Indirect Effects of a Social Program: the case of Progresa and consumption

Manuela Angelucci

Giacomo De Giorgi

University of Arizona and IZA

Stanford University

27 October 2006

Motivation and objectives

- The goals of this paper are:
 - 1. To study the spillover effects of a welfare program on consumption i.e. to look at the program effect on non-eligibile households who live in treatment villages.
 - 2. To understand the mechanisms through which this indirect effect occurs.
 - 3. To explore the effects of a liquidity injection into imperfect credit and insurance markets in developing countries.
 - 4. To overcome two limitations of the program evaluation literature, which:
 - (a) focuses mainly on the treated; few studies of spillover effects.
 - (b) often estimates treatment effects, but not mechanisms that cause the change in outcome.

Main results

- Using data from Progresa (rural Mexico), we find an increase in consumption for non-eligible households in treatment areas, i.e. positive spillover effects.
- This consumption increase is financed through higher loans and transfers, and through a depletion of the stock of savings, but **not** through increases in current income.
- We provide additional evidence consistent with the hypothesis that the program liquidity injection enables the non-eligibles to smooth consumption better.
- Discussion of SUTVA violation.

Progresa: program characteristics

- Conditional cash transfer program, monetary transfers if children go to school.
- Eligible subjects: poor households in rural Mexico.
- Program monetary components are 18 to 48% median labor earnings, mainly linked to scholarships for grades 3-9.
- Data: 1) program starts in May 1998; 2) information on about 4,000 non-eligible households in October 1998, May 1999, and November 1999; 3) pre-program data available (with exceptions).

The Experimental Design

Indirect Treatment Effect (ITE): identification

- Y_{1i} the potential outcome for non-poor $(NP_i = 1)$ in treatment villages $(T_i = 1)$ in the presence of the treatment.
- Y_{0i} the potential outcome for non-poor $(NP_i = 1)$ in treatment villages $(T_i = 1)$ in the absence of the treatment.
- Note: treatment is PROGRESA transfers to poor $(NP_i = 0)$ in treatment villages $(T_i = 1)$.
- Identification assumption: no program effect on $NP_i = 1$ and $T_i = 0$: $E(Y_{0i}|T_i = 1, NP_i = 1) = E(Y_{0i}|T_i = 0, NP_i = 1)$.

$$ITE = E(Y_{1i} - Y_{0i}|T_i = 1, NP_i = 1)$$
$$= E(Y_i|T_i = 1, NP_i = 1) - E(Y_i|T_i = 0, NP_i = 1)$$

ITE: estimation

The equation we estimate is:

$$Y_i = \alpha + \beta T_i + \gamma X_i + u_i$$

 β identifies the ITE.

- The outcome of interest changes.
- ullet We add conditioning variables X to improve precision of the estimates.

(Log-)Consumption: ITE and ATT estimates

	Food consumption			Non-food consumption			
	1998o	1999m	1999m 1999n		1999m	1999n	
$I\hat{T}E$	-0.0213	0.0514	0.0669	0.0629	0.1384	-0.0602	
	[0.0256]	[0.0257]**	[0.0211]***	[0.0672]	[0.0655]**	[0.0623]	
\hat{ATT}	0.1033	0.1699	0.1892	0.0959	0.1675	0.1128	
	[0.0236]***	[0.0219]***	[0.0211]***	[0.0651]	[0.0613]***	[0.0540]**	

Progresa increases consumption of Non-Poor households.

Why does Progresa increase non-poor consumption?

Increased liquidity in treatment villages may affect:

- Goods and labor markets:
 - 1. increased schooling reduces treated labor supply (higher wages; higher employment for non-treated)
 - 2. increased treated consumption may imply higher goods sales for non-treated (higher non-labor earnings)
 - 3. the more integrated the markets, the smaller the effects

- Credit and insurance markets:
 - 1. Credit and insurance market imperfections in developing countries result into informal loans/transfers through social networks (family and friends can enforce/monitor)
 - 2. higher liquidity permits more borrowing to invest/smooth consumption)
 - 3. expected sizeable effect because informal credit market is segmented
- Savings:
 - 1. if constraints in credit and insurance markets are relaxed, households can reduce savings

To summarize:

$$\Delta Y_i + \Delta L_i = \Delta C_i + \Delta S_i + \Delta I_i$$

Effects on goods and labor markets

We did the following tests:

- Hours of work
- Labor earnings
- Migration
- Prices at the village level
- Sales of goods
- Receipt of additional welfare programs

We found no evidence of significant increase in income (with the exception of a small increase in receipt of welfare programs).

