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Abstract

This paper shows that non-linearities and non-normalities are important to generate
empirically observed stylized facts of the risk premium. These key features can explain
the equity premium puzzle and the time-varying behavior of the risk premium. We
employ explicit solutions of dynamic stochastic general equilibrium (DSGE) models.
It is shown that non-linearities in a prototype DSGE model can generate time-varying
risk premia, while non-normalities can account for the observed risk-premium puzzle
by drawing from the Barro-Rietz ‘rare disaster hypothesis’.
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1 Introduction

“... the challenge now is to understand the economic forces that determine the

stochastic discount factor, or put another way, the rewards that investors demand

for bearing particular risks.” (Campbell 2000, p.1516)

“A major advantage of the continuous-time model over its discrete time analog

is that one need only consider two types of stochastic processes: functions of

Brownian motions and Poisson processes.” (Merton 1971, p.412)

This paper shows that non-linearities and non-normalities are important to generate key

features of the risk premium. We employ explicit solutions of dynamic stochastic general

equilibrium (DSGE) models. Our macro-finance model is specified in terms of underlying

preferences and technology parameters, such that the asset-pricing kernel is consistent with
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the macroeconomic dynamics (Diebold et al. 2005, p.420). It is shown that non-linearities can

generate time-varying risk premia, and non-normalities are important to explain the observed

risk-premium puzzle. For this purpose we readopt formulating models in continuous-time,

which has closed-form solutions for a broad class of interesting models and/or parameter

sets (Merton 1975, Eaton 1981, Cox et al. 1985).1 This helps to provide further insights on

the determinants of the risk premium in DSGE models.

Recent research on DSGE models has emphasized the importance of non-linearities and

non-normalities in explaining the business cycle fluctuations for the US economy (Fernández-

Villaverde and Rubio-Ramı́rez 2007, Justiniano and Primiceri 2008). However, the problem

with discrete-time models is that they are hard to solve, and the literature uses approximation

schemes to circumvent this problem. It has become very successful in characterizing certain

aspects of dynamic properties, and in providing adequate answers to questions such as local

existence and stability (Schmitt-Grohé and Uribe 2004). Most approximation schemes will

fail, however, when it comes to the effects of uncertainty.

This paper contributes to the literature on the determinants of the risk premium, that is

the rewards that investors demand for bearing particular risks (Campbell 2000). There has

been a long discussion since Rietz (1988) proposed the ‘rare disasters hypothesis’ as a solution

to the risk-premium puzzle (Mehra and Prescott 1985, 1988). Barro (2006, 2009) shows that

disasters have been sufficiently frequent and large enough to account for the observed equity

risk premia. Gabaix (2008) introduces variable disaster intensity in an endowment economy

and shows that the rational, representative-agent framework is a workable paradigm in the

macro-finance literature. We show that using a continuous-time formulation we can easily

enrich the endowment economy by including non-linearities to the model. It clarifies the

relationship between the equity premium and the implicit risk premium.

The remainder of the paper is organized as follows. In the Section 2 we solve in closed

form a continuous-time version of Lucas’ (1978) fruit-tree model with exogenous, stochastic

production and obtain the risk-premium. Section 3 studies the effects of non-linearities on

the risk premium in Merton’s (1975) neoclassical growth model. We conclude in Section 4.

2 Lucas fruit-tree model in continuous-time

2.1 Lucas fruit-tree model in continuous-time (two assets)

Consider a fruit-tree economy (one risky asset or equity), and a riskless asset without default

risk (government bond).

1Recent contributions of continuous-time DSGE models include e.g. Corsetti (1997), Wälde (1999, 2002),
Steger (2005), and Turnovsky and Smith (2006).
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2.1.1 Description of the economy

Technology. Consider a one-good pure exchange economy (Lucas 1978). Suppose production

is entirely exogenous: no resources are utilized, and there is no possibility of affecting the

output of any unit at any time, Yt = At where At is the stochastic technology. Output is

perishable. The law motion of At will be taken to follow a Markov process,

dAt = µ̄Atdt + σ̄AtdBt, (1)

where Bt is a standard Brownian motion.

Suppose ownership of fruit-trees with productivity At is determined at each instant in a

competitive stock market, and the production unit has outstanding one perfectly divisible

equity share. A share entitles its owner to all of the unit’s instantaneous output in t. Shares

are traded at a competitively determined price, pt. Suppose that for the risky asset,

dpt = µptdt + σptdBt, (2)

and for a riskless asset

dp0(t) = p0(t)rdt. (3)

Because prices fully reflect all available information, the parameters will be determined in

general equilibrium. The objective is to relate exogenously determined productivity changes

to the market determined movements in asset prices. In fact, the evolution of prices ensures

that assets are priced such that individuals are indifferent between holding more assets and

consuming. Given initial wealth, we are looking for the optimal consumption path.

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers. The consumer maximizes discounted

expected life-time utility

U0 ≡ E

∫ ∞

0

e−ρtu(Ct)dt, u′ > 0, u′′ < 0.

Assuming no dividend payments, the budget constraint reads

dWt = ((µ − r)wtWt + rWt − Ct) dt + wtσWtdBt, (4)

where Wt is real financial wealth and wt denote a consumer’s share holdings.

Equilibrium properties. In this economy, it is easy to determine equilibrium quantities of

consumption and asset holdings. The economy is closed and all output will be consumed,

Ct = Yt, and all shares will be held by capital owners.
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2.1.2 The short-cut approach

Suppose that the only asset is the market portfolio is

dpM(t) = µMpM(t)dt + σMpM(t)dBt. (5)

Consider the portfolio choice as an independent decision of the consumption problem.

The consumer obtains income and has to finance its consumption stream from wealth,

dWt = (µMWt − Ct) dt + σMWtdBt. (6)

One can think of the original problem with the budget constraint (4) as having been reduced

to a simple Ramsey problem, in which we seek an optimal consumption rule given that

income is generated by the uncertain yield of a (composite) asset (Merton 1973).

Define the value function as

V (W0) ≡ max
{Ct}∞t=0

E0

∫ ∞

0

e−ρtu(Ct)dt, s.t. (6), W0 > 0. (7)

The Bellman equation becomes when choosing the control Cs ∈ R+ at time s

ρV (Ws) = max
Cs

{

u(Cs) + (µMWs − Cs)VW + 1
2
σ2

MW 2
s VWW

}

.

Because its a necessary condition, the first-order conditions are

u′(Cs) − VW = 0 ⇒ VW = u′(Cs) (8)

for any interior solution at any time s = t ∈ [0,∞).

It can be shown that the Euler equation is (cf. appendix)

du′(Ct) =
(

(ρ − µM)u′(Ct) − σ2
MWtVWW

)

dt + σMWtVWWdBt

=
(

(ρ − µM)u′(Ct) − σ2
MWtu

′′(Ct)CW

)

dt + σMWtu
′′(Ct)CWdBt, (9)

which implicitly determines the optimal consumption path. Using the inverse function, we

are able to determine the path for consumption (u′′ 6= 0).

To shed some light on the effects of uncertainty, we use the Euler equation and obtain

the (implicit) risk premium as

du′(Ct)

u′(Ct)
=

(

ρ − µM − σ2
MWt

u′′(Ct)

u′(Ct)
CW

)

dt + σMWt
u′′(Ct)

u′(Ct)
CWdBt

⇒
1

dt
E

[

du′(Ct)

u′(Ct)

]

= ρ − µM + E

[

−
u′′(Ct)

u′(Ct)
CWWt

]

σ2
M
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which may be written as

µM − E

[

−
u′′(Ct)

u′(Ct)
CW Wtσ

2
M

]

= ρ −
1

dt
E

[

du′(Ct)

u′(Ct)

]

. (10)

We may define the left-hand side as the certainty equivalent rate of return on saving, that is

the expected rate of return on saving less the expected implicit risk premium (Steger 2005).

The latter gives the minimum difference an individual requires to accept an uncertain rate

of return, between its expected value and the certain rate of return that it is indifferent to.

On the right-hand side, we have the expected cost of forgone consumption, i.e. the rate of

time preference, and the expected rate of change of marginal utility .

2.1.3 A more comprehensive approach

Define the value function as

V (W0) ≡ max
{(wt,Ct)}∞t=0

E0

∫ ∞

0

e−ρtu(Ct)dt, s.t. (4), W0 > 0. (11)

The Bellman equation becomes when choosing the control (ws, Cs) ∈ R × R+ at time s

ρV (Ws) = max
(ws,Cs)

{

u(Cs) + (ws(µ − r)Ws + rWs − Cs)VW + 1
2
w2

sσ
2W 2

s VWW

}

.

Because its a necessary condition, the first-order conditions are

u′(Cs) − VW = 0 ⇒ VW = u′(Cs) (12)

(µ − r)WsVW + wsσ
2W 2

s VWW = 0 ⇒ ws = −
VW

VWWWs

µ − r

σ2
(13)

for any interior solution at any time s = t ∈ [0,∞).

It can be shown that the Euler equation is (cf. appendix)

du′(Ct) =
(

(ρ − ((µ − r)wt + r))u′(Ct) − w2
t σ

2WtVWW

)

dt + wtσWtVWWdBt

= ((ρ − ((µ − r)wt + r))u′(Ct) + (µ − r)wtu
′(Ct)) dt − u′(Ct)(µ − r)/σdBt

= (ρ − r)u′(Ct)dt − πu′(Ct)dBt, (14)

where we defined π ≡ (µ−r)/σ as the market price of risk. Comparing to the Euler equation

in (9), we notice that because the household optimally can choose its portfolio risk, there is

no implicit risk premium. We show below that now the risk premia is available explicitly.

