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Abstract

The aim of this paper is to give an answer to the question, whether local spatial knowledge

spillovers can be found in a cross section analysis for German NUTS-2 data. The analysis

is based on regional production functions embedded in a general spatial model context. In

addition, the paper expands the analysis to a Bayesian econometric view to allow for the

existence of spatial heterogeneity in the data. Further, both using Bayesian and Non Bayesian

methods, it should be more likely to obtain a more reliable model selection mechanism.

Finally, using spatial filtering methods, own and neigbhouring effects of regions regarding

their innovative potential are separated. Particularly, the paper find evidence, first, that

the output per capita of a region follows a spatial process, driven mainly by patents and

human capital and second, that, consulting the knowledge production function theory, spatial

knowledge spillovers clusters mainly exists with some exceptions in West German regions.

Third, employing eigenvector based filter methods it was found that West German high

productive regions are productive mainly due to their own innovative potential and mainly

East German regions are confronted with negative neighbouring effects.1
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1 Introduction

It is an undisputable fact that knowledge and technological change are the driving

forces for long run economic growth. Additionally, endogenous growth theory tells us

that knowledge spillovers are necessary for long term growth of high-income regions.

Several contributions regarding this topic have been published during the last years.

(Lucas, 1988), (Krugman, 1991) and (Romer, 1986), for instance have explicitly

focused on the accumulation of new knowledge in context of new growth theory.

Their key finding is, that endogenous accumulation of knowledge is the surety of

per capita income growth. These approaches have in common that they focus on

convexities in production process2. For instance, convexities in production can arise

from positive externalities caused by learning-by-doing, human capital accumulation

and the supply of governmental goods.

As argued by (Keilbach, 2000), knowledge spillovers can be treated as a special type

of positive externalities and, moreover, is one motivation for positive returns to scale

in an aggregate production function approach which was first used by (Griliches,

1979).

At the latest as European leaders met in Lisbon 2003 and defined the goal of becom-

ing ”the most dynamic and competitive knowledge-based economy in the world” by

2010 the term it can be said without any limitations that the knowledge-based econ-

omy has gained much attraction, not only in research but also in politics. Today, the

creation and diffusion process of knowledge is the focal point of research, because

”knowledge is the most important strategic resource and learning the most impor-

tant process”3. But what is knowledge? Well, the term knowledge is often used in

scientific publications, but it is sometimes confounded with the term ”information”.

It must be clear that knowledge comprises the individual specific abilities which can

be used to solve more or less strategic problems underpined with a pool of infor-

mation. As pointed out by (Krugman, 1991) ”[k]nowledge flows are invisible; they

leave no paper trail by which they may be measured and tracked[...]”. Information

2Refer on (Krugman, 1991) for this topic for instance.
3(Morgan, 1997), p. 493.
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instead, is more or less visible. It can interpreted as the collection of knowledge,

for instance the collection of data. Hence, when talking about knowledge, we often

don’t know what we know. Thus, knowledge cannot be measured directly, as other

production inputs such as the stock of capital, for instance. The consequence is,

that we have to find proxies for this knowledge, for instance human capital or data

of patent citations. But doing so, we have to macerate the strict distinction between

information and knowledge. That should be kept in mind when talking about the

outstanding role of knowledge for economic growth.

It is rather intuitive, that spatial barriers of knowledge diffusion can be used as

an argument for income and production differentials between regions. That should

be considered as one reason why we observe cluster and agglomeration in economic

long run growth. Regions (take cities for example) which are more productive and

supply a higher life quality are more attractive for innovative companies. Conse-

quently, these regions become more attractive again and this process leads to a

more and more decreasing productive differential. It is not a surprising fact, that

economic growth and agglomeration are positive correlated (Baldwin and Martin,

2003). Hence, growth differentials are enforced by knowledge capital concentration.

As mentioned by (Fujita and Thisse, 2002), knowledge spillovers can be interpreted

as a source for sustainable regional growth, given decreasing returns of learning are

excluded.

If we argue that spatial patterns are worth investigating, it is necessary to ask the

question how knowledge spillovers affect agglomeration. To answer this question we

could argue that cities or densely populated regions may have positive effects on their

productivity due to so called Marshallian externalities. (Marshall, 1920) mentioned,

that so called externalities are necessary for economic agglomeration and therefore

create a so called look-in effect4: ”When an industry has thus chosen a location

for itself, it is likely to stay there long: so great are the advantages which people

4(Fujita and Thisse, 2002), p. 7.
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following the same skilled trade get from near neighbourhood to one another. The

mysteries of the trade become no mysteries; but are as it were in the air, and children

learn many of them unconsciously. Good work is rightly appreciated, inventions and

improvements in machinery, in processes and the general organization of the business

have their merits promptly discussed: if one man starts a new idea, it is taken up by

others and combined with suggestions of their own; and thus it becomes the source

of further new ideas.”5 Of course, the justification of agglomeration by Marshall

is primarily based on trade arguments but can easily be expanded to other factors,

which influence the decision of where to situate a location, as mentioned above.

(Kahnert, 1998) found that knowledge intensive processes are agglomerated in dense

regions, while less knowledge intensive processes are situated in more peripheral

regions. Thus, knowledge spillovers cause externalities and force agglomeration and

as a consequence, as pointed out by (Scotchmer and Thisse, 1992) leads to uneven

geographical distribution of economic activity.

Hence, from a theoretically driven view, increasing returns to scale, agglomera-

tion and distribution of economic numbers, for instance per capita productivity

are closely linked with space. Although, the link of technological innovations and

knowledge diffusion for technological growth is acknowledged in growth literature6,

the role of knowledge diffusion is only partly considered. Some of the North-South

trade literature on diffusion and technological progress7 consider feedback effects

between the North and the South in the steady state, but an analysis of the transi-

tional dynamics for either region is missed. (Barro and Sala-I-Martin, 1997) indeed

derived transitional dynamics for the South but feedback effects are excluded due to

the effect of no trade of intermediate goods. Thus, a transition path for the North

cannot be derived. The communality of this strand of literature is only focused on

two country or two region models, which consists of a rich North and a poor South

5(Marshall, 1920), p. 225.
6Refer to (Romer, 1986), (Romer, 1990) and (Krugman, 1991) for instance.
7Refer to (Krugman, 1979), (Dollar, 1986), (Grossman and Helpman, 1991b), (Grossman and

Helpman, 1991a), (Rivera-Batiz and Romer, 1991), (Barro and Sala-I-Martin, 1997) and (Glass,

1997).
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or a core and a peripheral country. From this perspective, those types of models are

less suitable to investigate the link of increasing returns to scale, agglomeration and

distribution of economic numbers because of the simple reason: in a two country

framework, it is not reasonable to investigate agglomeration effects when referring

to regions. One of the factors, why multiple country or regional focused growth

models are less attractive or gained less attention could be the fact that such growth

models become very complex and cannot solved analytically and only numerically

solutions remain.

For this reason, the relevant literature which investigates the link between increas-

ing returns to scale, agglomeration and distribution of economic numbers is heavily

empirical orientated and is sometimes more or less ad hoc. To investigate spatial

agglomeration effects empirically, one has to refer to tools from a toolbox which can

be summarized with ”spatial econometrics”, a term widely used in New Economic

Geography (NEG)8. (Anselin, 1988)‘s book can be described as the first comprehen-

sive introduction to spatial econometrics. In contrast to spatial statisticians, where

pure data or data based approaches are in the front, the spatial econometricians

deal with model-funded approaches, based upon a theoretical model. However, the

commonality of the two perspectives is the acceptance of the existence of spatial

stochastic processes.

Although, from an empirical view, there has been made much progress in explain-

ing the link between increasing returns to scale, agglomeration and distribution of

economic numbers. But there are still limitations especially when talking about the

grasp of knowledge spillovers and knowledge diffusion.

First, less attention is concentrated on the fact, that knowledge diffusion is not a

constant process over space. Often it is assumed that only the nearest neighbour has

a significant influence on economic growth, whereas farther away neighbours do not

exert any economic influence, or more technically spoken, often it is assumed that

knowledge diffusion follows a spatial AR(1) or spatial MA(1) process and second

or higher order effects or a combination of both are neglected. This assumption

8For an overview of NEG refer to (Krugman, 1998a) and (Krugman, 1998b) for example.
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seems to be to strict. Instead of ignoring higher order effects of spatial influence,

one should insert them into a model framework, because neglecting them could lead

to an underestimating of spatial influence. Further, this second or higher order

processes should not be treated as a constant extrapolation, but rather as non con-

stant function over space. Hence, it is reasonable to assume that more contiguous

neighbours have a direct and stronger influence than less contiguous neighbours.

In most of the existing empirical studies the grasp of knowledge spillovers has only

gained limited attention. (Anselin et al., 1997) and (Anselin et al., 1997) are two

of the few studies how mentioned concrete numbers of knowledge spillover scope.

(Anselin et al., 1997) found by investigating the influence of university related re-

search and private research and development (R&D) effort on of knowledge transfer

that a significant positive effect can be detected within a 50 mile radius of metropoli-

tan statistical areas (MSAs) only for the university research. For private R&D such

an significant effect could not be detected. (Anselin et al., 1997), with a similar

setup as (Anselin et al., 1997) additionally have shown, that not only spillovers

within MSA but also between MSA can be found. The key cognition of the latter

mentioned study is, that without exact geographical distance measures, it can be

shown that spatial influence is bounded locally. (Audretsch and Mahmood, 1994)

have shown on patent basis for 59 US metropolises, that knowledge spillovers are

limited towards the metropolises’ boarders. They come to this conclusion because

they found that only for research institutes which are settled within a metropo-

lis, significant knowledge spillovers can be detected, whereas for research institutes,

settled in each metropolis related country, no such effects could be found.

Second, within the specification of spatial models, spatial heterogeneity is mostly

missed. It is sometimes ignored, that spatial effects can appear as two types: the one

type is spatial dependence, the other is spatial heterogeneity. Spatial dependence,

which is consistently assumed in the above mentioned studies, is mainly caused by

problems of measuring that are caused by spatial spillovers and spatial externalities.

In contrast to spatial dependence, spatial heterogeneity means that spatial effects

are not uniformly distributed across space and outliers could exist. From a standard
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econometricians toolbox, this could be seen as a spatial kind of heteroscedasticity.

Although several arguments militate in favour that spatial heterogeneity matters9,

this aspect is not ”seen as a serious problem in spatial regression”10. One reason

could be, that spatial econometrics, if we refer to theoretical econometrics, is still a

developing discipline.

But what should be done, if spatial dependence, spatial heterogeneity or a com-

bination of both types is relevant and further a set of possible AR(p), MA(q) or

ARMA(p, q) processes with order pand q respectively, are suitable in model con-

text? Given, our model is correctly specified, than standard econometrics tells us,

that parameter estimates are insufficient if spatial heterogeneity is ignored, although

it is relevant. But given, the model is based on a wrong choice of AR(p), MA(q) or

ARMA(p, q) terms, then our model is wrong specified. Of course, the latter problem

is the more serious one.

Although, model selection should be taken seriously, we frequently find that empiri-

cal based studies using tools from spatial econometrics, based on ex ante conceptions

of a spatial model. This means, a model selection is often defaulted or, if done, it

is based mainly on a limited class of spatial processes, which commonly include

the decision of relying on a spatial AR(1) or spatial MA(1) process based on the

assumption of spatial homogeneity. There are, to best of my knowledge only a few

papers which cover the aspect of spatial model choice.11

Thus, traditional or frequentest econometrics approach suffers from two reason in

context of spatial econometrics: first, the models and the underlying estimation

methods assume spatial homogeneity, and second, model selection is rather heuris-

tic. For that reasons, Bayesian methods have been prevailed and proved in spa-

tial econometric application. The key difference between frequentest and Bayesian

9(Anselin, 1988) for instance comment on page 13 with respect to importance of spatial het-

erogeneity in econometricians work, that ”several factors, such as central place hierarchies, the

existence of leading and lagging regions, vintage effects in urban growth [...] would argue for mod-

eling strategies that take into account the particular features of each location (or spatial unit).”
10(Keilbach, 2000), p. 122.
11For instance refer to (Hendry, 1979), (Florax et al., 2003) and (Hendry, 2006) for an intensive

discussion regarding model selection methods.
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methods are that the latter treat the coefficient vector of estimators itself as ran-

dom, whereas frequentest say that the resulting estimates of the coefficient vector is

random. Bayesian methods hold a great deal for several reasons: for instance, first,

it is possible to model hierarchy of place or regions, second, one can integrate a more

or less systematic change of variance over space, and thus spatial heterogeneity and

third it is possible to acknowledge a hierarchy of regions or places. Bayesian methods

can incorporate these ideas because of their underlying concept as prior information

complements existent sample data information, whereas frequentest methods can

solely rely on latter mentioned. As mentioned before, although Bayesian methods

seem to be very attractive, their usage in application is very limited. On the other

side, frequentest methods are, if they only limited to the spatial dependence case,

and therefore assume spatial homogeneity, lead to insufficient parameter estimates.

