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1. Introduction 

Most of the econometric literature in which the effects of a binary treatment under exogeneity 

are estimated has focused on average treatment effects. In the parametric setting, 

discrimination studies are dominated by the Oaxaca (1973) / Blinder (1973) decomposition. In 

the nonparametric setting, the matching literature surveyed by Imbens (2004) has focused 

almost entirely on the estimation of average treatment effects. Nevertheless, in many research 

areas, the effects of policy variables on distributional outcomes beyond simple averages are of 

special interest. In particular in labor economics, the distributional consequences of minimum 

wages, training programs and education are of primary importance to policy makers. 

Motivated by this interest and by the increase in wage inequality during the last decades, 

studying changes in the distribution of wages has recently become an active area of research.1 

However, this literature focuses almost entirely on estimation without providing asymptotic 

justification or inference procedures, and it relies mostly on parametric restrictions. In this 

paper, we propose and derive the asymptotic distribution of a quantile equivalent of the 

Oaxaca / Blinder decomposition. Then, in order to relax the parametric restrictions, we 

propose and derive the asymptotic distribution of a local-linear-regression-based estimator for 

quantile treatment effects. 

A regression strategy is applied in this paper. We first estimate the whole conditional 

distribution by (parametric and nonparametric) quantile regression. In a second step, we 

integrate the conditional distribution over the range of covariates in order to obtain an 

estimate of the unconditional distribution. The advantages of these estimators are the natural 

interpretability of the first step estimation and the clarity of the assumptions made. The 

quantile regression framework is intuitive and flexible. Due to its ability to capture 

heterogeneous effects, its theoretical properties have been studied extensively and it has been 

used in many empirical studies; see, for example, Koenker and Bassett (1978), Powell (1986), 

Koenker and Portnoy (1987), Chaudhuri (1991), Gutenbrunner and Jureckova (1992), 

Buchinsky (1994), Koenker and Xiao (2002), Angrist, Chernozhukov and Fernández-Val 

(2006). 

This paper contributes to the existing literature in four different dimensions. First, while the 

basic idea of estimating the conditional distribution function by parametric quantile regression 
                                                           
1 For instance, Juhn, Murphy and Pierce (1993), DiNardo, Fortin and Lemieux (1996), Gosling, Machin and 
Meghir (2000), Donald, Green and Paarsch (2000), Machado and Mata (2005), Lemieux (2006), Autor, Katz and 
Kearney (2005a and 2005b). 
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and integrating it to obtain the unconditional distribution is not new,2 we propose an estimator 

that is faster to compute. In Section 5.2 we show that the Machado and Mata (2005) estimator, 

which is the most common quantile regression-based decomposition, and our proposed 

estimator will be numerically identical if the number of simulations used in the Machado and 

Mata procedure goes to infinity3. Hence, our asymptotic results apply also to their estimator 

and, since it is never possible to compute an infinite number of simulations, our estimator 

actually uses more information. 

Second, we derive the asymptotic distribution of the parametric estimator and use the 

asymptotic results to propose an analytical estimator of its variance. Bootstrapping the results 

is time consuming and sometimes simply impossible if the number of observations is very 

large. The Monte-Carlo simulations show that the asymptotic results are useful 

approximations in finite sample. The analytical standard errors perform better than the 

bootstrap standard errors in our simulations. 

Third, we propose a new estimator based on nonparametric quantile regression that does not 

require any parametric restriction. n  consistency, asymptotic normality and achievement of 

the semiparametric efficiency bounds are proven. This procedure can be seen as the quantile 

equivalent of the estimator proposed by Heckman, Ichimura and Todd (1998) for the mean. A 

consistent procedure for the estimation of the variance is also presented. The estimators 

perform well in Monte Carlo simulations. 

Finally, we apply both estimators to issues concerning racial discrimination in the USA. We 

first decompose the black-white wage gap using linear quantile regression. Since this 

parametric assumption is rejected by the data, we then use nonparametric quantile regression 

in the first step. The differences in basic human capital characteristics explain about one-third 

of the differences in the level of wages. We find that the amount of discrimination depends on 

the quantile at which it is evaluated but we cannot interpret the results as a glass ceiling effect. 

The structure of the paper is as follows. Section 2 defines and discusses the estimands of 

interest. In Section 3, a parametric estimator of unconditional distributions in the presence of 

covariates is defined and we show how it can be used to decompose the differences in 

distribution. Its asymptotic distribution is then derived and an analytical estimator of its 

variance is proposed. Section 4 is devoted to the local-linear-regression-based matching 

                                                           
2 Gosling, Machin and Meghir (2000) and Machado and Mata (2005) were the first to propose such a procedure. 
3 The Machado and Mata estimator is a simulation-based estimator. 
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estimator for quantile treatment effects. Section 5 presents results from different Monte-Carlo 

simulations. The application is presented in Section 6 and Section 7 concludes. 

2. Parameters of interest and identification strategies 

We are interested in the effect of a binary treatment T on an outcome Y. We have a sample of 

n units indexed by i, with  control units and n  treated units. T0n 1 0i =  if unit i receives the 

control treatment and T  if unit i receives the active treatment. “Treatment” should not be 

taken in a restrictive sense: in the application of Section 6, T

1i =

0=  for whites and T  for 

blacks. We use the potential-outcome notation of Neyman (1923) and characterize each unit 

by a pair of potential outcomes: Y  for the outcome under the control treatment and 

1=

( )0i ( )1iY  

for the outcome under the active treatment. In addition, each unit has a K-dimensional vector 

of covariates iX . In the econometric literature, the most commonly studied estimands are the 

overall average treatment effect (ATE), 

( ) ( )1 0E Y E Y−      , 

and the average treatment effect on the treated (ATET), 

 ( ) ( )1 1 0E Y T E Y T =  −  =   1 .4 

We extend this literature by considering quantile treatment effects for the same populations, 

hence the overall θ th quantile treatment effect (QTE), 

 ( ) ( ) ( ) ( )1 1
1 0Y YF Fθ θ− −− , 

and the θ th quantile treatment effect on the treated (QTET), 

 ( ) ( ) ( ) ( )1 1
1 01 1Y YF T F Tθ θ− −= − = , 

where ( )1
YF θ−  is the θ th quantile of Y. Note that we identify and estimate the difference 

between the quantiles and not the quantile of the difference. With the assumptions made in 

this paper we can only identify the marginal distributions of the potential outcomes but not 

their joint distribution. That is, we can identify the effect of a treatment on the mean, the 

variance, kurtosis, Gini coefficient, etc., of the distributions of the potential outcomes, but not 

the distribution of the individual treatment effects. In some applications, this is sufficient to 

answer economically meaningful questions. In welfare economics, for instance, a basic 

                                                           
4 These are population measures. Imbens (2004) and Abadie and Imbens (2006) consider also the same measures 
conditionally on the sample. For the quantiles as for the mean effects, the only difference between the two 
estimands concerns the asymptotic variance and is discussed later. 
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assumption is anonymity. In order to compare two distributions, all permutations of personal 

labels are regarded as distributional equivalent (Cowell 2000) and, thus, the joint distribution 

is not required. 

The joint distribution can be deduced from the marginal distributions if we make an additional 

assumption: rank invariance. This implies that the treatment does not alter the ranking of the 

units conditionally on X. This assumption is likely to be satisfied in several applications; for 

instance, it seems difficult to imagine that gender or race can change the ranking of an 

individual in the potential wage distributions. In other cases, if the rank invariance assumption 

is not likely to be satisfied for all observations, we can allow for given levels of overlap and 

bound the quantile treatment effects using the approach of Heckman, Smith and Clements 

(1997). In any case, knowledge of all QTEs is more informative than that of the ATE, because 

the mean can always be estimated by integrating over the quantiles. Since the QTEs have been 

recognized to be a useful way of summarizing the information about the distributions of the 

potential outcomes, we propose both estimators and inference procedures for them. 

Potential outcomes are only partially observed because only ( ) ( ) ( )1 0i i i i iY TY= − + 1Y T  is 

observable. We thus need to assume that some restrictions are satisfied in order to identify the 

estimands of interest. In this paper, we follow the matching literature, surveyed by Imbens 

(2004), and assume that all regressors are exogenous. An alternative to this assumption would 

be the use of instrumental variables or sample selection procedures,5 but we do not explore 

that approach in this paper. Our key identifying assumption is 

 unconfoundedness: ( ) ( )0 , 1 T⊥Y Y . X

This assumption implies, for instance, that 

 ( ) ( ) ( )0 1 0 0 0E Y T ,X E Y T ,X E Y X =  =  =  =        

but also that 

 ( ) ( ) ( ) ( ) ( ) ( )1 1
0 01 0Y Y YF T ,X F T ,X Fθ θ− − −= = = = 1

0 Xθ . 

When assuming unconfoundedness, parametric assumptions are a first way to identify and 

estimate counterfactual means and quantiles. Oaxaca (1973) and Blinder (1973) assume that 

the expected value of Y conditionally on X is a linear function of X. ( )0E Y T 1 =    can then 

                                                           
5 Abadie, Angrist and Imbens (2002), Chesher (2003), Chernozhukov and Hansen (2006), for instance, have 
proposed IV estimators for conditional quantile functions. Once we have obtained the coefficients corrected for 
endogeneity, we can use the procedure proposed in this paper to estimate quantile treatment effects (Melly 
2006). 
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be consistently estimated by 1 0ˆ
OLSX β , where 1 1

1
: 1i

i
i T

X n −

=

= X∑  and 0ˆ
OLSβ  is the vector of 

coefficients obtained by regressing Y on X using only control observations. They can 

decompose the difference between 1 1
1

: 1i

i
i T

Y−

=

=Y n ∑  and 0 1
0

: 0i

i
i T

−

=

=Y n Y∑  into 

)X=

 1 0 1 1 1 0 1 0 0 0ˆ ˆ ˆ ˆ
OLS OLS OLS OLSY Y X X X Xβ β β β  − = − + −  


 . 

The first bracket represents the effect of coefficients, typically interpreted as discrimination in 

numerous studies, and the second bracket gives us the effect of characteristics (justified 

differential). Under these assumptions, the first bracket can also be written as ( )1 1E Y T =   

( )0E Y T−  =  1  and it becomes clear that the Oaxaca / Blinder decomposition estimates the 

average treatment effect on the treated. If we take the treatment group as the reference, the 

average treatment effect on the untreated will be estimated. 

In order to extend this procedure to quantiles, we need to estimate the counterfactual quantile 

( ) (1
0 1YF Tθ− = ) . We assume that all quantiles of Y conditional on X are linear in X. The 

conditional quantiles of Y can then be estimated by linear quantile regression. Since the 

unconditional quantile is not the same as the integral of the conditional quantiles, we must 

first invert the conditional quantile function in order to obtain the conditional distribution 

function. Then, the unconditional distribution function can be estimated by integrating the 

conditional distribution function over the range of the covariates. Finally, the unconditional 

distribution function can be inverted in order to obtain the unconditional quantiles of interest. 

The details of the procedure are developed in Section 3. 

For the parametric approach, we do not need to assume anything about the support of the 

covariates because the parametric assumption can be used to make out-of-support predictions. 

Obviously, one might worry about the parametric assumption, which is often arbitrary. If we 

want to relax the parametric restrictions, we will need to make an additional assumption: the 

common support condition. In order to estimate nonparametrically the counterfactual 

distribution of a treated unit with characteristics X, we need to find a control unit with 

(almost) the same characteristics. Using the notation ( ) (Pr 1p X T=  and  

we can state this assumption as follows: 

( )Pr 1p T= =

 overlap: ( )0 p x< 1<  for all x in the support of X. 
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This is the condition necessary to identify the overall quantile treatment effect. If the common 

support assumption is not satisfied, we can estimate the effects for the subpopulation 

satisfying the common support or bound the effects (Lechner 2001). For simplicity, we 

assume that the overlap restriction is satisfied for the whole population. 

