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Motivation

How can we explain the differences in earnings between higher
education graduates and a comparison group?

Modelling unobservable factors is key in trying to understand
these issues:

there might be confounding factors which influence both the
decision whether to attend college or not, and earnings
these confounding factors are likely to be unobservable.

⇒ A correlated random coefficients model is semiparametrically
estimated.
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Layout of the Presentation

Econometric Model and Assumptions

Theoretical Results: Identification and Estimation

Application: The Determinants of Earnings in the U.K., in
particular we focus on

the dependencies between wages,
unobserved ability,
social background,
and the decision whether to attend college.
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Econometric Model

Model

outcome: Y = X ′ϕ(D,U, V ) (1)

selection: D = 1I{P (Z) ≥ V } (2)

Y . . . wage, K-vector X = (1, X ′
−1)

′ constant and exogenous covariates X−1,
D indicator for college, Z instruments, U unobservable “luck”, and V
unobservable confounding factors

Assumption 1 (Stochastic Restrictions)

(i) (U, V ) are jointly independent of (X, Z) and (ii) U is
independent of V .

This is a correlated random coefficient model (see, e.g., Heckman and Vytlacil
1998). However, we allow for the dependence of ϕ(D, U, V ) on V .
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Parameters of Interest

Among others, the expected level of earnings for a given D,
X, and V ,

E[Y |D = d,X = x, V = v] = x′E[ϕ(d, U, v)],

the marginal treatment effect

x′E[ϕ(1, U, v)− ϕ(0, U, v)],

and the average ceteris paribus effect of changes in Xk for a
given D = d, X = x, and V = v answering, e.g., the question
“How do wages relate to social background for a given level of
unobserved ability?”:

∂E[Y |D = d, X = x, V = v]
∂xk

= E[ϕk(d, U, v)].

Note that the dependence of these parameters on V is of economic
importance.
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Related Results

Nonparametric Identification (Heckman and Vytlacil)

Identification at V = p, where p is a limit point of the support of
P conditional on X.

(We call p a limit point of the support of P if the density of P is
continuous in a neighborhood around p and bounded away from
zero.)

Semiparametric Estimation of the Additive Model (Carneiro,
Heckman and Vytlacil / Carneiro and Lee; CHV/CL thereafter)

Y = µ(D,U, V ) + X ′
−1γ(D,U)

D = 1I{P (Z) ≥ V }

with (X, Z)⊥⊥ (U, V ) and some technical conditions hold. Identified
at V = p, where p is a limit point of the support of P .
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Contribution of this Paper

Consider the wage equation in CHV/CL and the one that is
proposed:

Y = µ(D,U, V ) + X ′
−1γ(D,U) (3)

Y = ϕ1(D,U, V ) + X ′
−1ϕ−1(D,U, V ). (4)

(3) is more general than (4) because we can always set
ϕ1(D,U, V ) = µ(D,U, V ) and ϕ−1(D,U, V ) = γ(D,U).

⇒ We do not restrict the effect of X on Y to be independent of
V . This generalizes the approach to estimation taken by CHV/CL.
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Identification

The model implies that

E[Y |D = d, X = x, P = p] = x′β(d, p).

Theorem 1 (similar to Carneiro and Lee)

Under Assumption 1 and 2 and some regularity conditions the
conditional average structural function is identified at V = p,
where p is a limit point of the support of P , and given by

x′E[ϕ(0, U, p)] = x′
(

β(0, p)− (1− p)
∂β(0, p)

∂p

)
x′E[ϕ(1, U, p)] = x′

(
β(1, p) + p

∂β(1, p)
∂p

)
.
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Estimation

We have established that

E[Y |D = d, P = p, X = x] = x′β(d, p).

This is a Varying-coefficient Model (Cleveland, Grosse and Shyu
1991, Hastie and Tibshirani 1993). We estimate the coefficient
function by local linear smoothing (Fan and Zhang 1999, Xia and
Li 1999 in a time series context, Christopeit and Hoderlein 2006).
From these estimates we calculate estimates of the conditional
average structural function using the formulas in Theorem 1.
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Application: Data

National Child Development Survey (NCDS), British Cohort
Data: detailed records for all those who were born between
3rd and 9th of March, 1958; Waves in 1965, 1969, 1974, 1981
and 1999/2000.

Outcome of interest: log hourly wages in 1981 (age of 33).

We select males who at least completed their A-levels or a
similar degree. 51.4% of them are higher education graduates,
N = 1501.

Following Blundell, Dearden, and Sianesi (2005, BDS in the
remainder) we include the mother’s and father’s interest in the
education of the child in Z additional to all variables in X.
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Average Returns to College Education

estimate 95% conf. int.

