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Abstract

A new class of semi-mixed effects models is introduced. It includes random

or mixed and fixed effects models as extreme cases. In multi-level regression,

such as small area studies, and in panel data studies, using a fixed effect for

each region leads to models that are flexible but that have poor estimation

accuracy; they are over-parameterized. Regarding region as a random ef-

fect reduces the number of parameters, and hence the flexibility, but needs

crucial assumptions, such as that of independence between covariates and

the random effects. The proposed class of models constitutes a continuum

of models, indexed by a “slider”, that determines the position of the model

between these two extremes. So one can choose a model that is close to the

parsimonious random effects case, but far enough away from it to filter out

unwanted dependencies. The methodology is used for a small area analysis

of tourist expenditures in Galicia.1

Keywords and Phrases: Semi-mixed effects models, semiparametric regres-

sion, multilevel models, small area statistics, panel data analysis.

1We gratefully thank Walter Zucchini, Jean Opsomer, Thomas Kneib, and Bernd Fitzenberger
for helpful discussion and comments.
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1 Introduction

For a response Ydj ∈ IR and covariates Xdj ∈ IRp, including the intercept, consider

a generalized linear Mixed Effects Model (MEM) with known link g

E [Ydj|ud, Xdj] = g
{
X t

djβ + Zt
djud

}
, d = 1, . . . , D; j = 1, . . . , nd, (1)

with Zdj ⊆ Xdj of dimension ρ, β ∈ IRp the fixed effect, and ud ∈ IRρ the i.i.d.

unobservable random effect with mean zero and unknown variances-covariance

matrix Σu. The latter has to be estimated. Suppose to have sample size n =
∑D

d=1 nd, where D is the number of areas (domains or groups) with the typical

assumption that D →∞ at rate O(n). In panel data analysis i may be time and

d the individual. A crucial assumption for the existing methodology is that Xdj

and ud are independent and that g(·) is known. Note that, if g is the identity,

model (1) includes the nested-error model (Zdj = 1 and ud ∈ IR), the random

regression coefficient model (Zdj = Xdj), and the Fay-Herriot model (only area

specific information, Fay and Herriot, 1979); see Prasad and Rao (1990) for a

summary.

Today, mixed effects models are popular in many areas of statistics, especially in

small area statistics, see Jiang and Lahiri (2006) or Rao (2003) for reviews; for

panel data analysis Diggle, Heagerty, Liang and Zeger (2002), and Ghosh, Nangia

and Kim (1996) for a typical example. They are widely applied in biomedical,

forestry, agricultural, economic and social science studies. Although the differ-

ent research areas favor different terminology, like small area statistics, multi-level

or simply mixed effects models, the statistical problems of modeling, estimation

and testing are basically the same; the differences arise mainly in the subsequent
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inferences. For example, in biometrics they serve to analyze data with repeated

measurements; in panel data analysis they account for possible heterogeneity over

the cross sectional samples; in small area statistics they serve to improve the pre-

diction of area-level parameters, while in econometrics they improve the calculation

of macro indices from micro-data. Apart from the increasing interest in multi-level

modeling (see Goldstein, 2003), they have also become popular in economics for

data matching, i.e. to impute a certain factor for the individuals in the sample of

interest with the aid of a different sample (see Elbers, Lanjouw and Lanjouw, 2003,

for a recent example in poverty mapping). At the end, they all have in common

that they try to account for a certain clustering, may it be due to space, time or

individuals over time in panels, climate, administrative area or districts, villages

or even large families, genetic groups or species.

More recently, mixed effects models have entered the nonparametric world; see

Opsomer, Claeskens, Ranalli, Kauermann and Breidt (2008), Hamilton (2001), and

Tutz (2001). In applied statistics, semiparametric Bayesian approaches are often

used in combination with (penalized) splines, series or random field estimators;

see Adebayo and Fahrmeir (2005) or Kneib and Fahrmeir (2006) among others.

However the asymptotic theory for estimation in semiparametric mixed models was

developed only recently. Lin and Carroll (2001) and Lombard́ıa and Sperlich (2008)

introduced an estimation procedure for generalized partial linear mixed effects

models, specification tests with bootstrap procedures, and provided asymptotic

theory for these methods.

Thus, for a more flexible modeling we may also allow some covariates to enter the

model nonparametrically. To ease the notation let us call these variables T ∈ IRq

and be different from the variables X which enter the model linearly. Then we
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have a generalized Partial Linear mixed effects Model (PLM) of the form

E [Ydj|Xdj,T dj] = g
{
X t

djβ + γ(T dj + Zt
djud)

}
, d = 1, . . . , D; j = 1, . . . , nd(2)

with a nonparametric function γ : IRq → IR.

The MEM is often motivated by the fact that it allows for efficient estimation

of the fixed part, but makes also use of the random effects for prediction. This

seems to outperform other parametric models in predicting and efficient estimation.

When predicting, the additional variance that results from assuming this effect to

be random, is only slightly larger than the variance of a fixed effect estimate

based on small samples, and this deficiency is easily compensated by the efficient

estimation of β. However, this improved prediction in the mean is illusory if the

somewhat unrealistic assumption of independence between area effects and the

covariates, as well as the unobserved individual effects, is not met. Thus, even

when a MEM leads to a better sample fit, it does so at the cost of producing

biased estimates, and consequently bad out-of-sample prediction. Furthermore,

methods to do valid inference have not yet been developed. All the currently

available methods for testing or prediction intervals are clearly inconsistent if the

assumption of independence is violated. This deficiency is not shared by the Fixed

Effects Model (FEM)

E [Ydj|Xdj] = g
{
X t

djβ + cd

}
, d = 1, . . . , D; j = 1, . . . , nd, (3)

with cd being an area (domain or group) specific fixed effect without the assumption

of independence from the individual effects Xdj.