Anyway, a more or less large research agenda for both, spatial econometrics and

spatial statistics remains.

From the discussion above, we see that two different arguments regarding produc-

tivity growth are discussed in the relevant literature: on the one hand, the (theo-

retically) role of technological innovations and knowledge diffusion for technological

growth12, and on the other hand the (empirical) role of spatial agglomeration on

long run productivity growth13. The point is, that the first mentioned strand does

discuss growth implications of knowledge diffusion in a less suitable frame when fo-

cusing on distribution questions and agglomeration, while the latter strand suffers

more or less from theoretical fortification.

Hence, these two approaches are more or less discussed in isolation rather to be com-

bined and to investigate the relationship between knowledge diffusion, agglomeration

and growth. This topic has gained less attention in relevant literature, although (Fu-

jita and Thisse, 2002) mentioned that ”increasing returns to scale (IRS) are essential

for explaining geographical distributions of economic activities”14.

12Refer to (Romer, 1986), (Romer, 1990) and (Krugman, 1991) for instance.
13Refer to (Keilbach, 2000), (Bottazzi and Peri, 2003), (Greif, 1998) and (Frauenhofer, 2000) for

instance.
14(Fujita and Thisse, 2002), p. 342.
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There is to best of my knowledge only one study, which tries to bridge the two

approaches: (Keilbach, 2000) has investigated the role of knowledge for German

”Kreise”15 both empirically and theoretically within a (Romer, 1986) context. He

found, that increasing returns to scale lead to significant cluster effects. Further, he

found on basis of several production functions estimations, that spatial dependence

has a significant influence on labour productivity. But it has to be mentioned,

that (Keilbach, 2000) assumes explicitly spatial homogeneity and only first order

spatial effects, both in his theoretical and empirical studies. Further, using ”Kreise”

as regions could lead to spatial dependence per definition, due to the fact that

”Kreise” are the smallest entity of regions for the case of Germany, and thus stream

of commuters can lead to biased estimations of spatial effects by construction.

Thus, the main intention of this paper is to identify knowledge spillovers in a spatial

context. Particularly, it is assumed, that spatial effects per se are heterogeneous,

an assumption which seems to be plausible. Hence, this paper combines spatial

heterogeneity and spatial dependence which are the two main aspects of spatial

econometrics.16 Especially, in the most existing studies dealing with spatial knowl-

edge spillovers, the aspect of spatial heterogeneity has been either totally neglected

or it has been assumed that spatial effects are uniform across regions. In this paper

both aspect can be ideally integrated and discussed in a Bayesian framework.

The empirical study per se is based on a spatial cross section production function

approach, proposed by (Griliches, 1979) which should measure the effects of inno-

vativeness, measured by knowledge capital, such as human capital, patents or R&D

and spatial spillovers on output for German NUTS-2 regions. NUTS-2 regions are

used to exclude spatial dependence by construction.

Further, a new model choice mechanism is introduced which on the one hand is

based on traditional econometric tools and on the other hand integrates Bayesian

model choice criteria. This mechanism also controls for spatial heterogeneity, as

mentioned right before. Finally, under the condition that spatial processes can be

detected in the data, a filter method is applied to remove spatial influence and thus

15”Kreise” is a German administration unit which is equivalent to NUTS-3 level.
16Refer to (Anselin, 1988), p. 11.
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to identify own and neighbour productivity effects of regions and to discuss political

implications against the background of obtained results.

2 Motivation

The basic cross section regression model stems from a simple production function

approach and can be written as follows:

y = Xβ + ε, (1)

where y is a non stochastic N × 1 vector of observation, X is a full rank N × K

matrix of K non stochastic independent variables, β is a K × 1 vector of regression

coefficients and ε is treated as a normally and independently distributed N × 1

vector of errors. The drawback of a formulation like equation 1 is, that it does

not acknowledge spatial dependence. But if spatial dependence, especially spatial

autocorrelation, exist in the data, and if they are neglected within the estimation

setup 1, an estimation based on OLS may not be consistent17. This argumentation is

familiar when talking about estimation problems within a pure time series approach.

Therefore, equation 1 has to be altered and expanded for spatial processes. Gener-

ally, spatial events appear in three forms: first, spatial dependence is only observed

in the y vector. As a consequence of that, a spatial lag model or a spatial AR(1)

model has to be estimated. Second, spatial dependence is only observed in the error

term vector ε, which means that one has to model a spatial error or a spatial MA(1)

model. Or third, a combination of both spatial events occur in the data. Then a

mixture of a spatial lag and a spatial error model has to be used. Given the latter

is true, then we can rewrite equation 1 as a spatial ARMA(1,1) model as follows:

y = ρWy +XβX + X̃βX̃ + λWε+ κ, (2)

withX = [x1, x2, ..., xK ], X̃ = [x̃1, x̃2, ..., x̃M ] and theK×1 vector βX = [βX1 , β
X
2 , ..., β

X
K ],

and the K × 1 vector βX̃ = [β1, β2, ..., βM ].

17Refer to (Anselin, 1988) and (Anselin and Rey, 1991).
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The parameter ρ is the so called spatial autoregression coefficient, W is a N ×

N matrix containing spatial weights, and κ is a N × 1 vector containing errors.

Often it is assumed that M = K. Thus, a close relationship between time series

and spatial econometrics modeling can be observed. But it is worth to note, that

the analogy regarding the labeling of such a process to time series is misleading

sometimes because spatial spillovers are often described by feedback-processes, as

mentioned before.

The N × K matrix X contains non spatial exogenous variables, whereas the N ×

M matrix X̃ contains the spatial lagged exogenous variables. Of course we can

write X̃ = WX. Stacking Wy, X, X̃ and Wε in X̃+ = [Wy,X, X̃,Wε] and β̃ =

[ρ, βX , βX̃ , λ]′ leads to

y = X̃+β̃ + κ. (3)

Although it is common to assume that κ ∼ N(0, σ2I), it is more plausible to assume

that κ ∼ N(0, σ2Ω) with σi = h̃(f ′iα) and h(·) > 0 as unknown, continuous function

which are treated as the diagonal elements of the error covariance matrix σ2Ω.

Although (Keilbach, 2000) and (Klotz, 1996) argue that spatial heterogeneity is not

seen as a serious problem in spatial econometrics context it should be in fact treated

as a serious problem ex ante. Remember for instance that some regions do not

follow the same spatial relationships as other regions. This ”enclave effects” or in an

econometric notation, these ”outliers” could cause severe problems such as fat-tailed

errors which are not normal of course. A t-distribution is more appropriate then. In

such cases it seems more appropriate to acknowledge these outliers and use Bayesian

methods for instance.

Only for the fact that h̃ = σ2 it follows that κ ∼ N(0, σ2I) which implies spatial

homogeneity. The big problem estimating a heterogeneous spatial model is that

allowing for heteroscedasticity we have to estimate N additional parameter for each

σi. Of course, this leads to the so called ”degree of freedom” problem, because

we do not have simply spoken enough observations to compute an estimate for

every point located in space. Therefore, we are confronted with a problem using

the ”traditional” econometricians toolbox. One way to deal with this problem is
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to refer to Bayesian econometrics. Bayesian methods in regression context do not

encounter the similar degree of freedom problems, because informative priors are

available. As seen later, the prior distribution for our N diagonal elements of Ω are

independently χ2(s)
s distributed. Note, that the χ2-distribution is a single parameter

distribution where we can represent this parameter as s. This allows us to estimate

N additional parameter of the diagonal elements of Ω by adding a single parameter

r to our regression procedure.

Hence, the estimation strategy is defined as follows: one should start with an esti-

mation of a spatial ARMA-model with homogeneous errors based on equation 2. Of

course, expression 2 can be considered also as a spatial ARIMA-model, if |ρ| = 1. If

we do observe a significant coefficient of ρ close to one18, one should estimate a spa-

tial ARIMA-model to avoid results based on spurious regressions. Equation 2 can

be consistently estimated via Maximum-Likelihood (ML) as mentioned by (Anselin

and Rey, 1991). Please note again, that (ML) based models are not suitable to

model spatial heterogeneity. For this reason, (ML) estimations implicitly assume

spatial homogeneity. For this reason, Bayesian models with the additional assump-

tion of heterogeneous errors should be estimated. After performing model selection

mechanism, a direct model comparison of the (ML) based and the Bayesian model

should be used, to find the model which best fits to the data generating process. If

one detects dissimilarities between the two approaches, then one of course should

rely on the Bayesian model than on the (ML) approach.

3 Spatial weight

Until today, there is no theory about how to find the ”correct” spatial weight ma-

trix W . Therefore, the choice of the spatial weights should be done on the basis

of the specific research topic. The first question one has to ask is how to proxy

spatial proximity. One approach is to say, that spatial proximity is best proxied by

geographical distances. Another way is to say, that geographical boarders are less

18Naturally, ex ante it is difficult to decide, whether one is confronted with a highly persistent or

an unit root process with respect to space.
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important for spatial proximity and for this reason one should better rely on non

geographical data, such as trade shares19 or data on FDI20.

The latter strategy has two major drawbacks in this context: First, in this work, it is

primarily focused on knowledge diffusion. When talking about this issue it is rather

not intuitive to proxy spatial proximity by trade shares or FDI data for instance.

Second, there is a methodological problem: using these weights it is very likely, that

they can be endogenous and therefore lead to biased estimators if not using an IV

or GMM approach.

Hence, the majority of the literature is refering to more geographical weights. It is

common using geographical distances (Keller, 2001) or more precisely using great

circle distances between regions’ centroids (Anselin, 1988). But this has the inherent

assumption that knowledge spillover sources are located in region´s centroids. An-

other way, which is also consulted in this study, is simply to refer to binary weighting

schemes 21. If a region i is a neighbour of another region j, then the i-th element of

W , wij takes a 1, otherwise a 0.

Thus, we can write for the symmetric N ×N matrix W with weights wij :

wij =

 1, if i and j have a common border and i 6=j

0 otherwise
. (4)

Often, this matrix is weighted or standardized because this facilitates the interpre-

tation of the estimated coefficients22 and guarantees that the Moran’s I is situated

in the interval [−1; 1]23. Using the weighting scheme, proposed by (Anselin, 1988),

we write for the standardized elements w+
ij of W+:

w+
ij =

wij∑Nj
j=1wij

. (5)

In this way we have created a row standardized spatial weighting matrix W+ which

is used in the preceding estimation exercise.
19Refer to (Coe and Helpman, 1995).
20Refer to (Lichtenberg and van Pottelsberghe de la Potterie, 1996).
21Refer to (Tappeiner et al., 2008).
22(Anselin, 1988), p. 23.
23Refer to (Ord, 1975) and (Griffith, 1996).
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4 Higher order spatial influence specification

One major drawback of model 2 is, that higher order spatial dependencies are not

included. To obtain a higher order weighting matrix W+r for r = {1, ..., R} we

should increase the power of the simple contiguity matrix 24. Labelling the order of

the spatial dependency with r = {1, 2, 3, ..., R} then X̃ can be expanded as follows:

X̃++ =




x̃1
11 x̃1

12 · · · x̃1
1M

x̃1
21 x̃1

22 · · · x̃1
2M

.

.

.

.

.

.
.
.
.

.

.

.

x̃1
N1 x̃1

N2 · · · x̃1
NM

 0 · · · 0

0


x̃2
11 x̃2

12 · · · x̃2
1M

x̃2
21 x̃2

22 · · · x̃2
2M

.

.

.

.

.

.
.
.
.

.

.

.

x̃2
N1 x̃2

N2 · · · x̃2
NM

 · · · 0

.

.

.

.

.

.
.
.
.

.

.

.

0 0 · · ·


x̃R
11 x̃R

12 · · · x̃R
1M

x̃R
21 x̃R

22 · · · x̃R
2M

.

.

.

.

.

.
.
.
.

.

.

.

x̃R
N1 x̃R

N2 · · · x̃R
NM





,

(6)

or in short hand notation:

X̃++ = [X̃1, X̃2, ..., X̃R]. (7)

Defining P = [ρ1, ρ2, ..., ρR]′, ỹ = [W+1y, ...,W+Ry], Λ = [λ1, λ2, ..., λR]′ and over

the more ε̃ = [W+1ε, ...,W+Rε], and β++ = [βX̃
1
, βX̃

2
, ..., βX̃

R
]′ with βX̃

r
= [βX̃

r

1 , ..., βX̃
r

M ]

we can rewrite our model 2 as:

y = ỹP +XβX + X̃++β++ + ε̃Λ + κ (8)

with κ ∼ N(0, σ2Ω). For R = 1 model 2 follows directly. From the general model

8 we can derive three major submodels for r = {1, ..., R}: the spatial lag (SAR(r))

and spatial error (SEM(r)) and a spatial model with exogenous spatial variables

(SEV(r)). For the (SAR(r)) we can write:
24Refer to (Anselin, 1992).
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y = ỹP + κ (9)

with κ ∼ N(0, σ2Ω), for the (SEM(r)) we can write

y = XβX + ε̃Λ + κ (10)

with ε = ε̃Λ + κ and κ ∼ N(0, σ2Ω) and for the (SEV(r)) we notate:

y = XβX + X̃++β++ + κ (11)

with κ ∼ N(0, σ2Ω).

