
TREATMENT CHOICE WITH PARTIAL KNOWLEDGE OF
TREATMENT RESPONSE

An important objective of studies of treatment response is to provide decision

makers with information useful in choosing treatments. Often the decision

maker is a planner who must choose treatments for a heterogeneous population.

The planner may want to choose treatments whose outcomes maximize the

welfare of this population.

Examples:

(a) a physician choosing medical treatments for a population of patients.

(b) a judge choosing sentences for a population of convicted offenders.

Studies of treatment response are useful to planners to the extent that they reveal

how outcomes vary with treatments and observable covariates.

Identification problems and the need for statistical inference from finite samples

limit the information that studies provide.

How might planners with partial knowledge of treatment response make

treatment choices?

I use elements of statistical decision theory to address this question.
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SEARCH PROFILING WITH PARTIAL KNOWLEDGE OF
DETERRENCE

C. Manski, (Economic Journal, forthcoming)

Normative research in public economics has generally assumed that the relevant

social planner knows how policy affects population behavior.  Economists

studying optimal income taxation assume that the planner knows how the tax

schedule affects labor supply (Mirrlees, 1971).  Those studying optimal criminal

justice systems assume that the planner knows how policing and sanctions affect

offense rates (Polinsky and Shavell, 2000).

Planners may not possess the knowledge that economists assume them to have.

Hence, there is reason to consider policy formation when a planner has only

partial knowledge of policy impacts.

I consider the choice of a search profiling policy, where decisions to search for

evidence of crime may vary with observable covariates of the persons at risk of

being searched.  Recent research on profiling has sought to define and detect

racial discrimination (Knowles, Persico, and Todd, 2003). My concern is to

understand how a social planner might reasonably choose a profiling policy.. 



I suppose that the objective is to minimize the utilitarian social cost of crime and

search.  Search is costly per se, and search that reveals a crime entails costs for

punishment of offenders.  Search is beneficial to the extent that it deters or

prevents crime.  Deterrence is expressed through the offense function, which

describes how the offense rate of persons with given covariates varies with the

search rate applied to these persons.  Prevention occurs when search prevents

an offense from causing social harm. 

I examine the planning problem when the planner has only partial knowledge

of the offense function and, hence, is unable to determine what policy is optimal.

In particular, I suppose that the planner observes the offense rates of a study

population whose search rule has previously been chosen.  He knows that the

study population and the population of interest have the same offense function.

He also knows that search weakly deters crime; that is, the offense rate weakly

decreases as the search rate increases.  However, the planner does not know the

magnitude of the deterrent effect of search.  (This is the monotone-treatment-

response setting of Manski, 1997).

I first show how the planner can eliminate dominated search rules, which are

inferior whatever the actual offense function may be.  Broadly speaking, low

(high) search rates are dominated when the cost of search is low (high). I then

show how the planner can use the minimax or minimax-regret criterion to

choose an undominated search rule.



FRACTIONAL TREATMENT RULES FOR SOCIAL
DIVERSIFICATION OF INDIVISIBLE PRIVATE RISKS

Research on social planning recognizes that a planner may want to treat

observationally different persons differently.  This is the essence of profiling.

However, research on social planning usually presumes that a planner should

treat observationally identical persons identically.

Uniform treatment is appropriate when a utilitarian planner knows the

population distribution of treatment response.

It may not be desirable with partial knowledge of treatment response.

Identification problems or issues of statistical inference can make fractional

rules desirable.

Implementation of a fractional rule enables society to diversify a risk that is

privately indivisible.  An individual cannot diversify—a person receives either

treatment a or b.  Society can diversify by having positive fractions of the

population receive each treatment.



The Ethics of Fractional Rules

A possible ethical objection to fractional rules is that they violate the normative

principle calling for “equal treatment of equals.”

Fractional rules are consistent with this principle in the ex ante sense that

observationally identical people have the same probability of receiving a

particular treatment.  Fractional rules violate the principle in the ex post sense

that observationally identical persons ultimately receive different treatments.

Societies sometimes implement the ex ante sense of “equal treatment” in the

design of major policies.  Examples include random drug testing, calls for jury

service, and the American Green Card and Vietnam draft lotteries.