We studied many applications where the random effects represented the effect of
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either a region, a climate type, a socio-economic group or the proband group in

biostatistics. In almost all cases the independence assumption was hardly credi-

ble. This causes endogeneity giving inconsistent estimates for β and potentially

woeful out-of-sample prediction performance. The affirmation, for the purpose of

estimation the FEM, and for prediction the MEM, would be the right model is

unfortunately wrong. For example, the FEM does not allow to include covariates

which do not or hardly vary with i (time in panel data) for given d. A prediction

with MEM when the unrealistic independence assumption is violated performs only

well for in-sample prediction, and parameter estimates can not be interpreted.

We therefore propose to use a flexible modeling of area effects that allows to change

continuously from a MEM (eqn 1) without area specific covariates to a Semipara-

metric Mixed Effects Model (SMEM) with a smooth area specific mean and a

random effect (eqn 4), up to the other extreme, an FEM (eqn 3). We bridge the

gap between FEM, MEM and PLM by a flexible modeling of area effects. The

transition from MEM to SMEM and FEM is achieved by progressively relaxing

the smoothness assumption on the semiparametric area specific impact: we start

with the highest degree of smoothness (a constant) yielding to a random effects

model, and end up with the lowest degree (interpolation of the area effects) yield-

ing a fixed effects model. This way one can resolve all problems at once: model,

and thus explain, the area or group effect, and dispose of the “independence as-

sumption” problem. One obtains consistent estimates and valid inference. This is

achieved without loosing the advantages of MEM, and without running into the

problems we would face in a FEM. It should be emphasized that it nests MEM,

FEM, and PLM. Consequently, it outperforms them all in estimation and predic-

tion.
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2 The Semiparametric Mixed Effects Model

In the following, area-specific effects can be either random or fixed. For the ease or

presentation we concentrate on the nested-error model, i.e. (1) with Zdj = 1 and

ud ∈ IR. Let W ∈ IRq denote some continuous area-specific covariates. We define

the semiparametric mixed effects model (SMEM) as

E [Ydj|Xdj,W d, ud] = g
{
X t

djβ + ηv(W d) + ud

}
, (4)

where ηv : IRq → IR is an unknown nonparametric function with a given “slider”

v. The area effect is split in a conditional mean and a random effect. We set

E[ηv(W )] = 0 for identification such that X t
djβ includes the intercept. We can

think of v also as a smoothness parameter so that, for example, for kernel estimates

we set the bandwidth to h = v ·n−2/(4+q). Then, at one extreme we have η0(W d) =

cd with
∑D

d=1 cd = 0 and, at the other extreme, η∞(W l) = 0. In the first case η0

captures the area effect completely via the conditional mean so that we get ud = 0

for all d and a FEM (3), whereas for h = ∞ we obtain a MEM (1), where the area

effect is regarded as a purely random effect. Finally, when h or v are between 0

and ∞ but σu = 0, then we face a (generalized) PLM. We see that v acts as a

slider in the sense that by varying v we obtain a continuum of models between the

two extremes:

v = 0 : E [Ydj|Xdj] = g
{
X t

djβ + cd

} ↔ v = ∞ : E [Ydj|ud,Xdj] = g
{
X t

djβ + ud

}

and for 0 < v < ∞

E [Ydj|Xdj,W d, ud] = g
{
X t

djβ + η(W d) + ud

}
.
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Let θ be the vector of all variance and covariance parameters, including the el-

ements of σ2
u = V ar[ud] ∀d, and set δ = (β,θ). For example, in the case

of a partial linear semi mixed effects model and ρ = 1, one typically assumes

V ar[Ydj|Xdj,W d, ud] = σ2
eϑ(Xdj, W d) with known function ϑ(·) and so θ =

(σ2
u, σ

2
e).

When selecting the smoothing parameter the empirical researcher needs to keep in

mind that goodness of fit is not the only objective; an important consideration in

choosing v is to achieve (approximately)

Covv [u , {X|ηv(W )}] = 0 . (5)

Let us discuss this issue more in detail. In practice it is often the case that some

of the X are correlated with area. If they are correlated with W then, clearly,

estimation and prediction based a MEM (1) will yield biased results, whereas those

based on a SMEM (4) will be unbiased. It might seem that the model

E [Ydj|Xdj,W d, ud] = g
{
X t

djβ + W t
dα + ud

}
, (6)

would also solve the problem, but this is not the case in general. That’s because the

dependence structure between X and the area is often complex, and not limited

to a simple linear relation with the available area information W . Fortunately, in

practice the relation can be described sufficiently well via ψ(W ) for an unknown

function ψ, as long as W varies continuously over the different areas. Imagine

the relation between Xdj and the area d is summarized in some (possibly latent)

variable Jd, i.e. Xdj = Jd + X̃dj with X̃dj being independent of any area effect.

