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Abstract

This paper considers a new method of uncovering demand information from

market level data on di¤erentiated products. In particular, we propose a continuous-

choice demand model with distinct advantages over the models currently in use

and describe the econometric techniques for its estimation. The proposed model

combines key properties of both the discrete- and continuous-choice traditions: i)

it is �exible in the sense of Diewert (1974), ii) can deal with the entry and exit of

products over time, and iii) incorporates a structural error term. Furthermore, it is

relatively simple and fast to estimate which can prove a key advantage in competition

policy issues where time and transparency are always crucial factors. Akin also to

the continuous-choice tradition, the model encompasses a more general version (not

consistent with an indirect utility function) that enables us to test the validity of

symmetry properties and, for those cases it appears to be consistent with the data,

also impose it a priori. In what concerns the estimation procedure in particular,

we propose an analog to the algorithm derived in Berry (1994), Berry, Levinsohn

and Pakes (1995). Along the way, we present an alternative procedure to BLP�s

contraction mapping for matching observed and predicted quantities.
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1 INTRODUCTION

This paper considers a new method of uncovering demand information from market

level data on di¤erentiated products. In particular, we propose a continuous-choice

demand model with distinct advantages over the models currently in use and describe

the econometric techniques for its estimation.

When products are di¤erentiated, the number of parameters required to describe a

demand system (without a priori restrictions on the substitution patterns) tends to be

excessively large to estimate, given the number of observations in a typical dataset. As

an illustration of the problem, note that even in the simplest and extremely restrictive

of the demand speci�cations - the linear expenditure model - J products would yield at

least J2 parameters to be estimated, just to capture the substitution patterns. Although

implied economic theory�s restrictions (like the symmetry of the Slutsky matrix) could

be imposed to increase the degrees of freedom on the estimation, they do not solve

this dimensionality issue. And the use of a more �exible functional form would only

naturally worsen the problem. Some structure must therefore be placed on the estimation

procedure and the literature has, on this point, clearly evolved along two wide-ranging

type of assumptions: the discrete- and the continuous-choice settings.

In a broad sense, the demand models under the �rst category assume that consumers

are heterogeneous and purchase at most one unit of one of the available products. Fur-

thermore, consumer preferences over products are typically mapped onto a space of

characteristics (Lancaster, 1971), reducing therefore the number of parameters to be

estimated: the parameter space is thereby de�ned by the number of characteristics

rather than by the number of products. Within this set of assumptions, we can �nd the

multinomial logit (McFadden, 1974), the nested multinomial logit (McFadden, 1978),

the multinomial probit (Hausman and Wise, 1978), the mixed- or random-coe¢ cients

multinomial logit (McFadden, 1981) and the discrete choice analytically �exible (Davis,

2006) models. The most serious drawback of this branch of the literature relates to

the typical trade-o¤ between �exibility and computation requirements. On one hand,

the standard and the nested multinomial logit models are fully analytical (and thereby

relatively simple to estimate), but the nature of the implied substitution patterns tends

to be model- instead of data-driven. On the other hand, though the probit and the

mixed-coe¢ cients logit multinomial models do provide increased �exibility by introduc-

ing unobserved consumer heterogeneity, they require the use of simulation techniques

(which in turn increases substantially the computation requirements). The recent dis-
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crete choice analytically �exible model seems to present itself as an exception given it

appears to combine the good properties from the two groups.

The assumption that consumers purchase at most one unit of one of the available

products may, for some settings, seem somehow unrealistic. Yogurts, soft drinks and

wine are just some down-to-earth examples of cases where many consumers typically buy

more than one product in each of their shopping journeys. The discreteness assumption

can, nevertheless, for some of those cases, be justi�ed by an appropriate de�nition of

the choice period. However, other times it just can not and the choice of continuous

quantities must be modelled.

