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Abstract

This paper addresses the issue of entry and exit in di¤erentiated product markets from

a dynamic point of view. A method for computing the economic advantages in the en-

largement of the portfolio of products by multiproduct incumbent �rms is proposed. Every

period, �rms decide whether to introduce a new product or not and incumbents decide

whether to quit old products. Finally they all compete in prices. Products are di¤erenti-

ated in quality which is allowed to vary exogenously along time. Entry and exit decisions,

as well as quality changes, have a dynamic nature as their e¤ects can spread along a number

of periods a¤ecting future payo¤s and decisions. Pricing is considered static, in the sense

that it a¤ects current pro�ts but it does not in�uence future pro�ts.

Following the forward simulation methodology developed in Bajari, Benkard, and Levin

(2007) I apply the model to the Spanish car market in the 1990�s, which displays signi�cant

rates of entry and exit during that decade. Estimates of the model show moderate entry

costs and substantial cost reductions in the introduction of a second product with respect

to the �rst, indicating that multiproduct �rms bene�t from strong economies of scope when

expanding their range of products. However, those economies seem to be exhausted after

�ve products have been introduced, suggesting a U-shaped curve for entry costs.
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1 Introduction

This paper studies the costs of product introduction and commercialization in di¤erenti-

ated product markets from a dynamic point of view, with an application to the Spanish

automobile industry in the 1990�s. This market displays signi�cant rates of entry and

exit during that decade and is characterized by the existence of multiproduct �rms that

compete segment by segment with, usually, one model per segment.

Car producers are mostly multinational �rms making decisions at the global industry

level, namely, the development of new products. However, one thing is the R&D e¤ort

made to expand or improve the range of products and another is to choose the precise

moment to implement those improvements. The decision to develop new products is made

at the global level but the decision to introduce new products in Spain is made at the

Spanish level. Even though the concept of region for a multinational �rm may exceed

the boundaries of a country, the empirical evidence shows that signi�cant di¤erences arise

in the entry and exit of identical products across markets1. The intuition is that, apart

from the R&D costs, the e¤ective implementation of a new product depends on market-

speci�c factors, namely on the commercialization side. Demand conditions, regional or

national tastes for characteristics, etc. can render a product successful in one given market

while it fails in another. In this paper, I argue that incumbent �rms have advantages

in commercialization that make it easier for them to introduce new products compared

to entrant �rms. In particular, I look at the advantages when expanding the range of

products: the conjecture is that a �rm �nds it easier to introduce a new variety of product

(say a car in a new segment) when it already has other types of cars. The results give

support to that claim and serve also to explain product proliferation in the industry.

Panzar and Willig coined the term �economies of scope�to describe cost savings that

arise when the production of two or more product lines is combined, instead of being

produced by separate �rms (Panzar and Willig (1981)). Since then, many papers have

1This evidence is described in a companion paper available from the author
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been devoted to the measurement of economies of scope in di¤erent economic sectors like

banking or hospitals. These approaches are based on the estimation of cost functions

for multiproduct �rms. However, they have a productive perspective in the sense they

care only about cost savings from joint production, neglecting the costs of introducing

those products. In industries like the auto industry, where the development and e¤ective

introduction of new products involves large costs in engineering, production, marketing,

commercialization, and distribution, the omission of entry costs can give rise to misleading

conclusions. For example, imagine two products whose joint production implies cost

savings but only the �rst one exists and the second can only reach the market if large

sunk costs in R&D or advertising are made. In that case, any productive advantage may

be overwhelmed by entry costs.

In this paper, I look at the economies of scope of product introduction abstracting from

other scope economies. The model does not intend to explain scope economies in R&D,

production, or plant activity. It intends to quantify the commercial advantage that a �rm

gets after it enters a market for the �rst time as the di¤erence between the entry costs

of subsequent products. I consider only economies of scope within the �rm, i.e., product

entry by a �rm�s competitors may have market enlargement and business stealing e¤ects,

but this is not supposed to a¤ect a �rm�s entry costs. The commercial advantage may

re�ect brand image, continued advertising, development of dealer networks, etc. The

separation between economies of scope in production and commercialization can be made

because, as mentioned above, there is evidence about non-simultaneous or sequential entry

of new products across countries. This suggests that development and entry are separate

stages of the game played by car manufacturers and that it is not because a �rm is �faster�

or �better�in R&D that it introduces a new model earlier in one market relative to other

markets. It serves also to avoid economies of scope in production being captured by the

measure of economies of scope in commercialization because each of them belong to a

di¤erent stage.

In this way we can talk of scope economies in the commercialization of new products
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and give a measure of their importance, which is the main contribution of the paper.

Contrary to standard productive costs functions, entry costs have the special character-

istic that they are paid only once, but their e¤ects spread over future periods. Therefore,

they must be treated di¤erently from usual recurrent costs. For this purpose, and relying

on the strand of literature starting from Ericson and Pakes (1995), I construct a model

where multiproduct �rms decide whether to introduce and quit products and potential

entrant �rms decide on entry. Product is di¤erentiated in quality, which is allowed to

exogenously vary over time at some cost. Product characteristics are summarized in a

quality index representing the utility obtained by consumers. Finally, there is price com-

petition. Firms play a game that lasts a (perhaps in�nite) number of periods, di¤ering

from the classical �supergames�in that it is a single game, rather than the in�nite replica

of a multi-stage game.

The decisions of entry/exit and also the changes in quality have dynamic implications

because they a¤ect not only current payo¤s but also future payo¤s and actions. Therefore,

they must be treated di¤erently from static decisions, whose in�uence is limited only to

the period in which they are made, with no further repercussion. In my model, pricing is

a static decision.

In the literature, there already are alternative methodologies dealing with the estima-

tion of dynamic models. However, there are just a few empirical works on the topic that

either focus on homogeneous product markets or go into a limited degree of di¤erentia-

tion. Compared to these works, the multi-product perspective of this paper calls for a

clear distinction between �rm entry cost and product introduction cost in the modeling

strategy.

The structure of the paper is the following: in the next section I review the literature

on entry and dynamic models. Then I present the model. In Section 4 I detail the

estimation strategy. Section 5 describes the database used. Section 6 presents the results

and further details. I conclude in Section 7.
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2 Literature Review

The topic of entry and exit in automobile markets has been addressed from di¤erent

perspectives. For example, Geroski and Mur�n (1991) examine entry patterns across

three segments of the U.K. car industry. They develop a probit model of the entry

decision where post-entry pro�ts depend on post-entry advertising shares. They �nd

evidence that prior experience in the market may have had a small e¤ect on entry in a

particular segment. Geroski and Mazzucato (2001) study the relation between entry and

advertising in the US automobile market. Requena-Silvente and Walker (2005) study how

model survival in the UK car market relates to competition. They �nd that inter-�rm

competition determines survival of sports and luxury models while intra-�rm competition

is determinant for the rest. However, these works are based on the estimation of reduced

form models, a usual characteristic in the earlier papers in this literature. Regarding the

Spanish market, the focus has been on testing pricing behavior (Jaumandreu and Moral

(2006)) or on the role of advertising (Barroso (2007)).