Effects on loans and transfers

- We observe loans (70% from family and friends), transfers, and migrant remittances.
- About 13% of non-poor household have loans, transfers or remittances.
- 4 peso increase in loans (40% higher likelihood) and 6.5 peso increase in transfers in 1999.

ITEs on loans and transfers

	1998 Oct.		1999	May.	1999 Nov.			
	Probit	Tobit	Probit	Tobit	Probit	Tobit		
	Loans:							
$I\hat{TE}$	0.0073	4.0375	0.0151	3.7937				
	[0.0064]	[3.5252]	[0.0076]*	[2.0264]*				
Obs.	4598	4595	3671	3802				
Monetary transfers from family and friends:								
$I\hat{TE}$	0.0007	1.561			0.0074	6.562		
	[0.0057]	[3.5437]			[0.0048]	[3.720]*		
Obs.	4600	4525			4246	4194		

Effects on savings

- Rural households' savings are primarily in the form of grains and livestock.
- Non-poor households in treatment villages start consuming part of their stock of grains and animals:
 - 1. 4.5 percentage point drop in the likelihood of reducing the grain stock; 9 peso significant increase in consumption of own grains in 1999;
 - 2. stock of chickens decreases significantly by 0.6 in 1998 (among households who own chickens); likelihood of owning pigs drops significantly by 3, 6, and 4 percentage points in October 1998, May 1999, and November 1999.
- Increase in number of animals, and quantity and value of the stock of grains owned by the poor in treatment villages.

Why does non-poor consumption increase? Summary

- Consumption increases by about 100 and 70 pesos per household per month in 1999.
- No sizeable increase in current income.
- Changes in the credit and insurance markets:
 - 1. Loans/transfers increase by about 10 pesos per month per household.
 - 2. Part of stock of grains and animals is now consumed.
- Increases in loans and transfers, and reduction in precautionary savings consistent with hypothesis that the program liquidity injection improves insurance against risk.

Progresa and insurance against risk: tests

- Compare indirect program effects for households who have and have not been hit by a negative shock (natural disasters: drought, flood, frost, fire, plague, earthquakes, and hurricanes).
- Predictions: All NP households in Progresa villages consume more; among them, (1) families **hit** by a shock would smooth consumption more, and (2) borrow more than those not hit by a shock. (3) Households **not** hit by a shock reduce their savings.
- If shocks are random between villages (treatment and control) and household type (i.e. within the non-poor), we can compare *ITEs* for households hit/not hit by shocks.
- Note that (1) there is substantial within-village variation of shock; (2) pre-program consumption does not differ for non-poor households with or without a shock, conditional on observables.

ITE by shock: identification

New parameters of interest:

$$ITE^{S0} = E(Y_{1i}^{S0} - Y_{0i}^{S0}|T_i = 1, S_i = 0, NP_i = 1)$$

$$ITE^{S1} = E(Y_{1i}^{S1} - Y_{0i}^{S1} | T_i = 1, S_i = 1, NP_i = 1)$$

where S is a negative idiosyncratic shock.

Identification assumptions:

2.1
$$E(Y_{0i}^{S0}|T_i=1, S_i=0, NP_i=1) = E(Y_{0i}^{S0}|T_i=0, S_i=0, NP_i=1)$$

2.2
$$E(Y_{0i}^{S1}|T_i=1, S_i=1, NP_i=1) = E(Y_{0i}^{S1}|T_i=0, S_i=1, NP_i=1)$$