Various methods have been proposed to estimate average treatment effects assuming 

unconfoundedness and overlap but rejecting any parametric restriction. Following Imbens 

(2004), we can classify these estimators in 3 groups: matching estimators compare outcomes 

for pairs of observations with (almost) the same value of X; propensity score estimators do not 

adjust directly for the covariates but for the propensity score; regression methods rely on the 

estimation of E Y X ,T j =   for 0 1j ,=  and then estimate the unconditional expected value 

by integrating over the distribution of X. All strategies can be applied to estimate quantile 

treatment effects. Frölich (2005), for instance, follows the first approach; Firpo (2005), the 

second one; we follow the third approach and propose a nonparametric regression estimator 

for quantile treatment effect. We estimate the conditional distribution function by local-linear 

quantile regression (Chaudhuri 1991). Then, the unconditional distribution is obtained again 

by integrating the conditional distribution function over the distribution of X. This estimator is 

similar to the kernel-based estimator of Heckman, Ichimura and Todd (1998). We derive its 

asymptotic distribution in Section 4. 

3. Parametric estimator 
3.1. Model and estimators 

In this section, we assume that the conditional quantiles of Y are linear in X. Extensions to 

general parametric assumptions are straightforward. We present an estimator of unconditional 

distribution functions in the presence of covariates which is then used to decompose 

differences in distribution, in analogy to the Oaxaca / Blinder decomposition. 

Notation:  represents the cumulative distribution of the random variable Y at q, ( )YF q ( )Yf q  

represents the density of Y at the same point; ( )1
YF θ−  represents the inverse of the distribution 

function, commonly called the quantile function, evaluated at 0 1θ< < ; (YF q X

i

)i  represents 

the conditional cumulative distribution function of Y evaluated at q given X X= . 

We make the following assumptions for t ,0 1= : 

P.i.   The conditional quantiles of ( )Y t  given X are linear in X: 
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  ( ) ( ) ( ) ( )1 , for 0,1i i tY t Xτ β τ τ− = ∀F X ; ∈

t

P.ii.   There exist a positive definite matrix  such that 0
tD

  li n X1 0

:
m ' ;

i

t i in i T t
X D−

→∞
=

=∑  

P.iii.   For ∀ ∈ , there exist a positive definite matrix (0,1τ ) ( )1
tD τ  such that 

  ( ) ( ) ( )( ) ( )1 1

:

m ' ;
i

t i i i iY t Y t
i T t

F X X X X D1
tli

n
n f τ τ− −

→∞
=

=∑  

P.iv.  For all X in the support: the distribution function ( ) (Y tF X⋅

( )

)  is absolutely 

continuous and has a continuous density with ( )0 Y tf u X< < ∞  on 

( ) ( ){ }: 0 1Y tu F u X< <  and ( ) ( )'u Y tf u Xsup < ∞ ; 

P.v.    is absolutely continuous and has a continuous density with 

; 

( ) ( )Y tF q

( )0 Y t ( ) ( )( )1
Y tf F θ−< < ∞

P.vi.   For { }0 1t ,∈  and { }0 1,∈t ' , ( ) ( )'Y tF q T t=  is absolutely continuous and has a 

continuous density with ( ) ( ) ( )( )10 'Y t Y tf F T t T tθ− '< = = < ∞

}

; 

P.vii.   { 1
, , n

i i i i
Y X T

=
 are independent and identically distributed across i and have compact 

support. 

Assumptions P.i.-P.iv. are traditional assumptions made in quantile regression models. Note 

that all assumptions are made for ( )0,1τ∀ ∈  and { }0 1,∈t  since we need to identify the whole 

conditional distribution of Y given X for treated and control units. Assumptions P.v. and P.vi. 

ensure that ( ) ( )1
0YF θ− , ( ) (1

1YF )θ− , ( ) ( )0T1
0YF − θ = , ( ) ( )1

0 1F Tθ−
Y = , ( ) (1

1 0YF Tθ− = )  and 

( ) (1
1 1YF Tθ− =

\

)  are well defined and unique. They are implied by P.iv. if the distribution of X 

satisfies some restrictions, for instance if at least one regressor is continuously distributed on 

. To simplify the analysis and because all applications use micro-data, we assume iid 

sampling and compactness of the support. 

Koenker and Bassett (1978) show that, for { }0 1t ,∈ , ( )tβ τ  can be estimated by 

 ,      (1) ( ) ( )1

:

ˆ arg min
K

i

t t i
b i T t

n Yτβ τ ρ−

∈ =

= ∑
\

iX b−

where τρ  is the check function 
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( ) ( )( )1 0z z zτρ τ= − ≤  

and 1  is the indicator function. ( )⋅ ( )tβ τ  is estimated separately for each τ . Asymptotically, 

we could estimate an infinite number of quantile regressions. In finite samples, Portnoy 

(1991) shows that the number of numerically different quantile regressions is ( )( )log nO n  

and each coefficient vector prevails on an interval. Let ( )0 10, ,..., 1Jτ τ τ= =  be the points 

where the solution changes.6 (ˆ
t )jβ τ  prevails from 1jτ −  to jτ  for 1,...,j J= .7 

The τ 's conditional quantile of ( )Y t  given iX  is consistently estimated by ( )ˆ'i tX β τ . 

Theoretically, it is easy to estimate the conditional distribution function by inverting the 

conditional quantile function. However, the estimated conditional quantile function is not 

necessarily monotonic and thus cannot be simply inverted. To overcome this problem, the 

following property of the conditional distribution function needs to be considered: 

( ) ( ) ( ) ( )( ) ( )( )
1 1

1

0 0

1 1i i i tY t Y tF q X F X q d X q dτ τ β τ−= ≤ =∫ ∫ τ≤ . 

Thus, a natural estimator of the conditional distribution of ( )Y t  given iX  at q is given by: 

 ( ) ( ) ( )( ) ( ) ( )( )
1

1
10

ˆ ˆˆ 1 1
J

i i t j j i t jY t
j

F q X X q d X qβ τ τ τ τ β τ−
=

= ≤ = −∑∫ ≤ .   (2) 

This implies that we can estimate the unconditional distribution functions simply by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1

:

ˆ ˆ ˆ
i

X tY t Y t Y t
i T t

F q T t F q x dF x T t n F q X−

=

= = = = i∑∫ .   (3) 

Often, we are more interested in the unconditional quantile function instead of in the 

unconditional distribution function since the former can be more easily interpreted.8 

Following the convention of taking the infimum of the set, a natural estimator of the θ th 

quantile of the unconditional distribution of y is given by 

 ( ) ( ) ( )1

:

ˆˆ inf :
i

t t Y t
i T t

q q n F q Xiθ θ−

=

 = 
  

∑ ≥ 

                                                          

.      (4) 

 
6 In order to simplify the notation, we do not show the dependence of jτ  on t. 
7 We derive the results by assuming that all quantile regression coefficients have been estimated. However, the 
asymptotic results are also valid if we estimate quantile regression coefficients only along a grid of quantiles 
whose mesh is sufficiently small (a mesh size of order ( )1 2O n ε− −  will work). 
8 Juhn, Murphy and Pierce (1993), Gosling, Machin and Meghir (2000), Donald, Green and Paarsch (2000), for 
instance, present results for the unconditional quantile function. 
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Naturally, the quantiles of the unconditional distribution can be estimated consistently by the 

sample quantiles (Glivenko-Cantelli theorem). We will see in the next section that ( )tq̂ θ  is 

more precise than the sample quantile. However, the main interest in this estimator is the 

possibility of simulating counterfactual quantiles that can be used to decompose differences in 

distribution and to estimate quantile treatment effects. For instance, 

( ) ( ) ( )1
1 0

: 1

ˆˆ inf :
i

c Y
i T

q q n F q Xiθ θ−

=

 = 
  

∑ ≥        (5) 

is the θ th quantile of the distribution that we would observe if the treated units had not been 

treated. A decomposition of the difference between the θ th quantile of the unconditional 

distribution of the treated and the untreated is given by: 

 ( ) ( ) ( ) ( ) ( ) ( )1 0 1 0c cˆ ˆ ˆ ˆ ˆ ˆq q q q q qθ θ θ θ θ− = − + −     θ  ,    (6) 

where the first bracket represents the effect of coefficients (QTET) and the second gives us the 

effect of characteristics. 

In the next sub-section, we concentrate on the quantiles and give the joint asymptotic 

distribution of ( )1q̂ θ , ( )0q̂ θ  and ( )cq̂ θ , thus providing a full description of the 

decomposition (6). The results for quantiles of other distributions and for the estimation of 

other quantile treatment effects (such as the overall QTE) can be derived analogously. We will 

consider the asymptotic distribution for a single quantile in order to simplify the notation by 

suppressing the dependence on θ  but results for the joint distribution of several quantiles are 

straightforward to derive. 

3.2. Asymptotic results 

THEOREM 1: Under assumptions P.i. to P.vii. ,  and  defined by (4) are consistent and 

asymptotically normally distributed. Define ,  and  to be the true values. For t  

0q̂

0q

1q̂

1

ˆcq

cq q 0,1=

( ) ( ) ( )( ) ( ) ( ) ( )
2 2ˆ 0, Prt t t tY t Y tT t

n q q N E F q X T t f q T tθ
=

   − → − +Ω = =      
 

where Ω  is equal to t

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )ˆ ˆ'cov ,t t t t t t X XY t Y t Y t Y tf q x f q z x F q x F q z zdF x T t dF z T tβ β  = = ∫ ∫

( ) ( )( ) ( )( ) ( ) ( )1 11 0 1ˆ ˆcov , ' min , ' ' .t t t t tD D Dβ τ β τ τ τ ττ τ τ

 

and − −= −  
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( ) ( ) ( )( ) ( ) ( ) ( )
2 2

0 01
ˆ 0, 1 1c c c c cY YT

n q q N E F q X p p f q Tθ
=

   − → − +Ω − =      
 (7) 

where Ω  is equal to c

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )0 00 0 0 0
ˆ ˆ'cov , 1 1c c c c X XY Y Y Yf q x f q z x F q x F q z zdF x T dF z Tβ β  = = ∫ ∫ . 

0q̂  and  are independent. The normalized asymptotic covariance between  and  is 
equal to 

1q̂ 1q̂ ˆcq

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )1 11 0 1 01
1 1c cY Y Y YT

E F q x F q x f q T f q Tθ θ
=
 − − = =  

and the normalized asymptotic covariance between  and  is 0q̂ ˆcq

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0 00 0 0 0

00 0

ˆ ˆ'cov , 0

1 1
c c XY Y Y Y

cY Y

Xf q x f q z x F q x F q z zdF x T dF z T t

f q T f q T

β β  = = 
= =

∫ ∫
. 

The proof of THEOREM 1, which can be found in appendix A, is an application of theorem 2 in 

Chen, Linton and Van Keigelom (2003). Here, we concentrate on the interpretation of and the 

intuition for the results. All variances consist of two parts: the variance that we would obtain 

if we knew the conditional quantiles and the variance coming from the estimation of the 

conditional quantiles. Note that the variance of the θ th sample quantile of a random variable Y 

can also be decomposed in this way by applying the law of total variance: 

 
( ) ( ) ( )( ) ( )( )( ) ( )

( )( ) ( ) ( )( ) ( )

2 2

2 2

var 1 var 1 var 1

1

Y Y

Y Y Y Y

Y q f q E Y q X E Y q X f q

E F q X E F q X F q X f qθ

   ≤ = ≤ + ≤      

    = − + −     

 

where ( )YF q θ= . Thus, the first part of the variances of ,  and  is the variances of the 

conditional quantiles. If we consider a deterministic sample or if the estimands are defined 

conditionally on the sample (e.g. the discussion in Imbens, 2004, and Abadie and Imbens, 

2006), the variance of the estimates will consist only of the second term. In this case, 

uncertainty arises only from the estimation of the conditional quantile functions since the 

distribution of X is considered to be known. As for the estimation of the ATE, the variance 

will be lower if we estimate the sample quantity instead of the population quantity. 

