.1 General set-up, discounted social welfare and unreg-

ulated monopoly

The set-up is similar to the case of wear and tear, but there are two notable
di¤erences. Strictly speaking, we still need to work with a stopping point, TS .
However, in the case of demand growth, i.e. without wear and tear, marginal
costs do not increase. Thus, there is actually no stopping point. Therefore, we
can simplify the analysis by substituting in�nity for the endpoint. For a more
formal treatment, we refer to Borrmann and Brunekreeft (2009). Furthermore,
to have a reason to invest under demand growth at all, current capacity must
be constrained. As long as capacity is not constrained, expansion investment is
always unnecessary. Therefore, we assume that constrained optimized output,
Q�1, in the ante-investment period is at the capacity constraint, K. Expansion
investment relieves the capacity constraint so that capacity is unconstrained
thereafter, and optimized output will be Q�2 in the post-investment period. Note
that our problem formulation does not involve the optimal choice of capacity,
but instead focuses exclusively on timing.
Using the notation as above and taking into account that g > 0 and � = 0, we

formulate the problem of discounted social welfare maximization under demand
growth as follows:

max
T
V SW (T ) =

T
Z

0

SW1 (t) e
�rtdt+

1
Z

T

SW2 (t) e
�rtdt� Ie�rT ; (35)

which, after optimizing for T , rearranging terms and rewriting, leads to the
optimality condition for maximizing discounted social welfare, TSW :

(a� c)
2

2b
egT

SW

� (a� c)K +
1

2
be�gT

SW

K
2
= rI (36)

In Eq.(36), substitute T for TSW and denote the LHS by hSW (T ).
Repeating the optimization for the case of unregulated discounted pro�t

maximization:

max
T
V � (T ) =

T
Z

0

�1 (t) e
�rtdt+

1
Z

T

�2 (t) e
�rtdt� Ie�rT : (37)

Optimizing for T , rearranging terms and rewriting then leads to the following op-
timality condition, where the investment date, T�, which maximizes discounted
pro�ts, is determined by:

(a� c)
2

4b
egT

�

� (a� c)K + be�gT
�

K
2
= rI: (38)

In Eq.(38), substitute T for T� and denote the LHS by h� (T ).
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Comparing these benchmark cases, it can be inferred that a private monopoly
maximizing discounted pro�ts decelerates the investment date compared to a
monopoly maximizing discounted social welfare. This result is analogous to
Proposition 1 in the case of wear and tear and has been discussed extensively
in Borrmann and Brunekreeft (2009).

Proposition 5 For the case of demand growth, the optimal investment date,

TSW , under discounted social welfare maximization is unambiguously earlier

than the optimal investment date, T�, under unregulated discounted pro�t-

maximization: TSW < T�.

Proof. As above we examine the optimality conditions using hSW (T ) and
h� (T ) at the intersection points with rI. Both hSW (T ) and h� (T ) are strictly

convex in T and have minima. Furthermore, dh
SW (T )
dT

> 0 at T = 0. Therefore,

the minimum of hSW (T ) must be at T < 0. Moreover, dh
�(T )
dT

= 0 at T = 0

and thus dh�(T )
dT

> 0 at T > 0. Now, we are able to compare hSW (T ) and

h� (T ) for a given value of K and a given value of T , and we can show that
hSW (T ) > h� (T ):

hSW (T )� h� (T ) =
(a� c)

2

4b
egT �

1

2
be�gTK

2
: (39)

Substituting the extreme values �rst, i.e. T = 0 and K = Kmax =
a�c
2b , gives

(a�c)2

8b > 0. The extreme value for K is the unconstrained monopoly quantity.

If K is larger than that, the outcome would be unconstrained in the unreg-
ulated case, which is in the non-relevant range. Since this also holds for T > 0
and K < Kmax, we can infer that h

SW (T ) > h� (T ) for any T > 0, and thus
TSW < T�.