The continuous-choice literature typically assumes a representative agent that might

consume all products and make use of functional forms that imply �exible substitution

patterns. Within this set of assumptions, we can �nd the translog model of Christensen et

al. (1975), the almost ideal demand system (AIDS) due to Deaton and Muellbauer (1980)

and the distance metric model from Pinkse et al. (2002). Consumer preferences can be

de�ned directly over products (as in the translog or in the AIDS cases) or mapped onto a

space of characteristics in a way akin to the discrete-choice literature (as in the distance

metric model). This set of models present though a serious limitation as, in opposition

to the discrete-choice case, they can not be used to uncover demand information from

markets with signi�cant entry and exit of products.

The above problem has obviously been addressed before in the literature but never

in a way that, to the best of our knowledge, we could categorize as adequate. The

typical solutions are largely limited to either consider substitution patterns between

broad aggregates of products as, for example, in Christensen et al. (1975), Deaton and

Muelbauer (1980), and Hausman et al. (1994), or to estimate the demand system using

data only from time periods when all products are present in the market as, for example,

in Hausman (1994), Ellison et al. (1997), and Pinkse and Slade (2004).

In this paper, we follow the continuous-choice literature and develop a representative

consumer �exible demand model. Our starting point is the speci�cation of an indirect

utility function from which, via Roy�s identity, a continuous-choice demand system is

derived. The demand function implied by the model is fully analytical and therefore

avoids the burden of simulation. The model is �exible in the sense of Diewert (1974) as

the implied own- and cross-price elasticities are capable of capturing the true substitution

patterns in the data. In addition, the model can accommodate the use of data on the

3



entry and exit of products. The importance of this last property is twofold as i) not

being able to cope with entry and exit patterns limits the application of the above models

and ii) the ability to deal with discrepancies in the set of choices available to consumers

provides pseudo-price variation which might be instrumental in evaluating the degree of

substitution between products.

Akin also to the continuous-choice tradition, the model encompasses a more general

version (not consistent with an indirect utility function) that enables us to test the

validity of symmetry properties and, for those cases it appears to be consistent with the

data, also impose it a priori. In what concerns the estimation procedure in particular,

we propose an analog to the algorithm derived in Berry (1994), Berry, Levinsohn and

Pakes (1995) (henceforth BLP). Following this line of the literature, the error term is

structurally embedded in the model and thereby circumvents the critique provided by

Brown and Walker (1989) related to the addition of add-hoc errors and their induced

correlations. Along the way, we present an alternative procedure to BLP�s contraction

mapping for matching observed and predicted expenditure shares.

We believe that our proposed new continuous-choice model combines key properties

of both the discrete- and continuous-choice traditions: i) it is �exible in the sense of

Diewert (1974), ii) can deal with the entry and exit of products over time, and iii)

incorporates a structural error term. Furthermore, it is relatively simple and fast to

estimate which can prove a key advantage in competition policy issues where time and

transparency are always crucial factors.

The paper proceeds in �ve sections. In section 2, we describe the new continuous

model and establish its properties. In section 3, we discuss computation and estimation

issues. Section 4 concludes.

2 THE DEMAND MODEL

Consider a choice framework with J inside options, j = 1; : : : ; J; and an outside option,

j = 0; that aggregates all other products. Within this setup, consumers choose therefore

between the set = of those J+1 options. We shall follow the continuous choice literature
and de�ne the demand system by specifying a parametric model for the indirect utility

function of the representative consumer. See Gorman (1953, 1961) or Blackorby et

al. (1978) for conditions under which aggregation across consumers is consistent. Let

V (p; y; �0;=) denote such a function,
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V (p; y; �0;=) =
JX
i=0

JX
j=0

bij [ri (y; pi; �i) + rj (y; pj ; �i)]
1
2 ; (1)

where p denotes the (J + 1) vector of pi 2 <+ prices, y 2 <+denotes the representative
consumer�s income, and rk (y; pk; �k) denotes a known (possibly parametric) function of

income and product-speci�c price. Prices and income enter only through the rk (y; pk; �k)

function, and therefore V (p; y; �; �0;=) can also be rewritten as V (r; �0;=) : Lastly, �0
refers to the fbij ; �ig parameters, which we assume to have support �0 � R�0 : Following
the demand literature, we normalize the price of the outside option to one.