Our claim is that we can always find a function ψ fulfilling ψ(W d) = Jd + V d
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with V d defined implicitly. In the case W d ≡ Jd, ψ is the identity. Another

particular case is when ψ simply assigns Jd to W d for each d = 1, . . . , D, i.e.

doing interpolation. Recall that ηv is a nonparametric function with appropriate

smoothness v. Then, for an implicitly defined ϕω we get

E [Ydj|Xdj, W d, ud] = g
[
X t

djβ + ηv(W d) + ud

]
=

= g
[
X t

djβ + ϕω {ψ(W d)}+ ud

]
= g

[
X t

djβ + ϕω {Jd + V d}+ ud

]
, (7)

where ϕω is again a nonparametric function with a smoothness parameter ω. This

one depends on v and the smoothness of ψ or, vice verse, v depends on ω and ψ.

From (7) we see that this model does not suffer from dependency between Xdj

and ud, i.e. endogeneity of Xdj. Consequently, ηv can filter out the endogeneity

in practice. In econometric terms, ηv(W d) can be regarded as a nonparametric

proxy. Even if W alone is a poor proxy, we just need to set v ≈ 0. With that

choice our SMEM reverts to (almost) an FEM, and is therefore free of endogeneity.

3 Estimation and Asymptotic Behavior

We will analyze the statistical properties by different means. First, we give esti-

mation procedures and summarize their asymptotic behavior. Then, we will study

the finite sample performance in contexts where multi-level models are used. For

brevity we concentrate on cross sectional data.

There exist alerady some estimation procedures for semiparametric multi-level

models (Lin and Carroll, 2001), and quite recently for MEM with semiparamet-

ric impact of X (see Opsomer, Claeskens, Ranalli, Kauermann, and Breidt, 2008).

There also exist several estimation procedures based on Bayesian approaches, some
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combined with penalized splines, some with MCMC methods; see references in

Section 1. Lin and Carroll (2001), and Lombard́ıa and Sperlich (2008) proposed

profile likelihood estimators. Lin and Carroll (2001) tackled correlated responses

but without explicit random effects. Lombard́ıa and Sperlich (2008) accounted for

the dependence structure in generalized MEM, but only when estimating β.

Here we propose to also take account of the covariance structure when estimating

the nonparametric part using ideas of Vilar-Fernández and Francisco-Fernández

(2002) or Lin and Carroll (2001)for likelihood based estimators. For the latter we

maximize a log-likelihood say l(·; η, δ). When we apply the integral approach, this

is based on the marginal density

f(Ydj|W d, Xdj; η, δ) =

∫
f(Ydj|u,W d,Xdj; η, β, σ2

e)p(u; σu)du, (8)

where p(·) is the density of the random effects. When we apply the posterior mode

approach (easier to calculate by using EM-algorithms), see Fahrmeir and Tutz

(2001), we maximize the logarithm of

D∏

d=1

nd∏
j=1

f(Ydj|ud,W d,Xdj; η, δ)
D∏

d=1

p(ud; σu) . (9)

To estimate ηv at a fixed point w0, one works with an empirical counterpart of its

condition expectation, i.e. E [l(Y ; η, δ)|W = w0]. We conclude from Lombard́ıa

and Sperlich (2008)that under rather common smoothness conditions on f and ηv

a)
√

n(δ̂ − δ)
d−→ N

(
0, I−1

δ

)
, where Iδ is the (marginal) Fisher information

matrix of l(·).

b) defining hprod =
∏q

j=1 hj and hmax = max1≤j≤q hj, w0 being from the interior
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of the support of W , and pW (·) its density function, then

√
nhprod (η̂v(w0)− ηv(w0)−Bη(w0))

d−→ N (0, V arη(w0)) ,

with bias Bη(w0) = O(h2
max)

and variance V arη(w0) =
∫

K(w)2dw
pW (w0) E

[
∂

∂ηv
l(Y ;ηv ,δ0)

2|W =w0

] .

While typically it is assumed that the likelihood is correctly specified, this is not

necessary for consistency, see Jiang and Lahiri (2006) for references. As can be seen

from b), asymptotically, hmax has to go to zero and so do all the other bandwidths,

but such that nhmax → ∞. From Maity, Ma, and Carroll (2007) we conclude

that using these estimates produce efficient predictors for forecasting area-specific

means.

But how do we get such an estimator in practice? Fahrmeir and Tutz (2001)

discuss computational expensive algorithms for nonlinear links g(·) but in else

somewhat simpler context. To understand better the efficient estimation of η,

let us first consider g = identity and introduce the following notation: define

1 := diag{1nd
}D

d=1, Y = (Y1,1, Y1,2, . . . , YD,(nD−1), YD,nD
)t, a vector of i.i.d. zero-

mean errors ε, and X ∈ IRn×p, u ∈ IRD×ρ, Z ∈ IRn×(Dρ), W ∈ IRD×q. Then our

model (4) writes as

Y = Xβ + 1 ηv(W ) + Zu + ε , (10)

where ηv(W ) means row-wise application of ηv : IRq → IR. We propose profiled

likelihood neglecting the integral approach as we are not only interested in the

estimation of δ but also in the prediction of the random effects. We want to

account for the covariance structure when estimating the nonparametric functions,
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similar to Vilar Fernández and Francisco Fernández (2002). More specific, we nest

the iteration steps of feasible profile likelihood estimation in parametric MEM (see

e.g. Chapter 6 in Rao, 2003) with the ones of profile likelihood estimation in partial

linear regression estimation . Let Ĥ be the so-called smoothing hat matrix of a

Nadaraya-Watson kernel smoother around W , with quartic kernel and bandwidth

h. Let K̄h = diag{1nd
Kh(W d − w)}D

d=1, w ∈ IRq, and Kh(ω) =
∏q

j=1
1
h
K(ωj/h),

ω ∈ IRq, a product kernel. Then, in the (k + 1)th iteration we calculate

β(k+1) =
{

(X − ĤX)tV −1X
}−1

(X − ĤX)tV −1
{
Y − 1η(k)

v (W )
}

,

V = Inσ2
e
(k)