0q̂ 1q̂ ˆcq

We also observe that the first element of the asymptotic variance of q  and  is the same as 

the first element of the variance of the sample quantile. However, the second element is lower 

than for the sample quantile. The intuition is simple: the linear quantile regression model 

assumes that the conditional quantiles of Y given X are linear in X. All observations are used 

to estimate the conditional distribution function while this information does not enter the 

sample quantile. The price to pay is a more restrictive model. If the conditional quantile 

0ˆ 1q̂
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model is misspecified,  is not consistent for . The sample quantiles are in any case 

consistent. Therefore, a simple specification test of the conditional model consists of testing 

whether both estimates differ, like a Hausman (1978) test. If they differed significantly, it 

would imply that the linear quantile regression model is too restrictive. 

ˆtq tq

ˆcq

) i

F β̂

( )i jβ β


1q̂

The second part of the variances of q ,  and  is similar to the variance of the trimmed 

mean estimator of Koenker and Portnoy (1987) and Gutenbrunner and Jurecková (1992). The 

differences arise because they integrate directly over the estimated coefficients while we 

integrate over the estimated quantiles and because of our different assumptions concerning 

heteroscedasticity. An intuition for this element can be given as follows. The asymptotic 

variance of 

0ˆ 1q̂

(ˆ
i t jnX β τ  is ( )( ˆ

i t )' var jX Xβ τ . However, when estimating the θ th quantile of 

, ( )Y t ( )j
ˆ

tβ τ  plays only a role for those observations with ( )ˆ
i t j tX qβ τ = . Moreover, the 

importance of each observation in estimating  is proportional to the density of Y given X at 

. For instance, if the characteristics have a positive effect on Y, observations with a high 

value of X have a very small probability of playing a role in the estimation of a low quantile 

of Y. Finally, 

tq

tq

( ) ( tY t q X )( )i
ˆ

i tnX β  and ( ) ( )( )t jXj t Y tF qnX  have a covariance of 

( ) ( ) ( ) (, )(ˆ ˆ
t t jY t Y t )'i t tX Cov F q X F q X X  because all quantile regression coefficients 

are correlated. The form of the asymptotic variance-covariance for different quantile 

regressions was given by Gutenbrunner and Jureckova (1992). 




                                                          

In order to make inference on the decomposition (6), we give the covariances between  and 

, and between  and . They are not null because q  and  are computed with the same 

quantile regression coefficients and  and q  are computed with the same covariates, which 

induces co-variation of the conditional quantiles. 

ˆcq

0q̂ ˆcq ˆc 0q̂

ˆcq 1ˆ

3.3. Estimation of the asymptotic variance 

The variance of the estimators proposed in Section 3.1 can be estimated by bootstrapping the 

results9. However, since such estimators are often used with large if not huge datasets, 

bootstrapping the results is typically infeasible. We therefore propose to use the asymptotic 

results of Section 3.2 to construct an analytical estimator of the asymptotic variance. 
 

9 The regularity conditions for bootstrap consistency given in theorem B in Chen, Linton and Van Keigelom 
(2003) can be verified in the same way as the conditions for asymptotic normality which areverified in the 
appendix. 
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Consistent estimation of the asymptotic variance of  requires consistent estimation of p, ˆcq

( ) ( )0 cYF q x , ( ) ( )0 1cYf q T = , ( ) ( )( )0 0
ˆ ˆcov , 'β τ β τ  and ( ) ( )0 cYf q x .10 We discuss now the 

estimation of each of these elements. 

A natural estimator of  is ( )Pr 1p T= = 1n n . An estimator for ( ) ( )0 cYF q x

ˆcq

 was given by (2). 

Since  is not known, we replace  by its consistent estimate . cq cq ( ) (0 1cYf q T = )  is the 

derivative of ( ) (0 cYF q )x . Thus, a first possibility to estimate this element is to use the idea of 

Siddiqui (1960): 

( ) ( )( )
( ) ( )( ) ( ) ( )( )0
0 0

2ˆ 1 ˆ ˆˆ ˆ1 1
n

cY
c n c nY Y

hf q T
F q h T F q h T

θ
θ θ

= =
+ = − − =

. 

A second possibility is the use of a kernel estimator. Since we need to estimate the density of 

a counterfactual, unobserved distribution, we first simulate this distribution by estimating an 

important number of quantiles (ˆc dq )θ  for { } 1

D
d d

θ
=

 taken from a uniform grid between 0 and 

1.11 We then use a normal kernel and the Silverman (1986) rule of thumb (other choice are of 

course also possible) and obtain: 

 ( ) ( )( ) ( ) ( )
0

1,...,

ˆ ˆ1ˆ 1 c d c
cY

d Dn n

q q
f q T K

nh h
θ θ

θ
=

− 
= = 

 
∑ 

                                                          

.     (8) 

A large literature deals already with the estimation of the covariance matrix of the quantile 

regression coefficients12. In this paper, we would like to avoid the bootstrap in order to keep 

the computation time reasonable. Moreover, we cannot use rank-based estimators, since we 

need to estimate the whole covariance matrix. Finally, we want to allow for arbitrary 

dependence between the residuals and the regressors. Therefore, only two estimators can 

reasonably be used in order to estimate the variance of the quantile regression parameters: the 

Powell (1984) kernel estimator and the Hendricks and Koenker (1991) estimator. Normally, a 

disadvantage of the second estimator is that it needs more computation time because it 

requires the estimation of two additional quantile regressions for each quantile. But, since we 

have already estimated the whole quantile regression process anyway, this estimator is in our 

 
10 The estimation of other variances or covariances require the estimation of the same types of elements. 
11 In the Monte-Carlo simulations and in the application we set 10000D = . 
12 See chapter 3 in Koenker (2005) for a recent survey. 
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case as fast as the kernel estimator. And since the Hendricks and Koenker estimator appears 

to be more precise in small samples, we focus on it to estimate m ( ) ( )( )0 0
ˆ ˆ, 'cov β τ β τ  by 

( ) ( )( ) ( )
'

1 1

0
: 0 : 0 0

ˆ ˆ' 0 min , ' ' ' ' 0
i i i

i i i i i i i i
i T i T T

n X X f X X X X X f X
τ τε ετ τ ττ

− −

= = =

  
−  

  
∑ ∑ ∑





 

where ( ) ( ) (( ))0 0
ˆ ˆ ˆ0 2i n i n nf X h X h h

τε
β τ β τ= + − −  and  is a bandwidth that follows the 

Hall and Sheather (1988) rule. 

nh

Finally, ( ) (0 cY )f q x  is estimated in the same way by 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )( )1 1
0 00 0 0

ˆ ˆ ˆˆ ˆˆ ˆ2c n c n cY Y Y nf q x h x F q x h F q x hβ β− −= + − − . 

Thus, we estimate the variance of  by ˆcq

( )

( ) ( ) ( ) ( ) m ( ) ( ) ( ) ( )

22
1

: 1

01 2
0 1 0 00 0

: 1 : 1

ˆ
ˆ ˆ 1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ'cov ,
i

i j

i
i T

cY

c i c j i i j jY Y
i T i T

nn

f q T
nn n f q X f q X X X

θ τ

β τ β τ

−

=

− −

= =

 − +
 

= 
    

 

∑

∑ ∑
 

where ( ) (1
0

ˆˆ ˆi cYF q Xτ −= )i

t i

 in order to alleviate the notation. The proof of consistency of this 

estimator follows from the consistency of the different elements of the variance, whis has 

already been proven in the cited papers and above, and from Slutsky and continuous mapping 

theorems. The proof is standard and will not be discussed here. 

3.4. Extension: effects of residuals 

Juhn, Murphy and Pierce (1993) and Lemieux (2006), among others, decompose the 

differences in distribution into three factors: coefficients, characteristics and residuals. Since 

there is a theoretical interest in several applications to identify these three sources of 

differences in distribution, we show how we can extend the decomposition of the preceding 

section in order to separate the effects of coefficients into the effects of median coefficients 

and residuals. This decomposition was developed and applied independently by Melly 

(2005b) and Autor, Katz and Kearney (2005a and 2005b). 

We use the same framework as Juhn, Murphy and Pierce (1993) to decompose the differences 

in wage distributions between the treated and control units. If we take the median as a 

measure of central tendency of a distribution, we can write a simple wage equation for each 

group 

  ( ) ( ) ,0.5i i tY t X uβ= + 0,1t = . 
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We can isolate the effects of differences in characteristics, median coefficients and residuals. 

The effect of characteristics can be estimated similarly to Section 3.1. To separate the effect 

of coefficients from the effect of residuals, note that the τ th quantile of the residuals 

distribution conditionally on iX  is consistently estimated by ( ) ( )( )ˆ ˆ 0.5i t tX β τ β− . We define 

. Then, we estimate the distribution that would 

prevail if the median return to characteristics were the median return in the treated group but 

the residuals were distributed as in the control group by 

( ) ( ) ( )(1, 0 1 0 0
ˆ ˆ ˆ0.5 0.5m r jβ τ β β β= + −( )ˆ

jτ )

 ( ) ( ) ( )( )1
1, 0 1 1 1, 0

: 1 1

ˆˆ inf : 1 '
i

J

m r j j i m r j
i T j

q q n X qθ τ τ β τ θ−
−

= =

  = − ≤ ≥ 
  

∑∑ . 

Therefore, the difference between ( )1, 0ˆm rq θ  and ( )ˆcq θ  is due to differences in coefficients 

since characteristics and residuals are kept at the same level. Finally, the difference between 

( )1q̂ θ  and ( )1, 0ˆm rq θ  is due to residuals. 

The asymptotic distribution of this decomposition is straightforward to derive. All quantile 

regression coefficients estimated within the treated groups are independent from their control 

group analog. The covariance between different quantile regression coefficients was given in 

Section 3.2. 

4. Semiparametric estimator 

4.1. Model and estimators 
The consistency of the estimators proposed above depend on the parametric assumption of the 

first step estimation. We have considered only linear quantile regression but nonlinear or 

censored quantile regression could also be used. In this case, we would have to change the 

form of cov ( ) ( )( ˆ ˆ, 't t )β τ β τ  but the other results would still remain valid. The parametric 

assumption can be alleviated by using polynomial series or dummy variables. However, it is 

sometimes better to completely abandon parametric assumptions and to estimate the 

conditional quantile functions nonparametrically. We propose an estimator based on local 

linear quantile regression (Chaudhuri 1991). This procedure can be seen as the quantile 

equivalent of the estimator proposed by Heckman, Ichimura and Todd (1998) for the mean. 

They estimate the conditional mean function by local constant or local linear regression. Hahn 

(1998) computes the conditional mean function by series estimation. This is an alternative 

approach but we do not explore it in this paper. 
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In order to derive the asymptotic properties of these estimators, we make the following 

assumptions: 

S.i.  are independent and identically distributed across i and have compact 

support, X is a d-dimensional continuously distributed variable

{ 1
, , n

i i i i
Y X T

=}
13 with ( ) 'X if X  

continuously differentiable and bounded for all iX  in the support; 

S.ii. For , ( )0,1τ ∈ ( ) ( )1
Y tF Xτ−  is p -smooth14, where p d> ; 

S.iii. For all X in the support: the distribution function ( ) ( )Y tF X⋅  is absolutely continuous 

and has a continuous density with ( ) ( )Y tf u X0 < < ∞  on ( ) ( ){ }: 0 1Y tu F u X< <  and 

( ) ( )sup 'u Y tf u X < ∞ ; 

S.iv. The bandwidth sequence  satisfies nh 0plim 0n

N n

h h
a→∞

= >  for some deterministic 

sequence { }na  that satisfies logd
n n →∞na  and 2 p

n c→ <∞na  for some c ; 0≥

S.v. The kernel function  is symmetric, supported on a compact set and Lipschitz 

continuous; 

( )K ⋅

S.vi. The kernel function  has moments of order 1 through ( )K ⋅ 1p −  that are equal to 

zero. 

These assumptions are in principle the same as those made by Heckman, Ichimura and Todd 

(1998) but some differences arise from the different estimands. Condition S.ii. guarantees that 

the conditional quantile functions are smooth enough to be estimated by local linear quantile 

regression. Condition S.iii. ensures that the conditional quantiles are well-defined and unique. 