In order for the above indirect utility function to be a member of the class of consis-

tent indirect utility functions, conditional on bij > 0 for all i and j; rk (y; pk; �k) must be

i) a continuous function at all positive (pk; y), ii) non-increasing in pk, non-decreasing

in y, and homogeneous of degree zero in (pk; y), and iii) a convex function of pk with

y normalized to one. Although many particular functional forms for rk (y; pk; �k) are

possible, for concreteness, let us consider the following for reasons to be made precise

below,

rk (y; pk; �k) = exp (ln y � ln pk + �k) ; (2)

which, in fact, satis�es conditions (i)� (iii) above.

At this point, the indirect utility function is completely deterministic. However, as

Brown and Walker (1989) point out, the introduction of the random utility hypothesis

"is appealing for several reasons. Primarily, it motivates the randomness existing in an

applied demand model. While we prefer to retain the assumption that individuals follow

rational utility maximizing behaviour, it is clear that some randomness exist (. . . ). The

random utility hypothesis resolves this con�ict. Furthermore, the use of random utility

models provides a structure for the stochastic speci�cation" of the disturbance terms for

the demand equations.

We introduce the random utility hypothesis in a way akin to Pinkse et al. (2002) and

de�ne the parameters �i on the characteristics space, �i (xi; �i; ��) ; where xk denotes the

K-dimensional vector of characteristics associated with product k; observed by both the

consumer and the econometrician, �k denotes the value of product k�s characteristics

observed by the consumer but not by the econometrician, and �nally �� refers to the

taste parameters of interest.
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The precise functional form for �i (xi; �i; ��) is an issue that can be examined using

conventional testing procedures. For concreteness, we will assume the following speci�-

cation,

�i (xi; �i; ��) =
KX
k=1

�ik ln (xik) + ln (�i) ; (3)

which has the desirable property of being monotonic in the value of a given product�s

characteristics. The imposition of the constraint that �ik = �jk for all i; j 2 = is,

naturally, an option available to the researcher:

The presence of unobserved product characteristics allows for a product-level source

of sampling error, giving an explicit structural interpretation to the error term. Further-

more, the approach of placing unobservables directly into the utility function ensures

that the model is internally consistent and thereby avoids the fundamental critique of

the ad-hoc approach to introducing unobservables provided by Brown andWalker (1989).

In what follows, for notational purposes, we will decompose �0 = (�nl; �) ; where �nl
refers to the non-linear fbijg parameters, whereas � refers to the f�ig linear parameters
(in a way to make precise below), which will be a function of the �� taste parameters.

2.1 Demand Derivation

Standard duality results establish conditions on the function V (r; �nl; � (��) ;=) which
ensure that specifying a parametric functional form for the indirect utility function,

and then solving for the demand system using Roy�s identity, is entirely equivalent

to specifying the direct utility function and budget constraint. By taking this dual

approach, the resulting parametric demand systems are assured to be consistent with

utility maximization, at least for some subset of parameter values.

The demand system is obtained via Roy�s identity on the function V (r; �nl; � (��) ;=) :
In particular, the expenditure share for product m is as follows,

wm (r; �nl; � (��) ;=) =
pm

�
�Vpm

Vy

�
y

= 2rm
Vrm
V
; (4)
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where Vpm ; Vy and Vrr denote the �rst derivative of the indirect utility function V

with respect to pm; y and rm, respectively. For notational convenience, whenever no

ambiguity arises, the explicit dependence of the di¤erent variables on (r; �nl; � (��) ;=)
will be dropped. For completeness,

Vrm =
1

2

JX
j=0

(bmj + bjm) (rm + rj)
� 1
2 : (5)

In addition to the classical properties, the above expenditure share function satis�es

also a global regularity property as it can be specialized down in an entirely consistent

fashion over arbitrary subsets of products.