+ Zσ2
u
(k)

Zt, A−1 = ID + Zt 1

σ2
e
(k)

Zσ2
u
(k)

,

η(k+1)
v (w) =

(
1t

nV
−1/2K̄hV

−1/21n

)−1
1t

nV
−1/2K̄hV

−1/2
(
Y −X tβ(k+1)

)
,

u(k+1) = σ2
u
(k)

ZtV −1
(
Y −X tβ(k+1) − 1η(k+1)

v (W )
)

,

ε(k+1) = Y −X tβ(k+1) − 1η(k+1)
v (W )−Ztu(k+1),

σ2
e
(k+1)

=
1

n
Y tε(k+1), and σ2

u
(k+1)

=
1

D

(
u(k+1)tu(k+1) + σ2

u
(k)

tr(A)
)

.

For the case when g 6= identity, this algorithm can be completed by including a

local scoring step to (re-)linearize the estimation problem.

We conclude with three remarks. First, the extensions of SMEM either to allow for

a non- or semiparametric modeling of the impact of X or to impose some structure

on ηv like additivity are quite straight and therefore not discussed here. Second,

as mentioned in the introduction, the use of P-splines has become quite popular in

the context of mixed effects models, and some of the just enumerated extensions

may be easier to implement in splines than with kernels. However, while it is clear

how to achieve v → 0 for kernel based estimators, in the case of P-splines we have

to change both, the penalizing coefficient (usually denoted as λ) and the number
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of knots K. To guarantee a smooth transition one would also need additional

information to select an appropriate combination of λ and K. In practice this

makes a smooth and continuous transition from FEM to MEM much less conve-

nient. Third, Hall and Maiti (2006) have introduced nonparametric estimation of

mean-squared prediction error, and Lombard́ıa and Sperlich (2008) methods for

testing in semiparametric mixed effects models. These methods directly carry over

to the here introduced SMEM, and can therefore be used for further inference.

Both introduce bootstrap methods used in the following.

4 Empirical Evidence and Illustration

For (Xdj,1, Xdj,2)
t = Xdj ∈ IR2 consider model (10 ) with ηv(W ) =

∑q
k=1 sin(2.5Wd,k),

where Wd,k ∼ U [0, 2] i.i.d.∀ k, ud ∼ N(0, σ2
u) i.i.d., and ε ∼ N(0, σ2

e) i.i.d. For

i = 1, 2 we generated Xdj,i = 0.8 · Odj,i + 0.5
∑q

k=1 W 2
d,k with Odj,i ∼ N(0, 1) i.i.d.

Further, β0 = 1.5, β1 = 1.5, and β2 = 1. We consider only data generating pro-

cesses (DGP hereafter) with q = 1 or q = 2. This gives V ar[Xdj,i] ≈ 1 with

Corr[Xdj,i,Wd] ≈ 0.29 for q = 1, and V ar[Xdj,i] ≈ 1.35 with Corr[Xdj,i,Wd,k] ≈
0.25 for q = 2; i, k = 1, 2. Simulation results are based on n = 250, d = 50 with

different θ = (σ2
u, σ

2
e), and all results given refer to 250 simulation runs. The imple-

mentations of FMEM, MEM, SMEM and PLM are nested algorithms to guarantee

a fair comparison. We use quartic kernels to estimate η and will henceforth speak

of bandwidth h and slider v synonymously. In our simulations the convergence

criterion was a change of δ̂ by less than 0.01% in the Euclidian norm. This was

reached after no more than about ten iterations for the real, and about five for the

simulated data. In Figure 1 are plotted the impacts of the systematic area effect for

q = 1, 2. The sine function has been chosen for two reasons: first, trigonometrical
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functions are known to be hard to estimate by the common nonparametric meth-

ods; second, this way the dependence structure between X and the area impact is

particularly complex.
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Figure 1: The systematic area effect ηv(W ) for q = 1 (left) and q = 2 (right).

Bias and Mean Squared Errors of β̂ and η̂v

As the independence assumption of the MEM is violated, the estimator β̂ will

be inconsistent, but it is not clear how mean squared error (MSE) and bias will

change with bandwidths 0 ≤ h ≤ ∞; they are given as functions of ln(h) in Figure

2. In our DGP we set q = 1 and θ = (0.25, 0.5).
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Figure 2: MSE(β̂) and Bias(β̂) for β1 (solid) and β2 (dotted) as functions of
bandwidth h when q = 1 and θ = (0.25, 0.5).

We compare SMEM first with MEM, afterwards with PLM. Biases and variances

for β̂ are summarized in Table 1 for models with different θ and q. Obviously, the
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bias can become quite severe when the independence assumption does not hold.

At the same time the variance is not larger in the SMEM, despite the fact that

nonparametric estimation is applied. Before studying this point in greater detail,

recall that we make use of the variance estimates θ̂ in both MEM and SMEM.

Therefore, we also examined the estimates of θ. However, a fair comparison is not

possible because, in the MEM, part of the variation due to η will be erroneously

assigned to σ2
u, such that the SMEM always beats the MEM by far.