Since the distribution of X is assumed to be continuous by S.i., this also implies that the 

unconditional quantiles of Y are well-defined and unique. Undersmoothing, higher-order and 

compact support kernel are necessary in order to control the bias and the rate of convergence 

of the kernel regression estimator. 

The procedure is very similar to the estimator that relies on linear quantile regression in the 

first step. The difference, however, is that the quantile regression coefficients depend on the 

point at which they are estimated. Formally, let 

                                                           
13 Discrete regressors do not matter asymptotically. 
14 We call a function p-smooth when it is p-times continuously differentiable and its pth derivative is Hölder 
continuous. 
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( ) ( )1

:

ˆ , arg min
i

i
t t

b i T t n

X x
i ix n K Y X

h τβ τ ρ−

=

 −
= − 

 
∑ b  

be the τ th quantile regression coefficient estimated locally at x. We can allow the bandwidth 

to depend on x and τ . Then the procedure is similar to that of Section 3.1: 

 ( ) ( ) ( )( ) ( ) ( )( )
1

1
10

ˆ ˆˆ 1 , 1 ,
J

S
i i t i j j i t j iY t

j

F q X X X q d X X qβ τ τ τ τ β τ−
=

= ≤ = −∑∫ ≤  

 ( ) ( ) ( ) (1

:

ˆ
i

S
tY t Y t

i T t

F q T t n F q X−

=

= = ∑ )ˆ S
i        (9) 

and ( ) ( ) ( )1

:

ˆˆ inf :
i

S S
t t Y t

i T t
q q n F q Xiθ θ−

=

 = 
  

∑ ≥  .      (10) 

Naturally we can estimate counterfactual quantiles by 

 ( ) ( ) ( )1
1 0

: 1

ˆˆ inf :
i

S S
c iY

i T
q q n F q Xθ θ−

=

  = ≥ 
  

∑  

and use them to estimate the quantile treatment effect on the treated 

n ( ) ( ) ( )1ˆ ˆS S
cQTET q qθ θ θ= − .  

In the same way, we estimate the overall quantile treatment effect by 

n ( ) ( ) ( ) ( ) ( )1 1
1 0

1 1

ˆ ˆinf : inf :
n n

S S
i iY Y

i i

QTE q n F q X q n F q Xθ θ θ− −

= =

  = ≥ − ≥  
  

∑ ∑ 


. 

4.2. Asymptotic results 

THEOREM 2: Under the assumptions S.i. to S.vi.  and  are 0ˆ
Sq 1ˆ

Sq n  consistent and 

asymptotically equivalent to the sample quantiles: 

( ) ( )
( ) ( ) ( )2

1
ˆ 0,

Pr
S
t t

tY t

n q q N
T t f q T t

θ θ − − →
 = = 

. 

ˆS
cq  is n  consistent and asymptotically normally distributed: 

( )
( ) ( )( )

( ) ( )
2

0 21
0ˆ 0, 1

1

ScYTS c
c c cY

E F q X
n q q N f q T

p p

θ
=

   −    Ω − → + =  
−      

, (11) 

where ( ) ( ) ( ) ( )( ) ( ) ( )0 01
1 1S

c c c X XY YT
E F q X F q X f X T f X T
=
 − = = 0Ω = . 
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0ˆ
Sq  and  are independent. The normalized asymptotic covariance between  and  is 1ˆ

Sq 0ˆ
Sq ˆ S

cq

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

0 00 0 0 01

00 0

min ,

1 0 1

c cY Y Y YT

cY Y

E F q X F q X F q X F q X

f q T f q T p
=

 −  
= = −

. 

The normalized asymptotic covariance between  and  is ˆ S
cq 1ˆ

Sq

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

10 11

10 11 1
cY YT

cY Y

E F q X F q X

f q T f q T p

θ θ
=
 − − 

= =
. 

Thus, QT  and QT  are consistent and asymptotically normally distributed: nET nE

n( ) ( ) ( ) ( )( )1 1ˆ ˆ ˆ0,avar avar 2acov ,S S S
c cn QTET QTET N q q q q− → + − ˆ S ;15 

n( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

32
1 2 2

1 1
0 0 1 1

0,
1

SS
S

Y Y Y Y

n QTE QTE N
pf F p f Fθ θ− −

 
ΩΩ − → Ω + + 

 − 

, 

where 
( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( )( )

1 1
0 0 1 1

1 2 2
1 1

0 0 1 1

var var

1

Y Y Y YS

Y Y Y Y

F F X F F X

f F f F T

θ θ

θ θ

− −

− −

  
  Ω = +

=


  

 
( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
1 1

0 0 1 1

1 1
0 0 1 1

2
Y Y Y Y

Y Y Y Y

E F F X F F X

f F f F

θ θ θ

θ θ

− −

− −

 − −  −
θ

, 

( ) ( ) ( )( ) ( ) ( ) ( )( )( ) ( ) ( )1 1
2 0 0 0 01 0S

X XY Y Y YE F F X F F X f X f X Tθ θ− − Ω = − =  
, 

( ) ( ) ( )( ) ( ) ( ) ( )( )( ) ( ) ( )1 1
3 1 1 1 11 1S

X XY Y Y YE F F X F F X f X f X Tθ θ− − Ω = − =  
. 

COROLLARY:  and QT  achieve the efficiency bounds derived by Firpo (2005). nQTET nE

The proofs of Theorem 2 and its corollary can be found in the appendices B and C. Although 

the estimators in this section are based on nonparametric methods, they are n  consistent 

because the first-step infinite dimensional estimates are integrated over all observations to 

obtain the finite-dimensional second step estimate. The average derivative quantile regression 

estimator of Chaudhuri, Doksum and Samarov (1997) is similar in this aspect. The asymptotic 

equivalence of the sample quantile and ( )ˆ S
tq θ  could be surprising but the reason is clear: 

asymptotically, the bandwidth is zero and no assumption is made about the dependence 

between Y and X. Note that if Y is linear in X, then the parametric estimator uses the optimal, 

infinite bandwidth while the nonparametric estimator constrains the bandwidth to go to zero. 
                                                           
15 avar and acov are the normalized asymptotic variances and covariance given above. 
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This explains why the parametric estimator is more efficient than the nonparametric one in 

this case. The efficiency gain of the estimator of Section 3 results from the parametric 

assumptions. If the parametric restrictions are satisfied, we increase precision; if they are not 

satisfied, the estimator may be inconsistent. 

When comparing the asymptotic variances of  and , we note that both consist of two 

parts and that both first parts are exactly identical. This is the variance that we would obtain if 

we knew the true conditional quantiles and, therefore, this part does not depend on the method 

used to estimate the conditional quantiles. The second part is the contribution of the first step 

estimation to the second step variance which differs between q  and . While 

ˆcq ˆS
cq

ˆc ˆS
cq ( )0

ˆ
iX β τ  and 

( )0
ˆ 'jX β τ  are correlated, (0

ˆ ,i i )X Xβ τ  and ( )0
ˆ ',j jX Xβ τ  are asymptotically independent if 

i jX X≠  because the coefficients are only locally estimated. Thus, we do not need to account 

for these covariances and the double integral appearing in the asymptotic variance of  

disappears for q . Finally, we can use the form of the asymptotic variance of 

ˆcq

ˆS
c ( )0

ˆ , iXβ τ  to 

simplify . ( )ˆ S
cqavar

We show in the corollary of Theorem 2 that QT  and  achieve the semiparametric 

efficiency bounds without knowledge of the propensity score derived by Firpo (2005). 

Moreover, he proves that his propensity score weighting estimators also achieve the 

semiparametric efficiency bounds. Thus, both estimators of quantile treatment effects are 

asymptotically equivalent, just as the Heckman, Ichimura and Todd (1998) and the Hirano, 

Imbens and Ridder (2003) estimator of average treatment effects. Naturally, their finite 

sample properties may be very different. The relative advantages of both approaches are 

discussed in the conclusion. 

nET nQTE

The estimation of the asymptotic variance of QT  and  is in principle simpler to 

estimate than that of the parametric estimators. We only need to estimate unconditional 

distribution (and quantile) functions and unconditional densities. Unconditional distributions 

and quantile functions are estimated by (9) and (10) respectively. For the estimation of 

unconditional distributions, we use kernel density estimates with Silverman (1986) 

bandwidth. If we must estimate the density of an unobserved distribution, we use the principle 

described in (8) for the parametric estimator, that is we apply a kernel density estimator on the 

estimated unobserved distribution. 

nET nQTE
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5. Monte-Carlo simulations 

Asymptotic results are interesting partly because we hope that they describe approximately 

the behavior of the estimators in finite-samples. In this section we try to find out how the 

proposed estimators behave in finite samples. We first study the parametric estimator, which 

we call QQR (quantile based on quantile regression). Then we compare it to the estimator 

proposed by Machado and Mata (2005) since this estimator is frequently applied. Finally, we 

consider the estimator based on nonparametric first step quantile regression (QNQR). 

Software to implement the proposed estimators in R and to replicate the Monte Carlo 

simulation are available at the author’s website.16 

5.1. Parametric estimator 

We consider a simple model with three correlated covariates and a constant:  

( ) ( )( )1 2 3 11 1Y t X X X t Xε= + + + + +  0,1t =  

where , , ( )1 0,1X U∼ ( )2 0.5X B∼ ( )3 0,1X N∼ , ( )1 2cor , 0.4X X = , , 

, 

( )1 3cor , 0.49X X =

( )2 3, 0.4X X =cor ( ) ( )0 1t∼ε , ( ) ( )1 0,1N∼ε  and ( )Pr 1 0.5T X= = . The distribution of 

the covariates and the median coefficients do not depend on the treatment status but the error 

term is normally distributed for the treated and Cauchy distributed for the control units. Thus, 

the quantile treatment effect is positive below the median and negative above. It also allows 

us to compare the behavior of the estimators in the presence of a standard normal and an 

extremely fat tailed distribution. 

We consider 3 different sample sizes 0n n1= : 100, 400 and 1600 and we set the number of 

replications to 10000, 5000 and 2500, respectively. We report the results for ( )0q̂ θ , ( )1q̂ θ  

and n ( ) ( )1ˆ ˆcQTET q qθ θ= − , both evaluated at 3 different quantiles: 5%, 25% and 50%. Table 

1 reports the bias, standard error, skewness, kurtosis and mean squared error (MSE) of the 

estimates. The relative MSE of the sample quantile is also given for (0q̂ )θ  and ( )1q̂ θ  in 

order to evaluate the efficiency gains achieved by the QQR. 

As expected, the bias is smaller in the center of the distribution and with normal error terms. 

In the cases where there is a bias, it tends to disappear as the sample size increases. The 

analytically established convergence rate of the estimator is confirmed since quadrupling the 

                                                           
16 R is an open-source programming environment for conducting statistical analysis and graphics that can be 
downloaded at no cost from the site www.r-project.org.  
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sample size cuts the standard errors by half and the MSE by about 75%. Considering the 

skewness and kurtosis, the distribution of the estimates appears to be already fairly close to 

the normal distribution with 100 observations for the median. A higher sample size is 

necessary for lower quantiles in the presence of Cauchy distributed error terms, but the 

convergence to the values of the normal distribution is clear. Finally, the QQR is almost 

always more efficient than the sample quantile. The only exception arises for the 5th percentile 

with small sample sizes and Cauchy distributed error terms. 