The �rst structural works of entry proposed multi-stage game theory models (see

Toivanen and Waterson (2000) for a review). However, static models are not able to

capture the intrinsic dynamic nature of entry costs. The framework proposed by Ericson

and Pakes (1995) and recently revised by Doraszelski and Satterthwaite (2007) has become

the standard way to model dynamic oligopolies. I follow their approach in building up

my model. Nevertheless, the large computational costs in solving for an equilibrium

of those models has limited the range of empirical applications. Recent methodological

developments (Aguirregabiria and Mira (2007); Bajari, Benkard, and Levin (2007); Pakes,

Ostrovsky, and Berry (2007); Pesendorfer and Schmidt-Dengler (2007)), which make it

possible to estimate the structural dynamic parameters without solving for an equilibrium,

have boosted the literature on applied dynamic oligopoly models. The topics covered

include �rm entry and exit in homogeneous good markets (Ryan (2006); Collard-Wexler

(2006)), entry in geographic markets (Dunne, Klimek, Roberts, and Xu (2006)), entry

and competition in local retail markets (Aguirregabiria and Mira (2007)), and horizontal
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location of �rms (Sweeting (2007)). So far, there has been no previous attempt to estimate

product introduction costs by multiproduct �rms, and the applications to the automobile

industry focus only on the relation between market structure and innovation (Hashmi and

Van Biesebroeck (2007)). To the best of my knowledge, the concept of scope economies

de�ned in Panzar and Willig (1981) has not been used to provide a rationale for �rms�

product introduction and product proliferation strategies.

3 The Model

The ith �rm maximizes the discounted sum of expected pro�ts from the sum of its Nit

products (indexed by j ); Nt is the total number of products at t:

�i = E
1X
t=0

NitX
j

�t�ijt ; 8 i = 1; :::; Nt (1)

A common discount factor � is assumed for all �rms. Variable pro�ts are given by:

�varijt = (pijt � cijt)Dijt (Pt; Kt)

Individual demand depends on the vector of all competing product prices and charac-

teristics:

Pt = (p1t; :::; pNtt)

Kt = (k1t; :::kNtt)

kijt is a quality index summarizing product characteristics (excluding price). I do not

consider the problem of choosing characteristics in a multidimensional framework, hence

each product is just a bundle of diverse features added up using a hedonic weight, q , for

each one:

ki = 1ki1 + 2ki2 + :::+ qkiq (2)
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I assume that products are exogenously classi�ed in segments (groups). Then following

Berry (1994), demand is modeled using a standard nested logit model:

Dit (Pt; Kt) = Sit (Pt; Kt) �Mt

Sijt =
exp

�
kijt��pijt
1��

�
P
j2Gg

exp
�
kijt��pijt
1��

�
" P
j2Gg

exp
�
kijt��pijt
1��

�#1��

1 +
GP
g=1

" P
j2Gg

exp
�
kijt��pijt
1��

�#1��
whereMt is the market size and Sijt (�) is the share of product j. I also assume a constant

marginal cost of production, cijt.

There is a product speci�c cost2, F (kijt; iijt), of implementing a quality index kijt with

quality change iijt .

State Variables and Controls

I describe here the state space of the model. I try to represent it in a parsimonious way,

although this requires making some simpli�cations. I comment on them as I describe each

element of the state space.

In period t , the controls are the decisions of entry and exit
�
�ijt
�
and the decision

of whether to invest. Entry and exit determine the number of products at the beginning

of t + 1. Therefore, N is an endogenously evolving state variable. However, market

shares do not depend directly on the number of products. The larger the number of

competitors, the less likely a particular product is consumed because there are more

potential options that can give more utility. Thus, Nt in�uences shares through the pair

(Kt; Pt)
3. An alternative way of considering the number of competitors would be to split

2The cost of change is just the cost of adapting the product to the new speci�cation (and not the
cost of developing it), e.g., the cost of adapting the car to embody a more powerful engine, or perhaps
the cost of adapting the productive chain of that model. It is true that in order to use a more powerful
engine, it must �rst be designed and developed. In this stage, spillovers arise within multiproduct �rms,
which can make it easier to develop new engines for other models. These are the scope economies in
production (or R&D), but I am looking only to scope economies in commercialization.

3In my model, we can only have a direct e¤ect of the number of incumbents over market shares when
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N into its components: number of products in the segment and number of products in

other segments. The former may capture the incentives for product exit in a segment as

a consequence of competition. The latter could re�ect the incentives for product entry in

new segments to relax competition.

The total number of �rms is �xed and known. They may be incumbents or potential

entrants. Candidate products not introduced are discarded and in the following period

a new set of products will be available for entry. There is an implicit but important

assumption, which is that every period the feasible set of products for a �rm is somehow

�given�. The decisions of entry are made on these products. This �rst stage where prod-

ucts become available is not modelled. This caveat is partially justi�ed in the application

I have in mind: product entry in a national market by a global �rm, where R&D is made

at the global level, so that every period a range of products becomes available worldwide

but the decision of entry is made independently in each national market. Needless to say,

the ideal model should account for that stage as well.

Initial quality is given by initial product characteristics, which are drawn from some

distribution and then aggregated to form the index, whose initial value is thus random.

Given that I am not modelling the choice of characteristics and I only need the quality

index, it is in fact simpler to assume randomly drawn initial quality, understanding that

it is linked to characteristics through equation (2). Firms modify quality as time goes

by. The amount of change, if any, is exogenously given. The model does not deal with

choice of characteristics and, as noted above, when they vary I assume they do it in

exogenous amounts. However, the decision of modi�cation is endogenous because the

�rm can always keep the product �as is�without modi�cations. Therefore, the model

can explain entry and exit decisions controlling for the empirical fact that quality is

changing over time. In the context of product di¤erentiation, it is necessary to keep track

of product characteristics even though we are only interested in the entry-exit process,

because characteristics de�ne products. Notice that quality changes are an alternative to

all �rms o¤er the same pair (k; p) , then: Sijt =
expfk��pg

1�N�expfk��pg .
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product replacement, but if the cost of those changes is too high, �rms may prefer to quit

the product.

The dimension of K becomes large as the number of products increases and this poses

a problem in estimation because the state space is too large. Therefore, I consider an

alternative representation of the state space in the spirit of Weintraub, Benkard, and Van

Roy (2007), where for each product the state is de�ned by its quality index, the average

quality index �K, and the number of competing products. Likewise, I do not include

market size or demand conditions in the state space.

Timing

Each �rm receives a private draw from the distribution of sunk costs of entry/sell-o¤

values (depending on whether it is an entrant or an incumbent) and decides �ijt. If a

�rm does not quit the product, it receives an exogenous shock that determines whether

the quality of the good is going to be changed or not. Entrants can immediately start to

sell their product; exiting �rms receive their scrap value and disappear. Given the new

(Kt; Nt), �rms simultaneously set prices and receive variable pro�ts. The important thing

here is that �rms cannot change kijt or �ijt when they are about to compete in prices.

Shocks happen before decisions are made and are the key to rationalizing the variability

of decisions from �rms with the same observed features.

Decision Rules

Firms make several decisions every period. An incumbent �rm decides, for each segment,

whether to introduce a new product or not. If it has no product in a segment, that decision

is equivalent to entering or not entering that segment. If it already has other product(s)

in the segment, then it can decide whether to quit any of them. Firms that are out of the

market may decide to enter or not. Entry may take place in more than one segment at

the same time. Firms are allowed to introduce at most one new product per segment and

period, but they can quit as many products as they have. There is a maximum for the
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number of products a �rm can commercialize in each segment. Enter/Not enter decisions

are represented by the indicator �eijt = f0; 1g and stay/exit by �ijt = f0; 1g. After all

�rms have decided about entry and exit, products are modi�ed if necessary. Finally, there

is price competition.