4.2 Demand growth under regulation

4.2.1 General

Capacity constraints and price regulation create a tension. The market clearing
prices under a capacity constraint can be higher than the allowed regulated
prices, which is an impossibility in economic terms.3 Our approach to address
this problem is as follows. The pro�t of the regulated �rm is determined by
the regulated prices, pR1 and p

R
2 , while the market clearing prices, p1 and p2,

determine the quantities. These quantities are derived from the demand function
at time t. By assumption, pR1 < p1 at Q1 = K, and pR2 = p2 at Q2 = Q2(p2).
The di¤erences between the market clearing prices and the regulated prices
result in a rent which accrues to the state. This is, for instance, what happens
with scarce capacity of cross-border electricity interconnectors in Europe. As

3This is a well-known problem for severely capacity-constrained airports. See, for instance,
Starkie (2008).
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a rule, scarce capacity is auctioned. The owners are not allowed to retain the
auction revenue over and above the cost of the lines. Instead, they either lower
the network charges somewhere in their network or use the excess revenue to
upgrade the network and to mitigate capacity constraints. Thus, we assume:
�1 (t) =

�

pR1 � c
�

QR1 (t), with Q
R
1 (t) = K. It is obvious that

�

p1 � p
R
1

�

K is
not part of the pro�t.
Maximization of the objective function, V R (�), depending on T :

max
T
V R (T ) =

T
Z

0

(pR1 � c)Q
R
1 (t) e

�rtdt+

1
Z

T

(pR2 � c)Q
R
2 (t) e

�rtdt� Ie�rT : (40)

Inserting the quantities,

QR1 (t) = K; and QR2 (t) =

�

a� pR2
�

egt

b
; (41)

optimizing for T , rearranging and rewriting then gives the optimality condi-
tion describing the investment date, TR, maximizing discounted pro�ts under
regulation with demand growth:

�

pR2 � c
� �

a� pR2
�

egT
R

b
�
�

pR1 � c
�

K = rI: (42)

In Eq.(42), substitute T for TR and denote the LHS by hR (T ).

4.2.2 Expansion investment and price-based regulation

With these preparations, we are now ready to characterize the yardstick out-
come. Using the yardstick formulation, i.e. pY R = pR1 = pR2 , we are able to
state the following proposition.

Proposition 6 For the case of demand growth under yardstick regulation and

in the relevant range, a higher regulated price accelerates the optimal investment

date: dTYR

dpYR
< 0. The relevant range is from the price level equal to marginal

cost up to some speci�c level, pM , which is below the level of an unregulated mo-

nopolist maximizing discounted pro�ts. Above the level of pM , a higher yardstick

price decelerates the investment date.

Proof. We substitute pY R = pR1 = pR2 in h
R (T ) and rewrite, which leads to

the following optimality condition:

2

4

�

�
�

pY R
�2
+ (a+ c) pY R � ac

�

egT
YR

b

3

5�
�

pY R � c
�

K = rI: (43)

This condition describes the optimal investment date, TY R, maximizing dis-
counted pro�ts.
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In Eq.(43), substitute T for TY R and denote the LHS by hY R (T ).
Similarly, substitute T for TY R in the expression in squared brackets and

denote the term by !Y R (T ). Bear in mind that the relationship !Y R (T ) > 0

must hold to allow the optimality condition to be ful�lled and that d!YR(T )
dT

>

0 for c < pY R < a+c
2 . This implies that hY R (T ) is strictly monotonically

increasing in T in this range. Note that hY R (T ) = 0 for pY R = c.
In addition, focussing on the optimal investment date, TY R, we can derive

the following results:

@hY R
�

TY R
�

@pY R
=

�

�2pY R + a+ c
�

egT
YR

b
�K: (44)

Using the extreme values, i.e. pY R = c, TY R = 0 and K = a�c
2b , we �nd:

@hY R
�

TY R
�

@pY R
=
(a� c) egT

YR

b
�K � 0: (45)

This relationship also holds for TY R � 0 and K � a�c
2b . Furthermore, for

pY R = a+c
2 , i.e. at the price which an unregulated monopolist maximizing

discounted pro�ts sets,
@hYR(TYR)

@pYR
= �K < 0: Moreover,

@2hY R
�

TY R
�

�

@pY R
�2 =

�2egT
YR

b
< 0: (46)

Thus, we can see that hY R
�

TY R
�

is strictly concave in pY R at TY R, with a

maximum at some level of pY R between c and a�c
2b .