In order to ensure that the expenditure share function presented is globally consis-

tent, we assume that the case where a product is not present (in a given market or/and

time period) is entirely equivalent to the situation where the product is present as long

as speci�c conditions on prices are veri�ed. In particular, that the price is (positive)

in�nity. This condition imply that rj (y; pj ; �j) = 0 for all j =2 =0, and therefore that
the expenditure share function can be specialized over arbitrary subsets of products. As

a result, not only the model can be estimated using datasets where signi�cant product

entry and exit occurs, but also provides an useful source of pseudo-price variation in-

strumental for the estimation of substitutability patterns. This is not true of the present

generation of continuous choice models.

De�nition 1 An expenditure share function wk
�
r=; �=nl; �

= (��) ;=
�
is globally consis-

tent i¤ for any set of products =0 = f0; 1; 2; : : : ; Ng for N < J and =00 = f0; 1; 2; : : : ; Jg,
where products N + 1 to J have zero observed quantities,

wk

�
r=

00
; �=

00
nl ; �

=00 (��) ;=00
�
= 0; for any k =2 =0: (6)

Surprisingly, this extremely mild and intuitive regularity condition is not satis�ed by

the vast majority of existing continuous choice which have many terms like �j ln pj and

�jk ln pj ln pk:

In many policy applications, including merger simulation, the key object of interest

is the matrix of own- and cross-price demand elasticities. The analytical expressions for
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the own- and cross-price expenditure share elasticities predicted by the model for any

given products m and n; are the following,

"smn (r; �nl; � (��) ;=) =

8>>><>>>:
�
�VrmrmV+V

2
rm
� 1
rm
V 2rm

V 2

��
2rmrm
wm

�
for m = n

�
�VrmrnV+VrmVrn

V 2

��
2rmrn
wm

�
for m 6= n

(7)

where, for completeness,

Vrmrm = �1
4

PJ
j=0 (bmj + bjm) (rm + rj)

� 3
2 (1 + I (j = m))

Vrmrn = �1
4 (bmn + bnm) (rm + rn)

� 3
2 :

(8)

From the own- and cross-price expenditure share elasticiticies, "smn, we can straight-

forwardly obtain the implied own- and cross-price demand elasticities, "dmn; from the

following one for one relationship,

"dmn (r; �nl; � (��) ;=) =

8><>:
"smm (r; �nl; � (��) ;=)� 1 for m = n

"smn (r; �nl; � (��) ;=) for m 6= n
(9)

2.2 Symmetry

The model described above is observationally equivalent to a symmetric model with

bij = bji =
(bij+bji)

2 ; the reason being that both the demand and the elasticities functions

do not depend on the fbijg parameters in itself but only on their sum. This property of
the model rends a great advantage in terms of the estimation procedure, as the number

of parameters to be estimated decrease substantially. Furthermore, the model predicts

symmetry in the cross-price e¤ects, a restriction which is not, in general, expected to

hold for market level data. For these reasons, it would be of interest to estimate a model

which did not impose such symmetry restrictions. In order to accomplish that, we can

estimate the model using the more general demand function,

wm (r; �nl; � (��) ;=) = 2rm
Nrm
N
; (10)
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where Nrr and N denote,

Nrm =
1
2

PJ
j=0 bmj (rm + rj)

� 1
2

N =
PJ
i=0

PJ
j=0 bij (ri + rj)

1
2 :

(11)

When symmetry is not imposed, the model will obviously not be consistent with

consumer utility maximization, but in turn it will allow us to test the validity of the

symmetry constraint and, for those cases it appears to be consistent with the data, also

impose it a priori.

2.3 Flexibility

An algebraic functional form for a complete system of consumer expenditure share func-

tions wi (r; �nl; � (��) ;=) is said to be �exible if, at any given set of non-negative prices
and income, the parameters can be chosen so that the complete system of consumer

expenditure share functions, their own- and cross- price demand and income elasticities

are capable of assuming arbitrary values at the given set of prices and income (subject

only to the requirements of theoretical consistency). See Diewert (1974) and Lau (1986).

First, we will show that it would always be possible to solve for the vector of deltas

associated with each option that makes predicted and actual quantities equal for all

products. This result provides the �rst step in establishing �exibility results about the

demand system since it ensures the model can always match the vector of observed

quantities, one requirement for a model to be a Diewert (1974) �exible functional form.