ITE by shock: estimation

We estimate the following equation:

$$Y_i = \alpha + \beta_1 T_i + \beta_2 S_i + \beta_3 T_i S_i + \gamma X_i + u_i$$

$$ITE^{S0} = \beta_1 = [E(Y_i|T_i = 1, S_i = 0) - E(Y_i|T_i = 0, S_i = 0)]$$

$$ITE^{S1} = \beta_1 + \beta_3 = [E(Y_i|T_i = 1, S_i = 1) - E(Y_i|T_i = 0, S_i = 1)]$$

$$ITE^{S1} - ITE^{S1} = \beta_3 = [E(Y_i|T_i = 1, S_i = 1) - E(Y_i|T_i = 0, S_i = 1)]$$

$$-[E(Y_i|T_i = 1, S_i = 0) - E(Y_i|T_i = 0, S_i = 0)]$$

Note: X includes average shock at the village level

ITEs on food consumption by shock

	Oct. 1998	May 1999	Nov. 1999
$IT\hat{E}^{S0}$	-0.0235	0.0911	0.0544
	[0.0303]	[0.0421]**	[0.0277]*
$IT\hat{E}^{S1}$	0.0168	0.066	0.1444
	[0.0360]	$[0.0350]^*$	[0.0364]***
$\widehat{IT\hat{E}^{S1} - IT\hat{E}^{S0}}$	0.0403	-0.0251	0.0900
	[0.0422]	[0.0366]	[0.0431]**
Obs.	4615	3825	4264

ITEs on loans and transfers by shock

	1998 Oct.		1999 May.		1999 Nov.		
	Probit	Tobit	Probit	Tobit	Probit	Tobit	
	Loans:						
$IT\hat{E}^{S0}$	-0.0057	-4.2357	0.0063	-0.2219			
	[0.0079]	[4.3411]	[0.0127]	[2.7923]			
$IT\hat{E}^{S1}$	0.0264	16.6777	0.0249	7.5166			
	[0.011]***	[4.976]***	[0.0139]**	[2.6014]***			
$IT\hat{E}^{S1} - IT\hat{E}^{S0}$	0.0321	20.9134	0.0186	7.7385			
	[0.0109]***	[7.5773]***	[0.0163]	[4.1162]*			
	Monetary transfers from family and friends:						
$IT\hat{E}^{S0}$	0.0013	0.9502			0.0125	11.8295	
	[0.0069]	[20.8995]			[0.0072]*	[4.3498]***	
$IT\hat{E}^{S1}$	-0.0004	4.3990			-0.0009	-1.9762	
	[0.0076]	[5.7945]			[0.0074]	[5.8670]	
$IT\hat{E}^{S1} - IT\hat{E}^{S0}$	-0.0017	3.4488			-0.0134	-13.8057	
	[0.0089]	[6.0505]			[0.0098]	[7.5441]*	
Obs.	4600	4525			4246	4194	

Progresa and insurance against risk: results

- Define household shock status as S; S = 1 are households hit by a shock, S = 0 otherwise.
- Program effect on consumption is positive for both S = 0 and S = 1, and S = 1 smooth consumption more (9% points in Nov. 1999).
- S = 1 borrow 21 and 7.7 pesos more than S = 0 in 1998 and 1999 (although S = 0 receive more transfers).
- Grain stock:
 - 1. S = 0 increase consumption of home-produced corn (10 pesos per month) and beans (imprecise estimate);
 - 2. S = 0.8% higher likelihood of depleting grain stock.
- Livestock:
 - 1. S = 0, significant depletion of chickens and pigs.

SUTVA violation

- Stable Unit Treatment Value Assumption (SUTVA) normally required to identify program effects. SUTVA rules out program indirect effects on the non-treated.
- This exercise has shown how in some cases the SUTVA may not hold.
- Though normally non-testable, this exercise highlights cases when the SUTVA may be unrealistic.
- This may occur when:
 - 1. Program transfers are large w.r.t. pre-program income
 - 2. Many individuals are treated in the local economy
 - 3. The local economy is not integrated (e.g. geographic or economic distance)
 - 4. Social networks (or similar informal arrangements) are important
 - 5. The program indirectly relaxes pre-existing constraints

Conclusions

- This class of aid policies, which inject liquidity in poor villages, has important positive spillover effects: consumption of non-poor households increases.
- No changes in the labor and goods markets. Effect occurs through credit and insurance markets: higher loans and transfers, and lower savings.
- Shocks: higher food consumption and loans for non-poor households hit by a negative shock, and lower savings for non-poor households not hit by a shock.
- Evidence consistent with program transfers relaxing lending constraints and improving insurance against idiosyncratic risk.
- Broader lessons in terms of effect of liquidity injection into imperfect informal credit and insurance markets.
- Interesting example of violation of SUTVA.