Starting at a reasonably low price level, i.e. starting at pY R = c, the optimal
investment date is accelerated when pY R rises. This e¤ect vanishes at some level,
pM , which is below the price level of an unregulated monopolist maximizing
discounted pro�ts. Then, the e¤ect is reversed, i.e. the investment date is
decelerated with a further increase of pY R. We call the interval c � pY R � pM

the relevant range. Summing up, we �nd that dTYR

dpYR
< 0 for the relevant

range of pY R. The relevant range applies, if we take regulation seriously, since
the relevant range is close to cost-oriented prices, and it only ends near the
unregulated monopoly price. Thus, Proposition 6 states that, for the relevant
cases of binding regulation aiming at just and reasonable prices, a higher allowed
price and therefore a higher rate of return on investment, accelerates expansion
investment. It may be noted that this result is the mirror opposite of the wear
and tear case for replacement investment, where a higher yardstick decelerates
the optimal investment date.

Proposition 7 For the case of demand growth under yardstick regulation, the

e¤ect of yardstick regulation on the optimal investment date, as compared to

unregulated monopoly, is ambiguous: TY R 7 T�.
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Proof. A numerical example which shows that both possibilities exist su¢ces.
Use the following parameter values: a = 100, b = 1, c = 40, I = 25000, r = 0:07,
g = 0:05, T = 10, and K = 20. These parameter values yield p� = 70 and
T� t 22:9. Now, assume pY R = 50, which implies TY R t 27:2, and therefore
TY R > T�. Alternatively, assume pY R = 60, which leads to TY R t 19:8, and
thus TY R < T�.

The �rst part of the Proof of Proposition 7, i.e. TY R > T�, can be demon-
strated more elegantly, if we compare h� (T ) to hY R (T ) for pY R = c for a
given value of T . Since hY R (T ) = 0 < h� (T ) at pY R = c, we can infer that
TY R > T�. In fact, perhaps more telling, for pY R = c, note that, as hY R �! 0,
TY R �!1, or, in words, investment would simply not take place, because the
regulated price would be too low. This means that too low prices will decelerate
expansion investment so much that, e¤ectively, it will not take place at all.
The second part of the proof of Proposition 7, i.e. TY R < T�, is the more

surprising part. It implies that, even for expansion investment, yardstick reg-
ulation can accelerate investment as compared to the unregulated case. How-
ever, we emphasize that this holds for relatively high prices only and that it is
the exception rather than the rule. The basic intuition with expansion invest-
ment is that the regulated private monopoly invests later than the unregulated
monopoly, which in turn invests later than is socially optimal.
However, there are details which modify the basic intuition, and as sug-

gested by Proposition 7, the optimal investment date for a regulated monopoly
can be earlier than for an unregulated monopoly. First, assume K = 0. This
case is straightforward. As the regulated yardstick approaches the unregulated
monopoly price, we �nd, unambiguously, that the investment dates converge.
There is essentially no di¤erence. Therefore, for K = 0, TY R � T�. Things
change, if K > 0, in which case the unregulated investor eats away part of
her own ante-investment pro�t. Assume a capacity-constrained unregulated
monopoly making an expansion investment. By mechanism of the high con-
strained price before investment, the post-investment pro�t-maximizing price
will be lower than the ante-investment price. This also a¤ects the revenues of
the capacity which is already there (at K). The unregulated monopoly will
take these lower revenues on existing capacity into account, and compensating
this means to delay the investment date. For the yardstick-regulated monopoly,
this reasoning does not apply. If, for comparison, we assume that the yardstick
level is at the level of the unregulated post-investment pro�t-maximizing price,
then, by de�nition of yardstick regulation, this must also be the ante-investment
price. Therefore, the ante-investment level of the yardstick would be lower than
the unregulated constrained capacity level and therefore the yardstick regulated
�rm would have less to lose on current capacity, K. Thus, we conclude that,
since the yardstick-regulated investor has less to lose on existing assets, yard-
stick regulation may actually accelerate the investment date as compared to the
investment date for the unregulated investor.
However, with reasonably low cost-oriented regulated prices, it is highly

likely that yardstick regulation decelerates the investment date compared to the
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case of the absence of regulation. Only for unreasonably high regulated prices,
we �nd that yardstick regulation can accelerate the investment date compared
to the case of the absence of regulation. There are two opposing e¤ects at work.
First, for pY R < p�2 , if p

Y R is raised, �Y R increases and therefore TY R goes
down. Since �Y R < ��, we nevertheless conclude that TY R > T�. This is
the basic e¤ect, which says that, if the regulated price goes up, the investment
moment is accelerated. Second, as explained above, the unregulated monopolist
will decrease the post-investment price as compared to the capacity-constrained
ante-investment price: p�2 < p�1 . This implies that T

Y R can be earlier than T�.
The second e¤ect can dominate the �rst e¤ect, if pY R is high, since then the
�rst e¤ect is small. However, as long as we take regulation seriously, pY R will
not be su¢ciently high, and the �rst e¤ect is likely to dominate. Therefore, we
take TY R > T� as the normal case and TY R < T� as the exceptional case.
Moreover, as we will explore in somewhat more detail below, the second

e¤ect completely vanishes, if K = 0.