We also evaluate the performance of the analytical estimator for the variance proposed in 

Section 3.3 and compare its performance with that of the bootstrap. In order to keep the 

computation time reasonable, the results for the bootstrap are based on only 4000, 2000 and 

1000 replications for sample sizes of 100, 400 and 1600 respectively. Within each Monte 

Carlo replication, 100 bootstrap replications were drawn. We present results only for the 

QTET but they are representative for the results of other estimands. Table 2 gives different 

criterions that allow us to evaluate the estimators. It reports first the rejection frequencies by a 

Wald test of the true null hypothesis for 3 different confidence levels. Secondly, since this 

first evaluation does not allow us to evaluate the precision of the estimates, the median bias 

and the median absolute deviation from the true value for both estimators are also given. We 

take the empirical standard errors obtained in the Monte Carlo simulations as the “true” 

values.17 

The empirical sizes of the tests confirm that both the analytic estimator and the bootstrap are 

consistent for the standard error of the QQR. With the exception of the 5th percentile with low 

sample sizes, both are reasonable estimators with empirical sizes near the theoretical ones. If 

we consider the MAD of both estimators, we note that the analytic estimator is more precise 

than the bootstrap (with 2 exceptions). Thus, the analytic estimator of the variance is not only 

faster to compute but also more efficient and its use in applications can be recommended. 

5.2. Comparison to Machado and Mata (2005) estimator 

Machado and Mata (2005, MM hereafter) also propose using quantile regression in order to 

estimate counterfactual unconditional wage distributions. Their estimator is widely used in 

various applications, see for instance Albrecht, Björklund and Vroman (2003), Melly (2005a) 

and Autor, Katz and Kearney (2005a and 2005b). However, no asymptotic results and no 

                                                           
17 Another possibility would be to compute the asymptotic standard error analytically, but what we want is to 
estimate the empirical variance of the estimate and not the asymptotic variance. 
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method to estimate the variance consistently have been provided18. We show in this section 

that the MM estimator is numerically identical to our estimator if the number of simulations 

goes to infinity and, thus, the results of our paper apply also to their estimator. 

The idea underlying their technique is the probability integral transformation theorem. If U is 

uniformly distributed on [ ]0 1, , then ( )1F U−  has F as distribution function. Thus, for a given 

iX  and a random [ ]0 1U ,θ ∼ , ( )0iX β θ  has the same distribution as ( )0 iXY . If we draw a 

random X  from the control population instead of keeping iX  fixed, (0X )β θ  has the same 

distribution as ( )0 0Y T = . Formally, the procedure proposed by MM involves 4 steps: 

1. Generate a random sample of size m from a [ ]0 1,U : u . 1 m,...,u

2. Estimate m different quantile regression coefficients: ( )0 1i
ˆ u , i ,...,m.β =  

3. Generate a random sample of size m with replacement from { } 0ii T
X

=
, denoted by { }

1

m

i i
X

=
� . 

4. ( ){ }0 1

m

i i i i
ˆY X uβ

=
=� �

( )

 is a random sample of size m from the unconditional distribution of 

0 0Y T = . 

Naturally, alternative distributions could be estimated by drawing X from another distribution 

and using different coefficient vectors. As noted by Autor, Katz and Kearney (2005a), this 

procedure is equivalent to numerically integrating the estimated conditional quantile functions 

over the distributions of X and θ . The principles of the MM estimator and of the QQR are 

identical. First, since the observations are assumed to be iid, the QQR uses all observations 

instead of a single one with each of the m different quantile regression coefficients. Second, if 

, the probability that a coefficient m →∞ ( )0
ˆ

jβ τ  is chosen is exactly equal to 1j jτ τ −−  since 

for all 1j iu jτ τ− ≤ ≤ , ( ) (0 0i j
ˆ ˆu )β β τ=  and ( )1j i j ju 1Pr jτ τ τ τ− −≤ ≤ = − . In other words, if 

, the MM estimator is numerically identical to the QQR. m →∞

A Monte-Carlo simulation illustrates this result. We keep the same data-generating process as 

in Section 5.1 and estimate  in 5000 replications using a sample of 400 observations(0.5cq )

                                                          

19. 

Figure 1 plots the correlation between the MM estimator and the QQR as a function of m. The 

equality of both estimators when  is clear. Figure 2 shows that the imperfect m →∞
 

18 Albrecht, Van Vuuren and Vroman (2004) derive the asymptotic distribution under the special assumption that 
the number of replications is of the same order as the number of observations. Therefore, they obtain different 
results. Their assumption entails the efficiency of the estimator, as explained below. 
19 Other quantiles, sample sizes or estimands lead exactly to the same conclusions. 
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correlation between the QQR and the MM estimator is simply due to the noise added by the 

bootstrap procedure of MM. The MSE of the QQR is always lower than the MSE of MM but 

both converge if . Almost all applications of the MM procedure set m equal to the 

sample size. We note that the MSE of the MM estimator for 

m →∞

1 0 400m n n= = =  is more than 

twice as large as the MSE of the QQR and, thus, the efficiency loss is really important in most 

of the applications. 

5 4X + 0,1t =

( )0 0,N ( ) ( )1 0,1Nε ∼

Table 4 shows that the bias of the MM estimator does not depend on m, as expected, but the 

standard errors of the estimates diminishes as we increase the number of replications. Thus, a 

large number of replications is necessary in order to obtain good MSE properties. Naturally, 

estimating a large number of replications is time consuming especially when the number of 

observations is high and the estimation of the whole quantile regression process is not 

possible. QQR can be computed faster and uses the information contained in the data more 

efficiently. Simulation procedures are useful if there is no analytical solution to the problem. 

However, they are not necessary if we can, as in our case, use moment conditions in order to 

derive an analytical estimator for the parameters of interest. 

5.3. Semiparametric estimator 

We now present the results of a Monte-Carlo simulation using nonparametric quantile 

regression in the first-step. We consider a nonlinear model with a single regressor and a 

constant. The error term is again hit by a linear heteroscedastic scale. Formally 

 ( ) ( ) ( ) ( )( )cos 2sin 3 0.5Y t X X t Xε= + + + +   

where 4X T = ∼ , ( )1 0,X T N= ∼ 1 , ( ) ( )0 tε ∼ 1  and . 

We consider 3 different quantiles: 5%, 25% and 50% and 4 different sample sizes n n0 1= : 

100, 400, 1600 and 6400. The number of replications was set to 8000, 4000, 2000 and 1000, 

respectively. We use an Epanechnikov kernel and estimate 100 quantile regressions at each 

observation. Choosing a bandwidth for a semi-parametric estimator is a difficult task since the 

bandwidth does not appear in the first-order approximation of the asymptotic distribution. 

Here, it is even harder because we must choose not only one but a large number of 

bandwidths: one for each quantile regression. We make the simplifying assumptions of Yu 

and Jones (1998), which implies that the optimal bandwidth20 for one quantile can be derived 

                                                           
20 This is the optimal bandwidth for the nonparametric estimator and therefore cannot be the optimal bandwidth 
for the second step estimator. However, we can hope that this is a sensible bandwidth once we have corrected for 
the convergence rate. In any case, the asymptotic properties are still valid without the optimal bandwidth. 
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from the optimal bandwidth for another quantile and we are left with the choice of a single 

bandwidth. We set the bandwidth of the median regression quite arbitrarily to ( )1 4 sd in X− . 

Table 4 reports the bias, the standard errors, the mean squared error (MSE), the skewness and 

the kurtosis of ,  and QT . The relative mean squared error of the sample quantile is 

also given for q  and . The consistency, the convergence rate and the asymptotic 

normality of the estimates are confirmed by the Monte Carlo simulations but more 

observations are needed when the error terms are Cauchy distributed than when they are 

normally distributed. The relative MSE of the sample quantiles converges to 1 as predicted by 

the asymptotic results. Once again we note a difference between  and : in finite samples, 

the QNQR tends to have a higher MSE than the sample quantiles in the presence of Cauchy 

disturbances while it tends to have a smaller MSE in the presence of normal disturbances. 

Table 5 evaluates the analytic estimator of the variance by using the same criteria as in Table 

2. It was not possible to bootstrap the results because of the computation time. Analytical 

standard errors tend to be close to the observed standard errors and fairly precise. With at least 

400 observations the empirical sizes are close to the nominal ones. These results lead us to 

conclude that the proposed procedures constitute a complete system for estimating QTEs and 

for making consistent inference. 

0ˆ
Sq

0ˆ

1ˆ
Sq nET

1
SS q̂

0ˆ
Sq 1ˆ

Sq

6. Applications: black-white wage differentials 

As explained in the introduction and in Section 5.2., several estimators similar to the QQR 

have already be applied in different contexts: Gosling, Machin and Meghir (2000), Albrecht, 

Björklund and Vroman (2004), Machado and Mata (2005), Autor, Katz and Kearney (2005a 

and 2005b), for instance. In this section, we show in another application how the estimation of 

QTE complements the estimation of ATE and how the semiparametric estimator allows us to 

relax too restrictive assumptions. 

Race differentials in labor market outcomes remain persistent. Although earnings appeared to 

converge during most of the postwar period, the black-white wage gap has now stagnated for 

the last two decades. We complement the traditional decomposition of the racial wage gap 

(see Altonji and Blank, 1999, for a survey) by considering the wage gap at different points of 

the distribution, which allows us to answer different questions about the racial wage gap. We 

can test several hypothesis like the presence of a glass ceiling or of sticky floors. Usually, the 

literature has identified the existence of a glass ceiling when the pay gap is significantly larger 
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at the top of the distribution. Arulampalam, Booth and Bryan (2005) identify a sticky floor 

when the wage gap is significantly larger at the bottom of the wage distribution. Both 

hypotheses have been put forward as explanations for the black/white wage gap. Some 

scholars have argued that blacks have become increasingly divided into two economic worlds: 

the emerging black middle class that rejoins the white middle class and the excluded black 

underclass, left out of the white economic world. This sticky floor hypothesis should appear 

in our results as an in absolute value decreasing black wage gap as we move along the wage 

distribution. Alternatively, if black employees are being discriminated against in promotion, 

that is if black employees have a lower probability of being promoted to jobs with higher 

responsibilities even if they have the same ability distribution as the white employees, then we 

should observe a glass ceiling pattern, i.e. a higher racial wage gap at the top of the 

distribution. 

We use data from the Merged Outgoing Rotation Groups of the Current Population Survey for 

the year 2001. We restrict the sample to men who are between 16 and 65 years old. To 

simplify the analysis, we simply multiply the censored observations by 1.33. This has 

virtually no effect on the results since less than 1% of the observations are censored. An 

alternative would be to estimate censored quantile regression. We consider the differences in 

log wage between white and black workers and define T 0i =  for white and T  for black. 

Descriptive statistics for the variables of interest are given in Table 6. The covariates consist 

of education, potential experience and three regional dummies (south is the excluded 

category). The means of the relevant variables show that black workers are less educated, 

slightly more experienced and concentrated in the South region. 

1i =

6.1. Parametric estimator 

Figure 3 plots the decomposition (6) of the black wage gap with a 95% confidence interval 

obtained by the analytical estimator of Section 3.3. The estimated total differential shows that 

the black wage gap is higher at the high end of the distribution than at the lower end. This 

could be interpreted as an indicator for the glass ceiling phenomenon. However, this could 

also arise from different distributions of characteristics for white and black. In fact, after 

correcting for the effects of characteristics, we find that the black wage gap is first increasing 

but is then stable from the 30th percentile until the end of the distribution. We cannot really 

interpret this pattern as a glass ceiling effect since we would expect the race gap to increase 

particularly at the high end of the distribution. Thus, none of the two hypothesis (glass ceiling 
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and sticky floor) is verified and we observe a lower racial wage gap at the low end of the 

distribution. We see two possible explanations for this pattern. Discrimination is probably 

more difficult to justify21 for very basic jobs, where all employees are doing the same task. 

Customer discrimination is maybe also less relevant for some low-paid jobs, which are 

occupied predominantly by black workers. 

This decomposition depends crucially on the parametric assumption for consistency. A simple 

test of the functional form can be performed by comparing the sample quantiles with the 

quantiles implied by the linear quantile regression model. Figure 4 plots the differences 

between both estimates for white22 workers with a 95% bootstrap confidence interval. It is 

obvious that the model is misspecified with too high estimates in the extreme parts of the 

distribution and too low estimates in the middle of the distribution. For the majority of 

quantiles the differences are significantly different from 0. In order to suppress the parametric 

assumption, we now estimate the first step nonparametrically. 