Given the demand function for the risky asset (13), we follow Merton (1973) and obtain

an equilibrium relation for the price on the market portfolio

dpM = ((µ − r)wt + r)pM(t)dt + wtσpMdBt

≡ µMpM(t)dt + σMpMdBt
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defining the instantaneous expected rate of return µM ≡ (µ−r)wt+r, and the instantaneous

variance of returns σ2
M ≡ w2

t σ
2. Using the optimal portfolio weights (13) and (12)

µM − r = −
VWWWt

VW

σ2
M = −

u′′(Ct)

u′(Ct)
CW Wtσ

2
M , (15)

which is the risk premium of the expected market portfolio rate of return over the riskless

rate (henceforth equity premium). Comparing the result to the implicit risk premium in (10),

we find that both approaches indeed give the reward that investors demand and consumers

implicitly would be willing to pay for bearing/avoiding the systematic market risk.

2.1.4 General equilibrium prices

This section shows that general equilibrium conditions pin down the prices in the economy.

For illustration, with constant relative risk aversion (CRRA) the Euler equation (14) implies

dCt =
µM − ρ − 1

2
(1 − θ)θσ2

M

θ
Ctdt + σ2

MCtdBt.

Because output is perishable, Yt = Ct = At. Hence, we can determine the riskless rate and

the market price of risk from

dAt =
µM − ρ − 1

2
(1 − θ)θσ2

M

θ
Atdt + σ2

MAtdBt ⇔ dAt = µ̄Atdt + σ̄AtdBt.

In general equilibrium it pins down

θµ̄ = µM − ρ − 1
2
(1 − θ)θσ2

M = (µ − r)w + r − ρ − 1
2
(1 − θ)θw2σ2

⇔ r = ρ + θµ̄ −
(µ − r)2

θσ2
+ 1

2
(1 − θ)

(µ − r)2

θσ2
= ρ + θµ̄ − 1

2
(1 + θ)

(µ − r)2

θσ2
,

where we inserted optimal portfolio weights from (13), and the Sharpe ratio is

σ̄ = σM ⇔
µ − r

σ
= θσ̄.

Thus we may write

r = ρ + θµ̄ − 1
2
(1 + θ)θσ̄2

as the general equilibrium riskless rate (see also Wang 1996, Basak 2002). Observe that there

is only a unique Sharpe ratio, but no unique µ and σ. We may employ identifying technical

restrictions in (81) to further restrict the parameter space.

2.2 Lucas fruit-tree model in continuous-time (multiple assets)

This section shows that the analysis can be extended to the multiple asset case. Consider an

economy with many fruit-trees (multiple risky asset or equity), and a riskless asset without

default risk. Suppose that the number of trees equals the number of consumers.
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2.2.1 Description of the economy

Technology. Consider a pure exchange economy (Lucas 1978). Suppose production is entirely

exogenous: no resources are utilized, and there is no possibility of affecting the output of any

unit at any time. The consumption good is produced on n distinct productive units. Let

Yi(t) = Ai(t) denote the output of unit i in period t, i = 1, ..., n, and let At = [A1, ..., An]>

be the vector of production-specific stochastic technology. Output is perishable. The law of

motion of At will be taken to follow a Markov process,

dAt = diag(At)µ̄dt + diag(At)γ̄dBt, (16)

where µ̄ ≡ [µ̄1, ..., µ̄n]
>, and γ̄ ≡ [γ̄1, ..., γ̄n]

> is a n×n matrix, Ω̄ ≡ γ̄γ̄> the positive definite,

non-singular, instantaneous conditional covariance matrix, and Bt ≡ [B1(t), ..., Bn(t)]
> is a

n-dimensional (uncorrelated) standard Brownian motion. Observe that diag(At) denotes the

n × n matrix with the vector At along the main diagonal and zeros off the diagonal.

Suppose ownership of fruit-trees with productivity Ai(t) is determined at each instant in

a competitive stock market, and each production unit has outstanding one perfectly divisible

equity share. A share entitles its owner to all of the unit’s instantaneous output in t. Shares

are traded at a competitively determined price, pt ≡ [p1, ..., pn]>. Suppose for the risky asset,

dpt = diag(pt)µdt + diag(pt)γdBt, (17)

µ ≡ [µi, ..., µn]> is the vector of instantaneous conditional expected percentage price changes

for the n risky assets, whereas γ ≡ [γ1, ..., γn]
> is a n × n matrix, Ω ≡ γγ> the positive

definite, non-singular, instantaneous conditional covariance matrix. For a riskless asset

dp0(t) = p0(t)rdt.

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers. The consumer maximizes discounted

expected life-time utility

U0 ≡ E

∫ ∞

0

e−ρtu(Ct)dt, u′ > 0, u′′ < 0.

As shown in the appendix, the budget constraint reads

dWt =
(

w>
t (µ − r̂)Wt + rWt − Ct

)

dt + w>
t γWtdBt, (18)

where Wt is real financial wealth and wt ≡ [w1, ..., wn]
> is a consumer’s share holdings.

Equilibrium properties. In this economy, it is easy to determine equilibrium quantities of

consumption and asset holdings. Output will be consumed,
∑n

i=1 Yi(t) = Ct, and all shares

will be held by capital owners.
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2.2.2 The short-cut approach

Suppose that the only asset is the market portfolio is

dpM(t) = µMpM(t)dt + σ>
MpM(t)dBt. (19)

Consider the portfolio choice as an independent decision of the consumption problem.

The consumer obtains income and has to finance its consumption stream from wealth,

dWt = (µMWt − Ct) dt + σ>
MWtdBt, (20)

where

µM ≡ w>
t (µ − r̂) + r, σM ≡ (w>

t γ)>, σ2
M ≡ σ>

MσM = w>
t Ωwt. (21)

As shown in the two-assets case, the short cut approach simply separates the consumption

decision from the optimal portfolio selection decision. We will study the effects as a special

case of the more comprehensive approach below.

2.2.3 A more comprehensive approach

Define the value function for the representative agent as

V (W0) ≡ max
{(wt,Ct)}∞t=0

E0

∫ ∞

0

e−ρtu(Ct)dt, s.t. (18), W0 > 0.

The Bellman equation becomes when choosing the control (ws, Cs) ∈ Rn × R+ at time s

ρV (Ws) = max
(ws,Cs)

{

u(Cs) +
(

w>
s (µ − r̂)Ws + rWs − Cs

)

VW + 1
2
w>

s ΩwsW
2
s VWW

}

.

Because its a necessary condition, the n + 1 first-order conditions are

u′(Cs) − VW = 0 ⇒ VW = u′(Cs) (22)

(µ − r̂)WsVW + ΩwsW
2
s VWW = 0 ⇒ ws = −

VW

VWWWs
Ω−1(µ − r̂) (23)

for any interior solution at any time s = t ∈ [0,∞).

It can be shown that the Euler equation for consumption is (cf. appendix)

du′(Ct) =
(

(ρ − (w>
t (µ − r̂) + r))u′(Ct) − w>

t ΩwtWtVWW

)

dt + w>
t γWtVWWdBt, (24)

which implicitly determines the optimal consumption path. Before we proceed inserting the

optimal portfolio weights, we may obtain the implicit risk premia from the Euler equation
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as we would have obtained from the short-cut approach. Using the definitions in (21),

du′(Ct) =
(

(ρ − µM)u′(Ct) − σ2
MWtVWW

)

dt + σ>
MWtVWWdBt

⇔
du′(Ct)

u′(Ct)
=

(

ρ − µM − σ2
MWt

u′′(Ct)CW

u′(Ct)

)

dt + σ>
MWt

u′′(Ct)CW

u′(Ct)
dBt

⇒
1

dt
E

[

du′(Ct)

u′(Ct)

]

= ρ − µM + E

[

−
u′′(Ct)

u′(Ct)
CWWt

]

σ2
M

which may be written as, similar to the two-assets case in (10),

µM − E

[

−
u′′(Ct)

u′(Ct)
CW Wtσ

2
M

]

= ρ −
1

dt
E

[

du′(Ct)

u′(Ct)

]

. (25)

In that the left-hand side is the certainty equivalent rate of return on saving, and the term

in brackets defines the implicit risk premium.

Using the first-order condition for optimal portfolio weights (23),

du′(Ct) =
(

(ρ − (w>
t (µ − r̂) + r))u′(Ct) + w>

t (µ − r̂)u′(Ct)
)

dt − (µ − r̂)>Ω−1γu′(Ct)dBt

= (ρ − r)u′(Ct)dt − (µ − r̂)>Ω−1γu′(Ct)dBt

= (ρ − r)u′(Ct)dt − π>u′(Ct)dBt,

where π ≡ γ−1(µ − r̂) denotes the market price of risk vector.

2.2.4 The security market line

Given demand for risky assets and market-clearing, an equilibrium relation between expected

return on any asset and the expected return on the market can be derived (Merton 1973).

Let Mt = nM(t)pM(t) ≡ mWt be the market value, where pM(t) is the price per ‘share’ of

the market and nM(t) is the number of ‘shares’ of m investors,

dMt = nM(t)dpM(t) + pM(t)dnM(t) = nM(t)dpM + p0(t)dn0(t) + ptdnt

= nM(t)dpM(t) − mCtdt.

Using the budget constraint (18), we obtain

nM(t)dpM(t) − mCtdt =
(

w>
t (µ − r̂)mWt + rmWt − mCt

)

dt + w>
t γmWtdBt

⇔ dpM(t) =
(

w>
t (µ − r̂) + r

)

pM(t)dt + w>
t γpM(t)dBt (26)

where we substituted mWt = nM(t)pM(t) and collected terms. Whenever log-normality of

prices is assumed, we can work, without loss of generality, with just two assets, one riskless

and the other risky with its price log-normally distributed (Merton 1973).
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The instantaneous expected rate of return µM , its variance, σ2
M , and the covariance with

the return on the ith asset, σiM , can be determined as

µM ≡ w>
t (µ − r̂) + r

σ2
M ≡

dpM

pM

dpM

pM

= w>
t Ωwt and σiM ≡

dpM

pM

dpi

pi

= w>
t γγi = w>

t Ωei.