Conjecture: For the case of demand growth under yardstick regulation,
TY R > TSW . In words, we conjecture that, under yardstick regulation, the

timing of expansion investment is always decelerated as compared to the timing

of socially optimal expansion investment .

We restrict ourselves to a conjecture, which seems fairly plausible, though.
In the Proof of Proposition 6, there is a speci�c value, pM , of the yardstick price,
pY R, beyond which investment is decelerated. However, without specifying pM ,
which we did not do, it is di¢cult to prove the conjecture. Specifying pM

turns out to be tedious and unclear. More straightforward is the following
approximation, which comes close to a proof. We use extreme values, which
brings the investment date close to the earliest investment date under yardstick
regulation and show that, for these values, the conjecture holds. Take the
capacity level, a�c2b , of an unregulated monopolist maximizing discounted pro�ts.

Also, use the price level a+c2 , i.e. p
Y R = a+c

2 .
Substitute these values into hSW (T ) and hY R (T ) and check, for each given

T; whether hSW (T ) > hY R (T ), implying that TSW < TY R. This yields:

(a� c)
2

2b
egT �

(a� c)
2

4b
+
(a� c)

2

8b
e�gT >

(a� c)
2

4b
egT : (47)

This gives:

2egT � 2 + e�gT > 0; (48)

which always holds for T > 0. Therefore, it is very unlikely that yardstick reg-
ulation induces ine¢ciently fast expansion investment. Quite the contrary, if
anything, we have to be concerned that yardstick regulation ine¢ciently decel-
erates expansion investment. Thus, we now turn to cost-based regulation.
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4.2.3 Expansion investment and cost-based regulation

Using the mechanism to compare yarstick-regulated with cost-based regulation
as de�ned in Section 3.2.3, with pY R = 
pR1 + (1� 
)p

R
2 and 4p = pR2 � p

R
1 , we

are able to state the following proposition.

Proposition 8 For the case of demand growth, assuming pR2 > pR1 , cost-based

regulation accelerates the investment date for K > 0 compared to price-based
regulation, whereas the investment dates for cost-based regulation and price-based

regulation are equal for K = 0. The following relationship holds: dTCB

d4p
< 0.

Proof. This result is similar to the �rst part of Proposition 4. Building on the
formulation of the objective function in Eq.(40), we �nd immediately that

�R2
�

TCB
�

��R1
�

TCB
�

= rI: (49)

De�ning Z
�

TCB
�

= �R2
�

TCB
�

� �R1
�

TCB
�

, it is obvious that
@Z(TCB)
@pR

2

=

@�R
2 (T

CB)
@pR

2

�
@�R

1 (T
CB)

@pR
1

@pR
1

@p
2

. As in the Proof of Proposition 4, we assume, without

loss of generality, that
@pR

1

@pR
2

= �1. Since
@�R

2 (T
CB)

@pR
2

> 0 and
@�R

1 (T
CB)

@pR
1

> 0, it

can be easily seen that
@�R

1 (T
CB)

@pR
2

< 0. Thus, for a given value of rI, we get

@Z(TCB)
@pR

2

> 0, which, in order to restore the optimality condition, implies that

the optimal investment date needs to go down, which in turn implies TCB <

TY R.

Also, we �nd that TCB 7 TSW . In words, cost-based regulation can both
accelerate and decelerate expansion investment compared to the socially opti-
mal outcome. Indeed, it is quite likely that the timing of expansion investment
under cost-based regulation is decelerated compared to social welfare maximiza-
tion. Nevertheless, cost-based regulation can also accelerate the investment date
compared to the socially optimal investment date. This requires a su¢ciently
low ante-investment price, a su¢ciently high post-investment price, and a su¢-
ciently high capacity constraint.
We show this by a numerical example. Take the following parameter values:

a = 100, b = 1, c = 20, I = 25; 000, r = 0:07, g = 0:05, T = 10, and K = 30.
Use pR1 = 20, and pR2 = 60. This gives TSW t 3:27 and TCB t 1:79, and
therefore TCB < TSW . A driver for the acceleration e¤ect of regulation on
expansion investment is that investment reduces ante-investment pro�ts in case
of an already existing strictly positive capacity constraint, i.e. K > 0.