It has to be pointed out, that the estimation of 8 and its submodels 9, 10 and 11

could lead to biased and inconsistent OLS estimates. Take submodel 9 for instance:

P ỹ is correlated not only with κ but also with neighbourings κ. If all elements of

ỹP are zero OLS estimates are unbiased but inefficient. If submodel 11 is chosen,

then the model contains only exogenous spatial lagged variables besides non spatial

lagged exogenous variables. In this case OLS is only BLUE if κ ∼ N(0, σ2I). OLS is

even more unbiased if estimating a spatial error model, thus referring on submodel

10.

To test this spatial model, we regress the regional output, measured as gross value

added on regional R&D-effort, human capital, regional number of patent applica-

tions, regional capital stock, regional number of low qualified labour force, regional

infrastructure, spatial weighted gross value added, spatial weighted dependent vari-

ables and a West-East dummy, which covers the fact that East German regions are

less productive than West German regions. Additionally, the number of patent ap-

plications are regressed on regional R&D output, as proposed by (Griliches, 1979).

In this way it is possible to cover “articulated knowledge” and “tacit knowledge”.25

The question which remained unanswered is, how to choose the order R. If one refers

to the literature there is no hint how to choose the order R. Regarding this subject,
25Refer to (Maurseth and Verspagen, 2002).
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(Anselin, 1992) argues that especially for small samples the order of the weighting

matrix W should be chosen small. As mentioned above, in this investigation we

base the order of R on the data, especially on Moran‘s I. But before checking the

data concerning spatial dependencies, we should throw a first glance at the data.

5 Data and variables

Before testing the model, which has been introduced in the preceding chapter, one

has to give a short description of the data. As mentioned before, NUTS-2 data for

all German regions for the year 2003 have been used. The reason why one should

decide to base the empirical study upon NUTS-2 data is, that referring on so called

“Kreisdaten” could result in spurious spatial dependence, which could be caused by

streams of commuters, for example.26 This problem is boosted by the empirical fact

of suburbanization, which has increasingly appeared in the last years.27 That is why

most similar research field studies refer to so called “land use planning units”, such

as NUTS-regions, particularly for European studies or “Arbeitsmarktregionen” for

German investigations. Whatever of the latter mentioned spatial unit one decides to

use, the worth mentioning communality is, that a “land use planning unit” subsumes

smaller subgroups, such as “Kreise”. Thus, referring to “land use planning units”,

the spurious spatial dependence problem is from less importance or even canceled

out. The year 2003 was selected because of reliability and accessibility of European

patent data. Particularly the problem of missing data is serious for NUTS-2 data.

Of course, if data would have been available for a longer period of time, then regres-

sion based on time averages would be the appropriate approach. For Germany, 39

NUTS-2 regions are available for regression analysis.

The data stem from the online database provided by Eurostat, from the online

support of the German statistical office in Wiesbaden (genesis online), from the on-

line representation of the “Arbeitskreis “Volkswirtschaftliche Gesamtrechnungen der

26(Keilbach, 2000), p. 120-121.
27Refer to (Kühn, 2001) and (Kaltenbrunner, 2003) for a discussion.
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Länder”” as well as from the INKAR-database CD-Rom published by the “Bunde-

samt für Bauwesen und Raumordnung”.

6 A first hint for spatial knowledge diffusion: a descrip-

tive view

After describing the data set, this section should provide us a first guess concerning

the existence of knowledge diffusion phenomena in the data. The traditional way

detecting spatial phenomena in the data is to compute the so called Moran‘s I,

which is defacto ”the” standard instrument in spatial econometrics for detecting

spatial correlation28 coefficient.29

The interpretation of the spatial correlation coefficient based on Moran´s I is a pri-

ori similar to time series analysis context. But it is not the same: Autocorrelation

in time series means proximity of variables in time. Autocorrelation in space in-

stead means geographic proximity of variables which is often two-dimensional. The

important difference between the time series and the spatial econometric context

is that spatial correlation has the attribute that a spatial event can be described

via feedback loops, whereas time series correlation goes only in one direction, that

is time. The interpretation of spatial correlation is quiet easy: if negative spatial

correlation is observed, then regions are dissimilar with respect to their economic

performance, whereas if positive spatial correlation is observed, then regions are sim-

ilar with respect to their economic performance. The aim of the Moran´s I analysis

is to measure the strength of spatial correlation and to find a hint how far spatial

correlation spreads.

The Moran´s I is defined as follows:

I =
N

O

e′W+re

e′e
, (12)

28Refer to (Moran, 1948) and (Moran, 1950).
29This is most used indice for detecting spatial phenomena. Despite Moran´s I, other indices

such as Geary´s C and Ripley´s K. But the two latter are seldom used.
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with O as the sum over all elements in W+r and N as the number of observations.

Of course if NO = 1 we have a row standardized weighting scheme. e are the residuals

obtained from an OLS estimation of a variable V on its spatial counterpart VW+r.

To center 12 around zero we follow (Ord, 1975) and standardize 12:

Ĩ =
I − E(I)√
V ar(I)

, (13)

with

E(I) =
N

O

tr(V ++W+r)
N −K

,

and

V ar(I) =
{
N

O

}2
{
tr(V ++W+rV ++W+r ′) + tr(V ++W+r)2 + [tr(V ++W+r)]2

}
(N −K)(N −K + 2)

−[E(I)]2,

with V ++ = I − V (V ′V )−1X ′ as the projection matrix. In this way Ĩ is normal

distributed.

Before computing Moran´s I for the desired variables, we should first have a look at

the data. As mentioned above, we try to estimate a standard production technique

to investigate the effects of spatial knowledge spillovers on labour productivity. Table

1 and 2 provide an overview of the data used in the analysis.

Y K L H

Mean 48795.52 266105.80 627841.30 8.49

Modus – – – –

Median 41022.01 228133.0 544004.00 8.38

Max 140902.40 895491.10 1603418.00 14.01

Min 9963.63 66538.54 135678.00 4.26

Std. Dev. 33057.33 177768.70 350356.20 2.66

Skewness 1.44 1.63 1.17 0.38

Kurtosis 4.23 5.66 3.62 2.15

Observations 39 39 39 39

Table 1: Table of descriptive statistics (I) of variables used for the analysis
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P I R&D Den Dummy

Mean 330.06 43891.18 1333.87 432.76 –

Modus – – – – 1.00

Median 223.28 43586.00 612.69 211.60 –

Max 1486.63 76028.00 7035.16 3803.00 1.00

Min 26.16 4785.00 67.64 74.99 0.00

Std. Dev. 352.11 17383.47 1592.97 698.53 –

Observations 39 39 39 39 39

Table 2: Table of descriptive statistics (II) of variables used for the analysis

From table 1 and 2 we can see that all variables exhibit positive skewness, what

means that the distribution has a long right tail. This is especially true for the

variable density (Den) but not astonishing, because we have a few high densely pop-

ulated areas such as Berlin, Hamburg and Bremen. Additionally the distributions

are peaked, which means they are leptokurtic relative to the normal distribution.

The computation of Moran‘s I for v = {y, h, p, r&d, i} is done with a program

written in R, version 2.6.2.30. After completing the computation with R, figure 1 gives

a graphical interpretation of spatial dependence between the v and its spatial lagged

counterpart W+v. Note that the variables are mean standardized, as mentioned

before. Thus, besides a regression line the standardization allows us to plot one

and two standard deviations areas. The interpretation of figure 1 and figure 2 is as

follows: every subgraph is divided into four areas: the first area is located in North-

East direction, the second in North-West direction, the third in South-West direction

and the last in South-East. The first area contains positive standard deviation from

a region i and its corresponding neighbour j. On contrary the third area contains

negative standard deviation from region i and its corresponding neighbour j. All

other areas contain couples of negative standard deviation of region i and positive

standard deviation of region j and vice versa. Thus, we have a positive spatial

correlation if regions are located in the first and in the third area. Otherwise we

have a negative spatial correlation. With other words: If the slope in the scatter

30The source code is available on request.
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plot is negative that means that we have a sort of checkerboard pattern or a sort

of spatial competition in which high standard deviation regions are clustered with

low standard deviation regions. Alternatively, if the slope is positive, we find the

contrary.

If we now have a look at figure 1 we see first that positive spatial correlation is

significant on a 5% significance level for the output y and for the patents p. Despite

the fact that r&d, human capital h and infrastructre i exhibit positive spatial cor-

relation as expected, the Moran‘s I is not significant on a 10% significance niveau

for r = 1. Next, the degree of spillover is boosted to r = 2 and again the Moran‘s I

coefficient for each variable is computed.
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Figure 1: Computation of Moran‘s I with corresponding p-values for dependent and

independent variable for r = 1

On the next step we take the weighting scheme to the power of two and additionally
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compute the Moran‘s I for every variable. The result of this computation can be

found in figure 2. The interpretation is equal to the preceding analysis.

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Moran's I=−0.0071 (0.6680)

Standardized y

S
pa

tia
l l

ag
 o

f s
ta

nd
ar

di
ze

d 
y

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

2σσ

1σσ
●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Moran's I=−0.0098 (0.5540)

Standardized h

S
pa

tia
l l

ag
 o

f s
ta

nd
ar

di
ze

d 
h

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

2σσ

1σσ

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●
●

●

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Moran's I=0.0291 (0.0726)

Standardized p

S
pa

tia
l l

ag
 o

f s
ta

nd
ar

di
ze

d 
p

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●
●

●

2σσ

1σσ
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Moran's I=−0.0039 (0.8140)

Standardized rd

S
pa

tia
l l

ag
 o

f s
ta

nd
ar

di
ze

d 
rd

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

2σσ

1σσ

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Moran's I=−0.0027 (0.8730)

Standardized i

S
pa

tia
l l

ag
 o

f s
ta

nd
ar

di
ze

d 
i

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

2σσ

1σσ

Figure 2: Computation of Moran‘s I with corresponding p-values for dependent and

independent variable for r = 2

If we look at the sub pictures of figure 2 we find that only the spatial correla-

tion of patents p is significant on a 10% significance niveau. All other variables

do not exhibit significant spatial correlation. Therefore, we have to conclude that

knwoledge spillovers, proxied by p, h and r&d are limited regarding space and in

consequence more or less local and restricted to the nearest neighbours. Hence, we

should acknowledge first order and second order degree of knwoledge spillover in the

regression analysis. Additionally, we see some evidence from figures 1 and 2 that

spatial outliers exits31, which implies that spatial heterogeneity matters.

31Outliers are defined as data points which are situated outside the 2σ area.
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7 Spatial model estimation

In this section a spatial model estimation strategy is introduced, which is an ex-

pansion of the proposed strategy by (Florax et al., 2003). Before introducing the

new estimation method, the classic method of (Florax et al., 2003) for cross section

analysis is briefly sketched. First, one has to start by estimating an initial model

y = Xβ+ ε. Second, on the basis of the estimated model, Lagrange Multiplier tests

are used to test for for spatial lag or spatial error model. If the null hypothesis is

rejected, than spatial dependence matters and an appropriate spatial error or spa-

tial lag model should be estimated. If we further acknowledge higher order spatial

effects, the test statistic under the null hypothesis H := ρr = 0, ∀r for LMρr can

be written in the following way r = {1, ..., R}:

LMρr =

(
e′W+re
s2

)2

T
, (14)

with T as the trace of (W+r ′ + W+r)W+r, e = My the residuals of regression,

M = I − X(X ′X)−1X ′ as the projection matrix and s2 = e′e
N as the estimated

variance of the error term and N the number of observations. On contrary, the test

statistic for LMλr is, given r = {1, ..., R}, under H := λr = 0, ∀r can be written as:

LMλr =

(
e′W+ry
s2

)2

NJ
, (15)

with J = 1
Ns2

[
(W+rXb+++)′M(W+rXb+++) + Ts2

]
and b+++ as the OLS estima-

tor of model 7.

Third, if for LMρr and LMλr each the null hypothesis cannot be rejected, then the

initial model should be used. Otherwise one should compare both test statistics.

If they are both significant, one has to compute additionally the robust versions of

LMρr and LMλr to come to a final decision. If only one test is significant, then

one has to adopt the initial model with respect to the significant test statistic.