Using the optimal portfolio weights for risky assets (23),

µ − r̂ = −
VWWWt

VW

Ωwt

and pre-multiplying by w>
t (equivalent to multiplying by wi and summing up), we have that

w>
t (µt − r̂) = −

VWW Wt

VW
w>

t Ωwt ⇔ µM − r = −
VWWWt

VW
σ2

M .

Using the first-order condition for consumption (22), we obtain

µM − r = −
VWWWt

VW
σ2

M = −
u′′(Ct)

u′(Ct)
CWWtσ

2
M (27)

which is the equity premium. Comparing the result to the implicit risk premium in (25), or

to the two-assets case, we find that the different approaches indeed give the same result.

Similarly, when pre-multiplying by e>i where ei ≡ [0, ..., 1, ..., 0]> such that e>i µ = µi, we

obtain from (23)

µi − r = −
VWWWt

VW
σiM .

This result implies, together with the equity premium, the well known security market line

µi − r =
σiM

σ2
M

(µM − r), (28)

which is the continuous-time analog of the equilibrium return relation of the classical capital

asset pricing model (CAPM), as introduced by Merton (1973).

2.2.5 Explicit solutions

As shown in Merton (1971), for the class of hyperbolic absolute risk aversion (HARA) utility

functions one can obtain explicit solutions where consumption is a linear function of wealth.

For illustration, we present the results for CRRA and CARA preferences.

Proposition 2.1 (CRRA preferences) If utility exhibits constant relative risk aversion,

i.e. −u′′(Ct)Ct/u
′(Ct) = θ, then optimal consumption is proportional to wealth and optimal

portfolio weights are constant, where

Ct = C(Wt) =
(

ρ − (1 − θ)r − 1
2
π>π/θ

)

/θWt, w = Ω−1(µ − r̂)/θ. (29)
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Proof. see Appendix 5.2.3

Corollary 2.2 Use the policy function to obtain the risk premium (27) as

µM − r = θσ2
M . (30)

Proposition 2.3 (CARA preferences) If utility exhibits constant absolute risk aversion,

i.e. −u′′(Ct)/u
′(Ct) = η, then optimal consumption is linear in wealth and optimal portfolio

weights are time-varying, where

Ct = C(Wt) =
(

ρ − r + 1
2
π>π

)

/(ηr) + rWt, wt = w(Wt) = Ω−1(µ − r̂)/(ηrWt). (31)

Proof. see Appendix 5.2.4

Corollary 2.4 Use the policy function to obtain the risk premium (27) as

µM − r = ηrWtσ
2
M . (32)

Though both solutions give linear policy functions for consumption, for CARA preferences

consumption is not proportion to wealth (i.e. the marginal propensity to consume does not

equal the average propensity). The nice result that CARA preferences imply a time-varying

risk premium has the following caveat. The proportion of wealth invested in the risky asset

is negative related to individual wealth, that means a wealthy person invests virtually all in

the riskless asset. This result seems questionable from an empirical point of view.

As expected, we obtain the standard result that the risk premium is determined by the

investors risk aversion parameter and the variance of the market portfolio. Given our priors

about risk aversion and empirical estimates of the variance of consumption, (30) leads us

to the risk-premium puzzle (Mehra and Prescott 1985). One explanation is the Barro-Rietz

‘rare-disaster hypothesis’, where the risk premium is shown to depend on the possibility

of rare events which (Rietz 1988, Barro 2006). Hence, we proceed our analysis as follows.

First, we extend the analysis by allowing for rare disasters to account for the observed equity

premium puzzle. Second, we show that introducing a neoclassical production economy with

non-linearities can generate time-varying behavior of the risk premium.

2.3 Lucas fruit-tree model with rare disasters (two assets)

This section shows how an extension to the possibility of rare disasters can account for the

observed equity premium puzzle, drawing from the Barro-Rietz ‘rare disaster hypothesis’.

Consider a fruit-tree economy (one risky asset or equity), and a riskless asset in normal times

but with default risk (government bond) as in Barro (2006).
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2.3.1 Description of the economy

Technology. Consider a pure exchange economy (Lucas 1978). Suppose production is entirely

exogenous: no resources are utilized, and there is no possibility of affecting the output of

any unit at any time, Yt = At where At is the stochastic technology. Output is perishable.

The law motion of At will be taken to follow a Markov process,

dAt = µ̄Atdt + σ̄AtdBt + J̄tAt−dNt, (33)

where Bt is a standard Brownian motion, and Nt is a standard Poisson process. The jump

size is assumed to be proportional to its value an instant before the jump, At−, ensuring

that At does not jump negative. For illustration, the independent random variable J̄t has a

degenerated distribution J̄t ≡ exp(ν̄)− 1. This assumption is purely for reading convenience

and extensions to other distributions of the jump size J̄t pose no conceptional difficulties but

are notationally more cumbersome with little associated gain.

Suppose ownership of fruit-trees with productivity At is determined at each instant in a

competitive stock market, and the production unit has outstanding one perfectly divisible

equity share. A share entitles its owner to all of the unit’s instantaneous output in t. Shares

are traded at a competitively determined price, pt. Suppose that for the risky asset,

dpt = µptdt + σptdBt + pt−JtdNt (34)

and for a government bill with default risk

dp0(t) = p0(t)rdt + p0(t−)DtdNt, (35)

where Dt is a random variable denoting a random default risk in case of a disaster, where q

is the probability of default. For illustration, we assume

Dt =

{

0 with 1 − q
exp(κ) − 1 with q

,

which can be generalized without any difficulty.

Because prices fully reflect all available information, the parameters r, µ, σ, and Jt will be

determined in general equilibrium. The objective is to relate exogenous productivity changes

to the market determined movements in asset prices. In fact, the evolution of prices ensures

that assets are priced such that individuals are indifferent between holding more assets and

consuming. Given initial wealth, we are looking for the optimal consumption path.

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers. The consumer maximizes discounted

expected life-time utility

U0 ≡ E

∫ ∞

0

e−ρtu(Ct)dt, u′ > 0, u′′ < 0.

12



Assuming no dividend payments, the budget constraint reads

dWt = ((µ − r)wtWt + rWt − Ct) dt + wtσWtdBt + ((Jt − Dt)wt− + Dt)Wt−dNt, (36)

where Wt is real financial wealth and wt denote a consumer’s share holdings.

Equilibrium properties. In this economy, it is easy to determine equilibrium quantities of

consumption and asset holdings. The economy is closed and all output will be consumed,

Ct = Yt, and all shares will be held by capital owners.

2.3.2 The short-cut approach

Suppose that the only asset is the market portfolio,

dpM(t) = µMpM(t)dt + σMpM(t)dBt − ζMpM(t−)dNt. (37)

Consider the portfolio choice as an independent decision of the consumption problem.

The consumer obtains income and has to finance its consumption stream from wealth,

dWt = (µMWt − Ct) dt + σMWtdBt − ζMWt−dNt (38)

which assumes a constant investment opportunity set, in particular, Dt is constant.

One can think of the original problem with the budget constraint (36) as having been

reduced to a simple Ramsey problem, in which we seek an optimal consumption rule given

that income is generated by the uncertain yield of a (composite) asset (Merton 1973).

Define the value function as

V (W0) ≡ max
{Ct}∞t=0

E0

∫ ∞

0

e−ρtu(Ct)dt, s.t. (38), W0 > 0. (39)

The Bellman equation becomes when choosing the control Cs ∈ R+ at time s

ρV (Ws) = max
Cs

{

u(Cs) + (µMWs − Cs)VW + 1
2
σ2

MW 2
s VWW + (V ((1 − ζM)Ws) − V (Ws))λ

}

.

Because its a necessary condition, the first-order conditions is

u′(Cs) − VW (Ws) = 0 ⇒ VW (Ws) = u′(Cs) (40)

for any interior solution at any time s = t ∈ [0,∞).

It can be shown that the Euler equation is (cf. appendix)

du′(Ct) =
(

(ρ − µM + λ)u′(Ct) − σ2
MWtVWW − u′(C((1 − ζM)Wt))(1 − ζM)λ

)

dt

+σMWtVWWdBt + (u′(C((1 − ζM)Wt−)) − u′(C(Wt−)))dNt

=
(

(ρ − µM + λ)u′(Ct) − σ2
MWtu

′′(Ct)CW − u′(C((1 − ζM)Wt))(1 − ζM)λ
)

dt

+σMWtu
′′(Ct)CW dBt + (u′(C((1 − ζM)Wt−)) − u′(C(Wt−)))dNt, (41)
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which implicitly determines the optimal consumption path. Using the inverse function, we

are able to determine the path for consumption (u′′ 6= 0).

To shed some light on the effects of uncertainty, we use the Euler equation (41) and

obtain the (implicit) risk premium as

du′(Ct)

u′(Ct−)
=

(

ρ − µM + λ − σ2
MWt

u′′(Ct)

u′(Ct)
CW −

u′(C((1 − ζM)Wt))

u′(C(Wt))
(1 − ζM)λ

)

dt

+σMWt
u′′(Ct)

u′(Ct)
CWdBt +

(

u′(C((1 − ζM)Wt−))

u′(C(Wt−))
− 1

)

dNt

⇒
1

dt
E

[

du′(Ct)

u′(Ct)

]

= ρ − µM + E

[

−
u′′(Ct)

u′(Ct)
CWWtσ

2
M +

u′(C((1 − ζM)Wt))

u′(C(Wt))
ζMλ

]

,

which may be written as

µM − E

[

−
u′′(Ct)

u′(Ct)
CWWtσ

2
M +

u′(C((1 − ζM)Wt))

u′(C(Wt))
ζMλ

]

= ρ −
1

dt
E

[

du′(Ct)

u′(Ct)

]

. (42)

The full expected rate of return on equity is µM − ζMλ. We may define the left-hand side

as the certainty equivalent rate of return on saving, that is the expected rate of return on

saving, conditioned on no disasters, less the expected implicit risk premium. The latter

gives the minimum difference an individual requires to accept an uncertain rate of return,

between its expected value (conditioned on no disasters) and the certain rate of return that it

is indifferent to. On the right-hand side, we have the expected cost of forgone consumption,

i.e. the rate of time preference, and the expected rate of change of marginal utility.