We then proceed to provide a result establishing the model�s ability to also match own-

and cross-price elasticities.

Lemma 1 Let = � f0; 1; : : : ; Jg be the set of products and =+ �
n
jjq�j > 0; j 2 =

o
be

the set of products with strictly positive observed quantities. Denote wj (r; �nl; �;=) and
w�j as the predicted and observed expenditure shares. Let wj (r; �nl; �;=) be continuous
and di¤erentiable. Further suppose wj (r; �nl; �;=) has the following properties: (i) if
rj = 0 then wj (r; �nl; �;=) = 0; (ii) wj (r; �nl; �;=) is homogeneous of degree zero in r;
(iii)

@wj(r;�nl;�;=)
@�k

< 0 for all k 6= j with k; j 2 =; and (iv) @wj(r;�nl;�;=)@�k
=

@wj(r;�nl;�;=)
@rk

rk

for all k; j 2 =: Then there exists a �nite vector of ��s that solve the J + 1 vector of
equations w�j = wj (r; �nl; �;=) for j 2 =: If w�j = 0 then the solution sets rj = 0 for

j 2 =: Moreover, the solution to the subset of equations w�j = wj (r; �nl; �;=+) is unique.
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Proof. First notice that if w�j = 0 for any product j, property (i) on the wj (r; �nl; �;=)
function ensures that rj = 0 will solve the jth equation exactly. Having set the r�s

corresponding to products with zero expenditure shares, we can progress to consider the

solution to the smaller set of equations w�j = wj (r; �nl; �;=+) for j 2 =+, de�ned as in
the lemma.

To prove the later result, we will work the following function de�ned in terms of � :

gj (r; �nl; �;=) = wj (r; �nl; �;=) � w�j for j 2 =: Next, recall that a su�cient condition
for uniqueness of a system of equations g (r; �nl; �;=) = 0 is that the Jacobian matrix

of a function D�g (r; �nl; �;=) is positive de�nite. A symmetric matrix D�g (r; �nl; �;=)
with a positive and dominant diagonal, is positive de�nite. Recall also that the matrix

D�g (r; �nl; �;=) has a dominant diagonal if there is (z1; : : : ; zJ+1) � 0 such that for

every j 2 =;
���zj @gj(r;�nl;�;=)@�j

��� >Pk 6=j

���zk @gj(r;�nl;�;=)@�k

��� : Note also that if @wj(r;�nl;�;=)@�j
> 0

and @wj(r;�nl;�;=)
@�k

< 0 for all k 6= j with k; j 2 =; the dominant diagonal condition can
be written as zj

@gj(r;�nl;�;=)
@�j

> �
P
k 6=j zk

@gj(r;�nl;�;=)
@�k

:

We have now to establish that the dominant diagonal holds. Property (iii) insures
@gj(r;�nl;�;=)

@�k
< 0 for all k 6= j with k; j 2 =: Further, from the homogeneity property (ii),

we must have
P
k2= rk

@wj(r;�nl;�;=)
@rk

= 0 for each j 2 =: The later equality can however,
under property (iv) of the lemma, be rewritten as @wj(r;�nl;�;=)@�j

+
P
k 6=j2=

@wj(r;�nl;�;=)
@�k

=

0: Given property (iii) ; we have that @wj(r;�nl;�;=)@�j
> 0 which insures the positive diagonal

condition is satis�ed. Furthermore, if zj > zk for (z1; : : : ; zJ+1) � 0 and for all k 6= j

with k; j 2 =; we have zj @wj(r;�nl;�;=)@�j
> �

P
k 6=j2= zk

@wj(r;�nl;�;=)
@�k

; which is exactly the

dominant diagonal condition. Thus there is a unique vector � that solves the system of

equations w�j = wj (r; �nl; �;=) for j 2 =+, that is, that equates actual and predicted
quantities for products with strictly positive observed quantities. We have already noted

that for those products with zero observed quantities, setting their r�s to zero solves their

equations. Thus, as the lemma claims, there is a solution to the full problem and a unique

solution to the reduced problem of those products with strict positive quantities.