Experiments with randomized assignment of treatments provide equal treatment

in the ex ante sense.  Indeed, the prevailing standard of medical ethics permits

randomized clinical trials only when partial knowledge of treatment response

prevents a determination that one treatment is superior to another.



I have studied several simple planning problems in which partial knowledge of

treatment response can makes a fractional treatment rule desirable.  These

problems share certain features:

(a) treatment is individualistic

(b) social welfare is an increasing function of a population mean outcome

(c) outcomes depend on an unknown state of nature.

(d) members of the population are observationally identical

(e) a one-period planning horizon.

They differ in the information that the planner has about the state of nature and

in how he uses this information to make treatment choices.

I will discuss

– Choosing Treatments for X-Pox

– Choice between a status quo treatment and an innovation

Data = large randomized experiment with partial compliance

Data = small classical randomized experiment

– Minimax-regret choice between two undominated treatments

A general result

Planning with missing outcomes.



Choosing Treatments for X-Pox

Suppose that a new viral disease called x-pox is sweeping the world.  Medical

researchers have proposed two mutually exclusive treatments, t = a and t = b,

which reflect alternative hypotheses, say Ha and Hb, about the nature of the

virus.  If Ht is correct, all persons who receive treatment t survive and all others

die.  It is known that one of the two hypotheses is correct, but it is not known

which one; thus, there are two states of natures, ( = Ha and ( = Hb.  Suppose that

the objective is to maximize the survival rate of the population

There are two singleton rules in this setting, one giving treatment a to the

entire population and the other giving b.  Each rule provides equal treatment of

equals in the ex post sense.  Each also equalizes realized outcomes.  The entire

population either survives or dies.

Consider the rule in which a fraction * 0 [0, 1] of the population receives

treatment b and the remaining 1 ! * receives treatment a.  Under this rule, the

fraction who survive is

                                  *@1[( = Hb]  + (1 ! *)@1[( = Ha].

The maximin and the minimax-regret rule both set * = ½.  These rules treat

everyone equally ex ante, each person having a 50 percent chance of receiving

each treatment.  They do not treat people equally ex post.  Nor do they equalize

outcomes. Half the population lives and half dies.



Choice Between a Status Quo Treatment and an Innovation

T = {a, b}.   t = a is the status quo and t = b is the innovation.

The outcomes y(t) are binary.  Let " / P[y(a) = 1] and $ / P[y(b) = 1].

The planner knows ".  He knows that $ 0 #, with " 0 int(#).  # are the states

of nature.

Consider a rule that assigns a fraction * of the population to treatment b and the

remaining 1 ! * to treatment a.  The mean outcome under this rule is

                                            "(1 ! *) + $*  =  " + ($ ! ")*.

Social welfare is f[" + ($ ! ")*], where f(@) is increasing.

The planner should choose * = 1 if $ > " and * = 0 if $ < ".  The problem is

treatment choice when " is known but it is only known that $ 0 #.



Treatment Using Data from an Experiment with Partial Compliance

A ‘large’ randomized experiment is performed on a study population.  Subjects

assigned to the innovation can refuse to comply and choose the status quo

treatment instead.  Those assigned to the status quo cannot cross over to receive

the innovation.

The empirical evidence point-identifies " but only partially identifies $.  Its

identification region is the interval # = [$L, $H], where

               $L  /  P(y = 1*. = b, z = b)P(z = b*. = b),

               $U  /  P(y = 1*. = b, z = b)P(z = b*. = b) + P(z � b*. = b).

Here . is the treatment assigned and z is the treatment received.

A planner must choose treatments for a new population known to be identical

to the study population in its distribution of treatment response.  The planner’s

objective is to maximize the rate of treatment success " + ($ ! ")*.

I consider Bayes rules, the maximin criterion, and the minimax-regret criterion.



Bayes Rules

A Bayesian planner places a subjective probability distribution B on the

interval [$L, $U], computes the subjective mean value of social welfare, and

chooses a treatment allocation that maximizes this subjective mean.  Thus, the

planner solves the optimization problem

                max     " + [EB($) ! "]*,
              * 0 [0, 1]

where EB($) = I$dB is the subjective mean of $.  The Bayes decision assigns

everyone to the innovation if  EB($) > " and everyone to the status quo if " >

EB($).  All treatment allocations are Bayes decisions if EB($) = ".