The robust variant of LMρr read as:

˜LMρr =

(
e′W+ry − e′W+re

s2

)2

NJ − T
, (16)
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For the robust variant of LMλr we can write:

˜LMλr =

(
e′W+re
s2

− T (NJ)−1 e′W+ry
s2

)2

T [1− T (NJ)]−1
. (17)

If ˜LMρr > ˜LMλr , then one should decide to estimate a spatial lag model otherwise

if ˜LMρr < ˜LMλr then one should refer to a spatial error model. Given, only LMρr

is significant but LMε is not, then one should use a spatial lag model, otherwise, if

LMλr is significant, then a spatial error model should be chosen. Further, it should

be kept in mind, that experimental based simulations by (Anselin and Florax, 1995b)

and (Anselin et al., 1996) found evidence, that robust counterparts of the LM-tests

have more power in pointing out the appropriate alternative than the non robust

LM versions. But as shown by (Florax et al., 2003), the classical top down approach,

that means relying on the non robust LM test, outperforms the robust strategy in

means of performance and accuracy. Thus, the same authors emphasise, that one

should use the classic approach when testing for spatial effects. It should be further

noted that, although this strategy is not theoretically justified yet, it is the only

systematic approach of model selection in literature and used in empirical studies.32

The estimation strategy proposed by authors such as(Anselin, 2005) has three main

drawbacks: first, the strategy lacks regarding their underlying tests hypothesis. For

both tests, the LMρr and LMε or in their robust form ˜LMρr and ˜LMε the null

hypothesis is either H0 := ρr = 0 for LMρr or ˜LMρr and H0 := λr = 0 for LMλr or

˜LMλr . The null hypothesis H0 := λr = 0 is realized in presence of ρr for the spatial

error and H0 := ρr = 0 in presence of λr for the spatial lag model. Although, robust

LM tests are available, only one test is available, to compare the two models directly.

This test, developed by (Mur, 1999) and (Trivezg, 2004) allows us to differentiate

between spatial lag and spatial error models. But a drawback of the test proposed

by (Trivezg, 2004) is, that it is only applicable for small samples, because it requires

the computation of Eigenvalues and Eigenvectors of the underlying spatial weight

matrix, which is cumbersome or even not possible for large data sets as noted by

(Kelejian and Prucha, 1998).

32Refer to (Kim et al., 2003) for instance.
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Second, the strategy is exclusive in the way, that this strategy does not allow for

a ARMA(p,q) model specification, which is as mentioned above, a combination of

spatial lag and spatial error model. There is no reason, why one should exclude

this combination ex ante. This could create a serious problem, because even if λr

differs significant from zero but the robust LMρr test, which exceeds the value of

the robust LMλr statistic, suggests to model a spatial lag model, we should choose,

going in line with (Florax et al., 2003), a spatial lag model. It is obvious, that there

is an inherent potential of misspecification using the strategy proposed by (Florax

et al., 2003).33

Third, both tests, if robust or not do not sufficiently control for heterogeneity of

the error term nor do they cover the aspect of outliers. In other words, this meth-

ods neglect spatial heterogeneity entirely. Fortunately, spatial heterogeneity can be

elegantly considered in an Bayesian approach.

Until today, Bayesian model selection criteria are seldom used in empirical applica-

tions. This might be due to three reasons: first, normally, spatial Bayesian model

techniques are not included in standard econometricians tools, such as EViews. Sec-

ond, these methods require extended programming techniques. In addition, their

use for large sample applications is problematic, because then one is often confronted

with numerical problems, especially in calculating the determinant of spatial weight

matrix34. Third, Bayesian methods are often rejected or disregarded by the class of

frequentest or ”main stream” econometricians, mainly because of the Bayesian as-

sumption that the vector of coefficients is treated as random, whereas the frequentest

treat the vector of coefficients estimate as random.35

In this application, both views should be acknowledged, the frequentest based Maximum-

Likelihood estimation techniques and Bayesian methods. It should be clear that both

methods exhibit advantages and disadvantages, but to acknowledge them within the

33For example, assume ˜LMρr statistic takes the significant value x and ˜LMλr statistic takes the

significant value x + ε, with a very small but positive value ε > 0. In this case we conclude to use

the spatial error model, because ˜LMλr > ˜LMρr .
34To avoid this problem either rely on Bayesian methods or use the Monte Carlo based method

proposed by (Barry and Kelley, 1999).
35See (Koop, 2003) for an excellent introduction to Bayesian Econometrics.
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interpretation the strategy should improve the strategy of (Anselin, 2005), because

of the above mentioned advantages of the Bayesian methods, especially their het-

eroscedastic formulation. The strategy can be formulated as follow:

1. First, estimate the initial model via OLS.

2. Use Moran‘s I and LM-test for detecting potential spatial dependence. If the

proposed tests cannot reject the null hypothesis of no spatial correlation, then

select the model estimated via OLS in step 1. Otherwise, proceed with step 3.

3. If the null hypothesis of no spatial correlation is rejected, then expand the model

estimated in step 1 by adding spatial counterparts of the independent variables.

Perform an OLS estimation of this model.

4. Given the model setup in step 3, use Moran‘s I and LM-test for detecting

potential spatial dependence. If tests cannot reject the null hypothesis of no

spatial correlation, then select the model estimated via OLS in step 3. Other-

wise, proceed with step 5.

5. Expand the model of step 3 with spatial error and spatial lag components.

Again, Perform an OLS estimation of this model.

6. Use Moran‘s I and LM-test for detecting potential spatial dependence. If the

tests cannot reject the null hypothesis of no spatial correlation, then select the

model estimated via OLS in step 5. Otherwise, proceed with step 7.

7. Estimate a general spatial model (SAC) and separate spatial lag (SAR) and

spatial error models (SEM) with MLE. OLS would yield in this case inconsis-

tent parameter estimates even if spatial homogeneity is assumed.

8. Use the LM power comparison mentioned by (Florax et al., 2003) to select

the optimal model from the set of models estimated in step 7. Note, this model

assumes spatial homogeneity.

9. Given the optimal model found with step 8, estimate the Bayesian counterpart

of the optimal model selected in step 8 to control for spatial heterogeneity. If
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both models exhibits similar results and spatial heterogeneity is rejected, then

take the optimal model found in step 8 as optimal. Otherwise, if spatial het-

erogeneity matters, take the Bayesian model as the optimal one.

It is worth to mention, that Moran‘s I is valid, as long as heteroscedasticity is

not spatial correlated. This is a very new insight, but until today no appropriate

method is developed to test for spatial correlated heteroscedasticity. There is only

one test proposed by (Kelejian and Robinson, 2004), which cover the aspect of spatial

correlated heteroscedasticity, but it is only valid for large samples and small samples

properties are not known.

8 Initial model estimation

Let us start with the first step of the laid out strategy. First, we estimate the initial

model with ordinary least square procedure.36 The initial model, based on a per

head Cobb Douglas production technique, with ln
(
Y
L

)
as the dependent variable,

can be written in log-log form as follows:

ln(y) = βc + βk ln(K) + βl ln(L) + βh ln(H) + βp ln(P ) + βi ln(I) + dγ + κ (18)

or in a more compact manner as

y = XβX + dγ + κ (19)

with βX = [βc, βk, βl, βh, βp, βi] and X = [1, k, l, h, p, i] with κ ∼ (0, σ2Ω), σ2Ω 6=

σ2I, Ω = diag(v1, ..., vN ) and d as West-East dummy. Two remarks regarding the

specification of equation 18 or equation 19: First, as usual, the coefficient vector

βX contains constant production elasticities of the respective values stacked in X.

Because we estimate a production technique per capita, the depended variable is

y = ln
(
Y
L

)
. Thus the elasticity of production for labour l in this context is defined

as βl + 1. Therefore, we expect a negative sign of βl . Second please note, that the
36All estimations have been performed with Matlab on the basis of the package provided by

LeSage with some adoptions. LM program for spatial lags as other programs are available on

request. If appropriate, results have been checked with R 2.6.2 and EViews 5.0.
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inclusion of both R&D expenditures and P leads to a serious endogenity problem,

because patents are produced with R&D expenditures or P = u(R&D) with u(·) as

continuous function. It is worth to mention that patents generally outperforms R&D

expenditures regarding their interpretation as a quality measure of innovativeness.37

In table 3 one can find four different specifications. For every specification LM tests

have been conducted, both for spatial lag and spatial error. Additionally, the test

statistics for first order and second order spatial influence have been computed.38

Further, Moran‘s I test has been performed, also for first and second order spatial

influence.

Column (1) of table 3 reports a simple estimation of y on k and l and a West-East

dummy d. The values of the elasticity of production for capital and labour indicate

the expected positive sign and have the expected dimension.39 and have the correct

dimension regarding their influence on per capita production. Furthermore, the

dummy is positive as expected and highly significant which indicates that West

German regions are more productive on average than East German regions. As we

can see from column (1) of 3, both Moran‘s I tests cannot reject the null hypothesis

of no spatial correlation. Also the LM lag for r = 1 and r = 2 are not significant.

This is again the case for the LM error test for r = 1. For r = 2 the LM error test of

no spatial correlation under the null hypothesis can be rejected at a 5% significance

level.

Although, we find a contradiction regarding the evaluation of Moran‘s I for r = 2

and the LM error test for r = 2 with respect to spatial influence we should expand

the estimation and include the knowledge variables human capital h and patents p.

Further infrastructure i as additional regressor has been included. The estimation

results of this expanded specification can be found in column (2) of table 3. For

all three additional included coefficient regressors we should expect a positive sign.

This is true for the estimated coefficients of human capital and infrastructure, but

37Refer (Lechevalier et al., 2007) for instance.
38For example LM2

λ stands for a test of no spatial correlation up to order r = 2 for spatial error

component.
39The value for the elasticity of production for labour is 1-0.19=0.81.
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not for patents, which is contra intuitive at first glance. But looking at significance

we find, that patents are not significant, not even at a 10% significance level. This

is also true for infrastructure which is not significant at a 10% significance level.

Additionally, looking again on the coefficent for patents the influence of own patents

on own labour productivity is at least zero. Refering to the test statistics, it should

be noted, that the LM test for spatial lag is significant at a 5% significance level.

Moran’s I for r = 1 suggests, that a spatial error model should be estimated which

is underpined by the siginifcant LM test for the spatial error component for r = 2.

Given our estimation strategy, we should expand our model by exogenous spatial

lagged variables. The advantage of this formulation is straightforward: the estima-

tors of this estimation are unbiased using OLS. Keeping in mind our results obtained

from picture 1 and 2 we include first order spatial lags of human capital ln(H+1), of

patents ln(P+1) and of infrastructure ln(I+1) and in addition the second order lag of

patents ln(P+2). Stacking this values in X̃1 = [h+1, p+1, i+1] and X̃2 = [p+2] defin-

ing X̃++ := [X̃1, X̃2] and letting β++ = [βX̃
1
, βX̃

2
]′ with βX̃

1
= [βh

+1
, βp

+1
, βi

+1
]

and βX̃
2

= [βp
+1

], this leads to the following expansion of equation 18:

ln(y) = βc + βk ln(K) + βl ln(L) + βh ln(H) + βp ln(P ) + βi ln(I)+ (20)

+ ln(H+1)βH
+1

+ ln(P+1)βP
+1

+ ln(I+1)βI
+1

+ ln(P+2)βP
+2

+ dγ + κ,

or again in compact notation:

y = XβX + X̃++β++ + dγ + κ (21)

with βX = [βc, βk, βl, βh, βp, βi], d as West-East dummy and X = [1, k, l, h, p, i] with

κ ∼ (0, σ2I).

The estimation results for 21 can be found in table 3 in column (3). Once again,

we would expect positive effects from neighbouring regions. But with the exception

of patents, we find negative signs of coefficients for neighbouring human capital and

neighbouring infrastructure. Over the more the latter two coefficients are highly
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non significant. The negative second order spillover coefficient of patents is highly

insignificant, too. As the coefficient for the own patents, this second order coefficient

of neighbouring patents is close to zero. But what can we see is, that the first order

neighbouring patent activity has a significant positive effect on own productivity.

If we look at our test statistics in column (3) we find that the LM test for spatial

lag is, on contrary to column (2), not significant anymore. This could be due to

the inclusion of the spatial lagged patent activity. Furthermore, the second order

LM error test is still significant at a 10% significance level, whereas the first order

LM error test is now significant at a 5% significance level. Also the first order

Moran‘s I test is significant at a 5% significance level. This lead us to conclude

that a first order spatial error model should be modeled, because of the fact that

LMλ1 > LMλ2 . The last column of table 3 shows the same regression as in column

(3) but with the exclusion of the highly non significant spatial second order patent

activity. If we compare column (3) and column (4) we can assert, that the exclusion

of spatial second order patent activity does not change the sign and significance of

the regression. Therefore, we should proceed with the specification which can be

found in column (4) in 3.