Having established lemma 1 above, in order to prove the model can always match the

vector of observed quantities, we just have to show that our particular continuous-choice

derived expenditure share function wj (r; �nl; � (��) ;=) does satisfy properties (i)� (iv):

Corollary 1 Let wj (r; �nl; �;=) = 2rj
Vrj
V ; according to equation (5) for all j 2 =: Let

also rk (y; pk; �k) be de�ned as in equation (2) : Then, if bjk > 0 for all j; k 2 =; there
exists a �nite vector of ��s that solve the J + 1 vector of equations w�j = wj (r; �nl; �;=)
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for j 2 =: If w�j = 0 then the solution sets rj = 0 for j 2 =: Moreover, the solution to
the subset of equations w�j = wj (r; �nl; �;=+) is unique.

Proof. In order to establish the above corollary, we just have to show that the expen-
diture share function wj (r; �nl; �;=) = 2rj

Vrj
V satis�es properties (i)� (iv) of lemma 1;

where rk (y; pk; �k) is as in equation (2).

First, we establish property (i). Notice that since wj (r; �nl; �;=) = 2rj
Vrj
V , set-

ting any rj = 0 ensures that the predicted expenditure share for that product is

wj (r; �nl; �;=) = 0:
Next, we establish that condition (ii) of the lemma holds, namely that wj (r; �nl; �;=)

is homogenous of degree zero in r: Vrj is homogeneous of degree �1
2 in r, whereas V is

homogenous of degree 1
2 : Given the analytical expression for the expenditure function,

it is then immediate the homogeneity of degree zero in r:

Now let us establish property (iii): @wj(r;�nl;�;=)@�k
= 2rjrk

�
VrjrkV�VrjVrk

V 2

�
; where Vrj ;

Vrj and Vrjrk are given as in equations (5) and (8) : Conditional on bjk > 0 for all j; k 2 =;
we have that Vrjrk < 0 and both Vrj > 0 and Vrk > 0; which yields

@wj(r;�nl;�;=)
@�k

< 0:

Finally, we establish that property (iv) of the lemma holds. Given the analytical

expression for rk (y; pk; �k) is as in equation (2) ; we have
@wj(r;�nl;�;=)

@�k
=

@wj(r;�nl;�;=)
@rk

@rk
@�k
:

Furthermore, @rk@�k
= rk: Commbining the two results, yields in fact property (iv) :

Given that the model is capable of matching observed with predicted quantities, we

proceed to state the proposition which establishes the model�s ability to also match own-

and cross-price elasticities, which concludes the �exibility result.

Proposition 1 There exists a vector of parameters �� and �nl such that the model can
match any matrix of own- and cross-price elasticities.

Proof. Omitted.

2.4 Identi�cation

The fbiig and fbijg parameters de�ne the degree of price substitution and are therefore
identi�cation requires variation in prices. The former will be identi�ed by quantity e¤ects

due to variations in own-price, whereas the later will be identi�ed by quantity e¤ects

due to variation in cross-prices. Given the normalization on the price of the outside

option, we can not expect to be able to identify the fbi0g parameters that de�ne the
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degree of substitution towards product i when the price of the outside option varies. We

will, thereby, normalize b00; which �xes the scale of the fbijg parameters, and impose
the bi0 = b0i symmetry for i 6= 0: The justi�cation for the later assumption is that the
fb0ig parameters de�ne the degree of substitution towards the outside option when the
price of inside product i varies. Given the typical price variation of an inside product, we

can expect to identify the later parameters and, therefore, the imposition of symmetry

seems a natural restriction.

3 Computation and Estimation

The data available to the researcher is crucial for the estimation procedure. Consider

a panel with data on prices, income and observed quantities for a set of J products

across time or from a number of markets. We proceed by describing the estimation

algorithms for the cases where i) the number of products is relatively small so that the

dimensionality problem does not constitute an issue and ii) the number of products

yields a too great number of parameters to be estimated.