Entry/Stay/Exit

Every period each incumbent (entrant) receives a shock from a known distribution on

the sell-o¤ value (sunk cost of entry), � (�). If the discounted sum of expected payo¤s is

smaller than that draw, the �rm exits (does not enter), i.e.:

�ijt = 0() EDV incumbentt (Kt�1; Nt�1) � �

�eijt = 0() EDV entrantt (Kt�1; Nt�1) � �

where EDV incumbentt (Kt�1; Nt�1) and EDV entrantt (Kt�1; Nt�1) represent the expected dis-

counted sum of payo¤s for an incumbent and an entrant, respectively, conditional on

staying/entering at t given (Kt�1; Nt�1). I assume that when a �rm quits a product, it

can never re-enter. Instead, it may introduce a new product. Also, all �rms decide �ijt

simultaneously. These are dynamic decisions because their e¤ects spread over a number

of periods.

Pricing

This is a static decision: pijt+s is not a function of pijt+1 8 s 6= 1. Pricing decisions

become determined by the state variables and Bertrand competition. Therefore, prices

are irrelevant in the dynamic problem and they can be substituted by their optimal

expressions in the one-period payo¤ function.

Given kijt and Nt, pijt is chosen so as to maximize the pro�t stage. As I argued

above, this is a �self-contained� decision and I can substitute back in the one-period

10



payo¤ function to obtain a reduced form:

�it = �it (Kt; Nt)

It can be shown that the �rst-order condition of a multiproduct �rm in a nested logit is:

(pj � cj)Sj =
1� �
�

Sj + �Sj=g
X
j2Gg

(pj � cj)Sj

+(1� �)Sj
X
g2G

X
j2Gg

(pj � cj)Sj ;8j;8g

From this system of FOC�s, it is possible to obtain an equilibrium expression of product

variable pro�t as a function of the state variables:

�varj (Kt; Nt) =
1� �
�

Sj (Kt)M + �Sj=g (Kt)�
var
ig (Kt; Nt)

+ (1� �)Sj (Kt)�
var
i (Kt; Nt) ;8j;8g

where � is the marginal utility of income, � is the degree of intra-group correlation and

Sj=g is the market share of j conditioned to group g. �varig is the variable pro�t of �rm i

in segment g, and �vari is the total pro�t of �rm i:

�varig =

(1� �)
X
j2Gg

Sj

1� �
X
j2Gg

Sj=g

�
M

�
+ �vari

�
;8g

�vari =

M
X
g2Gg

1
�

(1��)
X
j2Gg

Sj

1��
X
j2Gg

Sj=g

1�
X
g2G

(1��)
X
j2Gg

Sj

1��
X
j2Gg

Sj=g

Notice that there is an implicit, non-linear, one-to-one relationship between p and k.
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p is determined with no direct in�uence of the shock ", although p is a¤ected by " through

k.

Characteristics

As discussed above, �rms modify product characteristics in response to exogenous changes.

When this happens, �rms adjust product quality to a new level such that:

iijt = kijt � kijt�1

iijt can be interpreted as the change of value of product j in hedonic terms. This is

a deterministic law of motion for kijt; what is random is the decision to change product

speci�cation.

Summarizing, the one-period payo¤ function is given by:

�it =

NitX
j=1

�ijt [(pijt � cijt)SijtMt + �1 (iijt 6= 0) (F (kijt; iijt) + "ijt)]

��eijt�eijt +
�
1� �ijt

�
�ijt (3)

where 1 (inv 6= 0) is an indicator function whose value is zero if investment is zero, and

one otherwise. Notice that �e = 1 =) � = 1 and � = 0 =) �e = 0. A model that is in

the market and continues is represented by � = 1; �e = 0 . �e = 1; � = 0 is not possible.

The pro�t from a product continuing in the market is:

�ijt
�
Kt; N

I
t

�
= �varj (Kt; Nt) + �1 (inv 6= 0) (F (kijt; iijt) + "ijt) (4)

�ijt depends on Kt in a highly non-linear way through market shares.
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Bellman Equation

The Bellman equation of the problem can be written as:

� For an incumbent:

Vij (Kt�1; Nt�1) = max

8><>:�ijt ; maxiijt

8><>: �ijt + �
R
Vij (Kt; Nt)

dGK (KtjKt�1) dGN (NtjNt�1)

9>=>;
9>=>;

and �it is given by (4).

� For a potential entrant:

Vij (Kt�1; Nt�1) = max

8><>:0 ; maxiijt

8><>: ��ijt + �ijt + �
R
Vij (Kt; Nt)

dGK (KtjKt�1) dGN (NtjNt�1)

9>=>;
9>=>;

and �ijt is given by (4). Notice that the entrant incurs the cost �ijt right after entry,

and it can immediately start to sell the product.

GK and GN are the distribution functions giving the transition probabilities of K and

N , respectively.

Equilibrium Concept

Firms make decisions with an in�nite horizon and so the potential number of Nash equilib-

ria (NE) is likely to be large, involving complex combinations of decision rules. Therefore,

I consider a restricted class of NE, the pure strategy Markov perfect equilibria (MPE), by

assuming �rms play Markov strategies, which means that strategies depend on all payo¤

relevant history. Formally, a Markov strategy is a map from the state space to the action

space:

�ijt : Kt �Nt �! Aijt
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such that:

�ijt (Kt�1Nt�1; Kt�2; Nt�2; Kt�3; Nt�3; :::) = �ijt (Kt�1; Nt�1)

Let�s de�ne a pro�le of Markov strategies as the vector:

�t = (�1t; :::; �Ntt)

Following Ackerberg, Benkard, Berry, and Pakes (2005), we can say that aMarkov strategy

pro�le, �, is an MPE if for all ij, all states, and all Markov strategies, �0ij:

Vij (K;N j �ij; ��ij) � Vij
�
K;N j �0ij; ��ij

�
Doraszelski and Satterthwaite (2007) (DS) show the existence of (at least one) MPE in

an Ericson and Pakes (1995) setting like mine. In particular, proposition 1 in DS shows

that an MPE equilibrium exists in cuto¤ entry-exit and pure investment strategies under

three assumptions. Assumption 1 states boundness of the model�s primitives (�nite state

space, bounded pro�ts and investment, continuity and bounded support of entry costs

and scrap values, and discounting). Assumption 2 is basically a continuity assumption in

payo¤ functions. Assumption 3 requires that a �rm�s investment choice is always uniquely

determined. The �rst two are standard assumptions easy to verify. The third one is a

bit more restrictive, but not a big issue in my model. I consider exogenously determined

investment with one unique investment level for each state and this is optimal provided

the policy function has been accurately recovered.

I assume that if there is more than one equilibrium, then the data is generated from

only one of them.
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Therefore, the value function can be written in recursive form:

Vij (K;N j�) = �ij (� (K;N) ; K;N)

+�

Z
Vij (K

0; N 0j�) dGK (K 0j� (K;N) ; K) dGN (N 0j� (K;N) ; N)

4 Estimation Strategy

In this section, I follow the two-step methodology developed in Bajari, Benkard, and Levin

(2007) (BBL). In the �rst step, the goal is to estimate policy functions and all parameters

not involved in the dynamics of the problem. These allow the simulation of alternative

histories for the industry which are then used in the second step to recover the dynamic

parameters and value function estimates in equilibrium.