2.3.3 A more comprehensive approach

Define the value function as

V (W0) ≡ max
{(wt,Ct)}∞t=0

E0

∫ ∞

0

e−ρtu(Ct)dt, s.t. (36), W0 > 0. (43)

The Bellman equation becomes when choosing the control (ws, Cs) ∈ R × R+ at time s

ρV (Ws) = max
(ws,Cs)

{

u(Cs) + ((µ − r)wsWs + rWs − Cs)VW + 1
2
w2

sσ
2W 2

s VWW

+
(

V ((eκ + (eν1 − eκ)ws)Ws)q

+V ((1 + (eν2 − 1)ws)Ws)(1 − q) − V (Ws)
)

λ
}

.

Because its a necessary condition, the first-order conditions are

u′(Cs) − VW = 0 ⇒ VW = u′(Cs) (44)

14



0 = (µ − r)WsVW + wsσ
2W 2

s VWW + VW ((eκ + (eν1 − eκ)ws)Ws)(e
ν1 − eκ)Wsqλ

+VW ((1 + (eν2 − 1)ws)Ws)(1 − q)(eν2 − 1)Wsλ

⇒ ws = −
VW (Ws)

VWW (Ws)Ws

µ − r

σ2
−

VW ((eκ + (eν1 − eκ)ws)Ws)

VWW (Ws)Ws

eν1 − eκ

σ2
qλ

−
VW ((1 + (eν2 − 1)ws)Ws)

VWW (Ws)Ws

eν2 − 1

σ2
(1 − q)λ (45)

for any interior solution at any time s = t ∈ [0,∞). In that, an analytical solution for the

optimal shares is no longer available except for specific parametric restrictions, e.g., for the

case where ν1 ≡ κ and q ≡ 1, i.e., the bond default is equal to the size of the disaster. Then,

the optimal share of wealth allocated to the risky asset will not be affected by rare events.

It can be shown that the Euler equation for consumption is (cf. appendix)

du′(Ct) =
(

(ρ − ((µ − r)wt + r) + λ)u′(Ct) − w2
t σ

2WtVWW

−u′(C((eκ + (eν1 − eκ)wt)Wt))(e
κ + (eν1 − eκ)wt)qλ

−u′(C((1 + (eν2 − 1)wt)Wt))(1 + (eν2 − 1)wt)(1 − q)λ
)

dt + wtσWtVWWdBt

+(u′(C((1 + (Jt − Dt)wt− + Dt)Wt−)) − u′(C(Wt−)))dNt. (46)

Before we proceed, we show that the (implicit) risk premium from the Euler equation is

similar to the short-cut approach in the case of a constant investment opportunity set.

Case 2.5 (Constant investment opportunties) Define

µM ≡ (µ − r)wt + r, σM ≡ wtσ, ζM ≡ 1 − eκ − (eν1 − eκ)wt,

and we obtain optimal portfolio shares,

wt = −
VW (Wt)

VWW (Wt)Wt

µ − r

σ2
−

VW ((1 − ζM)Wt)

VWW (Wt)Wt

eν1 − eκ

σ2
λ. (47)

The Euler equation (46) reads for q = 1,

du′(Ct) =
(

(ρ − µM + λ)u′(Ct) − σ2
MWtVWW − u′(C((1 − ζM)Wt))(1 − ζM)λ

)

dt

+σMWtVWWdBt + (u′(C((1 − ζM)Wt−)) − u′(C(Wt−)))dNt

which coincides with (41), and the implicit risk premium is

RP ≡ E

[

−
u′′(Ct)

u′(Ct)
CWWtσ

2
M +

u′(C((1 − ζM)Wt))

u′(C(Wt))
ζMλ

]

, (48)

It is interpreted as the premium individuals are willing to pay to hedge the market risks over

a certainty equivalent return on saving.
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2.3.4 Towards a security market line

Given demand for the risky asset and market-clearing, one usually obtains the equilibrium

relation between expected return on any asset and the expected return on the market. Let

Mt = nM(t)pM (t) ≡ mWt be the market value, where pM(t) is the price per ‘share’ of the

market and nM(t) is the number of ‘shares’ of m investors (Merton 1973),

dMt = nM(t)dpM(t) + pM(t)dnM(t) = nM(t)dpM + p0(t)dn0(t) + ptdnt

= nM(t)dpM(t) − mCtdt.

Using the budget constraint (36), we obtain

nM (t)dpM(t) − mCtdt = ((µ − r)wtmWt + rmWt − mCt) dt + wtσmWtdBt

+((Jt − Dt)wt− + Dt)mWt−dNt

⇔ dpM(t) = ((µ − r)wt + r) pM(t)dt + wtσpM(t)dBt

+((Jt − Dt)wt− + Dt)pM(t−)dNt, (49)

where we substituted mWt = nM(t)pM(t) and collected terms.

Conditioning on no disasters, we may define the instantaneous expected percentage

change µM ≡ (µ− r)wt + r, and its variance, σ2
M ≡ w2σ2 as in Merton (1973). Similarly, we

define the random variable ζM(t) ≡ ((Jt −Dt)wt +Dt). The full expected percentage change

on equity, which includes the jump-risk and the default possibility, is lower,

E

[

dpM(t)

pM(t−)

]

= µM + E [(Jt − Dt)wt + Dt]λ

= µM − (1 − (eν1 − eκ)wt − eκ) qλ − (1 − eν2)wt(1 − q)λ. (50)

Similarly, we obtain expected percentage change on the risky asset, and on government bills,

E

[

dpt

pt−

]

= µ − (1 − eν1)qλ − (1 − eν2)(1 − q)λ, E

[

dp0(t)

p0(t−)

]

= r − (1 − eκ)qλ. (51)

Given the demand for risky assets, we obtain the equity premium. Using the first-order

condition for consumption, optimal portfolio weights in (45) may be written as

wt = −
u′(C(Wt))

u′′(Ct)CWWt

µ − r

σ2
−

u′(C((eκ + (eν1 − eκ)wt)Wt))

u′′(C(Wt))CWWt

eν1 − eκ

σ2
qλ

−
u′(C((1 + (eν2 − 1)wt)Wt))

u′′(C(Wt))CW Wt

eν2 − 1

σ2
(1 − q)λ

⇔ µM − r = −
u′′(Ct)CWWt

u′(C(Wt))
σ2

M −
u′(C((1 − ζM)Wt))

u′(C(Wt))
(eν1 − eκ)qλwt

−
u′(C((1 + (eν2 − 1)wt)Wt))

u′(C(Wt))
(eν2 − 1)(1 − q)λwt, (52)

16



where µM ≡ (µ− r)wt + r, σM ≡ wtσ, and ζM ≡ 1− eκ − (eν1 − eκ)wt. Hence, for ν1 = κ and

q = 1, the (traditional) equity premium will be unaffected by the jump risk. In the present

analysis, the implicit risk premium, however, will still be affected. The reason is that implicit

risk premium is obtained from the certainty equivalent return to saving, but the government

bill has a risk of default, thus is inherently risky. This premium on the willingness to pay

for avoiding the default risk is reflected in the implicit risk premium (48).

2.3.5 Explicit solutions

Similar to Merton (1971), for the class of constant relative risk aversion (CRRA) utility one

obtains an explicit solution where consumption is a linear function of wealth.

Proposition 2.6 (CRRA preferences) If utility exhibits constant relative risk aversion,

i.e. −u′′(Ct)Ct/u
′(Ct) = θ, then optimal consumption is proportional to wealth and optimal

portfolio weights are constant, Ct = C(Wt) = bWt, where

b ≡
(

ρ+λ−(1−θ)µM −
(

(1−ζM)1−θq+(1+(eν2 −1)w)1−θ(1−q)
)

λ+(1−θ)θ 1
2
σ2

M

)

/θ, (53)

where ζM ≡ 1 − eκ − (eν1 − eκ)w. Optimal portfolio weights are (implicitly) given by

w =
µ − r

θσ2
+ (1 − ζM)−θ eν1 − eκ

θσ2
qλ + (1 + (eν2 − 1)w)−θ eν2 − 1

θσ2
(1 − q)λ. (54)

Proof. see Appendix 5.1.4

Corollary 2.7 (Default risk) Consider, for illustration, the case of a constant investment

opportunity set. Use the policy function to obtain the risk premium (48) as

RP = θσ2
M + (1 − ζM)−θζMλ. (55)

The conditional equity premium (conditioned on no disasters) from (52) would be

µM − r = θσ2
M − (1 − ζM)−θ(eν1 − eκ)qλw − (1 + (eν2 − 1)w)−θ(eν2 − 1)(1 − q)λw

= θσ2
M + (1 − ζM)−θζMλq − (1 − ζM)−θ(1 − eκ)qλ

+(1 + (eν2 − 1)w)−θ(1 − eν2)(1 − q)λw, (56)

whereas in the present analysis,

EP ≡ µM −
(

(1 − (eν1 − eκ)w − eκ) q + (1 − eν2)(1 − q)w
)

λ − (r − (1 − eκ)q)λ

= µM − r + (eν1 − eκ)wqλ − (1 − eν2)(1 − q)wλ (57)

is the full equity premium, which includes the jump-risk and the default possibility, i.e., the

expected rate of return on the market portfolio net of the expected rate of return on bills.
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Recall that the implicit risk premium (RP) was obtained under the assumption of constant

investment opportunities, e.g., for q = 1. In this case, RP will be higher than the (traditional)

equity premium by (1 − ζM)−θ(1 − eκ)λ. This term is interpreted as the market price of

the default risk. If there was no default, the implicit risk premium again has the usual

interpretation of the equity premium.