6.2. Semiparametric estimator 

Since there are only 11 different values for education and 4 different regions, we can use 

exact nonparametric matching on these variables and must smooth only over experience. In 

this dimension, we use the same kernel and bandwidths as in Section 5.3. By looking at 

Figure 4, we can now check if the quantiles implied by the model and the raw quantiles are 

similar. The differences are now flat and not U-shaped any more as it was the case for the 

parametric first-step. Therefore, we trust these results more than those of Section 6.1. 

The decomposition plotted in Figure 5 does not really contradict the above interpretation. The 

analytically estimated standard errors are higher and the estimates are less smooth but the 

main message remains unchanged. The different distribution of characteristics explains about 

one third of the level in wages and a large part of the glass ceiling pattern. Neither a glass 

ceiling nor a sticky floor phenomenon can be observed but the racial wage discrimination is 

lower at the lowest part of the distribution. 

7. Conclusion 

This paper proposes and implements parametric and semiparametric procedures to estimate 

unconditional distributions in the presence of covariates. This allows us to estimate 

                                                           
21 In order to avoid a lawsuit. 
22 The differences are not significantly different from 0 for black workers, but the sample size is much lower. 
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counterfactual distributions and quantile treatment effects. The estimators are based on the 

estimation of the conditional distribution by parametric or nonparametric quantile regression. 

The first step estimates are then integrated over the range of the covariates in order to obtain 

the unconditional distribution. n  consistency and asymptotic normality of both estimators 

are shown and analytical procedures to estimate their variances are provided. We also show 

that the parametric estimator of unconditional distributions is more precise than the sample 

quantile23 and that the semiparametric estimator of quantile treatment effects achieves the 

efficiency bound. Monte-Carlo simulations show that the asymptotic results are useful 

approximations in medium sample sizes. We apply the proposed estimators to decompose the 

black-white gap in earnings and find no glass ceiling effect for blacks. 

The estimators proposed in this paper are based on the unconfoundedness assumption. In 

order to estimate quantile or average treatment effects, three types of estimators have been 

proposed: the regression estimators, the matching (in the restrictive way) estimators and the 

estimators using the propensity score. Our estimators are clearly of the first type since we 

estimate the conditional distribution function by quantile regression. If fully nonparametric 

procedures are used, all approaches yield numerically identical results. However, in 

applications, a fully nonparametric approach is often not possible and the different restrictions 

will have different effects on the estimation. The more we go into the parametric direction, the 

more the choice of the approach matters. If the sample size is too small or if the number of 

covariates is too high, the two tractable competitors are the propensity score matching and the 

QQR. While propensity score matching estimators assume that ( )p X  satisfies a parametric 

distributional assumption, the QQR assumes that we know up to a finite number of parameters 

how Y depends on X. It depends on the application in question which of these assumptions is 

more likely to be satisfied. We have a preference for the second type of assumptions because 

they are often easier to interpret24 and because no distributional assumption is necessary25. 

New directions of research naturally arise from this paper. The efficiency of the parametric 

estimator can certainly be improved by using weighted quantile regression (Zhao 1999). It 

would be interesting to investigate if this weighted estimator attains an efficiency bound. A 

method to choose the bandwidths is the most urgent development needed to fully specify the 

                                                           
23 Naturally, the sample quantiles can only be used to estimate observed distributions. 
24 The coefficients have a natural interpretation as rates of return to the human capital characteristics. Theoretical 
models can help to choose the parametric specification. 
25 Probit or logit estimators are consistent only if the latent error term is normally respectively logistically 
distributed. 
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estimator using nonparametric quantile regression. The optimal choice of smoothing 

parameters is a problem appearing in the implementation of a lot of semiparametric estimators 

proposed during the last decade. We must say that no fully satisfying solution has so far been 

developed. An additional problem, which is specific to the proposed estimator, is that the 

optimal bandwidth probably depends on the quantile of the regression and, thus, a huge 

number of different bandwidths must be chosen. The computational burden may simply be 

too high for a large range of methods, and simplifying assumptions, such as the ones used in 

Section 5.3, may be unavoidable. 
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Appendix A: Proof of theorem 1 

Theorems 1 and 2 are applications of the results of Chen, Linton and Van Keilegom (2003, 

CLV hereafter). They extend the results of Newey (1994) and Andrews (1994) for non-

smooth objective functions, allowing for a non-parametric first step estimation. We follow, as 

much as possible the notation of CLV but we must replace their θ  by q since θ  already 

symbolizes the quantile of interest in the quantile regression framework. We derive the 

asymptotic distribution of q ( )ˆc θ . The other results can be derived similarly. Define 

( ), ,i i i iZ Y X T= , 

( )( ) ( )( )
1

0

, , 1 ' 0i im X q X q dβ θ β τ⋅ = − − ≤∫ τ

,

, 

( )( ) ( )( )
1

, ,
T

M q E m X qβ β
=
 ⋅ = ⋅  , 

( )( ) ( )( )1
1

: 1
, ,

i

n i
i T

M q n m X qβ β−

=

⋅ = ⋅∑ , . 

The moment condition M is satisfied since, at the true parameters ( )0β ⋅  and q , c

( )( ) ( )( ) ( )( )

( )( ) ( ) ( ) ( ) ( )

1

0 0 01 1
0

0 01 1

, , , 1 0

Pr 0 1 0.

c c cT T

c c cY YT T

M q E m X q E X q d

E Y q X E F q X F q T

β β θ β τ

θ θ θ

= =

= =

 
 ⋅ = ⋅ = − − ≤  

 
  = − < = − = − = =   

∫ τ
 

The asymptotic distribution of the first step parametric quantile regression process has been 

derived by Gutenbrunner and Jureckova (1992): 

( ) ( )( ) ( )0 0
ˆn bβ τ β τ τ− ⇒ , 

where b  is a mean zero Gaussian process with covariance function: ( )⋅

( ) ( ) ( )( ) ( ) ( )1
1 0 1cov ' min , ' ' .t t tb b D D Dτ τ τ τ ττ τ τ 1− −= −       (12) 

The consistency of  is straightforward to show and is based on the consistency of the 

quantile regression coefficients. Thus, we concentrate on the asymptotic normality and 

examine the 6 conditions of theorem 2 in CLV. 

ˆcq

Condition (2.1):  is, by definition, the ˆcq θ th quantile of the sample ( ){ }{ }0 1 : 1

ˆ
i

J

i j j i T
X β τ

= =

 where 

each “observation” is weighted by 1j jτ τ −− . Koenker and Bassett (1978) show that quantiles 

can also be defined as solutions to optimization problems.  solves ˆcq
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( ) ( )( ) ( )( )
1

1 1
1 1 1

: 1 1 : 1 0

ˆ ˆarg min arg min
i i

J

j j i j iq qi T j i T

n X q n Xθ θ q dτ τ ρ β τ ρ β τ− −
−

= = =

− ≤ =∑∑ ∑ ∫ τ≤

)

. 

( ˆ,nM q β  is the derivative of this problem. Koenker and Bassett (1978) show in theorem 3.3 

that ( ) ( 1 2ˆ, nβ ο −= )ˆn cM q  and, thus, satisfies condition (2.1). 

Condition (2.2): 
( )( ) ( )( )

1
0

1 01
0

,
1 0c

cT

M q
E X q

q q
β

dθ β τ τ
=

∂ ⋅  ∂
= − − ≤Γ =  ∂ ∂  

∫  

( ) ( ) ( ) ( )
( ) ( )0

0 01

1
1cY

c cY YT

F q T
E F q X f q T

q q=

∂ =∂  = − = − = − = ∂ ∂
. 

By assumption P.vii. ( ) (0 1cYf q T = )

⋅  )

 is continuous and not zero and thus conditions 2 (i) and 

(ii) of CLV are satisfied. 

Condition (2.3): , the pathwise derivative of , exists 

and 

( )( ) ( ) ( )2 0 0 0
ˆ,q β β βΓ ⋅ ⋅ −

( )( ) ( ) ( )2 0 0 0
ˆβ β β

( )( 0,M q β ⋅

,q  Γ ⋅ ⋅ − ⋅  ( ) ( ) ( ) ( )( ) ( ) ( )( )( )0 0 0
ˆ

Y Y Yq X X F q X X0 0 F qβ β
1T

E f
=

 = −  
 

since 
( )( )

( ) ( ) ( )( )01 0X q dτ τ
 
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 

1
0

0
i

k k

β
θ β

β τ
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, ,im X q
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0 ( ) if (0k iYF q≠ )Xτ  and 

( )( )
( ) ( )

1
0

0
0

, ,

k k

q
iX q d f q X Xβ τ τ
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The last equality follows from ( )( ) ( ) (
1

0 0
0

1 i Y )iX q d F q Xβ τ τ≤ =∫ . Now, by assumption P.iv., 

( ) ( 00Y )f q X  is continuous and ( ) ( )00 'Yf q X  is bounded. Moreover, by assumption P.vii., iX  

is bounded. Thus condition 3 (i) is satisfied with ( ) ( )0sup 'cYc f q X= X  and condition 3 (ii) 

is also satisfied for the same reasons. 

Condition (2.4): The firs step estimator is a parametric, n  consistent estimator and thus 

satisfies condition (2.4). 

Condition (2.5): We verify conditions (2.5) by applying theorem 3 of CLV. By definition: 

( )( ) ( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ( )( ) ( )( )( )

1
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0

1 1

0 0
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.X q X q d X q X q

β β β τ β τ τ

dβ τ β τ τ β τ β τ τ

⋅ − ⋅ ≤ ≤ − ≤

≤ ≤ − ≤ + ≤ − ≤

∫
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We consider only the last term of the sum of the above right hand side, since the other term 

can be treated similarly (using the fact that iX  is bounded by assumption P.vii.): 

( )( ) ( )( )( )

( )( ) ( )( )( )

( ) ( ) ( ) ( )

1

' 0

1

0

0 0

sup 1 ' 1

1 1

q q

Y Y

E X q X q d

E X q X q d

E F q X F q X K

δ
β τ β τ τ

β τ δ β τ δ

δ δ δ

− ≤

  ≤ − ≤ 
  

  ≤ ≤ + − ≤ − 
  
 ≤ + − − ≤ 

∫

∫ τ   

for some , where the last inequality is due to the assumption that K < ∞

( ) ( ), 0sup 'u X Yf u X < ∞ . Hence condition 3.2 is satisfied with r 2=  and 1 2s =  and condition 

3.3 holds by remark 3(ii) in CLK. 

Condition (2.6): We now verify condition (2.6’) which implies condition 2.6. Condition (2.6’) 

(i) is trivially satisfied: ( )( ) ( )( )1
0 1 0

: 1
, ,

i

n c i c
i T

n m X qβ β−

=

,M q ⋅ = ⋅∑ ,  

(shown above) and 

( )( )01
, , 0cT

E m X q β
=
 ⋅ = 

( )( ) ( ) ( )( )2

0 01
, ,c cYT

m X q E F q Xβ θ
=1

var
T =

1  ⋅ = −  ≤  
. 

In order to verify condition (2.6’) (ii) remember that: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )( )2 0 0 0 0 00 0 0
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asymptotically normally distributed with mean 0 and variance 
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assumptions P.iv and P.vii. 

We can now derive ( ) ( )( ) ( ) ( )( )1 0 0, , , , 'i c i i c iE m X q Z m X q Zβ ψ β ψ ≡ + + V . Note first that 

( 0, ,i cm X q )β  and ( )iZψ  are uncorrelated. We have already derived 
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01 c iYT
E F q Xβ θ
=
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( ))i
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. Then, using the notation introduced in (12), 

we find that Zψ  is equal to 
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ˆ ˆ'cov , 1 1c c c c X XY Y Y Yf q x f q z x F q x F q z zdF x T dF z Tβ β  = = ∫ ∫  

or, integrating over the quantiles instead than over the distribution of X, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

0 0 0 0
0 0

ˆ ˆ' cov , 'c c c cY Y Y Y ' 'E f q X X F q X E f q X X F q X d dτ β τ β τ τ τ τ    = =    ∫ ∫ . 

Since all conditions of theorem 2 of CLV are satisfied, we apply this theorem and obtain (7). 