Proposition 9 For the case of demand growth and for K = 0, we �nd dTCB

dpR
2

<

0 and TCB(= TY R) � T� > TSW .

In words, if we assume that there is no capacity before investment (green
�eld), then a higher allowed price unambiguously accelerates the investment
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date. The investment date of a regulated monopoly maximizing discounted
pro�ts is always later than (or equal to) the investment date of an unregulated
monopoly maximizing discounted pro�ts, which is always later than the socially
optimal date.
Above, we touched upon the di¤erent cases of a capacity constraint and

the practical relevance of these cases. Basically, we need to distinguish be-
tween two extremes. First, there is the case of an emerging capacity constraint
and a subsequent genuine capacity expansion. For this case, we assume, ad-
mittedly somewhat extreme, that charges always apply to the entire capacity,
i.e. they apply to existing and new assets in the same way. This implies that
new investment has an e¤ect on the pro�tability of the existing assets. Second,
if, alternatively, the existing assets can be priced without changing regulated
charges, while new assets are priced di¤erently, then the link between existing
and expansion assets is broken and the assumption is analytically equivalent to
the case where K = 0.

The case of K = 0 is actually relevant and realistic, and it has a strong
appeal for two reasons. First, in many cases of large new investment that can,
in regulatory terms, be isolated from other parts of a �rm, the analytical set-
ting would be just that. Clear cases are new product innovations, where there
are no old or existing assets. Moreover, for instance, big electricity intercon-
nectors or big gas pipelines, will typically qualify as stand-alone investments
and can well be regulated in isolation. Therefore, these cases are analytically
equivalent to K = 0. Second, the assumption that old and new assets are al-
ways characterized by the same charges may not always apply. In particular,
in many cases, the use of infrastructure may be arranged with initial upfront
connection charges, or, in even more cases, infrastructure use might be arranged
by long-term contracts which may be insulated against capacity shortages and
expansions. Moreover, regulators, faced with the threat of low investment and
capacity shortages, now tend to work with top-ups or, as it was phrased in the
United States, with rate-of-return adders. In e¤ect, regulators will grant higher
rates of return for additional investment, which breaks the link between existing
and new assets and is therefore analytically equivalent to the case where K = 0.
The propositions above suggest that this policy will indeed accelerate expansion
investment.
For the case of K = 0, the e¤ects on timing are unambiguous, as claimed in

Proposition 9. As the acceleration e¤ect of Proposition 7 now vanishes, there is
only a deceleration e¤ect as compared to the unregulated case. Therefore, we
conclude that, for expansion investment with K = 0, the investment date of a
regulated monopoly maximizing discounted pro�ts is always later than (or equal
to) the investment date of an unregulated monopoly maximizing discounted
pro�ts, which, in turn, is always later than the socially optimal investment date,
which brings us back to the discussion in Borrmann and Brunekreeft (2009).
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5 Concluding remarks

This paper deals with a topical problem in the area of monopoly regulation. By
a monopoly, we mean a natural monopoly with sunk costs due to infrastructure
investment, e.g. a transmission network or a distribution network for electricity
or gas.
Many regulators around the globe are concerned about what seem to be low

investment activities in these physical networks. The concerns are threefold.
First, many network assets are aging and need to be replaced. Second, there is
skepticism regarding private incentives to maintain the quality of the network.
This skepticism is especially relevant to the relationship between price-based
regulation and investment in quality, starting with the discussion on the seminal
work of Spence (1975). Third, frequently, regulators are actively promoting
expansion investment of the network. In fact, there are many examples of
investment needs at present.
The issue of e¢cient investment incentives is at the core of the current debate

on regulation. Whereas it receives a lot of attention in practice, the theoretical
literature is, up to now, rather silent. Our paper contributes to the theoret-
ical literature by exploring the relationship between regulation and monopoly
investment. We examine the di¤erences between price-based regulation and
cost-based regulation. Within the literature on the relationship between regu-
lation and investment, we focus on the timing of investment. More speci�cally,
we study the investment issue under certainty and concentrate on monopoly in-
vestment, which, in our case, means large investment outlays of a �xed nature,
so that timing is an issue at all. Our main conclusions are the following.
First, the optimal investment date of an unregulated monopoly maximiz-