3.1 Small Number of Products

The estimation algorithm that we propose is based in Berry (1994) and BLP (1995), and

encompasses four steps that we now describe.

Step One Set initial values for the vector of deltas �t and for the fbijg parameters
in �nl.

Step Two For a given �nl; solve for the �jt�s that ensure that the observed wobsjt
and the predicted wjt (rt; �nl; �;=) expenditure shares are equated. The solution to this
problem can again be found using BLP�s contraction algorithm,

�njt = �
n�1
jt + ln

�
wjt

�
rt; �nl; �

n�1;=
��
� ln

�
wobsjt

�
(12)

where �it is solved for recursively. The initial guess for �n�1jt is used to compute the

predicted expenditure shares wjt
�
rt; �nl; �

n�1;=
�
and by (12) gives rise to a new com-

puted �njt: The process is then repeated until wjt (rt; �nl; �;=) ; the predicted expenditure
shares, equate the observed ones, and consequently convergence is achieved for �jt:
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Alternatively, the solution to the problem of equating oberved and predicted expen-

diture shares can also be found as the unique solution to the following optimization

problem for each time period or market,

max
�jt

lnV (rt; �nl; �;=)�
1

2

JX
i=1

�itw
obs
it (13)

Proof. The �rst-order condition to the above optimization problem with respect to a

given �mt is simply
Vrmtrmt

V � 1
2w

obs
mt = 0; which in fact yields w

prd
mt = 2rmt

Vrmt
V = wobsmt :

Let the solution vector of the �jt�s that ensure that the observed wobsjt and the pre-

dicted wjt (rt; �nl; �;=) expenditure shares are equated, be denoted by �t
�
rt; w

obs
t ; �nl;=

�
.

Step Three Run a Berry (1994) style regression, again for a given �nl; on the

relationship

�jt

�
rt; w

obs
t ; �nl;=

�
=

KX
i=1

�jk ln (xjkt) + ln
�
�jt
�

(14)

and obtain estimates for the parameters �� and for the unobserved characteristics �jt:

Please note that the later estimates will be a function of both the �� and �nl parameters:

Step Four Estimate the fbijg parameters in �nl by a Generalized Method of Mo-
ments procedure. The approach relies on an identifying restriction on the distribution

of the true unobserved characteristics and is based on the sample analogue to the pop-

ulation condition.

The standard identifying restriction states that, at the true values of the parameters,

��0 = (��nl; �
�)0 ; the true unobserved characteristics are mean independent of a set of

instruments Zjt =
h
z1jt; : : : ; z

M
jt

i
;

E
�
�jt (�

�
0) jZjt

�
= 0 (15)

Please note that other identifying restrictions would also enable the estimation of

the model. In particular, given the typical panel structure of the data, an alternative

assumption could incorporate the likelihood of the econometric error and the set of

instruments to be more similar for a given product across time, than for those of di¤erent

13



products. Please see Berry, Levinsohn, and Pakes (1995) and Davis (2006) for a more

detailed analysis on this subject.

The above population moment conditions can be used, akin to Hansen (1982), to

render a method of moments estimator of ��0 by interacting the estimated unobserved

characteristics with the set of instruments, and then search for the value of the �0
parameters that set the sample analogues of the moment conditions as closed as possible

to zero. Let Gn (�0) denote the sample analogues of the moment conditions,

Gn (�0) =
1

n

TX
t=1

JX
j=1

~�jt (�0) ~Z
0
jt (16)

where for notational purposes ~�jt (�0) = �jt (�0)�it; ~Zjt =
h
z1jt�it; : : : ; z

M
jt �it

i
; and �it =

1 if product j is sold in period t and zero otherwise. �it provides, thereby, a missing

value indicator used to compute n =
PT
t=1

PJ
j=1 �it.

Formally, the method of moments estimator for �̂0 is the argument that minimizes

the weighted norm criterion of Gn (�0) ; for some weighting matrix An with rank at least

equal to the dimension of �0,

�̂0 = argmin
�b

kGn (�0)kAn = Gn (�0)
0AnGn (�0) (17)

The strong non-linearity of the objective function requires a minimization routine.