All other results of our theorem 1 can be derived similarly. 

Appendix B: Proof of theorem 2 

As for the parametric estimator, we derive only the asymptotic distribution of the estimator of 

the counterfactual quantile . Since the structure of the proof is basically the same for the 

estimator using parametric first step estimation, we discuss only the differences. Define 
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We obtain then the following representation: 
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which is finite by the overlap assumption. Thus, we can apply theorem 2 of CLV and we 
obtain (11). The other results from our theorem 2 can be proven similarly. For instance, using 
the same procedure as for , we obtain ˆ S

cq

( )
( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( )

2

1 10 1 11 1
1 1 1 2

11

1
ˆ 0,

1

Y Y YT TS

Y

E F q X E F q X F q X
n q q N

f q T

θ
= =

  
1

 − + −     − →  
=  

 

, 

which is the variance of the θ th quantile of 1Y T =  by the law of total variance. 

Appendix C: Efficiency bounds 

Firpo (2005) derives the efficiency bound for the QTE and the QTET assuming 

unconfoundedness, overlap and uniqueness of quantiles. Although his notation is almost 

totally different from our, we show in this appendix that the asymptotic variances of the 

proposed estimators QT  and  is equal to the efficiency bounds. nET nQTE
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we obtain the equality between the asymptotic variance of QT  and the efficiency bound. nE

Now, for the , Firpo derives the bound nQTET
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Using the same results as for the QTE and noting that ( ) ( )
( )

1X

X

f X T
p X p

f X
=

= , 

( ) ( )
( ) (

0
1 1X

X

f X T
)p X p

f X
=

− = −  and ( )
( )

( )
( )( )

1
1 0 1

X

X

f X T pp X
p X f X T p

=
=

− = −
, we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )

( )

( ) ( ) ( ) ( )( )
( ) ( )

( )

( ) ( ) ( ) ( )( ) ( ) ( )

1 1, 1 1 1, 11, 1

22 2
1 1, 1

1 1, 1 1 1, 1

2

1 1, 1

2

1 1 1 1, 11

1var , 1

1

1
1

1

1 1

Y T Y TT
X

Y T

Y T Y T

X

Y T

c cY Y Y TT

p x F q x F q xp X g Y X T
E f

p p f q T

F q x F q x
f x T dx

pf q T

E F q X F q X f q T

θ θθ

θ

θ θ

θ

θ

= ==

=

= =

=

==

   −=   =
  = 

−
= =

=

 = − = 

∫

∫

x dx

 

and 

( ) ( )
( )( )

( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( )

( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )
( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

22
0 0, 1 0 0, 10, 1

22 2
0 0, 1

0 0, 1 0 0, 1

2

0 0, 1

2

0 0 01

1var , 0

1 1 1

1 1
1

1 0 1

1 1 0 1

Y T Y TT
X

Y T

XY T Y T

X

XY T

c c X X cY Y YT

p x F q x F q xp X g Y X T
E f x d

p p X p p x f q T

F q x F q x f x T
f x T dx

f q T f x T p

E F q X F q X f X T f X T f q T

θ θθ

θ

θ θ

θ

= ==

=

= =

=

=

   −=   =
 − − = 

− =
= =

= = −

 = − = = = 

∫

∫

.

x

  

Similar calculations show that 
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Thus, the asymptotic variance of  is the same as the efficiency bound. nQTET

 35



References 

Abadie, A., Angrist, J. and G. Imbens (2002): "Instrumental Variables Estimates of the Effect of Subsidized 

Training on the Quantiles of Trainee Earnings", Econometrica, 70, 91-117. 

Abadie, A., and G. I. Imbens (2006): "Large Sample Properties of Matching Estimators for Average Treatment 

Effects", Econometrica, 74, 235-267. 

Albrecht, J., A. Björklund, and S. Vroman (2003): "Is There a Glass Ceiling in Sweden?", Journal of Labor 

Economics, 21, 145-177. 

Albrecht, J., A. Van Vuuren, and S. Vroman (2004): "Decomposing the Gender Wage Gap in the Netherlands 

with Sample Selection Adjustments”, mimeo. 

Altonji, J. G., and R. M. Blank (1999): "Gender and Race in the Labor Market", in Handbook of Labor 

Economics, Volume 3C, ed. by O. C. Ashenfelter and D. Card. New York: Elsevier Science Press, 3143-3259. 

Andrews, D. W. K. (1994): "Asymptotics for Semiparametric Econometric Models via Stochastic 

Equicontinuity", Econometrica, 62, 43-72. 

Angrist, J., V. Chernozhukov, and I. Fernández-Val (2006) "Quantile Regression under Misspecification, with an 

Application to the U.S. Wage Structure", Econometrica, forthcoming. 

Arulampalam, W., A. L. Booth, and M. L. Bryan (2005): "Is there a Glass Ceiling over Europe? Exploring the 

Gender Pay Gap across the Wage Distribution", mimeo. 

Autor, D. H., L. F. Katz, and M. S. Kearney (2005a): "Rising Wage Inequality: The Role of Composition and 

Prices", MIT mimeo. 

Autor, D. H., L. F. Katz, and M. S. Kearney (2005b): "Trends in U.S. Wage Inequality: Re-Assessing the 

Revisionists", MIT mimeo. 

Blinder, A. (1973): "Wage Discrimination: Reduced Form and Structural Estimates", Journal of Human 

Resources, 8, 436-455. 

Buchinsky, M. (1994): "Changes in US Wage Structure 1963-87: An Application of Quantile Regression", 

Econometrica, 62, 405-458. 

Chaudhuri, P. (1991): "Nonparametric Estimates of Regression Quantiles and their Local Bahadur 

Representation", Annals of Statistics, 19, 760-777. 

Chaudhuri, P., K. Doksum, and A. Samarov (1997): "On Average Derivative Quantile Regression", Annals of 

Statistics, 25, 715-744. 

Chen, X., O. Linton, and I. Van Keilegom (2003): "Estimation of Semiparametric Models when the Criterion 

Function is not Smooth", Econometrica, 71, 1591-1608. 

Chernozhukov, V. and C. Hansen (2006): "Instrumental quantile regression inference for structural and treatment 

effect models", Journal of Econometrics, forthcoming. 

 36



Chesher, A. (2003): "Identification in nonseparable Models", Econometrica, 71, 1405-1441. 

Cowell, F. (2000): "Measurement of Inequality", in Handbook of Income Distribution, ed. by A. Atkinson, and 

F. Bourguignon. Amsterdam: North Holland, 87-166. 

DiNardo, J., N. M. Fortin, and T. Lemieux (1996): "Labor Market Institutions and the Distribution of Wages, 

1973-1992: a semiparametric approach", Econometrica, 65, 1001-1046. 

Donald, S. G., D. A. Green, and H. J. Paarsch (2000): "Differences in Wage Distributions between Canada and 

the United States: An Application of a Flexible Estimator of Distribution Functions in the Presence of 

Covariates", Review of Economic Studies, 67, 609-633. 

Firpo, S. (2005): "Efficient Semiparametric Estimation of Quantile Treatment Effects", mimeo. 

Frölich M. (2005): "Propensity Score Matching without Conditional Independence Assumption", mimeo. 

Gosling, A., S. Machin, and C. Meghir (2000): "The Changing Distribution of Male Wages in the UK", Review 

of Economic Studies, 67, 635-686. 

Gutenbrunner, C., and J. Jurecková (1992): "Regression Rank-Scores and Regression Quantiles", Annals of 

Statistics, 20, 305-330. 

Hahn, J. (1998): "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average 

Treatment Effects", Econometrica, 66, 315-331. 

Hall, P., and S. Sheather (1988): "On the Distribution of a Studentized Quantile", Journal of the Royal Statistical 

Society, Series B, 50, 381-391. 

Hausman, J. A. (1978): "Specification Test in Econometrics", Econometrica, 46, 1251-1271. 

Heckman, J. J., H. Ichimura, and P. Todd (1998): "Matching as an Econometric Evaluation Estimator", The 

Review of Economic Studies, 65, 261-294. 

Heckman, J. J., J. Smith and N. Clements (1997): "Making the Most out of Programme Evaluations and Social 

Experiments: Accounting for Heterogeneity in Programme Impacts", Review of Economic Studies, 64, 487-535. 

Hendricks, W., and R. Koenker (1991): "Hierarchical Spline Models for Conditional Quantiles and the Demand 

for Electricity", Journal of the American Statistical Association, 87, 58-68. 

Hirano, K., G. Imbens, and G. Ridder (2003): "Efficient Estimation of Average Treatment Effects Using the 

Estimated Propensity Score”, Econometrica, 71, 1161-1189. 

Imbens, G. I. (2004): "Nonparametric Estimation of Average Treatment Effects under Exogeneity: a Review", 

Review of Economic and Statistics, 86, 4-29. 

Juhn, C., K. M. Murphy, and B. Pierce (1993): "Wage Inequality and the Rise in Returns to Skill", Journal of 

Political Economy", 101, 410-442. 

Koenker, R. (2005): Quantile Regression. Cambridge: Cambridge University Press. 

Koenker, R., and G. Bassett (1978): "Regression Quantiles", Econometrica, 46, 33-50. 

 37



Koenker, R., and S. Portnoy (1987): "L-Estimation for Linear Models", Journal of the American Statistical 

Association, 82, 851-857. 

Koenker, R., and Z. Xiao (2002): "Inference on the Quantile Regression Process", Econometrica, 70,1583-1612. 

Lechner, M. (2001): "A Note on the Common Support Problem in Applied Evalutation Studies", University of 

St. Gallen, discussion paper 2001-01. 

Lemieux, T. (2006): "Increasing Residual Wage Inequality: Composition Effects, Noisy Data, or Rising Demand 

for Skills", American Economic Review, forthcoming. 

Machado, J. A. F., and J. Mata (2005): "Counterfactual Decomposition of Changes in Wage Distributions using 

Quantile Regression", Journal of Applied Econometrics, 20, 445-465. 

Melly, B. (2005a): "Public-Private Sector Wage Differentials in Germany: Evidence from Quantile Regression", 

Empirical Economics, 30, 505-520. 

Melly, B. (2005b): "Decomposition of Differences in Distribution using Quantile Regression", Labour 

Economics, 12, 577-590. 

Melly, B. (2006): "Public and Private Sector Wage Distributions controlling for Endogenous Sector Choice", 

mimeo. 

Newey, W. K. (1994): "The Asymptotic Variance of Semiparametric Estimators", Econometrica, 62, 1349-1382. 

Neyman, J. (1923): "On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. 

Section 9", translated in Statistical Science, 5 (1990), 465-480. 

Oaxaca, R. (1973): "Male-Female Wage Differentials in Urban Labor Markets", International Economic Review, 

14, 693-709. 

Portnoy, S. (1991): "Asymptotic Behavior of the Number of Regression Quantile Breakpoints", SIAM Journal of 

Scientific and Statistical Computing, 12, 867-883. 

Powell, J. L. (1984): "Least absolute deviations estimation for the censored regression model", Journal of 

Econometrics, 25, 303-325. 

Powell, J. L., (1986): "Censored Regression Quantiles", Journal of Econometrics, 32, 143-155. 

Siddiqui, M. (1960): "Distribution of Quantiles from a Bivariate Population", Journal of Research of the 

National Bureau of Standards, 64, 145-150. 

Silverman, B.W. (1986): "Density estimation", London: Chapman and Hall. 

Yu, K., and M. C. Jones (1998): "Local Linear Quantile Regression", Journal of the American Statistical 

Association, 93, 228-237. 

Zhao, Q. (1999): "Asymptotically Efficient Median Regression in the Presence of Heteroscedasticity of 

Unknown Form", Econometric Theory, 17, 765-784. 

 38



Table 1: Monte Carlo simulation, parametric first step, point estimates. 