2.3.6 General equilibrium prices

This section shows that general equilibrium conditions pin down the prices in the economy.

For illustration, with constant relative risk aversion (CRRA) the Euler equation (46) implies

dCt =
µM − ρ − λ − 1

2
(1 − θ)θσ2

M + (1 − ζM)1−θqλ + (1 + (eν2 − 1)wt)
1−θ(1 − q)λ

θ
Ctdt

+σMCtdBt + ((Jt − Dt)wt− + Dt)C(Wt−)dNt (58)

where we employed the inverse function C = g(u′(C)) which has

g′(u′(C)) = 1/u′′(C), g′′(u′(C)) = −u′′′(C)/(u′′(C))3.

Because output is perishable, using the market clearing condition Yt = Ct = At

dAt = µ̄Atdt + σ̄AtdBt + J̄tAt−dNt, (59)

the risk free rate and the both market prices of risk are (implicitly) pinned down in general

equilibrium. In particular, we obtain Jt as a function of random variables J̄t and Dt, that is

the investment opportunity set is inherently stochastic, J̄t = (Jt − Dt)w + Dt.

In general equilibrium it pins down

θµ̄ = µM − ρ − 1
2
(1 − θ)θσ2

M − λ + (1 − ζM)1−θqλ + (1 + (eν2 − 1)wt)
1−θ(1 − q)λ

and the variance of the market portfolio conditioned on no disasters is σ̄ = σM . Conditioned

on no default of government bills,

eν̄ − 1 = (eν2 − 1)w,

whereas conditioned on default of government bills,

eν̄ − 1 = (eν1 − eκ)w + eκ − 1 ⇔ 1 − eν̄ = ζM .

In that, the price of the risky assets may jump even for ν̄ = 0 because of general equilibrium

effects of the government bill default, and for κ = 0 we obtain that ν1 = ν2.
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3 A prototype production economy

3.1 A model of growth under uncertainty (one asset)

This section illustrates that non-linearities in a prototype neoclassical DSGE model can

generate a time-varying risk premium. We use a version of Merton’s (1975) asymptotic

theory of growth under uncertainty (see also Eaton 1981, Cox et al. 1985).

3.1.1 Description of the economy

Technology. At any time, the economy has some amounts of capital, labor, and knowledge,

and these are combined to produce output. The production function is a constant return to

scale technology Yt = AtF (Kt, L), where Kt is the aggregate capital stock, L is the constant

population size, and At is the stock of knowledge or total factor productivity (TFP), which

in turn is driven by a standard Brownian motion Bt

dAt = µ̄Atdt + σ̄AtdBt. (60)

At has a log-normal distribution with E0(lnAt) = ln A0 +(µ̄− 1
2
σ̄2)t, and V ar0(ln At) = σ̄2t.

The capital stock increases if gross investment exceeds stochastic capital depreciation,

dKt = (It − δKt)dt + σKtdZt, (61)

where Zt is a standard Brownian motion (uncorrelated with Bt). Unlike in Merton’s (1975)

model, the assumption of stochastic depreciation introduces instantaneous riskiness, which

makes physical capital indeed a risky asset (for similar examples see Turnovsky 2000).

Preferences. Consider an economy with a single consumer, interpreted as a representative

“stand in” for a large number of identical consumers. The consumer maximizes expected

life-time utility

U0 ≡ E0

∫ ∞

0

e−ρtu(Ct)dt, u′ > 0, u′′ < 0 (62)

subject to

dWt = ((rt − δ)Wt + wL
t − Ct)dt + σWtdZt. (63)

Wt ≡ Kt/L denotes individual wealth, rt is the rental rate of capital, and wL
t is labor income.

The paths of factor rewards are taken as given by the representative consumer.

Equilibrium properties. In equilibrium, factors of production are rewarded with value

marginal products, rt = YK and wL
t = YL. The goods market clearing condition demands

Yt = Ct + It. (64)
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Solving the model requires the aggregate capital accumulation constraint (61), the goods

market equilibrium (64), equilibrium factor rewards of perfectly competitive firms, and the

first-order condition for consumption. It is a system of differential equations determining,

given initial conditions, the paths of Kt, Yt, rt, wL
t and Ct, respectively.

3.1.2 The short-cut approach

Define the value of the optimal program as

V (W0, A0) = max
{Ct}∞t=0

U0 s.t. (63) and (60) (65)

denoting the present value of expected utility along the optimal program. It can be shown

that the first-order condition for the problem is (cf. appendix)

u′(Ct) = VW (Wt, At), (66)

for any t ∈ [0,∞), making consumption a function of the state variables Ct = C(Wt, At).

It can be shown that the Euler equation is (cf. appendix)

du′(Ct) = (ρ − (rt − δ))u′(Ct)dt − σ2VWWWtdt + VAWAtσ̄dBt + VWWWtσdZt (67)

= (ρ − (rt − δ))u′(Ct)dt − σ2u′′(Ct)CW Wtdt + u′′(Ct) (CAAtσ̄dBt + CW WtσdZt) ,

which implicitly determines the optimal consumption path. Using the inverse function, we

are able to determine the path for consumption (u′′ 6= 0).

To shed some light on the effects of uncertainty, we use the Euler equation and obtain

the (implicit) risk premium

du′(Ct)

u′(Ct)
=

(

ρ − (rt − δ) −
u′′(Ct)

u′(Ct)
CW Wtσ

2

)

dt +
u′′(Ct)

u′(Ct)
(CAAtσ̄dBt + CWWtσdZt)

⇒
1

dt
E

[

du′(Ct)

u′(Ct)

]

= ρ − E(rt) + δ + E

[

−
u′′(Ct)

u′(Ct)
CWWt

]

σ2,

which may be written as

E(rt) − E

[

−
u′′(Ct)

u′(Ct)
CWWtσ

2

]

= ρ + δ −
1

dt
E

[

du′(Ct)

u′(Ct)

]

, (68)

where the left-hand side is the certainty equivalent rate of return on saving, and the term in

brackets defines the implicit risk premium. Hence, the implicit risk premium indeed refers

to the rewards that investors demand for bearing systematic market risk, while it does not

account for the risk of a stochastically changing investment opportunity set.
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3.1.3 Explicit solutions

A convenient way is to describe the behavior of the economy is in terms of the evolution

of Ct, At and Wt. Similar to the endowment economy there are explicit solutions available,

due to the non-linearities only for specific parameter restrictions. Below we use two known

restrictions where the policy function Ct = C(At, Wt) is available, and all economic variables

can be solved for in closed form.

Proposition 3.1 (linear-policy-function) If the production function is Cobb-Douglas,

Yt = AtK
α
t L1−α, utility exhibits constant relative risk aversion, i.e. −u′′(Ct)Ct/u

′(Ct) = θ,

and α = θ, then optimal consumption is linear in wealth.

α = σ ⇒ Ct = C(Wt) = φWt where φ ≡ (ρ + (1 − θ)δ)/θ + 1
2
(1 − θ)σ2 (69)

Proof. see Appendix 5.3.2

Corollary 3.2 Use the policy function to obtain the (implicit) risk premium (68) as

−
u′′(Ct)

u′(Ct)
CW Wtσ

2 = θσ2. (70)

Proposition 3.3 (constant-saving-function) If the production function is Cobb-Douglas,

Yt = AtK
α
t L1−α, utility exhibits constant relative risk aversion, i.e. −u′′(Ct)Ct/u

′(Ct) = θ,

and the subjective discount factor is ρ = (αθ − 1)δ − θµ̄ + 1
2
(θ(1 + θ)σ̄2 − αθ(1 − αθ)σ2),

then optimal consumption is proportional to income (i.e. non-linear in wealth).

ρ = ρ̄ ⇒ Ct = C(Wt, At) = (1 − s)AtW
α
t , θ > 1, where s ≡ 1/θ (71)

Proof. see Appendix 5.3.3

Corollary 3.4 Use the policy function to obtain the (implicit) risk premium (68) as

−
u′′(Ct)

u′(Ct)
CWWtσ

2 = αθσ2. (72)

As shown, the (implicit) risk premium for u′′(Ct)Ct/u
′(Ct) = θ depends on the curvature

of the policy function. Moreover, any policy function where optimal consumption is a power

function of wealth, CW (At, Wt)Wt = aCt(At, Wt) where a ∈ R, implies a constant (implicit)

risk premium. Because these solutions are obtained only for specific parameter restrictions,

we conclude that for the general case the (implicit) risk premium will be time-varying.
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4 Conclusion

This paper shows that non-linearities and non-normalities are important to generate key

features of the risk premium. For this purpose, we employ explicit solutions of DSGE models

to shed light on the determinants of the risk premium in general equilibrium.

We derive closed-form solutions for a continuous-time version of Lucas’ fruit-tree model,

and for the case of non-linearities using a stochastic neoclassical growth model in order to

study the risk premium. The main result is that the (implicit) risk premium in addition to

the standard parameters for the risk aversion and the level of uncertainty, in general depends

on non-linearities, e.g. the curvature of the policy function. Moreover we find that in most

DSGE models the (implicit) risk premium should be time-varying.

From a theoretical point of view, this paper shows that formulating the DSGE model

in continuous-time gives closed-form solution for a large class of interesting macro-finance

models (in the tradition of Merton 1975, Eaton 1981, Cox et al. 1985). It thus circumvents

the problem induced by approximation schemes which is especially important when analyzing

the effects of uncertainty (Schmitt-Grohé and Uribe 2004).
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Wälde, Klaus, “Optimal Saving under Poisson Uncertainty,” J. Econ. Theory, 1999, 87,

194–217.