In summary, we can conclude from 3 that spatial processes can be detected in the

data. In consequence, we have to acknowledge them in our regression equation and

in an adequate estimation procedure. From column (4) in table 3 we further know,

that spatial dependence in the error term should be acknowledged. What we do not

know up to this stage is, if spatial heterogeneity matters. This topic is treated in

the next section.

9 Expansion of the initial model

From the discussion before we know that we have to expand our regression equation

in 3 by an spatial lagged error term. Therefore, we have to reformulate our regression

model 20 or 21 as a spatial error model (SEM). This is done with equation 22:
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dependent variable y: ln
(
Y
L

)
independent variables x ∈ X OLS OLS OLS OLS

Column (1) (2) (3) (4))

Constant 10.50177 10.72613 10.39325 10.38857

(0.0000)� (0.0000) (0.0000) (0.0000)

ln(K) 0.251596 0.237242 0.282934 0.282665

(0.0124) (0.0139) (0.0109) (0.0088)

ln(L) -0.193904 -0.219739 -0.243889 -0.243392

(0.0483) (0.0264) (0.0186) (0.0143)

ln(I) — 0.014814 0.016332 0.016466

(—) (0.5218) (0.4653) (0.4673)

ln(H) — 0.149377 0.161219 0.161679

(—) (0.0290) (0.0076) (0.0046)

ln(P) — -0.002382 -0.023189 -0.023487

(—) (0.9373) (0.5216) (0.5011)

ln(H+1) — — -0.066795 -0.066647

(—) (—) (0.6357) (0.6286)

ln(P+1) — — 0.054656 0.054706

(—) (—) (0.0453) (0.0391)

ln(I+1) — — -0.019147 -0.019317

(—) (—) (0.8033) (0.8022)

ln(P+2) — — -0.000197 —

(—) (—) (0.9726) (—)

d 0.218824 0.273835 0.226299 0.226651

(0.0000) (0.0002) (0.0061) (0.0056)

Moran-I1 0.96 2.34 3.19 3.29

(0.2506) (0.0253) (0.0024) (0.0018)

Moran-I2 -0.11 0.26 0.21 0.27

(0.3967) (0.3860) (3879) (0.3850)

LMλ1 0.21 2.42 4.90 4.89

(0.6483) (0.1201) (0.0268) (0.0270)

LMλ2 5.25 3.74 3.52 3.53

(0.0219) (0.0532) (0.0601) (0.0601)

LMρ1 1.21 5.58 1.82 1.81

(0.2800) (0.0184) (0.1775) (0.1782)

LMρ2 1.82 0.11 0.97 0.01

(0.1774) (0.7350) (0.3236) (0.9202)

Observations 39 39 39 39

adjusted R2 0.69 0.74 0.75 0.76

�White heteroscedasticity-consistent p-values in ().

Table 3: Results of OLS estimation for German NUTS-2 regions
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ln(y) = βc + βk ln(K) + βl ln(L) + βh ln(H) + βp ln(P ) + βi ln(I)+ (22)

+ ln(H+1)βH
+1

+ ln(P+1)βP
+1

+ ln(I+1)βI
+1

+ dγ + ε,

with ε = λ1W
+1ε+ κ or again in compact notation:

y = X+++β+++ + dγ + ε̃Λ + κ, (23)

with βX = [βc, βk, βl, βh, βp, βi], X = [1, k, l, h, p, i], Λ = [λ1], W++ = [W+1],

X+++ = [X, X̃], β+++ = [βX , β++], with κ ∼ (0, σ2I) and d as West-East dummy.

Model 23 should be estimated via two different ways:

• The first approach is to estimate this model with the assumption of σ2Ω = σ2I,

implying spatial homogeneity, which is a common assumption in the relevant

studies in this subject40. As mentioned above, model 22 should be estimated

via ML.

• The second approach is to estimate this model with the assumption of σ2Ω 6=

σ2I, implying spatial heterogeneity with a Bayesian approach which is laid out

latter.

If we go back to the first approach, first we have to set up our Likelihood function.

This is:

L =

∣∣∣Ñ ∣∣∣
(2πσ2)

N
2

exp

{
1

2σ2
(y −X+++β+++)′Θ−1(y −X+++β+++)

}
, (24)

with Θ−1 = Ñ ′Ñ and |Θ|
1
2 = |Ñ | and N the numbers of observations.

The corresponding log-likelihood for 24 is

lnL = −N
2

ln 2π − N

2
(σ2) + ln |Ñ | − 1

2
ξ′ξ, (25)

40Refer for instance to (Olejnik, 2008) or (Santolini, 2008).
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with Ñ = (I − λ1W+1) and ξ = Ñ(y − X+++β+++). This expression 25 can be

written in concentrated form as

lnLc ∝ ln |Ñ | − N

2
ξ̃′ξ̃, (26)

with ξ̃ = 1
σ Ñ(y−X+++β̃+++

ML ). The obtained Maximum-Likelihood based estimators

can be written as

β̃+++
ML = (X+++′Ñ ′ÑX+++)−1X+++′Ñ ′Ñy (27)

and

σ̂2
ML =

1
N

(ξ̃′ξ̃), (28)

obtained from maximizing 25. As we can see, equation 26 is highly non linear in

the parameter λ1. Because both β+++ and κ are a function of λ we should use an

iterative method to estimate λ1. An approach is to first, estimate β+++ via OLS,

then find with the associated estimated residuals a value of λ1 which maximizes the

concentrated likelihood function 26, third update the OLS values of β+++. With the

new updated values of β+++ then estimate new λ1, based on the updated estimated

residuals. Convergence is achieved, if values for both residuals and for β+++ do

not change anymore from one to the next iteration step, which means the difference

between β+++
t − β+++

t−1 < ϑ for a small value of ϑ near zero.41

It is worth to note, that refering on Maximum-Likelihood, we have to impose a

restriction on the parameter λ1. Referring to (Anselin and Florax, 1995a), p. 34,

this parameter takes on feasible parameter values in the range of:

1
λ̃1
min

< λ1 <
1

λ̃1
max

. (29)

λ̃1
min is the minimum Eigenvalue of the matrix W+r, whereas λ̃1

max represents the

maximum Eigenvalue of W+r. This suggest a constrained Maximum-Likelihood

maximization. If W+r is row standardized, as it should be, then of course λ1
max = 1.

41In this application ϑ is set to ϑ = 1e-8. Further t is set to a maximum value of 500.
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Please note, that this procedure could become extremely laborouis with respect to

computational issues. More precisely, the computational costs increase with the

dimension of the weighting scheme matrix W+r. Alternatively, one can set ex ante

values for λ, such as λ1 ∈ (0, 1) which implies only positive spatial error dependence.

In this work ex ante values for λ1 ranging from λ1 ∈ (−1, 1) have been imposed,

although a direct computation via Eigenvalues would be passable.

The second approach dealing with the estimation of model 23 is to refer on a Bayesian

approach but with the additional assumption of spatial heterogeneity, which means

that σ2Ω 6= σ2I. If the model yields the same results and spatial heterogeneity is

insignificant, we can conclude, that spatial heterogeneity can be ignored, otherwise,

there is at least little evidence that spatial heterogeneity a justified assumption and

we have to control for it.

Based on the likelihood function expressed by equation 24 a spatial Bayesian het-

eroscedastic model is set up. The core of Bayesian econometrics is the Theorem of

(Bayes, 1763) which is needed in this context for parameter estimation. Assume

for a moment that θ is a vector of unknown parameters which should be estimated.

Before any data are observed, we have beliefs and some uncertainty with respect

to our vector of parameter θ. These beliefs are called ”a priori” probabilities which

are fully represented by the probability function p(θ). The entire probability model

itself is totally defined by the likelihood p(y |θ) . p(y |θ) can be described as the core

of Bayesian econometrics, because it contains the entire set of information from the

data. Given, we have observed y, then we should update our beliefs regarding θ. By

using the theorem of Bayes we obtain the so called ”a posteriori” distribution of θ,

given y, which is

p(θ|y) =
p(y |θ)p(θ)

p(y)
, (30)

with p(y) = (y|θ)p(θ), defined by the law of total probability. Because p(y) do not

contain any information regarding θ and, over the more, we only interesting in θ, we

can ignore p(y). Thus the ”a posteriori” probability is proportional to the likelihood

times the ”a priori” probability:
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p(θ|y) ∝ p(y |θ)p(θ). (31)

Although the dimensionality of p(θ|y) depends on the number of unknown parame-

ters, we can often focus on individual parameters such as θ1 ∈ θ by numerically or

analytically integrating out other components42. For instance we can write:

p(θ1|y) =
∫
p(θ|y)dθ2dθ3... (32)

The entire information needed for inference about θ1 is contained in the marginal

distribution of θ1. What we have to do now is to specify our exogenous given priors

and the likelihood function.

In this context, we assume normal priors for β+++ and a diffuse prior for σ. The

relative variance terms vi ∈ Ω are fixed but unknown and therefore we have to

estimate them. We have to treat the vi as informative priors. The distribution

of all elements of Ω are assumed to be independently χ2

s distributed, with s ∼

Γ(a, b). As mentioned we are confronted with a degree of freedom problem, if the

number of estimated coefficients exceeds the number of observations. Considering

the fact, that the χ2 distribution is a single parameter distribution we are able

to compute N additional parameters vi by adding only one single parameter s to

our model. This idea goes back to (Geweke, 1993) who uses this type of prior to

model heteroscedasticity and outliers in a linear regression framework. The idea

becomes more clear if one knows that the mean of this priors is unity, whereas the

variance of this prior is s
2 . Thus, if s takes a large value, then all terms of Ω tend

to unity, yielding a homoscedastic scenario, because σ is weighted equally for every

observation, hence we obtain a constant variance over space. An assumption, which

is made within the traditional spatial Maximum-Likelihood approach. On contrary,

small values of s lead to a skewed distribution. The role of vi therefore is, as in a

traditional GLS approach, to down weight observations with large variances. For

this reason, the degrees of freedom s plays a crucial role when robustifying against
42Refer to (Geweke, 1993).
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outliers. For s→∞ the limiting normal and therefore a homoscedastic ”scenario” is

realized. One option could be to assign a improper value to s. The other possibility

is to use a proper prior for s which is Gamma distributed:

s ∼ Γ(a, b), (33)

with hyperparameter a and b. It has to point out, that the virtue of the first

option is that less draws compared to the second option are required for parameter

estimations and moreover convergence is quicker.

If Γ(a = s
2 , b = 2) this is equivalent to χ2(s), hence we obtain a so called mixing

distribution controlled by s. As shown by (Geweke, 1993) we can write

π

(
s

vi

)
∼ iid χ2(s), ∀ i, (34)

with π(·) denoting the prior from now. This implies, that the normal mixture model

with 34 is equivalent to a model based on independently distributed Student-t values

with s degrees of freedom, known as the (Theil and Goldberger, 1961) Model. The

spatial error parameter is assumed to follow an uniform, but proper distribution

with the range N̂ as π(λ1) = 1
N̂

= 1
λ̃1
min<λ

1<λ̃1
max
∼ U [−1, 1].

Let us summarize our assumptions regarding the priors as follows:

π(β+++) ∼ N (c, T ), (35)

π(
s

vi
) ∼ iid

χ2(s)
s

, (36)

π(λ1) ∼ U [−1, 1]. (37)

Given the priors defined above, we need the conditional posterior distributions for

each parameter β+++, σ, λ1,Ω to estimate them. Using the priors, assuming that

they are independent from each other, we can define the joint posterior as:

p(β, σ, λ1) = p(β)p(σ)p(λ1)
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∝
∣∣I − λ1W+1

∣∣σ−Nexp{− 1
2σ2

(ξ′Ω−1ξ)
}
σ−1 exp

{
− 1

2σ2
(β − c)′T−1(β − c)

}
.

(38)

From 38 the conditional distribution of β+++ is obtained from the standard non

spatial Bayesian GLS approach as:

p(β+++|λ1, σ,Ω, y) ∼ N [H(X+++ÑΩ−1Ñy + σ2T−1c, σ2H)], (39)

with H = (X+++′ÑΩ−1ÑX+++ + T−1)−1, Ñ = (I1
λW

+1), mean c and the corre-

sponding variance covariance matrix T .

The conditional distribution of σ is

p(σ|λ1,Ω, β+++, y) ∝ σ−(N+1)exp

{
1

2σ2
ξ′Ω−1ξ

}
. (40)

Next the conditional distribution of every element vi of Ω is considered. (Geweke,

1993) shows, that the conditional distribution for vi ∈ Ω represents a χ2 distribution

with s+ 1 degrees of freedom:

p

([
(σ−2e2

i + s)
vi

]
|β+++, λ1, v−i, λ

1

)
∼ χ2(s+ 1), (41)

with v−i = {v1, ...vi−1, vi+1, ..., vN}.