Sample 
size 

Bias St. dev. MSE Skew. Kurt. 
Relative MSE 
of the sample 

quantile 
 5th percentile, control units, true value: -7.5032 

100 -2.0064 6.049 40.6123 -2.8884 21.2894 0.5156 
400 -0.4751 2.1886 5.0148 -0.967 5.2957 0.888 
1600 -0.1059 1.0357 1.0834 -0.498 3.4822 1.0279 

 25th percentile, control units, true value: -0.0795 
100 -0.0413 0.411 0.1706 -0.3001 3.3652 1.107 
400 -0.0099 0.1986 0.0395 -0.1669 3.2084 1.1776 
1600 -0.0038 0.1004 0.0101 -0.128 2.9951 1.154 

 50th percentile, control units, true value: 1.8887 
100. 0.0090 0.3273 0.1072 0.0661 3.0657 1.2014 
400 0.0007 0.1640 0.0269 0.0085 2.9647 1.2251 
1600 0.0003 0.0815 0.0066 -0.0403 2.9281 1.2555 

 5th percentile, treated units, true value: -1.2798 
100. 0.0193 0.3068 0.0945 -0.0128 2.9902 1.4539 
400 0.0022 0.1528 0.0234 -0.0155 3.0263 1.4868 
1600 0.0009 0.0754 0.0057 -0.0509 2.9009 1.5398 

 25th percentile, treated units, true value: 0.5125 
100 0.0131 0.2301 0.0531 0.0227 2.8731 1.3348 
400 0.0002 0.1159 0.0134 -0.0162 2.9842 1.3453 
1600 -0.0002 0.0564 0.0032 0.0191 3.0702 1.3089 

 50th percentile, treated units, true value: 1.8918 
100 0.0098 0.2320 0.0539 0.0041 2.9503 1.3240 
400 0.0001 0.1152 0.0133 -0.0103 2.9435 1.3615 
1600 0.0004 0.0574 0.0033 0.0071 3.1482 1.3525 

 5th percentile, QTET, true value: 6.2250 
100. 2.1150 6.2848 43.9678 3.0180 21.9114  
400 0.4812 2.2014 5.0768 0.9617 5.2372  
1600 0.1059 1.0374 1.0869 0.4756 3.4395  

 25th percentile, QTET, true value: 0.5919 
100 0.0549 0.4377 0.1946 0.3465 3.4224  
400 0.0108 0.2068 0.0429 0.1663 3.1594  
1600 0.0036 0.1037 0.0108 0.0654 2.8879  

 50th percentile, QTET, true value: 0.0031 
100 -0.0009 0.3443 0.1186 -0.0391 3.1260  
400 -0.0002 0.1674 0.0280 -0.0179 3.0266  
1600 -0.0001 0.0823 0.0068 0.0349 2.9636  

The number of replications is 2500, 5000 and 10000 respectively for 1600, 400 and 100 observations. 

 39



Table 2: Monte-Carlo simulation, parametric first step, estimation of the standard errors. 

Empirical size for a confidence level ofEstimator 1% 5% 10% 
Median 

bias MAD 

 5st percentile, 100 observations, “true” value: 6.2848 
analytic  0.0778 0.1251 0.1632 -2.1858 3.5338 

bootstrap 0.039 0.0695 0.0935 -0.4586 3.6826 
 5st percentile, 400 observations, “true” value: 2.2014 

analytic  0.0404 0.0810 0.1236 -0.2115 0.6732 
bootstrap 0.0195 0.0450 0.0820 0.1052 0.5969 

 5st percentile, 1600 observations, “true” value: 1.0374 
analytic  0.0240 0.0644 0.1148 -0.0475 0.1695 

bootstrap 0.0210 0.0510 0.1030 -0.0071 0.1559 
 25st percentile, 100 observations, “true” value: 0.4377 

analytic  0.0098 0.0413 0.0833 -0.0044 0.0571 
bootstrap 0.0073 0.0323 0.0650 0.0372 0.0691 

 25st percentile, 400 observations, “true” value: 0.2068 
analytic  0.0114 0.0530 0.0986 -0.0018 0.0131 

bootstrap 0.0115 0.0535 0.1070 0.0026 0.0165 
 25st percentile, 1600 observations, “true” value: 0.1037 

analytic  0.0100 0.0548 0.1032 -0.0025 0.0038 
bootstrap 0.0090 0.0650 0.1030 -0.0019 0.0192 

 50st percentile, 100 observations, “true” value: 0.3443 
analytic  0.0083 0.0438 0.0853 0.0072 0.0278 

bootstrap 0.0060 0.0380 0.0848 0.0222 0.0370 
 50st percentile, 400 observations, “true” value: 0.1674 

analytic  0.0114 0.0502 0.1000 -0.0018 0.0064 
bootstrap 0.0100 0.0515 0.0990 0.0002 0.0104 

 50st percentile, 1600 observations, “true” value: 0.0823 
analytic  0.0088 0.0472 0.1016 0.0001 0.0016 

bootstrap 0.0120 0.0520 0.1070 -0.0001 0.0235 
For the analytic estimator, the number of replications is 2500, 5000 and 10000 respectively for 
1600, 400 and 100 observations. For the bootstrap estimator, the number of replications is 1000, 
2000 and 4000 respectively for 1600, 400 and 100 observations. 
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Table 3: Monte-Carlo simulation, point estimates of ( )0.5cq  with 400 observations. 

Estimator Bias 
Standard 

error 
MSE 

Relative 
MSE 

Correlation 

 true value: 1.8887 
MM with:      

100m =  0.0074 0.3968 0.1575 5.8711 0.3855 
400m =  0.0014 0.2416 0.0584 2.1762 0.6689 

1000m =  -0.0006 0.2015 0.0406 1.5138 0.8167 
10000m =  0.0008 0.1683 0.0283 1.0552 0.9760 

100000m =  0.0007 0.1643 0.0270 1.0059 0.9976 
( )ˆ 0.5cq  0.0004 0.1638 0.0268 1.0000 1.0000 

Results based on 5000 replications. 
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Table 4: Monte Carlo simulation, nonparametric first step, point estimates. 

Sample 
size 

Bias St. dev. MSE Skew. Kurt. 
Relative MSE 
of the sample 

quantile 
 5th percentile, control units, true value: -9.9967 

100 -4.0656 11.1005 139.735 -3.993 33.843 0.2791 
400 -2.4228 3.9373 21.3688 -1.2106 5.6593 0.3807 
1600 -1.3499 1.6497 4.5423 -0.4672 3.3023 0.4303 
6400 -0.5805 0.7238 0.8603 -0.2607 3.0978 0.5537 

 25th percentile, control units, true value: 2.4906 
100 -0.3502 1.2111 1.5892 -0.4817 3.2603 0.794 
400 -0.1555 0.5905 0.3728 -0.3264 3.1843 0.9056 
1600 -0.0678 0.2967 0.0926 -0.174 3.1047 0.9555 
6400 -0.0169 0.1489 0.0224 -0.0896 2.9079 1.0227 

 50th percentile, control units, true value: 6.2308 
100 0.031 0.5568 0.3109 0.0107 3.2204 0.9467 
400 0.0366 0.2691 0.0737 0.0688 2.9178 0.9985 
1600 0.0205 0.1296 0.0172 -0.1041 3.0533 1.008 
6400 0.0144 0.0646 0.0044 0.0381 2.9033 1.0051 

 5th percentile, treated units, true value: 3.7015 
100 0.0153 0.936 0.8763 -0.8658 4.296 0.9438 
400 0.0042 0.443 0.1962 -0.447 3.4442 1.0759 
1600 -0.0032 0.2247 0.0505 -0.1422 2.9996 1.0655 
6400 0.0056 0.1126 0.0127 -0.0372 3.2399 1.0746 

 25th percentile, treated units, true value: 6.6709 
100 0.0555 0.3272 0.1101 -0.1129 3.0459 1.067 
400 0.0316 0.1607 0.0268 0.0481 3.2409 1.0713 
1600 0.014 0.0806 0.0067 -0.0026 2.9702 1.0525 
6400 0.0088 0.0396 0.0016 -0.0718 2.9824 1.0211 

 50th percentile, treated units, true value: 8.5198 
100 0.0195 0.3479 0.1214 0.0825 3.1471 1.2787 
400 0.0163 0.1833 0.0339 0.0612 3.0014 1.1576 
1600 0.0074 0.092 0.0085 0.0528 2.9641 1.1052 
6400 0.0037 0.0483 0.0023 0.0553 2.8465 1.0846 

 5th percentile, QTET, true value: 6.3287 
100 5.0822 27.7069 793.4025 30.2677 1372.56  
400 1.485 2.7951 10.0162 1.4287 6.5665  
1600 0.5487 1.0287 1.3588 0.4466 3.2192  
6400 0.2156 0.4775 0.2742 0.2293 3.0544  

 42



Table 4 (cont.): Monte Carlo simulation, nonparametric first step, point estimates. 

Sample 
size 

Bias St. dev. MSE Skew. Kurt. 
Relative MSE 
of the sample 

quantile 
 25th percentile, QTET, true value: 1.3986 

100 0.2217 0.7256 0.5756 1.0586 7.8828  
400 0.0819 0.276 0.0828 0.1927 3.1587  
1600 0.0293 0.1362 0.0194 0.1029 3.0828  
6400 0.0142 0.0688 0.0049 0.0764 3.0489  

 50th percentile, QTET, true value: 0.8783 
100 -0.0225 0.5303 0.2817 -0.031 3.2076  
400 -0.0031 0.2459 0.0605 -0.0399 2.9529  
1600 0.0011 0.1232 0.0152 -0.0979 2.8415  
6400 0.004 0.0613 0.0038 -0.2134 2.8404  

The number of replications is 1000, 2000, 4000 and 8000 respectively for 6400, 1600, 400 and 100 
observations. 
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Table 5: Monte Carlo simulation, nonparametric first step, estimation of the standard errors. 

Empirical size for a confidence level of
Sample size 1% 5% 10% 

“True” 
value Median bias MAE 

 5st percentile 
100 0.1438 0.2300 0.2903 122.6105 -119.5533 119.5667 
400 0.0230 0.0635 0.1065 2.7951 -0.6860 1.0394 
1600 0.0090 0.0405 0.0860 1.0287 -0.0160 0.1694 
6400 0.0100 0.0520 0.1070 0.4775 0.0059 0.0431 

 25st percentile 
100 0.0078 0.0295 0.0534 0.7256 0.2345 0.2459 
400 0.0048 0.0343 0.0768 0.2760 0.0204 0.0269 
1600 0.0075 0.0400 0.0885 0.1362 0.0069 0.0087 
6400 0.0080 0.0370 0.0990 0.0688 0.0016 0.0022 

 50st percentile 
100 0.0076 0.0399 0.0790 0.5303 0.0159 0.0666 
400 0.0043 0.0315 0.0675 0.2459 0.0220 0.0235 
1600 0.0060 0.0330 0.0760 0.1232 0.0095 0.0095 
6400 0.0070 0.0300 0.0700 0.0613 0.0048 0.0048 

The number of replications is 1000, 2000, 4000 and 8000 respectively for 6400, 1600, 400 and 100 observations. 
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Table 6: Descriptive statistics, means 

Variable All Whites Blacks 
Ln(wage) 2.1980 2.2159 1.9895 

Experience 19.9547 19.9307 20.2333
Education 13.5631 13.6138 12.9750

South 0.2806 0.2560 0.5665 
Midwest 0.2877 0.2972 0.1771 

West 0.2325 0.2429 0.1115 
Northeast 0.1993 0.2039 0.1449 
Number of 

observations 40349 37147 3202 
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Figure 1: Correlation between the proposed estimator and the MM estimator as function of m. 
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Results based on 5000 Monte Carlo replications. 
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Figure 2: MSE of the proposed estimator and the MM estimator as a function of m. 
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Results based on 5000 Monte Carlo replications. 
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Figure 3: Decomposition of the black/white wage gap using parametric quantile regression. 
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Figure 4: Difference between the unconditional quantiles implied by the model and the 
sample quantiles. 
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A 95% confidence interval obtained by bootstrapping the results 100 times is plotted. 
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Figure 5: Decomposition of the black wage gap using nonparametric quantile regression 
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