The Maximin Criterion

A maximin planner acts as if $ equals its smallest feasible value, $L.

Thus, the planner solves the optimization problem

             max     " + ($L ! ")*.
           * 0 [0, 1]

The maximin rule sets * = 0, which assigns everyone to the status quo.



The Minimax-Regret Criterion

Suppose that the planner chooses allocation * and that $ = k, where k 0

[$L, $U].  Then regret is

  max (", k) ! [" + (k ! ")*]  =  (" ! k)*@1[k < "] + (k ! ")(1 ! *)@1[k > "].

Maximum regret across all the feasible values of k is

                        max [(" ! $L)*, ($U ! ")(1 ! *)].

 

A minimax-regret rule solves the optimization problem

 

                 min     max [(" ! $L)*, ($U ! ")(1 ! *)].
              * 0 [0, 1]

The solution is obtained by choosing * to solve the equation

                           (" ! $L)*  =  ($U ! ")(1 ! *).

The minimax-regret treatment allocation is the fraction

                                  *MR  =  ($U ! ")/($U ! $L).

*MR decreases linearly from 1 to 0 as " increases from $L to $U.



Illustration: The Illinois UI Experiment 

The status quo is conventional UI and the innovation is UI with a wage subsidy.

Let y(t) = 1 if an unemployed person is rehired within 11 weeks and y(t) = 0

otherwise.  Dubin and Rivers (1993) report that

     "  =  0.35,      P(y = 1*. = b, z = b)  =  0.38,       P(z = b*. = b)  =  0.68.

Hence, $L = 0.26 and $U = 0.58.

Let the objective be to maximize the fraction of unemployed persons who are

rehired within 11 weeks.

A Bayes rule assigns everyone to UI with the wage subsidy if EB($) > 0.35 and

everyone to conventional UI if EB($) < 0.35.

The maximin rule assigns everyone to conventional UI.

The minimax-regret rule assigns 72 percent of all unemployed persons to UI

with the wage subsidy and 38 percent to conventional UI.



Admissible Treatment Rules for a Risk-averse Planner with Experimental
Data on an Innovation

C. Manski and A. Tetenov (JSPI, 2007)

Let # = (0, 1).  A classical randomized experiment with N subjects is performed

on the innovation.  The feasible treatment rules are functions z(@) that map the

number of experimental successes into a treatment allocation.

Rule z is admissible if there exists no other rule zN such that W(z; $) # W(zN; $)

for all $ 0 % and W(z; $) < W(zN; $) for some $ 0 %.

A class of treatment rules is essentially complete if, given any rule outside this

class, there exists a member of the class that performs at least as well in all states

of nature.

A class of rules is complete if, given any rule outside this class, there exists a

member of the class that performs at least as well in all states of nature and

better in some state of nature.

A class of rules is minimal complete if the class is complete and all of its

members are admissible.



Let the objective be to maximize the population rate of treatment success. 

Karlin and Rubin (1956) show that the admissible rules assign all members of

the population to the status quo if the number of experimental successes is

below a specified threshold and all to the innovation if the number of successes

is above the threshold.

An interior fractional allocation is admissible only when the number of

experimental successes exactly equals the threshold.

Karlin and Rubin called this class of treatment rules monotone, but we say KR-

monotone.



Let the objective be maximization of a concave-monotone function f(A) of the

success rate.  Thus, the planner is “risk-averse.”

We show that the admissible rules depend on the curvature of f(A).  With

sufficient curvature, admissible treatment rules need not be KR-monotone and

some KR-monotone rules are inadmissible. 

Define a fractional monotone rule to be one where the fraction of persons

assigned to the innovation weakly increases with the number of experimental

successes.  We show that the class of fractional monotone rules is complete if

f(A) is concave and strictly monotone.

Define an M-step monotone rule to be a fractional monotone rule with an

interior fractional treatment assignment for no more than M consecutive values

of the number of experimental successes.  We show that the M-step monotone

rules are a complete class if f(A) is differentiable and has sufficiently weak

curvature.