Now consider the conditional distribution for the parameter σ assuming that we

already know the parameters, given we know β+++, λ1 and Ω. This distribution

would be:

p

[
N∑
i=1

e2
i

vi
/σ2|β+++, λ1,Ω

]
∼ χ2(N). (42)

With 42 we adjust estimated residuals ei with estimated weights or relative variance

terms vi. This approach corresponds to the simple weighted least square procedure

(WLS) known from basic econometricians toolbox.
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Finally, the conditional posterior of λ1 is calculated as follows:

p(λ1|σ,Ω, β+++, y) ∝ |Ñ |exp
{

1
2σ2

ξ′Ω−1ξ

}
. (43)

With exception of 43, all other posterior distributions are standard and therefore

a Markov Chain Monte Carlo method (MCMC) can be applied to estimate param-

eters β+++, λ1, σ2,Ω. Usually, a Gibbs sampling approach, which is based on the

conditional posterior densities is used.

We wish to make several draws to generate a large sample from which we can ap-

proximate the posterior distributions of our parameters. Unfortunately, we cannot

approximate a posterior distribution for expression 43, because this type of distribu-

tion do not correspond to any so called standard class of probability densities. For

this reason, Gibbs sampling cannot be readily used. Fortunately, a method called

”Metropolis-Hasting” sampling which is an additional sequence in Gibbs sampling

procedure43, allows us to approximate the posterior distribution for λ1.44 The only

problem one has to solve is to find a suitable proposal density. (LeSage, 2000) sug-

gests to assume a normal or Student t-distribution. Because of the fact, that λ1 has

to be handled as a restricted parameter, which is situated between minus one and

one, the sampler rejects values outside the interval (−1, 1) from the sample. This is

called ”rejection sampling”.45

The ”Metropolis-Within-Gibbs” sampling algorithm can be expressed as follows:

1. Set t=0.

2. Define a starting vector St=0 which contains the initial parameter of interest:

S0 = [β+++
0 , σ2

0, vi0, λ
1
i ].

3. Compute the mean and variance of β+++ using 39 conditional on all other

initial values stacked in S0.

4. Use the computed mean and variance of β+++ do draw from a multivariate

normal distribution a normal random vector β+++
1 .

43Because of this reason, the method is also called ”Metropolis-Within-Gibbs”.
44Refer to (Gelman et al., 1995).
45Refer to (Gelfand et al., 1990).

37



5. Calculate 42 refering on β+++
1 from step 4 and use this expression in combi-

nation with χ2(N) random draw to determine σ2
1 for i = {1, 2, ..., N}.

6. Use β+++
1 and σ2

1 to calculate 41 and use this value together with a N -dimensional

vector of χ2(s+ 1) random draws to determine vi ∈ Ω for i = {1, 2, ..., N}.

7. Use metropolis within Gibbs sampling to calculate λ1 using values vi ∈ Ω for

i = {1, 2, ..., N}, β+++
1 and σ2

1.

8. Set t=t+1.

The question which remains is, how to select the correct Bayesian model. It is

sometimes the case that several competing models Mu with u = {1, 2, ..., U} exist.

Then usually posterior probabilities are computed which should give advice, which

model is the correct model in terms of probability. The posterior probability pposu

for model u is given by46:

pposu ≡ p(Mu|y) =
p(y|Mu)∑U
u=1 p(y|Mu)

. (44)

Bayesian model averaging suggests to weight all possible Bayesian models Mu with

u = {1, 2, ..., U} with their corresponding posterior probabilities. In terms of prob-

ability this means:

p(y∗|y) =
U∑
u=1

p(y∗|y,Mu)p(Mu|y), (45)

with p(y∗|y) as the posterior, p(Mu|y) as the posterior model probability and p(y∗|y,Mu)

as the likelihood function of model Mu. The reason why model averaging should be

used is quite simple. The traditional approach is to choose the single best model

based on calculating posterior model probabilities with 44 for every model of in-

terest.47 But one has to remember that this rather excluding approach could be
46Please refer to (Hepple, 2004), p. 105.
47A large bulk of literature on Bayesian model averaging (BMA) over alternative linear regression

models containing differing explanatory variables exists. For instance refer to (Raferty et al., 1997),

(Fernandez et al., 2001b) and (Fernandez et al., 2001a). The MC3 approach, is set forth for in

(Madigan and York, 1995) for the SAR and SEM models.

38



lead to wrong decisions, because a researcher has to decide on the basis of model

probabilities what is the ”good model” and what is the ”not so good model” from

a sometimes large set of models. Additionally, only referring to the ”good model”’

ignores model uncertainty. In this study, relying on model probabilities is not a good

idea, because ”posterior model probabilities cannot be meaningful calculated with

improper non informative priors,”48 which are not common for all models. There-

fore we refer to the MCMC literature to compute a posteriori model probabilities.

This so called MC3 approach, introduced by (Madigan and York, 1995) is based

on a stochastic Markov Chain process which moves through the model space and

samples those regions which has a high superior model support. Thus this approach

is very efficient because not the entire model space is of interest.49

Knowing these facts, we are now able to interpret our estimation results for both

approaches, the Maximum-Likelihood and the Bayesian approach. The results for

the first approach can be found in column (1) and (2) of table 5. The first regression

is a mixture model of spatial lag and spatial error model, the so called spatial ARMA

model, which is in this case labeled as SEC(r,r) to avoid confusion with respect to

time series context.50 This regression is done to corroborate our model selection on

inductive statistics, done in the forgoing chapter. After estimation of all possible

combinations of first order and second order spatial models51, we have chosen the

SEC(1,1) model as the appropriate model on basis of the value of the log-likelihood.

Leaving out the insignificant parameter ρ1, estimating a pure spatial error model

(column (2)) and comparing this with column (1) we can see, that only minor

changes of coefficient values result. This is an indicator, that the spatial lag does

not provide any further information for our model. Thus, it is justified, to model

a spatial SEM(1) model, which is printed in column (2), because the spatial error

coefficient λ1 is highly significant. Comparing the SEM(1) model with the fourth

column of 3 we can find moreover, that the coefficient for ln(I+1) is not positive,

48(Koop, 2003), p. 268.
49Refer to (LeSage and Parent, 2007) for an excellent contribution to this topic.
50See appendix 1 for a deviation of the log-likelihood of the spatial ARMA model.
51See appendix 2 for a summary.
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Bayesin model (4)[SEM(1)] Model (4,1) Model(4,2) Model (4,3) Model(4,4)

Runs 10,000 10,000 100,000 100,000

Informative Priors No Yes No Yes

pposu 0.2770 0.2509 0.2374 0.2374

Table 4: MC3 a posteriori model probabilities pposu for variants of model (4)[SEM(1)]

but again highly non significant. All other coefficient have, compared to (4) in table

3, roughly the same dimension, the same sign and the same level of significance.

Additionally, the results for the second approach, an estimation of the Bayesian

counterpart of equation 23 can be found in column (3) of table 5. Before discussing

the results, we first should get an intuition of what is behind the Bayesian estimation

approach.

To obtain estimates from our Bayesian approach we have to simulate draws. To

ensure stability of simulated results, one should do a simulation on non informative

priors and on informative priors, for which starting values are obtained from a cor-

responding Maximum-Likelihood estimation with different draws. For this reason,

two Bayesian estimations, one with 10,000 draws and one with 100,000 draws, each

with informative and non informative priors have been conducted. At all we get 4

models, for each number of draws one should estimate a model with informative and

non informative priors.52 The model probabilities pposu for the relevant models can

be found in table 4.

Calculating this probabilities and comparing them with each other, we find, that

the first model (4, 1) has slightly a higher probability to be the correct model.

Furthermore, MCMC-convergence checks the four relevant models have been per-

formed.53 to ensure convergence of the sampler. If the means and variances for

the posterior estimates are similar from all runs, convergence seems ensured at all.

52Because of the fact, that the initial model estimation results on which Bayesian model speci-

fication is based are drawn in column (4) of 5, we label variants of the Bayesian model as model

(4,1), (4,2), (4,3) and (4,4).
53Please refer to appendix 3 for a short description of convergence criteria and appendix 4 for

convergence diagnostic of all selected models.
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The convergence tests for all regressions show, that convergence of the sampler is

guaranteed for all simulations. Therefore, we rely on model (4, 1) because it request

fewer draws. The estimation results for this model can be found in 5 in column (3).

If we now turn back to 5 and compare the heteroscedastic Bayesian counterpart

in column (3) with the homoscedastic Maximum-Likelihood based estimation in

column (2) then we can easily see, that estimation results do not differ dramatically.

Picture 3 and picture 4 confirm this result. Again, the coefficient of ln(I+1) is

positive but not significant. On contrary, the heteroscedastic Bayesian approach

estimates a lower value for the spatial lag component λ1, as the homoscedastic

Maximum-Likelihood does. But again, the parameter range for λ1 is comparable

between the two approaches and both coefficient values are highly significant on a

1% significance level.

The last point we have to tackle is to ask, whether the spatial Bayesian estimation

provides us with some evidence of spatial heterogeneity. Picture 5 shows a plot

of the mean of the vi draws which should serve as an estimate of these relative

variance terms. We can see that one outlier is identified, irrespectively what model

we choose. If spatial homogeneity is observed, all elements of Ω should realize the

value one. Obviously, this not the case for all four Bayesian models, as we can see

from figure 5. From this point of view, we should conclude, that spatial heterogeneity

matters, although Maximum-Likelihood and Bayesian estimates correspond each

other with respect to parameter estimates. Therefore, we should choose the Bayesian

model represented column (3) in table 5 as the optimal one, which delivers efficient

parameter estimates.
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dependent variable y: ln
(
Y
L

)
independent variables x ∈ X ML ML Bayes

Preferred Model (4)[SAC(1,1)] (4)[SEM(1)] (4)[SEM(1)]

Column (1) (2) (3)

Constant 8.531315 10.09034 10.07207

(0.0034)� (0.0000) (0.0000)

ln(K) 0.306738 0.303988 0.294401

(0.0000) (0.0000) (0.0019)

ln(L) -0.232205 -0.235542 -0.231121

(0.0004) (0.0003) (0.012526)

ln(I) 0.009437 0.011475 0.006971

(0.6514) (0.5828) (0.3904)

ln(H) 0.196265 0.183675 0.187209

(0.0006) (0.0003) (0.0024)

ln(P) -0.050593 -0.043691 -0.043108

(0.0847) (0.1101) (0.1145)

ln(H+1) -0.055016 -0.071008 -0.004407

(0.5594) (0.4149) (0.4871)

ln(P+1) 0.070208 0.083117 0.062044

(0.0477) (0.0008) (0.0164)

ln(I+1) 0.028737 0.035589 0.030584

(0.6262) (0.5416) (0.3233)

d 0.261555 0.252277 0.255723

(0.0000) (0.0000) (0.0005)

ρ1 0.132883 — —

(0.5905) (—) (—)

λ1 0.696998 0.710951 0.561134

(0.0000) (0.0000) (0.0081)

Observations 39 39 39

ln(L) 90.47 67.93 —

adjusted pseudo R2 0.83 0.83 0.81

Table 5: Estimation results for German NUTS-2 regions
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Figure 4: Density plots of estimated λ1
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Mean of vi draws (Model (4,1)) Mean of vi draws (Model (4,2))

Mean of vi draws (Model (4,3)) Mean of vi draws (Model (4,4))

Figure 5: Computation of vi draws of Ω

10 Interpretation of obtained results

In this section we have tried to find out how regional labour productivity is affected

by spatial knowledge processes. We found, that first order neighbouring patent ac-

tivity influences the regions own labour productivity, while own patent activity does

not exhibit a significant influences on own labour productivity. Additionally, most

of spatial activity cannot be explained fully by exogenous spatial lagged knowledge.

This is the case, because the spatial error term is highly significant, even if one

includes spatial lagged counterparts of exogenous variables. Additionally, it was

shown with a spatial Bayesian analysis, that spatial heterogeneity is a reasonable

assumption and neglecting this issue would lead to inefficient parameter estimates.

The next step is to investigate further the impact of knowledge diffusion on German

NUTS-2 regions more systematically. So far, we only have obtained some evidence,

that the data generating process can be described also by spatial effects. The next
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step is, to isolate the spatial neigbbouring influence from the data. In this way

it is possible, to distinguish between region specific or home effects and neighbour

effects. For instance, regions might have a high labour productivity compared to

the average, but this level of labour productivity might be influenced negatively by

neighbouring regions et vice versa. The goal is to identify strength and weakness of

German NUTS-2 regions and derive implications for regional policy instruments.

11 Spatial filtering

In this section we try to isolate spatial spillover effects from region specific labour

productivity. In this way it is possible to create a strength and weakness profile

of German Nuts-2 regions. Particularly, one should be interested in answering the

question which regions have positive effects on neighbouring regions and which re-

gions provide negative effects on neighbouring regions. This has also implications

for an appropriate regional policy. In this way we can say that labour productivity

is a sum of own labour productivity and spillovers from neighbouring regions which

can be either positive or negative. The question is, if the overall effect is positive

or negative. We base the spatial filtering procedure on the so far obtained results.