, “The economic determinants of technology shocks in a real business cycle model,” J.

Econ. Dynam. Control, 2002, 27, 1–28.

24



5 Appendix

5.1 Lucas fruit-tree model in continuous-time (two assets)

5.1.1 Deriving the budget constraint

Consider a risky asset and a government bill with default risk. Suppose the price of the risky

asset follows

dpt = µptdt + σptdBt + Jtpt−dNt

where µ denotes the instantaneous conditional expected percentage change in the price of

asset i, σ2 its instantaneous conditional variance, Bt is a standard Brownian motion, and Jt

is a random variable representing the sensitivity of the asset price with respect to a jump of

the Poisson process Nt at arrival rate λ. A government bill (riskless in normal times) obeys

dp0(t) = p0(t)rdt + DtdNt

where Dt is a random variable denoting a random default risk during a contraction.

Consider a portfolio strategy which holds nt units of the risky asset and n0(t) units of

the riskless asset with default risk, such that

Wt = n0(t)p0(t) + ptnt

denotes the portfolio value. Using Itô’s formula, it follows

dWt = p0(t)dn0(t) + n0(t)p0(t)rdt + ptdnt + ntptµdt + ntptσdBt

+ (ntpt−Jt + n0(t)p0(t−)Dt) dNt

= p0(t)dn0(t) + n0(t)p0(t)rdt + ptdnt + wtµWtdt + wtσWdBt

+ (wt−Jt + (1 − wt−)Dt)Wt−dNt (73)

where wtWt ≡ ntpt denotes the amount invested in the risky asset. Since investors use their

savings to accumulate assets,

p0(t)dn0(t) + ptdnt = (π0(t)n0(t) + πtnt − Ct) dt

where πt denotes per unit dividend payments on asset the risky asset. Hence,

dWt = (π0(t)n0(t) + πtnt − Ct) dt + rWtdt + (µ − r)wtWtdt + σwtWtdBt

+ ((Jt − Dt)wt− + Dt)Wt−dNt

If there are no dividend payments, πt = 0, the budget constraint reads

dWt = ((µ − r)wtWt + rWt − Ct) dt + σwtWtdBt

+ ((Jt − Dt)wt− + Dt)Wt−dNt (74)

25



5.1.2 The short-cut approach

As a necessary condition for optimality the Bellman’s principle gives at time s

ρV (Ws) = max
Cs

{

u(Cs) +
1

dt
EsdV (Ws)

}

(75)

Using Itô’s formula (see e.g. Protter 2004, Sennewald 2007),

dV (Ws) =
(

(µMWs − Cs) VW + 1
2
σ2

MW 2
s VWW

)

dt + σMWsVW dBt + (V (Ws) − V (Ws−))dNt

=
(

(µMWs − Cs) VW + 1
2
σ2

MW 2
s VWW

)

dt + σMWsVW dBt

+(V ((1 − ζM)Ws−) − V (Ws−))dNt

where σ2
M is the instantaneous variance of the risky asset’s return from the Brownian motion

increments. If we take the expectation of the integral form, and use the property of stochastic

integrals, we may write

EsdV (Ws) =
(

(µMWs − Cs) VW + 1
2
σ2

MW 2
s VWW + (V ((1 − ζM)Ws) − V (Ws))λ

)

dt

Inserting into (75) gives the Bellman equation

ρV (Ws) = max
Cs

{

u(Cs) + (µMWs − Cs)VW + 1
2
σ2

MW 2
s VWW + (V ((1 − ζM)Ws) − V (Ws))λ

}

The first-order condition (40) makes consumption a function of the state variable. Using

the maximized Bellman equation for all s = t ∈ [0,∞),

ρV (Wt) = u(C(Wt)) + (µMWt − C(Wt))VW + 1
2
σ2

MW 2
t VWW + (V ((1 − ζM)Wt) − V (Wt))λ

Use the envelope theorem to compute the costate

ρVW = (µMVW + (µMWt − C(Wt))VWW + σ2
MWtVWW + 1

2
σ2

MW 2
t VWWW

+(VW ((1 − ζM)Wt)(1 + ζM) − VW (Wt))λ

Collecting terms, we obtain

(ρ − µM + λ)VW = (µMWt − C(Wt))VWW + σ2
MWtVWW + 1

2
σ2

MW 2
t VWWW

+VW ((1 − ζM)Wt)(1 + ζM)λ (76)

Using Itô’s formula, the costate obeys

dVW (Wt) = (µMWt − Ct) VWWdt + 1
2
σ2

MW 2
t VWWWdt + σMWtVWWdBt

+(VW ((1 − ζM)Wt−) − VW (Wt−))dNt

=
(

(ρ − µM + λ)VW − σ2
MWtVWW − VW ((1 + ζM)Wt)(1 + ζM)λ

)

dt

+σMWtVWWdBt + (VW ((1 − ζM)Wt−) − VW (Wt−))dNt

where we inserted the costate from (76). As a final step we insert the first-order condition

and obtain the Euler equation (41).
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5.1.3 A more comprehensive approach

As a necessary condition for optimality the Bellman’s principle gives at time s

ρV (Ws) = max
(ws,Cs)

{

u(Cs) +
1

dt
EsdV (Ws)

}

(77)

Using Itô’s formula,

dV (Ws) =
(

((ws(µ − r) + r)Ws − Cs) VW + 1
2
w2

sσ
2W 2

s VWW

)

dt + wsσWsVW dBt

+(V (Ws) − V (Ws−))dNt

=
(

((ws(µ − r) + r)Ws − Cs) VW + 1
2
w2

sσ
2W 2

s VWW

)

dt + wsσWsVW dBs

+(V ((1 + (Js − Ds)wt− + Ds)Ws−) − V (Ws−))dNs

where σ2 is the instantaneous variance of the risky asset’s return from the Brownian motion

increments. If we take the expectation of the integral form, and use the property of stochastic

integrals, we may write

EsdV (Ws) =
(

((ws(µ − r) + r)Ws − Cs) VW + 1
2
w2

sσ
2W 2

s VWW

+(E[V ((1 + (Js − Ds)ws + Ds)Ws)] − V (Ws))λ
)

dt

=
(

((ws(µ − r) + r)Ws − Cs) VW + 1
2
w2

sσ
2W 2

s VWW + (V ((eκ + (eν1 − eκ)ws)Ws)q

+V ((1 + (eν2 − 1)ws)Ws)(1 − q) − V (Ws))λ
)

dt

The first-order conditions (44) and (45) make the controls a function of the state variable.

Using the maximized Bellman equation,

ρV (Wt) = u(C(Wt)) + ((µ − r)w(Wt)Wt + rWt − C(Wt))VW + 1
2
w(Wt)

2σ2W 2
t VWW

+
(

V ((eκ + (eν1 − eκ)w(Wt))Wt)q + V ((1 + (eν2 − 1)w(Wt))Wt)(1 − q)

−V (Wt)
)

λ (78)

Use the envelope theorem to compute the costate

ρVW = ((µ − r)w(Wt) + r)VW + ((µ − r)w(Wt)Wt + rWt − C(Wt))VWW

+w(Wt)
2σ2WtVWW + 1

2
w(Wt)

2σ2W 2
t VWWW

+VW ((eκ + (eν1 − eκ)wt)Wt)(e
κ + (eν1 − eκ)wt)qλ

+VW ((1 + (eν2 − 1)wt)Wt)(1 + (eν2 − 1)wt)(1 − q)λ − VW (Wt)λ

Collecting terms, we obtain

(ρ − ((µ − r)wt + r) + λ)VW = ((µ − r)wtWt + rWt − Ct)VWW

+w2
t σ

2WtVWW + 1
2
w2

t σ
2W 2

t VWWW

+VW ((eκ + (eν1 − eκ)wt)Wt)(e
κ + (eν1 − eκ)wt)qλ

+VW ((1 + (eν2 − 1)wt)Wt)(1 + (eν2 − 1)wt)(1 − q)λ
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Using Itô’s formula, the costate obeys

dVW (Wt) = ((µ − r)wtWt + rWt − Ct)VWWdt + 1
2
w2

t σ
2W 2

t VWWWdt + wtσWtVWWdBt

+(VW ((1 + (Jt − Dt)wt− + Dt)Wt−) − VW (Wt−))dNt

=
(

(ρ − ((µ − r)wt + r) + λ)VW − w2
t σ

2WtVWW

−VW ((eκ + (eν1 − eκ)wt)Wt)(e
κ + (eν1 − eκ)wt)qλ

−VW ((1 + (eν2 − 1)wt)Wt)(1 + (eν2 − 1)wt)(1 − q)λ
)

dt

+wtσWtVWWdBt + (VW ((1 + (Jt − Dt)wt− + Dt)Wt−) − VW (Wt−))dNt

where we inserted the costate from above. As a final step, we insert the first-order condition

for consumption to obtain the Euler equation (46).