Model q = 1 q = 2

σ2
e σ2

u bias(β̂1, β̂2) var(β̂1, β̂2) bias(β̂1, β̂2) var(β̂1, β̂2)

.1 .0 -.0315 -.0305 .0009 .0008 -.0327 -.0294 .0008 .0008
.25 -.0215 -.0203 .0008 .0007 -.0263 -.0230 .0008 .0007

M .5 -.0166 -.0154 .0008 .0007 -.0221 -.0189 .0008 .0007
E .5 .0 -.1336 -.1311 .0046 .0040 -.1617 -.1533 .0051 .0050
M .25 -.0893 -.0864 .0043 .0036 -.1206 -.1124 .0043 .0042

.5 -.0690 -.0662 .0042 .0035 -.0987 -.0908 .0041 .0040
.1 .0 -.0045 -.0033 .0007 .0007 -.0072 -.0046 .0007 .0007

S .25 -.0028 -.0015 .0008 .0007 -.0036 -.0008 .0008 .0007
M .5 -.0025 -.0013 .0008 .0007 -.0030 -.0002 .0008 .0007
E .5 .0 -.0084 -.0057 .0032 .0033 -.0136 -.0093 .0032 .0031
M .25 -.0074 -.0042 .0038 .0035 -.0104 -.0049 .0037 .0034

.5 -.0067 -.0035 .0040 .0036 -.0086 -.0028 .0038 .0034

Table 1: Bias and variance of β̂. The SMEM refers to h = 0.5.

Although Vilar Fernández and Francisco Fernández (2002) considered a quite dif-

ferent model, it is clear from their results that our SMEM will be more efficient

than common PLM estimators of ηv, and, in our context, of β̂. For the numerical

performance this is even true if σ2
u = 0, since when estimating model (4), our ran-

dom effects with estimate σ̂2
u will correct for a possible over- or undersmoothing

of the impact of W and vice versa. In Table 2 are compared the expected mean

squared errors (EMSE hereafter) of η̂v and β̂ resulting from SMEM and PLM for

h = 0.5, and of η̂v, defined by E [{ηv(W )− η̂v(W )}2]. The results support our
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expectation, namely that SMEM also outperforms the PLM.

Model q = 1 q = 2

σ2
e σ2

u EMSE(η̂v) MSE( β̂1, β̂2) EMSE(η̂v) MSE(β̂1, β̂2)

.1 .0 .0150 .0007 .0007 .0344 .0009 .0008
.25 .0340 .0022 .0021 .0933 .0021 .0018

P .5 .0529 .0037 .0035 .1520 .0033 .0028
L .5 .0 .0247 .0033 .0034 .0640 .0035 .0032
M .25 .0440 .0048 .0046 .1231 .0048 .0043

.5 .0630 .0063 .0060 .1818 .0060 .0053
.1 .0 .0148 .0007 .0007 .0320 .0007 .0007

S .25 .0311 .0008 .0007 .0842 .0008 .0007
M .5 .0474 .0008 .0007 .1371 .0008 .0007
E .5 .0 .0246 .0033 .0033 .0630 .0034 .0032
M .25 .0419 .0039 .0035 .1159 .0038 .0034

.5 .0585 .0040 .0036 .1681 .0038 .0034

Table 2: Expected mean squared errors of η̂v and β̂ for PLM and SMEM(h = 0.5).

Prediction Power in and out of Samples

A most often mentioned argument in favor of MEMs is their superior prediction

power, which is important for data matching when imputing factors for individuals,

and in small area statistics to predict area-, or say macro-, level parameters. The

next simulation study (see Table 3) was designed to assess this claim, by comparing

the prediction power of MEMs and SMEMs for (a) in-sample prediction, (b) out-

of-sample prediction, (c) individuals, and (d) area-levels.

Our in-sample prediction risk measure is simply the average over the 250 simu-

lation runs of the mean squared error. We denote this measure by ASE (aver-

aged squared errors); it is defined by ASE = 1
250

∑250
repl=1 MSErepl, where MSE =

1
n

∑D
d=1

∑nd

j=1(Ydj− Ŷdj)
2, with Ŷdj = β̂

t
Xdj + β̂0 + ûd, the so-called feasible EBLUP

for the MEM, and Ŷdj = β̂
t
Xdj + β̂0 + η̂v(W d) + ûd for the SMEM. Note that β̂

and û are certainly different for the two models.
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Our out-of-sample risk is the mean squared prediction error for two particular X,

called MSE(Ŷl, Ŷs): for X l = (2q
3

+ 2.5, 2q
3

+ 2.5), respectively Xs = (2q
3
− 2.5, 2q

3
−

2.5), each in a different but fixed area.

Model q = 1 q = 2

σ2
e σ2

u ASE MSE(Ŷl, Ŷs) ASE MSE(Ŷl, Ŷs)

.1 .0 .0208 .0780 .1286 .0214 .0995 .1806
.25 .0205 .0562 .0816 .0211 .0775 .1360

M .5 .0205 .0486 .0652 .0210 .0663 .1126
E .5 .0 .1004 .7701 1.659 .1179 1.625 3.344
M .25 .0987 .4634 .8589 .1093 .9843 1.966

.5 .0988 .3540 .5947 .1063 .7199 1.406
.1 .0 .0103 .0368 .0261 .0154 .0393 .0576

S .25 .0194 .0352 .0409 .0198 .0424 .0566
M .5 .0200 .0363 .0413 .0203 .0426 .0557
E .5 .0 .0251 .1152 .1012 .0461 .1565 .2294
M .25 .0797 .1515 .1829 .0862 .1976 .2785

.5 .0894 .1651 .1958 .0936 .2056 .2810

Table 3: The average squared error (ASE) of the inside-sample predictors, and the
mean squared error of Ŷl and Ŷs when SMEM is estimated with h = 0.5.