Thus we set r = 1 and include only patents p and human capital h as exogenous

variables in our filter procedure.

11.1 Concept of the filtering approach

Spatial filtering is a well established analysis method in spatial econometrics appli-

cations. The idea is based on a two step estimation technique. In the first step we

have to filter every exogenous variable and in the second step we have to regress the

dependend endogenous variables on all spatial filtered exogenous variables.

The starting point of spatial filtering is the Morans‘s I. From equation 12 we know

that Moran‘s I for a standardized matrix W+1 can be computed as follows:

I =
e′W+1e

e′e
. (46)
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This equation can be reformulated 54 as

I =
y′C+1y

e′e
, (47)

with

C =
(
I − ιι′

N

)
W+1

(
I − ιι′

N

)
, (48)

with ι as a (N ×1) vector of ones and I as the (N ×N) identity matrix. In this way,

the Eigenvectors of Cr load every spatial effect. The first Eigenvalue contains the

largest Morans‘s I coefficient with a given standardized matrix W+r. The second

Eigenvalue contain the value, which leads to the maximal Morans‘s I given the

second Eigenvalue is not correlated with the first one, which is ensured, because

W+r is standardized.

Because of missing degrees of freedom, one cannot use every Eigenvector for spatial

filtering 55. Therefore a rule of thumb for Eigenvector selection is needed. (Grif-

fith, 2003) has proposed to use only those Eigenvectors which fulfill the following

condition:

I > 0.25 Imax. (49)

Equation 49 provides us with an indicator regarding the maximum number of Eigen-

vectors L which should be included into our regression framework. Based on a top

down procedure, one can eliminate all Eigenvectors which do not provide a substan-

tial potential of explanation. Given we have identified the relevant Eigenvectors,

we can proceed with the filtering scheme. On the first step we filter the vector of

independent variables X by running the following regression:

xk = γ0 +
L∑
l=1

γlv̂l + εk, (50)

with ε ∼ (0, σ2Ω), vl the lth Eigenvector and xk the kth exogenous variable.
54Refer to (Griffith, 2000), p. 145.
55Refer to (Griffith, 2003), p. 107.
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It is clear that the estimated residual vector ε̂k contains the spatial filtered coun-

terpart of the not filtered variable xk. The second step is to regress y on spatial

filtered variables and on Eigenvectors vl. In this equation every variable is spatial

filtered and therefore OLS estimation is unbiased. The corresponding regression on

the second step can be written as:

y = γ0 +
L∑
l=1

γlv̂l +
K∑
k=1

γlε̂k + κ, (51)

with κ ∼ (0, σ2Ω), vl the lth Eigenvector and xk the kth exogenous variable. Of

course equation 51 can be consistently estimated with OLS.

11.2 Eigenvector computation

From matrix C of equation 48 one can derive the Eigenvectors and compute Moran’s-

I with 12. This can be done using Matlab for instance. For every Eigenvector vl

the corresponding Moran I coefficient was computed. As one can see from picture

6 only 10 of 39 Eigenvalues meet 49. The second Eigenvector leads to Imax which

takes the value Imax = 0.97437.
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dependend variable y: ln
(
Y
L

)
estimation method OLS OLS OLS OLS

dependent variables x ∈ X l k h p

Constant 13.21070 12.30990 2.090592 5.293690

(0.0000)� (0.0000) (0.0000) (0.0000)

v1 — — — -3.049842

(—) (—) (—) (0.0019)

v3 — — 0.623305 —

(—) (—) (0.0755) (—)

v6 -1.259430 -1.229270 — -1.816913

(0.0084) (0.0424) (—) (0.0287)

v7 0.950438 — — 1.500619

(0.0176) (—) (—) (0.0961)

Observations 39 39 39 39

adjustedR2 0.16 0.08 0.07 0.26

Table 6: Spatial filtering of exogenous variables X

11.3 Spatial filtering estimation

First we estimated separately 12 for k, l, h and p.56 The results of these regressions,

corresponding to equation 50 can be found in table 6.

As we can see from figure 7, we cannot observe a clear spatial pattern, represented

by the Eigenvectors v6 and v7, labeled as (a) and (b). On contrary, in figure 8 the

Eigenvector v1, labeled as (c), the Eigenvector v2, labeled as (d) and the Eigenvector

v3, labeled as (e) show a clear spatial pattern. The first Eigenvector v1, labeled as

(c) is declining from North to South, the second Eigenvector, the Eigenvector v2,

labeled as (d) exhibit a significant declining West-East pattern, whereas the third

Eigenvector v3, labeled as (e) is affected by low values in North-West and South-East

56Based on Wald-tests, we should not include i and p both. As argued above again, a Wald-test

based on ML estimation ignoring spatial dependence in the data is not valid. Because of the fact

that we want to include possible knowledge spillover variables, we only eliminated i. From table

5 we see, that neither i nor the spatial lagged counterpart of i are significant, whereas the spatial

lagged counterpart of p is significant.
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of Germany.

0,157 to 0,405   (4)
0,094 to 0,157   (7)
0,032 to 0,094   (5)

-0 ,015 to 0,032   (7)
-0 ,068 to -0 ,015   (6)
-0 ,162 to -0 ,068   (6)
-0 ,374 to -0 ,162   (6)

0,18  to 0,21   (5)
0,11  to 0,18   (7)
0,03  to 0,11   (6)
0  to 0,03   (5)

-0 ,02  to 0   (3)
-0 ,19  to -0 ,02   (7)
-2 ,1  to -0 ,19   (8)

(a) (b)

Figure 7: Graphical representation of Eigenvectors (I)

After filtering the exogenous variables, the next step is estimating 51. Therefore,

a stepwise estimating procedure of labour productivity on Eigenvectors and spatial

filtered variables is employed. In the regression context, no dummy variable for West-

East differences is included, because the dummy would filter spatial information

potential and could lead to a biased regression in this context. The results of this

estimation can be found in table 7. We find, that the first three Eigenvectors, which

cover spatial effects, determine a considerable amount of labour productivity. This

leads us to conclude, that labour productivity of a given region is not only determined

by its own economic potential, but also by neighbouring labour productivity. This

implies, that network effects play an important role and should be considered within

the embodiment of regional policy. We can therefore conclude, that patents p and

human capital h are mainly affected by spatial effects. The latter is only partial

true for capital k and labour l.

As we can see from 7, the results for the constant estimated labour elasticity l,

the constant estimated capital elasticity k, the constant estimated human capital

elasticity h and the constant estimated patent elasticity p have all positive signs and

have been, with respect to their dimension correct estimated. With the exception

of p, all estimated coefficients are significant on a 5% or 10% level.

Now we are prepared to decompose labour productivity in home effects and neigh-
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dependent variable y: ln
(

Y
L

)
estimation method OLS

Constant 11.21121

(0.0000)�

ε̂l -0.358058

(0.0031)
ε̂k 0.261464

(0.0183)
ε̂h 0.136156

(0.0747)
ε̂p 0.075354

(0.1114)
v1 -0.421669

(0.0002)
v2 0.211905

(0.0323)
v3 -0.305651

(0.0225)
Observations 39

adjustedR2 0.66

Table 7: Spatial filtering of labour productivity y

bour effects. The residual of this simple decomposition cannot be returned neither to

home effects, nor to neighbour effects and therefore they are treated as not system-

atic. Noting the fact, that both, Eigenvectors and spatial filtered variables exhibit a

mean of zero, we can conclude that the constant term contains the mean of labour

productivity. If we subtract the mean ȳ from equation 51 we obtain:

y̆ ≡ y − ȳ = γ0 +
L∑
l=1

γlvl +
K∑
k=1

γlε̂k − ȳ + κ, (52)

with κ ∼ (0, σ2Ω), vl the l-th Eigenvector and xk the k− th exogenous variable. The

term γ0 +
∑K

k=1 γlε̂k − ȳ can be defined as the own region effect, whereas the term∑L
l=1 γlvl represents the neighbour effects. The term κ represents the unsystematic

component. Because of the fact, that all effects are centered around zero, we can

interpret equation 52 as a deviation from the mean specification. For instance,

if y̆ > 0, which means that a region exhibits a superior labour productivity, this

can be due to home effects or due to neighbouring effects. Even if a region has a

superior home effect, a negative neighbour effect could lead to a negative overall
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0,256 to 0,308  (5)
0,116 to 0,256  (5)
0,004 to 0,116  (7)

-0,068 to 0,004  (6)
-0,107 to -0,068  (6)
-0,159 to -0,107  (6)
-0,229 to -0,159  (6)

0,187 to 0,329  (6)
0,1  to 0,187  (5)
0,039 to 0,1   (7)

-0,017 to 0,039  (5)
-0,076 to -0,017  (5)
-0,172 to -0,076  (7)
-0,296 to -0,172  (6)

0,179 to 0,237  (5)
0,133 to 0,179  (7)
0,098 to 0,133  (3)
0,021 to 0,098  (7)

-0,069 to 0,021  (6)
-0,225 to -0,069  (6)
-0,285 to -0,225  (7)

(c) (d)

(e)

Figure 8: Graphical representation of Eigenvectors (II)

effect regarding labour productivity, et vice versa.57

11.4 Interpretation of simulation results

The next two figures in 9give an impression of the results of labour productivity

simulation, based on equation 52. First, we should investigate own regions effects

regarding labour productivity, which are separated from regions neighbour effects.

The labour productivity effects are deviations from the mean which is, as mentioned

above, centered around zero. As we can see with respect to the own region effect

(RE) in the left hand map, especially some East German regions, such as ”Süd Bran-

denburg”, ”Sachsen” and ”Berlin” would exhibit a relative high labour productivity

if we only apply for own region effects. But with respect to the overall effect (OE),

which is plotted in the right hand map, some negative influence from neighbouring
57From equation 52 we see, that an inclusion of a dummy variable as done before, would bias

within the regression context. Even more, a spatial filtering of a dummy is by definition not

plausible. Besides that and give, we include the dummy we cannot rule out that these variable also

contains spatial information.

52



regions leads to a reduction of labour productivity in those regions. On the other

side, the region ”Oberfranken” benefits for the most part from neighbouring effects.

0,095 to 0,191  (4)
0,054 to 0,095  (7)
0,023 to 0,054  (6)

-0,028 to 0,023  (6)
-0,047 to -0,028  (5)
-0,087 to -0,047  (7)
-0,226 to -0,087  (6)

1,4 to 52,1  (8)
1  to 1,4  (1)
0,9 to 1   (1)
0,6 to 0,9  (8)
0,3 to 0,6  (9)

-1,1 to 0,3  (7)
-4,9 to -1,1  (7)

(RE) (RE/OE)

Figure 9: Absolute and relative regional effects

Now we turn our attention to the neighbouring effects. These are visualized in figure

10. First, we find in the map on the left hand side a rather impressive confirmation

that especially South German regions and with some cut backs also West German

regions, settled in the ”Rhein-Main -Gebiet” and the ”Ruhrgebiet”, are the source of

knowledge spillovers. On contrary, we find maximum negative neighbour influence

throughout East German regions. With respect to the overall effect (OE), we find

in the map on the right hand side some dramatic changes. The effects for South

German regions, some regions of the ”Rhein-Main-Area” and some regions of the

”Ruhrgebiet” are rather low. Thus, only a little fraction of the superior labour

productivity of these regions are due to neighbouring effects.

Finally, we can categorize the regions in a strength-weakness profile, both for the

own region and neighbouring region effects.

Regions which are settled in the top right corner of figure 11 can be characterized by

a superior labour productivity. For those regions, positive or negative neighbouring

effects play only a minor role. In these regions, with the exception of ”Hamburg”,

which is top leader with respect to own and overall effects and ”Schleswig-Holstein”,

you can find mainly South German regions, such as ”Oberbayern”, ”Stuttgart”,
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0,094 to 0,122  (6)
0,034 to 0,094  (5)
0,024 to 0,034  (4)
0,009 to 0,024  (8)

-0,029 to 0,009  (5)
-0,108 to -0,029  (7)
-0,179 to -0,108  (6)

1,5 to 14,2   (9)
0,8 to 1,5   (6)
0,5 to 0,8   (3)
0,4 to 0,5   (4)
0,3 to 0,4   (2)

-0,4 to 0,3  (10)
-27,1 to -0,4   (7)

(NE) (NE/OE)

Figure 10: Absolute and relative neighbour effects

”Tübingen” etc. and West German regions, such as ”Düsseldorf”, ”Köln” etc. sit-

uated in this area. These findings supports the findings of (Eckey et al., 2007) for

German labour market regions.