First Stage

The target parameters here are those from market demand, variable pro�t function, in-

vestment, and entry/stay/exit decision rules.

Variable static pro�ts are computed by making use of the equilibrium expression ob-

tained from the logit speci�cation:

�varijt =
1� �
�

SijtM + �Sj=g�
var
ig + (1� �)Sijt�vari (5)

� is the marginal utility of income, obtained from demand estimation, Mt is (observed)

market size, and �varig and �vari are functions of market shares de�ned above. Therefore,

the key element is the estimation of market shares, which is discussed below.

As I handle a reduced form of variable pro�ts where marginal cost is substituted away,

I do not have to be concerned about estimating variable production costs.

The policy functions for entry and exit are kept simple (as, for example, in Ryan

(2006)). I model the probability of �rm i introducing a new model j at time t in segment
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g, conditional on the number of models of the �rm Ni, as a function of the number of

models it has in other segments, Ni;�g, and on the average quality in the segment, Avksg.

(Other measures of the number of competitors were considered, but their coe¢ cients had

signi�cance problems).

The dimension of the state space would require a lot of data to be able to estimate the

policy function parameters for each combination of quality for all competing models. This

is why I consider the average quality in the segment as a proxy for the vector of product

qualities. For the same reason, I consider the number of models instead of the particular

portfolio of the �rm�s products. This is to say that, for example, the decision of entry of

the third, large model having a small and a mini is equivalent to having a medium and

a mini. The implicit assumption under these two simpli�cations is that I am still able to

recover the optimal policies coming from the equilibrium of the model.

Using Bayes�rule:

prob (entryijtjNit) =
Pr (Nitjentry) � Pr (entry)

Pr (Nitjentry) � Pr (entry) + Pr (Nitjno entry) � Pr (no entry)

where Pr (Nitjentry) and Pr (Nitjno entry) are modeled using ordered probits:

Pr (Nit = 0 j entry) = Fn (c1 � �1 �Ni;�g;t�1 � �2 � Avksggt�1) = Fn (c1 � x�)

Pr (Nit = n j entry) = Fn (cn+1 � x�)� Fn (cn � x�) ; n = 1; :::; N � 1 (6)

Pr (Nit = N j entry) = 1� Fn (cN � x�)

where the c0s are the cuto¤s determining when each category is chosen. The same is

done for Pr (Nitjno entry). The Pr (entry) is estimated as the sample rate of entry. I

decompose the conditional probability of entry in the reverse conditional probabilities

because for some N there are few observations on entry and this poses some di¢ culties

in the estimation. The Pr (Nit = n j entry) and Pr (Nit = n j no entry) turn out to be

easier to estimate and simplify the computations for the second stage. For this reason,
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here I have not considered other smoothing or interpolation techniques such as kernels or

splines.

The probability of exit is modeled using a probit on the deviation of k with respect

to its segment mean (a parsimonious way of modelling the relation of product j with its

competitors), the number of models of the �rm in the segment, Nig;t�1, and the age of

the �rm�s oldest product in the segment, maxageig:

prob (exitit) = Fn (�
x
0 + �3 �Nig;t�1 + �4 �maxageigt�1 + �5 �DevkSgijt�1) (7)

The state space increases as the number of products becomes large. It is necessary

to reduce the dimension of the state space to be able to estimate the policy functions,

because it is not possible to estimate one parameter for each element of vector K. I

overcome this by considering the average quality, instead of the vector of qualities, in the

entry and exit probits. Moreover, the large number of zeros in the entry and exit decisions

can pose some identi�cation problems in those equations unless some exclusion restriction

is imposed. For this reason I add maxage as an explicative variable in the exit equation.

This variable is a proxy for the degree of obsolescence of the product and it serves as a

complement to kj (which is included within DevkSg).

The di¤erent approach for entry and exit policies is because we are interested in how

the entry cost changes as the number of models of the �rm increases. Therefore, the entry

policy must be sensitive to that fact while the exit policy can be more parsimonious.

Quality changes are modeled in the following manner. The probability of change

depends on the current level of k and its deviation with respect to the mean of the segment.

The �rm is shocked by an exogenous cuto¤ such that if the probability of change is larger,

then the quality of the product is adjusted. I use a probit for the probability of change:

prob(invest) = Fn
�
�inv0 + �6 � kijt�1 + �7 �DevkSgijt�1

�
(8)

The quality adjustment is given by a cubic B-spline policy on the deviation of kj with
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respect to its segment mean:

iit = �8 � Sp (DevkSgijt�1) (9)

This setup allows for a better �t of the observed quality changes.

I model the adjustment cost function as an exponential of the absolute value of the

change in characteristics, and zero when investment is zero:

F (kjt; ijt) = 1 (iijt 6= 0) � exp (abs (iijt))

I obtain the estimates for all the �, �, c, and � parameters. Then I can generate a

set of simulated paths from di¤erent initial conditions and confront them with perturbed,

non-optimal paths to obtain the estimates of the dynamic parameters of the model in the

second stage.

Second Stage

The second stage deals with the estimation of dynamic parameters (investment cost, scrap

value, entry costs). Given the actual and simulated paths for the industry, the estimation

goes as follows: recall the equilibrium condition

Vij (K;N j �ij; ��ij ; �) � Vij
�
K;N j �0ij; ��ij ; �

�
Recall that from equation (3), the one-period payo¤ function is linear in the dynamic

parameters and then V (�) is linear in �:

Vij (K;N ;�ij; ��ij; �) = E

" 1X
t=0

�t	ijt (�ijt; Kt; Nt; �ijt) jK0 = K;N0 = N

#
� �

= Wij (K;N ;�ij; ��ij) � � (10)
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where 	ijt (�) =
�
�varijt (K) ; F (kijt; iijt) ; �ijt

�
is the vector of basis functions for payo¤s

and �0 = (1; �; �); then the equilibrium condition becomes:

�
Wij (K;N j �ij; ��ij )�Wij

�
K;N j �0ij; ��ij

��
� � � 0 (11)

Let x 2 X be an index for the equilibrium conditions such that each x represents a

combination of product, alternative action, and states,
�
ij;K;N; �0ij

�
. Then each condi-

tion (11) of the set of inequalities X can be rewritten as

g (x; �) =
�
Wij (K;N ;�i; ��i)�Wij

�
K;N ;�0ij; ��ij

��
� � (12)

The vector of dynamic parameters � satis�es an equilibrium condition de�ned by x if

g (x; �) � 0. Therefore, the estimation strategy consists in taking many such conditions

and �nding a � such that pro�table deviations from the optimal policies (represented by

g (x; �) � 0) are minimized. For this purpose, de�ne the function

Q (�) =

Z
(min fg (x; �) ; 0g)2 dH (x)

where H (�) is a distribution over the set of inequalities, X, which the g conditions belong

to. At the true parameter value, Q (�0) = 0 = min
�
Q (�), i.e., the objective function is

minimized at �0. Its empirical counterpart can be written as:

Qn (�) =
1

nI

nIX
k=1

(min f~gk (x; �) ; 0g)2 (13)

where the ~g1; :::; ~gnI is a set of nI inequalities drawn fromH (�). ~g is the sample counterpart

of g that results from replacing Wij with simulated estimates Ŵij.