5.1.4 Proof of Proposition 2.6

For constant relative risk aversion, θ, the utility function reads

u(Ct) =
C1−θ

t

1 − θ
, θ > 0 (79)

From (78) we have the maximized Bellman equation where we use functional equations from

first-order conditions (44) and (45),

C(Wt) = V
− 1

θ

W

w(Wt) =
C(Wt)

−θ

θC(Wt)−θ−1CWWt

µ − r

σ2
+

C((eκ + (eν1 − eκ)wt)Wt)
−θ

θC(Wt)−θ−1CW Wt

eν1 − eκ

σ2
qλ

+
C((1 + (eν2 − 1)wt)Wt)

−θ

θC(Wt)−θ−1CWWt

eν2 − 1

σ2
(1 − q)λ

We may use an educated guess,

V̄ = C0
W 1−θ

t

1 − θ
(80)

and V̄W = C0W
−θ
t , and V̄WW = −θC0W

−θ−1
t to solve the resulting equation. Note that

optimal consumption is linear in wealth, C(Wt) = C
−1/θ
0 Wt, which implies that the optimal

portfolio weight is constant and implicitly given by

w =
µ − r

θσ2
+ (eκ + (eν1 − eκ)w)−θ eν1 − eκ

θσ2
qλ + (1 + (eν2 − 1)w)−θ eν2 − 1

θσ2
(1 − q)λ

Using the result that w(Wt) = w is constant, and inserting the candidate policy function for

consumption into the maximized Bellman equation (78), we arrive at

ρC0
W 1−θ

t

1 − θ
=

C
− 1−θ

θ

0 W 1−θ
t

1 − θ
+ ((µ − r)wWt + rWt − C

− 1

θ

0 Wt)C0W
−θ
t − θ 1

2
w2σ2

C0W
1−θ
t

+
(

(eκ + (eν1 − eκ)w)1−θq + (1 + (eν2 − 1)w)1−θ(1 − q) − 1
)

C0
W 1−θ

t

1 − θ
λ
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Defining µM ≡ (µ − r)w + r, σM ≡ wσ, ζM ≡ 1 − eκ − (eν1 − eκ)wt, and collecting terms,

ρ = C
− 1

θ

0 + (1 − θ)((µ − r)w + r − C
− 1

θ

0 ) − (1 − θ)θ 1
2
w2σ2

+
(

(eκ + (eν1 − eκ)w)1−θq + (1 + (eν2 − 1)w)1−θ(1 − q) − 1
)

λ

⇒ C0 =

(

ρ + λ − (1 − θ)µM −
(

(1 − ζM)1−θq + (1 + (eν2 − 1)w)1−θ(1 − q)
)

λ

θ
+ (1 − θ)1

2
σ2

M

)−θ

This proofs that the guess (80) indeed is a solution, and by inserting the guess together with

the constant we obtain the policy functions for the portfolio weights and consumption.

5.1.5 Identifying restrictions in general equilibrium

The asset market ‘solves’ a problem at each instant of time, such that equilibrium prices

should be expressible as some fixed function of the state of the economy, pt = F (At) which is

assumed to be C2 (following the idea of the Black-Scholes formula). Observe that by stating

(34), we implicitly impose a restriction on the parameter space. The reason is that

pt = FA(dAt + J̄tAt−dNt) + 1
2
FAAσ̄2A2

t dt + (F (At) − F (At−))dNt

= µ̄FAAtdt + 1
2
FAAσ̄2A2

t dt + σ̄AtFAdBt + (F ((1 + J̄t)At−) − F (At−))dNt

implies

µF = FAµ̄At + 1
2
FAAσ̄2A2

t

σF = FAσ̄At ⇒ FAAσ̄At = (σ − σ̄)FA

(1 + Jt)F (At−) = F ((1 + J̄t)At−)

It does not help to pin down and/or it does not put a restriction of Jt as a function of J̄t.

However, from the first two equations

µ =
(

µ̄/σ̄ + 1
2
(σ − σ̄)

)

σ. (81)

5.2 Lucas fruit-tree model in continuous-time (multiple assets)

5.2.1 Deriving the budget constraint (matrix notation)

Consider n + 1 assets. Suppose that the price of an asset i follows

dpi(t) = µipi(t)dt + pi(t)γ
>
i dBt

µi denotes the instantaneous conditional expected percentage change in the price of asset i,

γi ≡ [γi1, ..., γin]
> a n×1 vector, γ ≡ [γ1, ..., γn]

> a n×n matrix, Ω ≡ γγ> the positive definite,
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non-singular, instantaneous conditional covariance matrix, and Bt ≡ [B1(t), ..., Bn(t)]
> is a

n-dimensional (uncorrelated) standard Brownian motion. Let µ ≡ [µi, ..., µn]
> be the vector

of instantaneous conditional expected percentage price changes for the n risky assets,

dpt = diag(pt)µdt + diag(pt)γdBt (82)

denotes a geometric Brownian motion. Observe that diag(pt) denotes the n × n matrix

with the vector pt along the main diagonal and zeros off the diagonal. Consider a portfolio

strategy which holds ni(t) units of the asset i 6= 0 and n0(t) units of the riskless asset, where

Wt = n0(t)p0(t) + p>t nt

pt ≡ [p1(t), ..., pn(t)]
>, nt ≡ [n1(t), ..., nn(t)]> denotes the portfolio value, which obeys

dWt = p0(t)dn0(t) + n0(t)p0(t)rdt + p>t dnt + n>
t diag(pt)µdt + n>

t diag(pt)γdBt

= p0(t)dn0(t) + n0(t)p0(t)rdt + p>t dnt + w>
t µWtdt + w>

t γWdBt (83)

where wtWt ≡ (n>
t diag(pt))

> = [n1(t)p1(t), ..., nn(t)pn(t)]> and w0(t) = 1−w>
t 1̂ denotes the

amount invested in the risky asset. Since investors use their savings to accumulate assets,

p0(t)dn0(t) + p>t dnt =
(

π0(t)n0(t) + π>
t nt − Ct

)

dt

where πt ≡ [π1, ..., πn]>, and πi(t) denotes per unit dividend payments on asset i. Then

dWt =
(

π0(t)n0(t) + π>
t nt − Ct

)

dt + n0(t)p0(t)rdt + n>
t diag(pt)µdt + n>

t diag(pt)γdBt

=
(

π0(t)n0(t) + π>
t nt − Ct

)

dt + rWtdt + w>
t (µ − r̂)Wtdt + w>

t γWtdBt

If there are no dividend payments, πt = 0, the budget constraint reads

dWt =
(

w>
t (µ − r̂)Wt + rWt − Ct

)

dt + w>
t γWtdBt (84)

where r̂ ≡ [r, ..., r]> = [1, ..., 1]>r ≡ 1̂>r.

5.2.2 The Bellman equation and the Euler equation

As a necessary condition for optimality the Bellman’s principle gives at time s

ρV (Ws) = max
(ws,Cs)

{

u(Cs) +
1

dt
EsdV (Ws)

}

(85)

Using Itô’s formula,

dV (Ws) =

(

(

(w>
s (µ − r̂) + r)Ws − Cs

)

VW +
1

2
(w>

s γ)(w>
s γ)>W 2

s VWW

)

dt + w>
s γWsVWdBt

=

(

(

(w>
s (µ − r̂) + r)Ws − Cs

)

VW +
1

2
w>

s ΩwsW
2
s VWW

)

dt + w>
s γWsVW dBt
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where Ω ≡ γγ> = [γij] is the n×n covariance matrix of the risky assets, which is symmetric

and positive definite. If we take the expectation of the integral form, and use the property

of stochastic integrals (assuming that the integrals exist), we may write

EsdV (Ws) =

(

(

(w>
s (µ − r̂) + r)Ws − Cs

)

VW +
1

2
w>

s ΩwsW
2
s VWW

)

dt

The first-order conditions (22) and (23) make the controls a function of the state variable.

Using the maximized Bellman equation,

ρV (Wt) = u(C(Wt)) + (w>(µ − r̂)(Wt)Wt + rWt − C(Wt))VW +
1

2
w(Wt)

>Ωw(Wt)W
2
t VWW

Use the envelope theorem to compute the costate

ρVW = (w(Wt)
>(µ − r̂) + r)VW + (w>(µ − r̂)(Wt)Wt + rWt − C(Wt))VWW

+w>(Wt)Ωw(Wt)WtVWW +
1

2
w>(Wt)Ωw(Wt)W

2
t VWWW

Collecting terms, we obtain

(ρ − (w>(µ − r̂)(Wt) + r))VW = (w>(µ − r̂)(Wt)Wt + rWt − C(Wt))VWW

+w>(Wt)Ωw(Wt)WtVWW

+
1

2
w>(Wt)Ωw(Wt)W

2
t VWWW (86)

Using Itô’s formula, the costate obeys

dVW (Wt) =
(

w>
t (µ − r̂)Wt + rWt − Ct

)

VWWdt +
1

2
wtΩwW 2

t VWWWdt

+w>
t γWtVWWdBt

=
(

(ρ − (w>
t (µ − r̂) + r))VW − w>

t ΩwtWtVWW

)

dt + w>
t γWtVWWdBt

where we inserted the costate from (86). As a final step, we insert the first-order conditions

to obtain the Euler equation (24).

5.2.3 Proof of Proposition 2.1

For constant relative risk aversion, θ, the utility function reads

u(Ct) =
C1−θ

t

1 − θ
, θ > 0 (87)

the maximized Bellman equation reads,

ρV (Wt) =
C1−θ

t

1 − θ
+

(

w>
t (µ − r̂)Wt + rWt − Ct

)

VW +
1

2
w>

t ΩwtW
2
t VWW
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where we insert functional equations from first-order conditions (22) and (23)

C(Wt) = V
− 1

θ

W , and w(Wt) = −
VW

VWWWt
Ω−1(µ − r̂)

We may use an educated guess,

V̄ = C0
W 1−θ

t

1 − θ
(88)

and V̄W = C0W
−θ
t , and V̄WW = −θC0W

−θ−1
t to solve the resulting equation,

ρC0
W 1−θ

t

1 − θ
=

C
− 1−θ

θ

0 W 1−θ
t

1 − θ
+

(

w>
t (µ − r̂)Wt + rWt − C

− 1

θ

0 Wt

)

C0W
−θ
t − 1

2
w>

t ΩwtθC0W
1−θ
t

we insert optimal portfolio weights wt and solve for C0,

ρ

1 − θ
=

C
− 1

θ

0 − (1 − θ)C
− 1

θ

0

1 − θ
+

(µ − r̂)>Ω−1(µ − r̂)

θ
+ r −

1
2
(µ − r̂)>Ω−1(µ − r̂)

θ

⇔ C0 =

(

ρ − (1 − θ)r

θ
− (1 − θ)

1
2
(µ − r̂)>Ω−1(µ − r̂)

θ2

)−θ

This proofs that the guess (88) indeed is a solution, and by inserting the guess together with

the constant we obtain the policy functions for the portfolio weights and consumption.