Due to the nature of the MEM which basically fits the area effect with random

coefficients, it is clear that an in-sample prediction will always do well in terms of

the mean squared error. In contrast, for small and moderate sample sizes nonpara-

metric methods such as we use to estimate η in our SMEM can have very poor

numerical performance. Nevertheless, the results in Table 3 show that SMEMs

clearly outperform the MEM, even in the ASE, and substantially in the out-of-

sample prediction. Recall that valid inference with MEM is hardly possible for

this DGP as the available methods are typically model based (model biased) and

therefore inconsistent.
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Calculation of Area Parameter (Macro Indices)

When calculating macro indices, also called prediction of area-level parameters

in small area statistics, MEM is expected to perform reasonably well. As this

is partly an in-sample prediction problem of aggregates, it should easily compete

with SMEM regardless of possible violation of the independence assumption. Let

us predict, for each area d = 1, ..., 50, two indices (parameters at the area level):

(i) µd = E[Ȳd•|Xd,W d, ud], this is assuming that the number of population units

in the dth area is large; and (ii) Ȳd• =
∑Nd

j=1 ydj/Nd, assuming a super-population

regression model of the form (10) for the Nd population units in the dth area.

When considering (ii), the best linear unbiased estimator of Ȳd• is given by

ˆ̄Yd• = fd ȳsd + (1− fd)µ̂nd,

where fd = nd/Nd, ȳsd is the average of the in-sample values and µ̂nd is the predictor

of µd for the (Nd−nd) non-sampled units. Therefore we consider now the situation

in which we wish to predict Y for some individuals for whom X is available.

We performed two simulation runs with q = 2, but with 10 observations Xdj for

each area, whereas Ydj was observed only for the first 5 individuals. In a first run

all Xdj were randomly drawn (d = 1, ..., 50 and j = 1, ..., 10). In a second run we

set

Xd6 = (−1,−1), Xd7 = (0.16, 0.16), Xd8 = (1.33, 1.33), (11)

Xd9 = (2.5, 2.5), and Xd10 = (3.67, 3.67)

for all areas. They are independent of the area effect ud but (−1, 0.16, 1.33,

17



2.5, 3.67) represent (approximately), for each element X of X,

(E[X]− 2σX , E[X]− σX , E[X], E[X] + σX , E[X] + 2σX)

with σX denoting its standard deviation unconditionally from the area. Each value

Ydj was generated with its corresponding Xdj (j = 1, ..., 5). As before, we show

only results for bandwidth h = 0.5. We note, however, that in our simulations

using h ≈ 0.7, the SMEM outperformed the MEM by an even greater extent.

The results are given in form of box-plots which show the distributions of the

D = 50 mean squared errors for different data generating process. In each plot

the box-1 and box-2 refer to SMEM and SEM respectively, with Xd6 to Xd10 taken

randomly; box-3 and box-4 refer to SMEM and MEM respectively, with Xd6 to

Xd10 as in (11). For clarity of illustration the displays do not show the extreme

(large) mean squared errors for the MEM (between 2 to 5% of the points).
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Figure 3: Predicting Ȳd•: Mean squared error distributions over the 50 predicted
area level parameter Ȳd• for different (σ2

e , σ
2
u). Box 1 refers to SMEM and box 2

to MEM, with Xd6 to Xd10 randomly; Box 3 refers to SMEM and box 4 to MEM,
with Xd6 to Xd10 as in (11).

The mean squared errors are quite small, especially when predicting (ii) Ȳd•, where
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Figure 4: Predicting µd: Mean squared error distributions over the 50 predicted
area level parameter µd for different (σ2

e , σ
2
u). Box 1 refers to SMEM and box 2

to MEM, with Xd6 to Xd10 randomly; Box 3 refers to SMEM and box 4 to MEM,
with Xd6 to Xd10 as in (11).

half of the information (Yd1 to Yd5) is given. There, the differences between the pre-

diction based on MEM compared to the prediction based on SMEM is restricted

to the out-of-sample prediction. Consequently, as can be seen in all graphs of

Figure 3, the SMEM outperforms MEM by far. Turning to the prediction of (i)

µd = E[Ȳd•|Xd, W d, ud], the mean squared errors have increased significantly, rep-

resenting half in-sample and half out-of-sample prediction errors. The comparisons

of the ASE in Table 3, indicate that the advantage of the SMEM over the MEM for

in-sample prediction can be fairly small, though always visible. Thus, examining

the box-plots given in Figure 4, it is surprising that the superiority of the SMEM

over MEM is so marked.

Exactness of Bootstrap Approximates

Finally, we checked whether bootstrap procedure (Lombard́ıa and Sperlich, 2008)

works for a DGP with q = 1. We carried out only 100 simulation runs with 200

bootstrap replicates being aware that this will give only a rough approximation.
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The results are given in Table 4. Following the recommendation of Härdle and

Marron (1991), the bootstrap model was constructed using a pilot bandwidth

g greater than h, (g = 1.1 h). We also tried other values for g; the results were

similar. As can be seen, the results confirm that the bootstrap procedure can serve

as a reasonable tool for doing inference in our SMEMs. Additional simulations,

not shown here, revealed that the bootstrap does reasonably well at estimating

the variance but, in some cases, does less well in estimating the bias, which is not

surprising, as this is generally the case for bootstrap in nonparametrics.