Following the methodology of BBL, I randomly draw the nI inequalities to construct

(13). Then I compute Wi for the observed and alternative policies using observed and

simulated industry paths. Alternative policies are generated by adding small, random
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perturbations to the policy functions. The Wij�s are used to obtain the ~gk (�)�s. Finally,

Qn (�) is minimized in � for the non-positive ~gk (�) conditions using standard optimization

procedures. BBL show that under some regularity assumptions, �̂ is consistent for �.

Entry Costs

Once the vector of dynamic parameters, �̂, is obtained, it is possible to estimate the dis-

tribution of sunk costs of entry in a simple manner: for each relevant state con�guration,

simulate the expected discounted value of entry (EDV) for an entrant at that state. Also

compute the probability of entry using the entry policy. We know that �rms enter only if

the EDV is not smaller than the sunk cost of entry; if we match this with the predicted

probability of entry, we obtain the following relationship:

prob(entryjN) = prob (� � EDV ;�) = F (EDV ;�)

i.e., the observed probability of entry is the value of the cumulative density function

evaluated at EDV. I assume a normal distribution for F and I minimize the squared

distance between both parts of the equation:

min
�;�e

1

ne

neX
i=1

[probi (entryjN)� F (EDVi)]2 (14)

where ne is the number of states for which the EDV of entry is computed. With � and �,

the distribution of sunk entry costs is characterized under the assumption of normality.

This basic procedure can be used to estimate di¤erent types of entry costs. In partic-

ular, the model allows us to compute EDV�s and entry costs for:

� Firm entry (the entrant model belongs to a �rm which has no other model in any

other segment).

� Segment entry (the �rm is in other segments but not in this one).

� Model entry (the �rm is already in the segment and introduces a new model).
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Case 1:

This is the simplest case described above. We can compute the empirical probabil-

ity of entry using the policy function, and simulate the EDV starting from an industry

con�guration where this �rm is not in the market.

Case 2:

In this case, the �rm is already in and we want to estimate the cost of entering another

segment. The number of possible industry con�gurations increases with respect to case

1 because the incumbent �rm may have several models in other segments. For example,

with a classi�cation in 8 segments and a �rm that has only one previous model, the

number of alternatives with respect to case 1 multiplies by 7. If the �rm already had 2

models, the number of alternatives is multiplied by
�
7
2

�
= 21, and so on.

Again, the empirical probability can be computed and the EDV�s are computed for

an industry con�guration restricted in the appropriate manner.

Case 3:

The number of combinations is the same as case 1 or case 2 depending on the particular

restrictions we want to impose on the �rm. In particular, we could think of the cost

of introducing the second product in the same segment and compare it to the cost of

introducing it in another segment (as in case 2).

Estimation of Entry Cost Parameters and the Measure of Scope Economies

I argue that the entry cost is di¤erent depending on the number of models commercialized

by the �rm. This implies that, conditional on the number of models, all �rms receive iid

shocks from the same (normal) distribution over time, but this distribution changes as

the number of models changes. I introduce a parametric restriction which is that all

distributions have the same variance and they di¤er only in the mean. This implies that

those distributions are shifted to the left or to the right as the number of models increases.

Taking as a reference the entry cost with no previous products (�rm entry), the existence

of economies of scope in commercialization follows from these distributions shifting to the
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left (at least for a small number of products). Recall that the basic equation for sunk

costs of entry is:

prob(entry) = FN (� � EDV ;�)

prob(entry) = FN

�
�� �
�e

� EDV � �
�e

�

Consider for simplicity the case where we want to estimate the cost of �rm entry and

the cost of introducing a second and third product in other di¤erent segments. We can

argue that they are di¤erent by factors d1 and d2 such that the mean �rm entry cost is

�0, the mean entry cost of a second product is �1 = �0 + d1, and for the third product

�2 = �0 + d2. The above probability equation becomes:

prob (entry j N = 1) = FN

�
�� d1 � d2 � �0

�e
� EDV � d1 � d2 � �0

�e

�

If the �rm is about to introduce a third product:

prob (entry j N = 2) = FN

�
�� d1 � d2 � �0

�e
� EDV � d1 � d2 � �0

�e

�

The �rm entry cost can be identi�ed from the variation in the observed rates of entry,

the normality assumption, and the variation of present discounted values. For a given

initial state, the entry policy function provides an estimate of the probability of entry.

The forward simulation procedure yields the correspondent expected value of entry for

that initial state. The quality adjustment cost parameter and the scrap value required

in the forward simulation are also identi�ed. These parameters are computed such that

pro�table deviations from optimal observed behavior, summarized in the policy functions,

are minimized. Therefore, the variability in adjustment decisions, conditional on the

state, and their di¤erence with respect to the optimal ones identify the adjustment cost

parameter such that the policy function is indeed optimal. A similar argument holds for

the scrap value.
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The identi�cation of d�s comes from the observed variation in the number of previous

products of the �rm. In practice, d should be estimated as the coe¢ cient of a dummy

for the number of �rm models. For example, d2 is the coe¢ cient of the indicator variable

1 (#models = 2). It is clear that this variable is zero in the �rst equation, but it is

still good to include it because the joint estimation of �0 and d�s is more e¢ cient. The

di¤erence of entry costs in other scenarios can be captured by adding the corresponding

dummy variables and computing the EDV for all the possible states involved.

5 Data

I apply the methodology described above to the Spanish car industry. I use a unique

monthly data set of car models in Spain from 1990 to 2000. These data were initially

collected by, and �rst used in Moral (1999)4, who also provides a thorough description

of the data base. It contains information on model characteristics such as speed, size,

consumption, and horse power, among others. I also have the number of registrations by

model and listed prices.

A descriptive look at the evolution of main characteristics (see Table 1) shows that, on

average, we observe variation in at least one characteristic in roughly 60% of the sample of

yearly observations (the ratio is obviously smaller when looking at monthly observations).

Table 2 shows the percentage of variation by segment on a monthly basis for the same

characteristics. Overall, the average variation across segments is 4.8%. This variability is

also con�rmed by casual observation of specialized press reports.

Table 3 summarizes entries and exits by segment: the rate of entry is around 17% per

year per 9% of exit. The persistent gap is the reason for the increasing number of models

in the industry during the 1990�s.

I construct the index of characteristics of each model in the sample as a weighted

4The data base here, which runs from January 1990 to December 1996, has later been extended up to
December 2000.
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sum whose weights are the estimated coe¢ cients of each characteristic in the demand

equation (in a sense, we could call that index a gross hedonic index as price is excluded

and considered separately). The index can be interpreted as the average utility that a

consumer could obtain from that product, without taking into account its price. Table 4

gives a summary of characteristics and prices per segment. The coe¢ cients of the index

are in Table 5.

6 Results and Further Details

6.1 First Stage Estimates

In this stage, I estimate demand and the policy functions for entry, exit, and investment.