Regions which can be found in the down right corner of figure 11 exhibit a positive

over all effect, because of the positive neighbouring effects. But, without these

effects, a negative overall effect would occur. In this area you can find mainly West

German regions, which profit from spillover regions, situated in the upper right

regions. This is especially true for some Bavarian regions, such as ”Schwaben”,

”Oberpfalz”, ”Niederbayern” who profit mainly from ”Oberbayern” spillover centers

like ”Greater Munich area”.

Regions in top left exhibit a negative overall effect, despite the fact, that the home

effect is positive. In other words, if negative neighbouring effects did not affect those

regions, those regions could be associated with a superior labour productivity. In this

region you find primarily East German regions, which are compared to other East

German regions are relative prosperous with respect to their economic development.

This is especially the case for ”Dresden”, ”Süd-Brandenburg”. But also ”Berlin”

and ”Braunschweig” can be found in this area.

Regions in the down left regions can be characterized as regions which require eco-

nomical and political support and should therefore be in the focus of political debate

when talking about the allocation of supranational grants. Neither their own labour
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Figure 11: Regional and overall effect

productivity is superior, nor they can benefit from positive knowledge spillovers from

neighbouring regions. Again, in this region we can find by majority East German

regions. But, in contrast to East German regions which are settled in the upper left,

those regions suffer from structural weaknesses. This is especially the case for ”Nord-

Brandenburg” but also for West German regions, such as ”Saarland” and ”Ober-

franken”. In this picture we can see that when talking about economic performance

of German regions, the entity ”Bundesländer” is to crude. For instance, it is not as

easy as it seems ex ante to get a correct impression of the economic performance

of ”Sachsen”. For NUTS-2 case Dresden performs rather well, whereas ”Chemnitz”

and ”Leipzig” perform bad. This is also true for West German regions, especially

”Bayern”, which seems to be more heterogeneous than ”Baden-Württenberg”.

Figure 12, which has at the ordinate the neighbour effects and at the abscissa the

overall effect has to be interpreted analogously as figure 11 and provides an alterna-

tive view on the same results obtained before. Again, some regions would exhibit a

positive overall effect, unless negative neighbour effects are taken into consideration.

Again, this is especially true for ”Berlin”, ”Brandenburg-Südwest” and ”Dresden”

for instance.
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Figure 12: Neighbour and overall effect

12 Policy implications

The purpose of this section is to derive some implications for regional policy, based on

simulation results which have been obtained in the last section. The core of regional

policy since 1969, coordinated by German administration is the so called ”Bund-

Länder-Gemeinschaftsaufgabe ”Verbesserung der regionalen Wirtschaftsstruktur””

(GA). Regional policy in the German sense is a cooperation of the German countries

and the Federal Republic of Germany which is controlled by Art. 91.a in the German

constitution. But (GA) is not only a traditional funding instrument. (GA) is the

framework of strategy, regulation and coordination of regional policy, also for EU

related founds.

If we have again a look at figure 11, and more precisely, if we again take the upper left

region. Then from a policy maker view it should be clear that policy instruments are

required which take into account that a comprehensive regional approach goes into

the wrong direction. For those regions a mixture of traditional structural sponsorship

should be supplemented by appropriate public-private-partnerships. Especially for

East German regions regional policy has focused instruments which should hinder

the Brain drain towards West German regions. Since 2005 the German economic
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department programme ”Kooperationsnetzwerke und Clustermanagement” supports

regional and national cooperation between companies, scientific and economy as well

as between local administration to strength the network abilities and competitiveness

of regions. This seems an appropriate policy instrument for those mentioned regions.

For regions in the down left area in figure 11, traditional regional policy arrangements

seem to be appropriated. Additionally, as mentioned by (Moll, 2000) EU region wide

cooperations between country such as Germany and France near the German-French

boarder or with Czech Republic to promote former so called borderlands or with

Poland to promote close to boarder regions of ”Mecklenburg” have been aspired.

Thus, EU as German funding instruments includes a prominent regional component

which aims to support the creation of regional clusters.
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13 Conclusion

The main intention of this paper is to identify knowledge spillovers in a spatial

context. Particularly, it is assumed, that spatial effects per se are heterogeneous,

an assumption which seems to be plausible. Hence, this paper combines spatial

heterogeneity and spatial dependence which are the two main aspects of spatial

econometrics.

These aspects have been integrated in a cross section production function approach,

proposed by (Griliches, 1979), which should measure the effects of innovativeness,

measured by knowledge capital, such as human capital, patents or R&D and spatial

spillovers on output. This is done for German NUTS-2 regions. These administra-

tion level has been selected due to the fact, that referring on NUTS-3 regions could

lead to spatial dependence by ”construction” caused by streams of commuters for in-

stance. Spatial econometricians methods have been employed to measure the before

mentioned effects. Spatial heterogeneity is mostly neglected in hitherto empirical

studies. Thus, employing a new model selection mechanism, which accounts for spa-

tial heterogeneity and which is based both on Maximum-Likelihood and Bayesian

methods, one can find that significant spatial knowledge spillovers exist in the data,

even though they are small. Especially, patents spillovers have been detected as

the driving forces of economic performance. Further, the selected model found that

spatial heterogeneity matters. Controlling for spatial heterogeneity is important

because neglecting it could lead to insufficient estimates. Until today, the major-

ity of existing studies assume ex ante spatial homogeneity. This could be due to

the fact, that Maximum-Likelihood methods are very clumsy for spatial model es-

timation. Coevally, Bayesian methods are still on the fringes, especially in spatial

econometrics, although the conceptual idea of Bayesian methods are more eligible

to cover spatial model design than Maximum- Likelihood methods so far. Hence, it

can be expected that in the next years some improvements of Maximum-Likelihood

methods will be made in terms of efficient spatial model estimation.

Another way to investigate spatial data, is to employ spatial filter methods. This

method should be used, if spatial effects should be removed from data. In this
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context it is obvious to ask the question if regions specific economic strength benefits

from economic activity from their neighbours or not. The filtering method is easy to

implement and can be conducted with a traditional two step OLS procedure. One

of the key findings is, that economic performance differs not primarily between East

and West German regions, but is more complex. Especially for East German regions

we find, that some well performing regions suffers in great extent from negative

neighbour influence. This is also true for some West German regions but plays a

minor role. Against this background it is rather logical, that cluster phenomena

are suitable for explaining the distribution of economic activity of German NUTS-2

regions over space.

This cluster phenomena can be graphically replicated with a weakness-strength pro-

file. To obtain this, on the basis of the employed filter method a simulation of

labour productivity has been conducted. Using the simulated data it is found that

especially, South German regions, such as ”Bayern” and ”Baden-Württemberg”

and regions in the ”Ruhr-Gebiet” perform well, due to their inherent economic

strength. These regions do not rely on positive neighbour effects to beef up their

economic performance. Therefore, these regions can be labeled as knowledge genera-

tion areas. On contrary, some regions would perform significantly better, if negative

spillover from neighbouring regions could be eliminated. This is particularly true

for ”Brandenburg-Süd” and ”Dresden”.

What are the political implications? As mentioned above, EU has launched sev-

eral economic policy programmes to foster regional economic performance. Most

of the EU related programmes have recognized the outstanding role of knowledge

and economic clusters for regional development. Knowledge spillovers, generated

by knowledge generation areas, such as ”Munich Greater Area”’ should contribute

to boost neighbouring regions, which suffer from insufficient knowledge generating

potential. Hence, regional politics is on the right track, but should provide further

incentives for strengthen regional knowledge networks.
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14 Appendix

14.1 Appendix 1

The log-likelihood function for the spatial variant of a ARMA(1,1), SAC(1,1) can

be derived as follows.58

y = ρ1W+1y +X+++β+++ + ε, (53)

with

ε = λ1W+1ε+ κ, (54)

with κ ∼ (0, σ2I) can be written as

ξ =
1
σ

(I − λ1W+1)[(I − ρ1W+1)y −X+++β+++] (55)

with ξ ∼ N(0, I). The corresponding determinant of the Jacobian J ≡ det ∂ξ∂y can

be rewritten as

J ≡ det∂ξ
∂y

= | 1
σ

[I − λ1W+1] || [I − ρ1W+1]|. (56)

Employing the fact that ξ ∼ N(0, I) we can write the log-likelihood for the joint

distribution as

lnL = −N
2

ln 2π − N

2
(σ2) + ln |Ñ |+ ln |[I − ρ1W+1]| − 1

2
ξ′ξ, (57)

If ρ1 = 0 then the log-likelihood 25 results.

58The proof is based on (Anselin, 1988), p. 74 with some minor adjustments.
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14.2 Appendix 2

Dependent variable y: ln
(
Y
L

)
Independent variables x ∈ X

Preferred model Number of parameters ln(L) ρ̂ λ̂

Model 4 [SAC(1,1)] 12 90.47 0.133 0.697\

Model 4 [SAC(1,2)] 12 88.55 0.284 -0.989

Model 4 [SAC(2,1)] 12 90.28 -0.000 0.722\

Model 4 [SAC(2,2)] 12 87.74 -0.000 -0.987

Model 4 [SEM(1)] 11 67.93 — 0.711\

� Selected model. † indicates 10% significance. ‡ indicates 5% significance. \ indicates 1% signifi-

cance

Table 8: Comparison of selected models

14.3 Appendix 3

In the relevant literature, there are some convergence checks for convergence of

MCMC based samplers for linear models. In this section there is given a short

motivation of some convergence checks instruments. All below mentioned diagnostic

tools are implemented in the Matlab function ”coda”.

14.3.1 Autocorrelation estimates

From time series it is known that if ρ is a stationary correlated process, then ρ̂ =
1
N

∑N
i=1 ρi is a consistent estimate of E(ρ). Therefore it is allowed to simulate some

correlated draws from our posterior distribution to get a hint how many draws we

need for uncorrelated draws for our Gibbs sampler. A high degree of correlation

should cause someone to carry out more draws which should result in a sample

which allows to draw correct posterior estimates.

61



14.3.2 Raftery-Lewis diagnostics

(Raftery and Lewis, 1992b), (Raftery and Lewis, 1992a) and (Raftery and Lewis,

1995) have suggested a set of diagnostic tools which they have first implemented

in FORTRAN named ”Gibbsit”. This function was converted in Matlab and called

”raftery”. (Raftery and Lewis, 1992b), (Raftery and Lewis, 1992a) and (Raftery

and Lewis, 1995) have focused on the quantiles of the marginal posterior. The

diagnostic itself is based on the properties of a two state Markov-Chain, because for

a given quantile the chain is dichotomized using a binary time series that is unity,

if ρi ≤ qquant and zero otherwise, where qquant denotes the quantile which has to

be chosen from the researcher ex ante. For an independent chain, the zeros and

ones should be appear randomly. The ”coda” function prints the so called thinning-

ratio, which is an indicator of autocorrelation in the draws. ”Thinning” means,

that only every third, fifth,... draw for instance are saved for inference, because

the draws from a Markov Chain are not independent. Additionally, the number

”burn-in-draws” are reported. The number of ”burn-in-draws” are excluded from

sampling based on inference. Finally, the I-statistic is reported which is the ratio

of the number of total draws and the minimum number of draws to ensure an i.i.d.

chain, represented by the draws. (Raftery and Lewis, 1992b), (Raftery and Lewis,

1992a) and (Raftery and Lewis, 1995) indicate that values larger than 5 exhibit

convergence problems of the sampler and therefore, more draws should be carried

out.

14.3.3 Geweke diagnostics

The Matlab function ”coda” additionally estimates the numerical standard errors

and relative numerical standard errors based on the work of (Geweke, 1992). The

code can be found at http://www.biz.uiowa.edu/cbes/code.htm, which is based on

BACC. The BACC code itself as Matlab, R and S-Plus routines can be found at

http://www2.cirano.qc.ca/ bacc/bacc2003/index.html. This diagnostics are based

on elements of spectral analysis. From time series analysis we know, that an estimate

of variance of ρ is based on V ar[ρ̂i] = ∆(0)
k with ∆0 as the spectral density of ρi
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evaluated at ω0 of ∆(ω). The question is, how to approximate ∆(ω). For this

reason, alternative tapering of the spectral window should be used. Using numerical

standard errors and relative numerical i.i.d. standard errors and compare them with

numerical standard errors and relative numerical standard errors from the tapered

version. If the relative numerical standard error of the tapered version is close to

one, then convergence seems to be ensured.

14.3.4 Geweke-χ2 test

Geweke’s-χ2 test is based on the intuition that sufficiently large draws have been

taken, estimation based on the draws should rather identical, provided the Markov

chain has reached an equilibrium state. This test is a simple comparison of the

means for each split of the draws. In this work, the χ2 test, based on the null

hypothesis of equality of the means of splits is carried out for each tapered case.

It should be mentioned that the diagnostic tools introduced here are not foolproof

and sometimes MCMC diagnostic tools lead to misleading decisions.59

14.4 Appendix 4

For appendix 6, please refer to the following pages.

59Refer for this topic to (Koop, 2003), p. 66.
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