σ2
e σ2

u MSE(β̂1, β̂2) MSE(σ̂2
e , σ̂

2
u) MSE(Ŷl, Ŷs)

O .1 .25 .0008 .0007 .0001 .0026 .0352 .0409
B .1 .25 .0007 .0007 .0001 .0030 .0337 .0388
O .5 .25 .0039 .0035 .0024 .0043 .1515 .1829
B .5 .25 .0035 .0036 .0025 .0050 .1455 .1684

Table 4: Bootstrap approximations (B) of actual mean squared errors (O) for β̂, θ̂,
and predictors (Ŷl, Ŷs). Estimates and predictions were calculated in the SMEM,
dimension q = 1, with bandwidth h = 0.5.

5 Analyzing Tourist Expenditures in Galicia

We now apply of our model class in the context of small area statistics predicting

average tourist expenditures in the 53 counties of Galicia, a region in the Northwest

of Spain. As with the rest of the country, tourism is one of the most important

sources of revenue. Therefore, official statistics and politics have a strong interest

in acquiring information about the expenditure behavior of tourists. Presently,

the Galician Statistical Institute (IGE) is focusing its efforts on extending their

statistics to county level, and to the level of the so-called comarcas of which 53

exist in Galicia. Obviously, the task of obtaining reliable information about a
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Figure 5: Map of Galicia, with all comarcas having coast are in light grey, comarcas
the French trail passes through in grey. Fisterra has both, and Santiago is the
pilgrim center and the capital.

tourists expenditure is cumbersome and expensive, and one must make do with

modest sample sizes, i.e. interviewing in detail maybe 10 individuals per comarca.

A peculiarity of Galicia is the famous pilgrim trails to Santiago de Compostela,

especially the so-called French trail. For example, in the holy year of 2004 about

180000 pilgrims visited Galicia. Another tourist attraction is certainly the coast.

Figure 5 shows the map of the comarcas of Galicia; with all comarcas having coast

in light grey and the comarcas that the French trail passes through in grey. The

comarca Fisterra has both peculiarities, and Santiago is the pilgrim center and
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capital. Also relevant is the fact that rural tourism is growing in the sparsely

populated areas.

We make use of an own survey organized by the University of Santiago de Com-

postela in 2004. It contains information on 10 tourists per comarca, including

average expenditures per day and several characteristics of the individuals. Our

dependent variable, expenditure, refers to total expenditure, including accommo-

dation, food, purchases, travel, leisure activities, and miscellaneous expenditure.

The presented study uses the set of variables described in Table 5.

The dependent variable

lexp ln of total expenditure per day & cap. 4.064 .6464 4.086

Variables of the individuals

sex = 1 if male .4774 .4995 .0000
age1 = 1 if strictly younger than 29 .2340 .4233 .0000
age2 = 1 if 29 ≤ age ≤ 65 .7057 .4557 1.000
single = 1 if single .4094 .4917 .0000
child = 1 if children ≤ 16 years old .2792 .4486 .0000
ngal = 1 if not from Galicia .7453 .4357 1.000
educ = 1 if academic .4981 .5000 .0000
stud = 1 if student .1226 .3280 .0000
self = 1 if self-employed .1000 .3000 .0000
pilgr = 1 if pilgrim .1189 .3236 .0000
family = 1 visit family, friends, etc. .3868 .4870 .0000
stay measured in days 16.74 17.71 10.00

Variables of the comarca

lpopd ln of population density 3.276 .8068 3.156
ftrail = 1 if French pilgrim trail .0440 .0913 .0000
coast = 1 if coast .0839 .1122 .0000

Table 5: Descriptive statistics: mean, standard deviation, and median.

We included all three area variables in ηv to account for interactions. Other vari-

ables of the comarcas, which might seem important, like the index of tourism,

the index of bars and restaurants, and the index of economic activity were disre-
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garded for a number of reasons. Firstly, they have two sources for endogeneity:

measurement error and simultaneity. In some regions of Spain the sales reported

by bars and restaurants are about the same amount that tourists claim to have

consumed there. So, unless one believes that residents do not consume in bars and

restaurants, either the owners under-report the sales or the tourists over-report

their consumption. Similar problems occur for the economic activity, e.g. the con-

struction branch has an important impact on the Gross National Product but it

is widely believed that, alone in this sector, more than 30% of the real turnover is

paid cash in hand without VAT (value-added tax). Simultaneity is also evident.

Finally, the exclusion of these indices is justified by problems of multicollinearity:

all three indices are strongly correlated (up to 99.4%) between each other and with

population density (up to 98.8%). These correlations also indicate that lpopd is a

good instrument for the indices “tourism” and “bars and restaurants”.

The main interest is in predicting the mean expenditures, i.e.

Ȳd• := β0 +
1

nd

nd∑
j=1

X t
djβ + ηv(W d) + ud for all d = 1, . . . , D,

or, preferably, the deviations Ỹd• := Ȳd• − Ȳ••. For the sake of brevity we only

report results on estimates with bandwidths h = hcσW for hc = 0 (giving a FEM),

0.4 (giving our SMEM), and 1000 (giving a MEM), where σW is the vector of

standard deviations for the comarca covariates. While the coefficient estimates,

discussed later, seem to not to change much for the different models, the estimates

of the macro-parameters do. We found that, for half of the comarcas d, their

Ỹd• changes significantly with the chosen model; some of the values tripled when

changing from one model to another, others changed signs, etc. In Figure 6 we see

how the distribution of the predicted means changes smoothly (with v being the
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slider) from fixed to mixed effects models. For a better comparison we plotted all

densities on the same scales. It is very clear that the predicted means are more

spread for the (most flexible) FEM, and that the spread shrinks as the flexibility

of the model is reduced, i.e. as we approach the MEM, at which point the spread

is at its smallest. Not evident in these plots are the substantial changes in the

predicted means of most of the 53 comarcas. The effect evident in Figure 6 could

be caused simply by shrinking the predicted means towards the center.
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Figure 6: Densities of the predicted means ̂̃Yd• for the different models.