ing discounted pro�ts, given high investment outlays which are independent of
output, is decelerated compared to the socially optimal investment date. This
result holds equally for replacement investment and for expansion investment.
It was discussed extensively in Borrmann and Brunekreeft (2009). Indeed, the
structure of the problem is reminiscent of the well-known classical problem of
a static situation with (cost) economies of scale, where welfare-optimal prices
equal to marginal costs imply that cost recovery is impossible. In this case,
unregulated private provision of a good without subsidies cannot lead to �rst-
best prices. Instead, second-best prices with full cost recovery are an obvious
alternative from a normative point of view. The problem discussed in this paper
is essentially a dynamic variation of this.
Second, we draw several conclusions on the e¤ects of pure price-based regu-

lation on the timing of replacement investment and the timing of expansion in-
vestment. By pure price-based regulation, we mean yardstick regulation, where
allowed prices or revenues are not related to the underlying own costs of the reg-
ulated �rm, but rather depend on benchmarking with something external to the
�rm, following Shleifer (1985). Thus, an investment cannot be passed through
into higher prices. We note that this seems counterintuitive for the monopoly
domain, but normal in a competitive setting. Your typical cornershop cannot
increase its prices just because it invests, since customers can simply go to an-
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other cornershop. This, of course, reminds us of what yardstick regulation aims
to do: mimic competition. However, it may go wrong, as we are dealing with
monopoly investment with high investment oulays of a �xed nature. A detailed
analysis gives unambiguous insights. On the one hand, yardstick regulation may
work just �ne for replacement investment, if properly applied. In fact, we show
that a lower yardstick price accelerates the investment date, provided that the
price level still allows full cost recovery. On the other hand, yardstick regula-
tion does not work well for expansion investment. A lower yardstick price may
decelerate expansion investment ine¢ciently.
Third, the aim of our paper is to examine, whether cost-based regulation can

accelerate the optimal investment date compared to price-based regulation. The
answer to this question is unambiguous. Cost-based regulation can accelerate
the optimal investment date compared to price-based regulation, but this may
not always be e¢cient from a social point of view. In other words, especially
for replacement investment, a cost-based approach can quite easily accelerate
the privately optimal investment date ine¢ciently fast. In still other words, the
privately optimal investment date can be too early. For expansion investment,
it is very unlikely that the investment date is ever ine¢ciently early. Thus,
acceleration triggered by a cost-based approach to regulation may improve e¢-
ciency. In general, we conclude that, when timely investment is the regulator�s
prime objective and e¢ciency considerations are only of secondary importance,
cost-based regulation for new investment is preferable over price-based regula-
tion. Cost-based regulation, including rate-of-return adders and top-ups, may
speed up investment. However, as far as the e¢ciency of investment timing is
important, details matter.
Two related assumptions are crucial to our model and suggest topics for

further research. Our approach assumes a monopoly situation, and it neither
presumes a race for investment nor tendering. We note that timing consid-
erations change, if we allow a race for investment. In particular, a race for
investment, if feasible at all, will accelerate the optimal investment date, as
compared to the monopoly case. Yet, in many real-world situations in network
industries, a race for investment is di¢cult to imagine. Where it is feasible,
it is likely to be ine¤ective, or it may generate other problems. In particu-
lar, we think of merchant investors in high-voltage transmission networks (cf.
Brunekreeft, 2004, 2005). Alternatively, tendering of the investment opportu-
nity might be an option. Although against a slightly di¤erent background, this
option was discussed as an option in EU legislation for transmission networks
and, more generally speaking, there appears to be a development towards more
decentralized investment models.
Furthermore, this paper relies on high investment outlays, which are inde-

pendent of output, and constant marginal costs at any point in time. As can
be seen from the di¤erent optimality conditions in di¤erent settings, this as-
sumption drives many results. First, the di¤erences in timing become small, if
investment outlays become small. Second, the assumption of high investment
outlays which are independent of output justi�es quite naturally our assump-
tion that investment takes place only once. Third, if investment outlays are
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relatively low, an adequate model should allow repeated investment. We ex-
pect that, if investment outlays are stepwise decreased and if cost functions are
strictly convex, optimization results in the normal competitive outcome, and
timing di¤erences vanish. We leave this for further reseach, but note that the
investment timing problem, as worked out in this paper, is genuinely a problem
of monopoly investment with high investment outlays, which are independent
of output.
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