Demand Estimation Using Nested Logit

Following Berry (1994), we can write the shares equation as follows:

ln (Sjt)� ln (S0t) = kjt � �gpjt + �g ln
�
Sjt=g

�
+ �j (15)

where the marginal utility of income (�) and the degree of intra-group correlation (�) are

allowed to vary across segments. Sj=g is the market share of product j in its group g, �j

is an unobserved �xed e¤ect, and the index of characteristics is constructed as:

kjt = 1Carsizejt + 2HPjt + 3KmLjt + 4ACjt + 5ABSjt

The endogeneity of prices and conditional market shares is controlled for with the fol-

lowing instruments: following Berry, Levinsohn, and Pakes (1995) (BLP), as instruments

I use product characteristics, the sum across own-�rm products of each characteristic, and

the sum across rival �rms�products of each characteristic. I also include the total number

of models per segment (as in Brenkers and Verboven (2006)), and �nally the di¤erences
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of prices with respect to their individual time means, ~pjt = pjt � 1
Tj

TjX
t=1

pjt, lagged 12

months (�rst introduced by Bhargava and Sargan (1983) and studied in Arellano and

Bover (1995)). I also control for the existence of tari¤s over imported cars.

Consistent estimators are obtained by �rst using the within transformation to remove

the �xed e¤ect and then applying two-stage least squares to the transformed model.

Table 5 summarizes estimation results. The coe¢ cients of real price and characteristics

have the expected sign and almost all of them are signi�cant at the 1% level.

The own-price elasticities implied by the estimates of Table 5 su¤er from the rigidity

in substitution patterns imposed by the logit assumption. The nested logit helps in

correcting the problem but the elasticities for cheaper cars are still small, a bit far from

the pattern for the US automobile industry (Berry, Levinsohn, and Pakes (1995)), but at

least not so far from previous estimates for European markets (Brenkers and Verboven

(2006)). In facing the trade-o¤ between accuracy and computational simplicity, the loss

of precision at this stage might not be excessively harmful. Nested logit is still a common

approach to demand estimation in automobile markets. The alternative would be to

estimate demand following the BLP methodology.

Demand estimation yields the estimate of � and � in equation (5) and the hedonic

coe¢ cients for characteristics, used in the construction of the index k.

Policy Functions

Tables 6 and 7 summarize the probits for quality changes and the entry and exit policies.

For entry, the coe¢ cients are in general signi�cant although their interpretation is not

direct because we are interested in the reversed probability Pr(entry j N) and also because

in ordered probit models the sign of the marginal e¤ect does not always coincide with

the sign of the coe¢ cient for the intermediate categories. For exit, the interpretation

varies depending on the segment considered, but in general the parameters are signi�cant.

Regarding the probit for investment, the probability of investing increases with the level

of k and is decreasing in the distance to the mean. It seems that models with a large
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endowment of characteristics are modi�ed more frequently and last longer than smaller

cars. At the same time, cars that are �too di¤erent� from their competitors are more

likely to quit and less likely to be modi�ed.

I choose cubic B-splines because of their �exibility and computational simplicity.

Splines are interpolation methods used to make predictions of a variable based on other(s)

when the functional relation between them is not known. (see Judd (1998) chapter 6 or

Cheney and Kinkaid (1985) chapter 7 for a survey). B-splines are de�ned with reference to

a set of knots. A k-degree B-spline is just a set of di¤erent k-degree polynomials, one for

each of the intervals de�ned by the set of knots. It has the property that the derivatives

from 0 to k � 1 at each knot are the same for contiguous polynomials. This produces

smooth interpolations.

I use cubic B-splines with 20 interior knots to tabulate the investment policy function.

I construct a grid for the explicative variable with precision 10�5 and then I compute the

predicted value of investment for each element in the grid using the cubic B-splines. The

tabulated policy stays in memory and it is called when a value for predicted investment

is needed. The grid is �ne enough as the explicative variable does not show signi�cant

variability further than the 4th or 5th decimal place. There is no particular economic

interpretation to be given to those parameters, but they provide a good �t of the tabulated

investment policy to the observed one.

Prices and market shares have no dynamic implication and are solved every period

given the level of k . Unfortunately, there is no explicit analytical expression of p as

function of k within the logit framework. Therefore, I again use cubic B-splines to obtain

p as a tabulated function of k5, pi = pi (ki).

In generating the simulated paths, a random shock or bias is added to each of the three

policies. For entry and exit, I draw from a random uniform distribution. For investment,

I draw from a lognormal distribution (in fact, this is as if it were a bias over the level of

5Alternatively, the �rst-order conditions could be solved numerically for p, at the cost of increasing
the computational burden.
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k; that�s the reason for assuming log-normality). The cuto¤ values for entry, exit, and

investment policies are also drawn from a uniform distribution, rescaled in each case to

meet sample moments.

The simulation of the alternative paths goes as follows: I draw initial values for k from

a lognormal distribution. With these initial values, I can use policy functions to obtain

the correspondent price and exit decisions. Then I only have to recursively apply the

policy functions until a whole history for all �rms (incumbents and potential entrants)

is �lled up. I repeat the same process for the same initial state but this time adding a

small random shock to the policies to simulate alternative, non-optimal paths. I do it for

132 periods (months). Given a simulated history, I can compute the market shares for

each �rm. Then I can compute the Wij vector in equation (10) as the di¤erence between

the present discounted values from the actual and the alternative histories. The discount

factor is the monthly equivalent of a 10% annual interest rate. During the 1990�s, interest

rates in Spain ranged from 3% in 2000 up to values close to 10% at the beginning of the

decade. I stick to the conservative perspective.

6.2 Estimates of Dynamic Parameters

The equilibrium condition (11) and its empirical counterpart can be constructed with the

simulated histories. The minimization of (13) yields the vector of dynamic parameters

for investment cost and scrap value. Table 8 provides estimates for the scrap value and

investment cost parameters for the whole Spanish market. It turns out that scrap values

are moderate compared to industry pro�ts. The implied price elasticities combined with

average prices in Table 4 yield margins roughly between 5000 and 8000 euros per car. This

is equivalent to 5100� 8200 units. The scrap value in this context can be interpreted as

what remains for a �rm after it quits a model. For example, a successful car may induce

consumers to go to that �rm looking for the new model because of the positive image of

the previous one. The sell-o¤ value would be the value of the goodwill generated by the

model quitting the market.
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The parameters for investment cost reveal a small or moderate cost of changing char-

acteristics. The large value of the coe¢ cient is just an e¤ect of the rescaling of investment.

In fact, the changes in k are usually small (on average, in absolute value 0:18 with stan-

dard deviation 0:17) and magnitudes of 10�2 or much smaller are frequent. Continuing

with the High-Intermediate segment, the investment cost of, for example, a change of 0:02

in k is 1 million e or, equivalently, the pro�ts from selling just 130� 210 units.

Before discussing the results on entry cost, a word on the way they are computed

may be useful. I compute the EDV of introducing a product when the �rm has no other

product (thus this is �rm entry) and when the �rm has up to �ve products. In the latter

case, previous products are always in di¤erent segments than the one the �rm is currently

entering (thus this is segment entry). I do this for each segment. For example, I compute

the EDV of entering segment 1 (the same for all other 7 segments) when the �rm has no

previous product in segment one, and when it has one product in another segment. In

this latter case, there are 7 alternative situations (the previous product being in each of

the 7 remaining segments). Finally, each of the alternative situations of entry described

above is computed under di¤erent industry structures,i.e., for alternative numbers of rival

products in the segment of entry. For example, I compute de EDV of �rm one introducing

its second product in segment 1 when its �rst product is in segment 6 and the number of

rival products in segment 1 (the segment of entry) is 5. I do this for all the combinations

of: 1) segments; 2) the number of previous products in di¤erent segments (up to �ve); 3)

the number of rival products in the segment of entry. It is easy to see that the number

of alternative starting states becomes large as we allow for diversity: with 8 segments,

allowing for �ve previous products at most and considering only 4 alternative numbers of

competing products, we have 3840 di¤erent initial states (8�(1+7+21+35+35+21)�4).