A different way to look at the changes when moving from FEM to MEM is given in

Figure 7. From these graphs now we see that the differences are substantial, and

the bootstrap estimates of the standard deviations (not shown) reveal that many

changes are significant.
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Figure 7: Densities of the differences ̂̃Yd•(MEM) − ̂̃Yd•(FEM), ̂̃Yd•(MEM) −
̂̃Yd•(SMEM), and ̂̃Yd•(FEM)− ̂̃Yd•(SMEM).

This clear evidence that the estimates obtained depend strongly on the model used.
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This matters a great deal because, among other things, political decisions, are

based on the estimates Ỹd•. As illustrated here, such estimates can be misleading

(due to misspecification and endogeneity) if they are based on simple mixed effects

models, or very imprecise, if based on simple fixed effects models. We have skipped

here the changes in β̂ for brevity; it is of less interest in this particular study, and

our findings already highlight that the model estimates change indeed notably.

Finally, we examine the coefficient estimates, together with the bootstrap estimates

of the standard errors, see Table 6. In the bootstrap we used g = 1.1h as the pilot

bandwidth for the pre-estimation, and 400 bootstrap replications. Recall that

the bootstrap for the MEM is inconsistent here, so that the standard errors for

the MEM are underestimated for MEMs. For β̂ we can hardly find significant

differences between the three models in this application.

FEM SMEM MEM

β̂ S.E. β̂ S.E. β̂ S.E.

sex -.0284 .0447 -.0242 .0448 -.0327 .0409
age1 .2428 .1199 .2249 .1188 .2271 .1017
age2 .2665 .1080 .1978 .0966 .2145 .0879
single -.0402 .0613 -.0745 .0568 -.0543 .0526
child .0003 .0565 -.0166 .0501 -.0164 .0486
ngal .2288 .0560 .2377 .0565 .2474 .0471
educ .0648 .0487 .0481 .0454 .0517 .0410
stud -.2219 .1011 -.2212 .0963 -.2312 .0829
self .0809 .0786 .1288 .0740 .1131 .0721
pilgr -.7004 .0910 -.6926 .0752 -.6918 .0683
family -.1798 .0544 -.1478 .0487 -.1689 .0443
stay -.0047 .0014 -.0045 .0014 -.0044 .0011

σ̂2
u .0297 .0171 .0650 .0123

Table 6: Coefficients estimates with their bootstrap standard errors.

For the FEM we can compare the results with a parametric orthogonal least squares

regression to check the robustness of our implemented method. Note that the co-

25



efficient estimates coincided perfectly with the numbers given in Table 6, with an

R2 = .3908. More interesting is to compare the parametric estimates of the stan-

dard errors with our bootstrap estimates. Although they deviate slightly (numeri-

cally) from each other, see Table 7, we conclude that the bootstrap approximation

works reasonable well (as we did in the simulation part). Nevertheless, it must be

kept in mind that the bootstrap estimates are model based, and can easily mislead,

as they typically do in MEMs.

sex age1 age2 single child ngal educ stud self pilgr family stay

O .0461 .1207 .1022 .0623 .0579 .0591 .0510 .0989 .0812 .0893 .0564 .0015
B .0447 .1199 .1080 .0613 .0565 .0560 .0487 .1011 .0786 .0910 .0544 .0014

Table 7: For FEM, the parametric estimates (parametric orthogonal least squares
regression) of the standard errors (O) and the bootstrap approximation (B).

6 Conclusions

We have introduced a new class of semi-mixed effects models that combines fixed

effects, mixed effects and partial linear models. Nesting these models it can benefit

from the advantages each model offers, and at the same time mitigate or even

avoid its shortcomings. Our SMEM allows for a smooth transition from FEM

to MEM, i.e. our class contains the continuum between them including also the

PLM. Under the wrong assumption of independence the model is estimated with a

serious bias in the MEM, and the variance of the estimates is larger than that in our

semiparametric alternative. Moreover, we do not only offer consistent estimators,

but also outperform the nested models FEM, PLM and MEM by construction.

That this holds also true for finite samples, is exactly the strength of the proposed
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class as it demonstrates that we have successfully combined the advantages of these

models to find a compromise that avoids the pitfalls of each extreme.

Further, although the construction of the MEM would favor it’s performance in

calculating macro or area parameters (rather than in estimating individual effects),

the simulations show that SMEM is superior in terms of both out-of-sample and in-

sample prediction. It is clear that SMEM is always better for consistent estimation

and modeling with respect to interpretability. The example of analyzing tourist

expenditures underpins this finding.

Finally, a consistent bootstrap arms us with a valid and feasible procedure to

do statistical inference. FEM and PLM based bootstrap will suffer from a large

variance in practice, whereas the SMEM is consistent and has small variance.

In contrast, applying bootstrap in MEM when the independence assumption is

violated is inconsistent as it is based on a wrong model and therefore leads to

wrong conclusions.
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