The non-linear search over �0 can be simpli�ed by making use of the fact that the �rst

order conditions for a minimum of kGn (�0)kAn are linear for the subset � (��) of the
parameters of estimation in �0 = (�nl; �) : In particular, it is possible, given the standard

instrumental variables results, to express �� as function of �nl; and limit the non-linear

search over �nl;

�̂� =
�
X 0ZA�1n Z

0X
��1

X 0ZA�1n Z
0� (�nl) (18)

where X denotes the matrix of observed characteristics.

Hansen (1982) establish the formal conditions under which �̂0; the method of mo-

ments estimator, is consistent and asymptotically normal with bounded variance, con-

sistently estimated as follows,
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p
n
�
�̂0 � ��0

�
� N

�
0;
�b�0Anb���1 b�0An�̂Anb��b�0Anb���1� (19)

where b� denotes a consistent estimator of the gradient of the objective function,
b�0 = d

�n

�
�̂0

�
=
1

n

TX
t=1

JX
j=1

24@~�jt
�
�̂0

�
~Z 0jt

@�00

35 (20)

and �̂ denotes a consistent estimator of the variance-covariance matrix of the moment

conditions,

�̂ =
d

V ar
h
Gn

�
�̂0

�i
=
1

n

TX
t=1

JtX
j=1

~Zjt~�jt

�
�̂0

�0
~�jt

�
�̂0

�
~Z 0jt (21)

In what the weighting matrix is concerned, the optimal weighting matrix is propor-

tional to ��1; giving less weigh to those moments with a higher variance.

3.2 Large Number of Products

If the number of products J is large, then the model would yield a too great number

of parameters to be estimated. In that case, some aditional structure must be imposed

in order to reduce the number of parameters. Here, we follow once again Pinkse et al.

(2002) by mapping the fbijg parameters to be parametric functions of �distance metrics�
on the characteristics space, which reduces the number of parameters to be estimated

whenever the number of product characteristics is smaller than the number of products.

One possible speci�cation for the mapping could be the following where the parameters

bij are de�ned as,

bij =

8><>:
� 1
dij(xit;xjt;�1)

if i 6= j

exp (x0it�2) if i = j

(22)

where dij (xit; xjt;�1) =
PL
l=1 �1l jxlit � xljtj or dij (xit; xjt;�1) =

qPL
l=1 �1l (xlit � xljt)

2

measure the distance between products i and j in the characteristics space given their

observed characteristics at date t. Independently, however, of the speci�cation chosen,

the fbijg parameters in �nl are thereby mapped as functions of a set of characteristics
and the vectors �1 and �2. As a result, the estimation procedure is thereby identical to
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the one outlined above, with the sole exception that instead of searching for the para-

meters bij that minimize the weighted norm criterion of Gn (�0) ; we now search for the

vector of parameters �1 and �2:

The fundamental drawback of this approach is the fact that, although allowing the

estimated bij to be data-driven, it imposes symmetry in the parameters and as result in

the estimated cross-price e¤ects. However, the precise mapping is, again, a functional

form issue that can be examined using conventional testing procedures.

4 CONCLUDING REMARKS

In this paper, we consider a new method of uncovering demand information from market

level data on di¤erentiated products. We follow the continuous-choice literature and

develop a representative consumer �exible demand model, which can accommodate the

use of data on the entry and exit of products and incorporates a structural error term.

Furthermore, it is relatively simple and fast to estimate which can prove a key ad-

vantage in competition policy issues, where time and transparency are typically crucial

factors. Akin also to the continuous-choice tradition, the model encompasses a more

general version (not consistent with an indirect utility function) that enables us to test

the validity of symmetry properties and, for those cases it appears to be consistent with

the data, also impose it a priori. In what concerns the estimation procedure in partic-

ular, we propose an analog to the algorithm derived in Berry (1994) and BLP (1995).

Along the way, we present an alternative procedure to BLP�s contraction mapping for

matching observed and predicted expenditure shares.
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