The initial states described above are generated randomly. In the segment of entry and

in the starting period, all �rms are forced to have only one product (they may introduce

new products from period two onwards). In all other segments, there is no constraint.

For the entering �rm, and in the case it is allowed to have 2 or more previous products,
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these are forced to be in di¤erent segments. This is to reduce the number of possible

alternative combinations.

Once the alternative initial states are devised, the usual forward simulation procedure

is used to compute the EDV of the product that has been introduced. The EDV�s are

normalized such that they have variance 1. The empirical probability of entry is computed

using the policy function. The variable accounting for the number of previous models is

also easily obtained. All of this allows the estimation of (14).

The distribution of entry costs has a mean of 2; 439 million euros. In terms of units

of product, this is roughly equivalent to 304; 000 to 487; 000 units. Although this may

look large, it has to be taken into account that it corresponds to the cost of entry of a

�rm for the �rst time. Once the �rm is established and operating in a given segment, the

introduction of a second model in another segment is substantially cheaper: the cost of

entering a second product in a di¤erent segment is equivalent to 271; 000�433; 000 units,

12:5% less. Entry costs remain low for the range of products between 2 and 4 and tend

to rise again with 5 products. These estimates seem reasonable compared to the 10; 000

units per model sold on average every year and the 50; 000 units per year for the most

popular models of di¤erent �rms.

So far, I have not computed standard errors for the dynamic parameters. I plan to

do it using non-parametric bootstrap which is robust to sampling error introduced in the

�rst stage of estimation or induced by the simpli�cation of the state space.

The results show that there exist economies of scope in commercialization and that

these economies tend to disappear as the pro�le of a �rm�s product goes large (Figure 1).

Once a �rm has entered the market, it has incentives to expand its range of products.

However, when the �rm has products in 4 di¤erent segments, starting to cover a �fth

segment does not turn out to be so cheap. It is easy to see the implications in the

automobile industry: we can see �rms covering a wide range of products, but not the

full range of products because, as the results suggest, it is too costly. Citroen may have

a good pro�le of products in the low and medium-quality segments but producing in all
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segments would imply it is also producing high-quality cars, and it may not be prepared

for that. On the other side, Mercedes Benz can be good in luxury and sports cars but

very bad in less expensive ones.

This suggests that some advantages can be obtained, among others, in the process

of commercialization and distribution, and not only at the productive plant level (whose

analysis is beyond the scope of this paper). It also provides an explanation for the dramatic

increase in the number of models for sale in the Spanish market during the 1990�s.

7 Concluding Remarks

This paper presents a dynamic model of entry and exit for the Spanish car industry that

allows the computation of entry costs in di¤erent scenarios. In particular, it permits the

comparison between the cost of �rm entry, understood as the cost of introducing the

�rst product, and the cost of introducing a second and further models. This di¤erence

gives a measure of the scope economies in commercialization, and a quanti�cation of the

advantages of being an incumbent when a �rm is about to introduce new products. The

estimation strategy is based on the methodology proposed by Bajari, Benkard, and Levin

(2007). The results show that entry costs are moderate and that there is a substantial

reduction in the cost of introducing a second product with respect to the introduction

of the �rst product. The advantage extends to the third, fourth, and �fth product and

seems to be exhausted when the �rm wants to introduce a sixth one. This gives support

to the idea of �rms having an optimal number of products and can also explain product

proliferation in the automobile industry.

There are some issues that call for future work. Firstly, a more �exible approach

to demand estimation may help to obtain better estimates of price elasticities, in line

with Berry, Levinsohn, and Pakes (1995). Secondly, the paper shows results for entry

costs in di¤erent segments, but the same framework can be used to compute the costs

of introducing the second, third, etc. product in the same segment. This would provide
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a measure of the advantages of incumbent �rms in product replacement by opposition

to newcomers. In third place, standard errors for the estimated parameters are needed.

The most suitable technique seems to be the bootstrap, even if it makes the problem

more computationally burdensome. Finally, the model should be extended to account

for a previous development stage where the products are technically devised before it is

decided whether they will be introduced or not.
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Appendix: Pricing Equations and Pro�t Functions in

Nested Logit

Consider a multiproduct �rm i facing nested logit demand and competing in prices. Its

objective function is:

�i =
X
g2G

X
j2Gg

(pj � cj)SjM

where M is market size and g is segment from the total number of segments G. Also:

Sj=g is the share of product j in group g, Sig =
P
j2Gg

Sj , Si=g =
P
j2Gg

Sj=g is the share of

�rm i in segment g, and Sg =
P
g2G

P
k2Gg

Sk is the share of group g, such that Sj = Sg �Sj=g.

The FOC for the maximization problem of a multiproduct �rm (several products in

several segments) under Nested Logit demand is:

(pj � cj)Sj =
1� �g
�g

Sj + �gSj=g
X
j2Gg

(pj � cj)Sj

+(1� �g)Sj
X
g2G

X
j2Gg

(pj � cj)Sj ; 8j ; 8g (16)

Divide by Sj and rearrange Sj=g:

(pj � cj) =
1� �g
�g

+ �g
X
j2Gg

(pj � cj)Sj=g + (1� �g)
X
g2G

X
j2Gg

(pj � cj)Sj ; 8j ; 8g

The three summands on the right hand side are equal for all products within the

same segment, but di¤erent across segments. Therefore, we can take (pj � cj) out of

within-segment summations:

(pj � cj) =
1� �g
�g

+ �g (pj � cj)Si=g + (1� �g)
X
g2G

(pj � cj)
X
j2Gg

Sj ; 8j ; 8g (17)
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Now go back to (16), multiply by M and sum over g and j:

X
g2G

X
j2Gg

(pj � cj)SjM = M
X
g2G

1� �g
�g

Sig +M
X
g2G

�g (pj � cj)SigSi=g

+

0@X
g2G

X
j2Gg

(pj � cj)SjM

1AX
g2G

(1� �g)Sig

�vari =M
X
g2G

1� �g
�g

Sig +M
X
g2G

�g (pj � cj)SigSi=g + �vari
X
g2G

(1� �g)Sig (18)

Take (16) and sum over j:

X
j2Gg

(pj � cj)Sj =
1� �g
�g

Sig + �g (pj � cj)SigSi=g

+

24(1� �g)X
g2G

X
j2Gg

(pj � cj)Sj

35Sig ; 8g

X
j2Gg

(pj � cj)Sj =
1

1� �gSi=g
1� �g
�g

Sig

+
1

1� �gSi=g

24(1� �g)X
g2G

X
j2Gg

(pj � cj)Sj

35Sig ;8g (19)

Substitute back in (18):

�vari = M
X
g2G

1� �g
�g

Sig +
X
g2G

�gSi=g

" 1��g
�g
Sig

1� �gSi=g
M +

(1� �g)�vari (Sig)