ATE population 0.46 0.04 0.89
ATE treated 0.26 -0.11 0.64
ATE untreated 0.63 0.03 1.22

OLS 0.21 0.17 0.25
IV 0.43 0.09 0.75
BDS 0.24 0.21 0.28
additive 0.40 0.05 0.74

Table: Comparison of the estimated average treatment effect (ATE) for
different subpopulations to OLS and IV estimates as well as the BDS
matching estimates, and the additive model of Carneiro and Lee (2005).
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Ceteris Paribus Effects 1/2

average ceteris unobserved bias from imposing
paribus effect heterogeneity additivity

no college degree

father professional 0.293 yes -0.316
father’s years of edu. 0.034 no no

college degree

father professional 0.794 yes -0.316

Table: Effects that are significant at the 95 per cent level.
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Ceteris Paribus Effects 2/2
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Figure: Conditional average ceteris paribus effect of the father being
professional. Point estimates and bootstrapped 95% confidence intervals.
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Sorting 1/4

Sorting based on comparative advantage if the marginal
treatment effect is falling in V .

If wage levels are increasing in V , we have

x′E[ϕ(0, U, V )|D = 1] < x′E[ϕ(0, U, V )|D = 0]
x′E[ϕ(1, U, V )|D = 1] < x′E[ϕ(1, U, V )|D = 0].
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Sorting 2/4
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Figure: Point estimates and bootstrapped 95% confidence intervals of
the conditional average structural function. Reported for a representative
individual with median characteristics.
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Sorting 3/4
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Figure: Point estimates and bootstrapped 95% confidence intervals of
the marginal treatment effect. Reported for a representative individual
with median characteristics.
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Sorting 4/4

fraction 95% conf. int.

level, D = 0 0.62 0.04 0.93
level, D = 1 0.65 0.32 0.96
marginal treatment effect 0.54 0.47 0.60

Table: Fractions of observations for which the CASF (level) and the
marginal treatment effect is increasing in V . Linear approximations to
the slope were calculated.
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Summary and Conclusions 1/2

We have proposed and implemented a semiparametric
estimator for expected wage levels and their dependence on
the endogenous schooling choice.

Virtue: Dimensionality reduction along the dimension of the
observables while not imposing any limiting restrictions on the
joint distribution of unobservables.

Allows for nonseparabilities.
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Summary and Conclusions 2/2

Empirical Results:

Monetary returns to a college are sizable (the population
average effect is estimated to be 0.46).
Returns are lowest for those who attend college and highest for
those who do not. Sorting based on comparative advantage
with respect to monetary returns is not supported.
Differences in wages can be traced back to observables
(measured math ability), unobservables (unobserved ability),
and the combination of the two.
The effect of observables (social class of the father, e.g.)
depends on unobservables.
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Estimator

Xia and Li (1999): Assume that the coefficient functions βk(d, p),
k = 1, . . . , K, are bounded and have bounded second derivatives. By a Taylor
expansion,

βk(d, p̃) = βk(d, p) +
∂βk(d, p)

∂p
(p̃ − p) +

1

2

∂2βk(d, p̄)

∂p2
(p̃ − p)2,

where p̄ is a point between p and p̃.

Select all observations with D = d. Index observations by i, i = 1, . . . , n. Our
estimator of β(d, p) and ∂β(d, p)/∂p is the solution of a and b to the following
minimizer

arg min
a,b

(
nX

i=1

K
�pi − p

h

�
·
�

yi −
�

xi

(pi − p) · xi

�′�
a
b

��2
)

,

where K(·) is a kernel function with the usual properties and h is the

bandwidth.
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Details for Theorem 1

Assume that β(0, p) and β(1, p) are continuously differentiable with
respect to p and that we observe at least K linearly independent
realizations of X for every D and P = p (rank condition).

Assumption 2 (Regularity Conditions)

(i) All first moments exist and (ii) the distribution of V is
absolutely continuous with respect to Lebesgue measure.

(Note that we call p a limit point of the support of P if the density
of P is continuous in a neighborhood around p and bounded away
from zero.)
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Proof of Theorem 1

This proof is similar to the one of Carneiro and Lee (2004). We prove
identification of E[ϕ(D, U, V )|D = 1, V = p]. The proof for
E[ϕ(D, U, V )|D = 0, V = p] is similar.
Normalize V to be uniformly distributed.
By definition,

x′E[ϕ(1, U, V )|p ≥ V ] = x′β(1, p).

From the normalization on V and Assumption 1(ii) it follows that

x′
Z p

0

Z ∞

−∞
ϕ(1, u, v) µ(du) dv/p = x′β(1, p),

where µ(du) is the marginal probability measure of u. Multiplying both sides
by p gives

x′
Z p

0

Z ∞

−∞
ϕ(1, u, v) µ(du) dv = x′β(1, p)p

and differentiating both sides with respect to p using Leibnitz’ rule reveals that

x′
Z ∞

−∞
ϕ(1, u, p) µ(du) = x′β(1, p) + px′

∂β(1, p)

∂p
.

If p is a limit point of the support of P both β(1, p) and ∂β(1, p)/∂p are

identified from observations at P = p. The left hand side is the object of

interest.
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