We show that Bayes rules and the minimax-regret rule depend on the curvature

of the welfare function.  They are KR-monotone if the curvature is sufficiently

weak, but give interior fractional treatment allocations if the curvature is

sufficiently strong.



Minimax-Regret Choice with Two Undominated Treatments

General Finding

T = {a, b}.  The objective is to maximize the mean outcome.  Both treatments

are undominated on the set ' of states of nature..

The minimax-regret criterion is

         min        max   max {E([y(a)], E([y(b)]}  !  {(1 ! *)E([y(a)] + *E([y(b)]}.
      * 0 [0, 1]   ( 0 '

Proposition: There is a unique fractional minimax-regret rule whenever a

continuity condition holds.

Continuity Condition: Let '(a) and '(b) be the subsets of ' on which treatments

a and b are superior.  That is, let '(a) / {( 0 ': E([y(a)] $ E([y(b)]} and '(b)

/ {( 0 ': E([y(b)] $ E([y(a)]}.  Let

               R(*, a)  /  sup ( 0 '(a)  E([y(a)] ! {(1 ! *)E([y(a)] + *E([y(b)]}

               R(*, b)  /  sup ( 0 '(b) E([y(b)] ! {(1 ! *)E([y(a)] + *E([y(b)]}

be the maximum regret of rule * on '(a) and '(b) respectively.  Suppose that

R(@, a) and R(@, b) are continuous on [0, 1].



Proof: The maximum regret of rule * on all of ' is max [R(*, a), R(*, b)].  As

* increases from 0 to 1, R(@, a) continuously increases from 0 to R(1, a) and

R(@, b) continuously decreases from R(0, b) to 0.  The fact that both treatments

are undominated implies that {R(1, a) > 0, R(0, b) > 0} and, moreover, that

R(@, a) and R(@, b) are strictly monotone functions of *.  Hence, the minimax-

regret rule is the unique * 0 (0, 1) such that R(*, a) = R(*, b).              ~



Treatment Choice with Missing Outcome Data
(Manski, JoE forthcoming)

Let Jt denote the sub-population of persons whose outcome y(t) is observable.

By the Law of Total Probability,

                              P[y(t)]  =  P[y(t)*Jt]@P(Jt)  +  P[y(t)*not Jt]@P(not Jt).

P(Jt) and P[y(t)*Jt] can be learned empirically, but P[y(t)*not Jt] cannot.

Proposition: Let T = {a, b}. Let {P[y(t)*Jt], P(Jt); t, 0 T} be known.  Let u0t /

inf y 0 Y u(y, t) and u1t / sup y 0 Y u(y, t) be finite.  Let et / E[u(t)*Jt] and pt / P(Jt).

Then the minimax-regret rule is

  *MR  =  1  if  (ea ! u1a)pa + (u0b ! eb)pb + (u1a ! u0b)  <  0,

         =  0  if  (eb ! u1b)pb + (u0a ! ea)pa + (u1b ! u0a)  <  0,

                                (eb ! u1b)pb + (u0a ! ea)pa + (u1b ! u0a)
         =   —————————————————————          otherwise.
               (u0b ! u1b)pb + (u0a ! u1a)pa + (u1b ! u0b) + (u1a ! u0a)



Minimax-Regret Planning and the Selection Problem

Let outcomes take values in the interval [0, 1[.  Let utility be the outcome of

treatment.

Consider an observational study with no assumptions on the process of

treatment selection, Then

              *MR  =  [1 ! E(y*z = a)]P(z = a)  +  E(y*z = b)P(z = b).



Drug Approval at the FDA

A specific aspect of American public policy that seems well-suited for

implementation of fractional rules is the drug approval process of the Food and

Drug Administration.

The present process essentially makes a binary choice between unconstrained

approval and total disapproval of a new drug.  With only these two options on

the table, the FDA sets a high bar for approval, requiring demonstration of

“substantial evidence of effect.”

It may be preferable to implement a fractional approval process setting a

knowledge-dependent ceiling on the production and marketing of new

drugs—the stronger the evidence of effect, the higher the ceiling.
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