1� �gSi=g

#
+�vari

X
g2G

(1� �g)Sig
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�vari = M
X
g2G

1� �g
�g

Sig +
X
g2G

�gSi=g

1��g
�g
Sig

1� �gSi=g
M

+�vari
X
g2G

�gSi=g
(1� �g)Sig
1� �gSi=g

+ �vari
X
g2G

(1� �g)Sig

"
1�

X
g2G

�gSi=g
(1� �g)Sig
1� �gSi=g

�
X
g2G

(1� �g)Sig

#
�vari = M

X
g2G

1� �g
�g

Sig

+
X
g2G

�gSi=g

1��g
�g
Sig

1� �gSi=g
M

(
1�

X
g2G

�
�gSi=g (1� �g)Sig + (1� �g)Sig � �gSi=g (1� �g)Sig

1� �gSi=g

�)
�vari =

= M
X
g2G

�
1� �gSi=g

� 1��g
�g
Sig + �gSi=g

1��g
�g
Sig

1� �gSi=g

(
1�

X
g2G

�
(1� �g)Sig
1� �gSi=g

�)
�vari =M

X
g2G

1��g
�g
Sig

1� �gSi=g

Then �vari = f
�
�g; �g; Sj; Sj=g;M

�
. Rearrange (19) using the de�nition of �vari :

X
j2Gg

(pj � cj)SjM =

1��g
�g
Sig

1� �gSi=g
M +

(1� �g)Sig
1� �gSi=g

�vari ; 8g

�varig =

1��g
�g
Sig

1� �gSi=g
M +

(1� �g)Sig
1� �gSi=g

�vari ; 8g

Now go back to (16):
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(pj � cj)SjM =
1� �g
�g

SjM + �varig �gSj=g + �
var
i (1� �g)Sj ; 8j ; 8g

Then:

�varj =
1� �g
�g

SjM + �varig �gSj=g + �
var
i (1� �g)Sj ; 8j ; 8g

where �varig and �vari are the functions of market shares computed above.
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Tables

Table 1

Charac.: Description % of variation (year) % of variation (month)

CCKg Cubic centimeters by kilo 50.0% 3.8%

CarSize Length times width (m2) 36.9% 2.8%

KmL Kilometers driven by litre 47.7% 3.5%

Maxsp Maximum speed in Km/H 43.7% 3.1%

AC Air conditioning 27.3% 2.3%

ABS ABS 25.6% 2.1%

Overall 59.9% 4.8%

Table 2

% of monthly Overall

variation CCKG CarSize Kml MaxSp AC ABS % # changes # obs.

Small-Mini 2.2 2.0 2.7 2.0 1.9 1.7 3.2 19 587

Small 3.7 3.0 3.5 3.1 2.0 1.6 5.2 120 2310

Compact 3.7 2.8 3.7 3.3 2.4 2.1 5.0 147 2,959

Intermediate 3.7 3.0 3.9 3.4 2.7 2.8 5.1 75 1,480

High Interm. 3.8 2.8 3.3 3.0 2.5 2.0 4.6 146 3144

Luxury 3.7 2.6 3.4 3.0 1.6 1.8 4.4 141 3191

Sport 3.9 2.6 3.2 2.9 1.9 2.2 4.5 66 1,475

Minivan 4.9 3.5 3.9 3.4 3.9 3.0 6.1 74 1216

Overall 3.8 2.8 3.5 3.1 2.3 2.1 4.8 788 16362
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Table 3

Entry (%) Exit (%) Av. #models

Monthly Yearly Monthly Yearly

Small-Mini 1.2 13.2 0.9 9.4 4.6

Small 1.0 11.2 0.6 6.8 17.4

Compact 1.1 12.7 0.7 8.2 23.2

Intermediate 1.2 13.3 1.3 14.1 11.6

High Intermediate 0.9 10.2 0.4 4.4 24.8

Luxury 0.8 8.5 0.4 5.0 24.2

Sport 1.2 13.7 0.6 6.9 11.8

Minivan 2.3 25.2 0.2 2.7 16.7

Overall 1.1 12.3 0.6 6.7 19.6

Table 4

Mean Horse Real

Characteristics: CCKG CarSize Kml MaxSp AC (%) ABS (%) Power Price (e)

Small-Mini 1.355 5.321 20.9 143.6 0.5 0.0 48.8 6,301

Small 1.480 5.904 19.9 158.0 5.5 0.4 64.2 7,377

Compact 1.526 6.962 18.0 181.7 19.6 15.5 97.9 11,491

Intermediate 1.600 7.515 17.0 187.8 42.8 25.9 109.3 13,894

High Interm. 1.538 7.664 16.0 199.0 56.5 49.3 124.6 16,877

Luxury 1.711 8.497 14.1 213.6 86.3 75.5 165.9 27,272

Sport 1.768 7.592 14.9 217.6 88.4 78.0 170.2 27,519

Minivan 1.428 7.931 13.7 175.7 66.4 39.8 123.7 19,772

Overall 1.573 7.367 16.5 189.9 48.8 39.4 119.2 17,114
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Table 5: Demand estimation

Fixed e¤ects (within) IV regression Coe¢ cient Std. Dev.

Real price coe¢ cients:

Small-Mini �0:053 0:057

Small �0:051�� 0:026

Compact �0:136��� 0:015

Intermediate �0:124��� 0:021

High Intermediate �0:094��� 0:012

Luxury �0:064��� 0:007

Sport �0:155��� 0:011

Minivan �0:067��� 0:016

Intra-Group correlation:

Small-Mini 0:777��� 0:025

Small 0:792��� 0:034

Compact 0:739��� 0:025

Intermediate 0:742��� 0:022

High Intermediate 0:367��� 0:035

Luxury 0:948��� 0:028

Sport 0:707��� 0:033

Minivan 0:099��� 0:026

Characteristics:

Car Size 0:201��� 0:022

HP 0:009��� 0:0005

KmL 0:004 0:004

Air Conditioning 0:042��� 0:016

ABS 0:178��� 0:016

Controls:

Tari¤s 0:049��� 0:002

Constant �9:879��� 0:219

(�;�� ;��� ; signi�cant at 10%, 5%, 1%)

41



Table 6: Entry policy function

Pr (N j entry) Pr (N j no entry)

Average k by seg.
0:175

(0:150)

0:417

(0:015)

#models other seg.
1:282

(0:086)

1:165

(0:008)

cuto¤ 1
0:205

(0:508)

1:143

(0:052)

cuto¤ 2
1:618

(0:477)

2:192

(0:050)

cuto¤ 3
2:960

(0:494)

3:340

(0:051)

cuto¤ 4
4:389

(0:530)

4:733

(0:054)

cuto¤ 5
5:401

(0:561)

5:699

(0:058)

cuto¤ 6
6:473

(0:591)

6:903

(0:062)

cuto¤ 7
7:710

(0:636)

7:790

(0:065)

cuto¤ 8
9:052

(0:732)

8:760

(0:072)

cuto¤ 9
9:803

(0:781)

9:241

(0:076)

cuto¤ 10
10:890

(0:858)

10:498

(0:086)

cuto¤ 11
12:256

(1:062)

10:952

(0:090)

Observed rate of entry: 0:011
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Table 8: Dynamic Parameters

(Unit: millions of Euros) Coe¢ cient Economy (%)

Investment cost parameter �52:751

Scrap value 41:149

Mean �rm entry cost 2; 439:805

Mean entry cost with:

1 product 2; 168:118 12:5

2 products 2; 218:291 10:0

3 products 2; 240:368 8:9

4 products 2; 229:832 9:4

5 products 2; 330:066 4:7

Figure 1: Mean entry cost by number of products.
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