5.2.4 Proof of Proposition 2.3

For constant absolute risk aversion, η, the utility function reads

u(Ct) = −
exp(−σCt)

η
, η > 0 (89)

the maximized Bellman equation reads,

ρV (Wt) = −
1

η
exp(−ηCt) +

(

w>
t (µ − r̂)Wt + rWt − Ct

)

VW +
1

2
w>

t ΩwtW
2
t VWW

where we insert functional equations from first-order conditions (22) and (23)

C(Wt) = −
1

η
ln VW , and w(Wt) = −

VW

VWW Wt
Ω−1(µ − r̂)

We may use an educated guess,

V̄ = −
C0

C1
exp (−C1Wt) (90)
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and V̄W = C0 exp(−C1Wt), and V̄WW = −C0C1 exp(−C1Wt) to solve the resulting equation.

ρV (Wt) = −
1

η
VW +

(

w>
t (µ − r̂)Wt + rWt +

1

η
ln VW

)

VW +
1

2
w>

t ΩwtW
2
t VWW

⇔ −ρ
C0

C1
exp(−C1Wt) = −

1

η
C0 exp(−C1Wt)

+

(

w>
t (µ − r̂)Wt + rWt +

1

η
ln C0 −

1

η
C1Wt

)

C0 exp(−C1Wt)

−
1

2
w>

t ΩwtW
2
t C0C1 exp(−C1Wt)

Hence, requiring that C1 = ηr we obtain,

−
ρ

C1

= −
1

η
+

1

2

1

C1

(µ − r̂)>Ω−1(µ − r̂) +
1

η
ln C0

Collecting terms, the second constant is pinned down by

ln C0 =
r − ρ − 1

2
(µ − r̂)>Ω−1(µ − r̂)

r

This proofs that the guess (90) indeed is a solution, and by inserting the guess together with

the constants we obtain the policy functions for the portfolio weights and consumption.

5.3 The prototype production economy

5.3.1 The Bellman equation and the Euler equation

As a necessary condition for optimality the Bellman’s principle gives at time s

ρV (Ws, As) = max
Cs

{

u(Cs) +
1

dt
EsdV (Ws, As)

}

Using Itô’s formula yields

dV = VW dWs + VAdAs +
1

2
VAAσ̄2A2

sdt

= ((rs − δ)Ws + wL
s − Cs)VWdt + VWσWsdZs + VAµ̄Asdt + VAσ̄AsdBs

+
1

2

(

VAAσ̄2A2
s + VWWσ2W 2

s

)

dt

Using the property of stochastic integrals, we may write

ρV (Ws, As) = max
Cs

{

u(cs) + ((rs − δ)Ws + wL
s − Cs)VW + VAµ̄As +

1

2

(

VAAσ̄2A2
s + VWWσ2W 2

s

)

}

for any s ∈ [0,∞). Because it is a necessary condition for optimality, we obtain the first-order

condition (66) which makes optimal consumption a function of the state variables.
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For the evolution of the costate we use the maximized Bellman equation

ρV (Wt, At) = u(C(Wt, At))+((rt−δ)Wt+wL
t −C(Wt, At))VW+VAµ̄At+

1

2

(

VAAσ̄2A2
t + VWWσ2W 2

t

)

(91)

where rt = r(Wt, At) and wL
t = w(Wt, At) follow from the firm’s optimization problem, and

the envelope theorem (also for the factor rewards) to compute the costate,

ρVW = µ̄AtVAW + ((rt − δ)Wt + wL
t − Ct)VWW + (rt − δ)VW +

1

2

(

VWAAσ̄2A2
t + VWWWσ2W 2

t

)

+VWWσ2Wt

Collecting terms we obtain

(ρ − (rt − δ))VW = VAW µ̄At + ((rt − δ)Wt + wL
t − Ct)VWW +

1

2

(

VWAAσ̄2A2
t + VWWWσ2W 2

t

)

+σ2VWWWt

Using Itô’s formula, the costate obeys

dVW = VAW µ̄Atdt + VAW σ̄AtdBt +
1

2

(

VWAAσ̄2A2
t + VWWWσ2W 2

t

)

dt

+((rt − δ)Wt + wL
t − Ct)VWWdt + VWWσWtdZt

where inserting yields

dVW = (ρ − (rt − δ))VWdt − σ2VWWWtdt + VAWAtσ̄dBt + VWWWtσdZt

which describes the evolution of the costate variable. As a final step, we insert the first-order

condition (66) to obtain the Euler equation (67).

5.3.2 Proof of Proposition 3.1

The idea of this proof is to show that together with an educated guess of the value function,

both the maximized Bellman equation (91) and first order condition (66) are fulfilled. We

may guess that the value function reads

V (Wt, At) =
C1W

1−θ
t

1 − θ
+ f(At) (92)

From (66), optimal consumption is a constant fraction of wealth,

C−θ
t = C1W

−θ
t ⇔ Ct = C

−1/θ
1 Wt
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Now use the maximized Bellman equation (91), the property of the Cobb-Douglas technology,

FK = αAtK
α−1
t L1−α and FL = (1−α)AtK

α
t L−α

t , together with the transformation Kt ≡ LWt,

and insert the solution candidate,

ρV (Wt, At) =
C

− 1−θ

θ

1 W 1−θ
t

1 − θ
+ ((rt − δ)Wt + wL

t − C(Wt, At))VW + VAµ̄At

+
1

2

(

VAAσ̄2A2
t + VWWσ2W 2

t

)

⇔ ρ
C1W

1−θ
t

1 − θ
=

C
− 1−θ

θ

1 W 1−θ
t

1 − θ
+ (αAtW

α−1
t Wt − δWt + (1 − α)AtW

α
t − C

−1/θ
1 Wt)C1W

−θ
t

−
1

2
θC1W

1−θ
t σ2 − g(At)

where we defined g(At) ≡ ρf(At)− fAµ̄At −
1
2
fAAσ̄2A2

t . When imposing the condition α = θ

and g(At) = C1At it can be simplified to

ρ
C1W

1−θ
t

1 − θ
+ g(At) =

C
− 1−θ

θ

1 W 1−θ
t

1 − θ
+ (AtW

α−θ
t − δW 1−θ

t − C
−1/θ
1 W 1−θ

t )C1 −
1

2
θC1W

1−θ
t σ2

⇔ ρW 1−θ
t = θC

−1/θ
1 W 1−θ

t − (1 − θ)δW 1−θ
t −

1

2
θ(1 − θ)W 1−θ

t σ2

which implies that

C
−1/θ
1 =

ρ + (1 − θ)δ + 1
2
θ(1 − θ)σ2

θ

This proofs that the guess (92) indeed is a solution, and by inserting the guess together with

the constant we obtain the optimal policy function for consumption.

5.3.3 Proof of Proposition 3.3

The idea of this proof follows Section 5.3.2. An educated guess of the value function is

V (Wt, At) =
C1W

1−αθ
t

1 − αθ
A−θ

t (93)

From (66), optimal consumption is a constant fraction of income,

C−θ
t = C1W

−αθ
t A−θ

t ⇔ Ct = C
−1/θ
1 W α

t At

Now use the maximized Bellman equation (91), the property of the Cobb-Douglas technology,

FK = αAtK
α−1
t L1−α and FL = (1−α)AtK

α
t L−α, together with the transformation Kt ≡ LWt,

and insert the solution candidate,

ρV (Wt, At) =
C

− 1−θ

θ

1 W α−αθ
t A1−θ

t

1 − θ
+ ((rt − δ)Wt + wL

t − C(Wt, At))VW + VAµ̄At

+
1

2

(

VAAσ̄2A2
t + VWWσ2W 2

t

)
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which is equivalent to

ρ
C1W

1−αθ
t

1 − αθ
A−θ

t =
C

− 1−θ

θ

1 W α−αθ
t A1−θ

t

1 − θ
− θ

C1W
1−αθ
t

1 − αθ
µ̄A−θ

t

+
(

αAtW
α
t − δWt + (1 − α)AtW

α
t − C

−1/θ
1 W α

t At

)

C1W
−αθ
t A−θ

t

+
1

2

(

θ(1 + θ)σ̄2 − αθ(1 − αθ)σ2
) C1W

1−αθ
t

1 − αθ
A−θ

t

Collecting terms gives

ρ = (1 − αθ)
C

− 1−θ

θ
−1

1 W α−1
t At

1 − θ
− θµ̄ + (1 − αθ)AtW

α−1
t − (1 − αθ)δ

−(1 − αθ)C
−1/θ
1 W α−1

t At +
1

2

(

θ(1 + θ)σ̄2 − αθ(1 − αθ)σ2
)

⇔ ρ + θµ̄ −
1

2

(

θ(1 + θ)σ̄2 − αθ(1 − αθ)σ2
)

+ (1 − αθ)δ =
(

θ

1 − θ
C

−1/θ
1 + 1

)

(1 − αθ)AtW
α−1
t

which has a solution for C
−1/θ
1 = (θ − 1)/θ and

ρ = −θµ̄ +
1

2

(

θ(1 + θ)σ̄2 − αθ(1 − αθ)σ2
)

− (1 − αθ)δ

This proofs that the guess (93) indeed is a solution, and by inserting the guess together with

the constant we obtain the optimal policy function for consumption.
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