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Abstract

Randomized trials in the social sciences and clinical medicine often provide a sequence of

interventions and tend to suffer from a variety of implementation problems. In this setting,

neither traditional program evaluation estimators nor non-experimental estimators recover

the full set of causal parameters of interest to policy makers, particularly if there is non-

ignorable selective attrition. We introduce an estimation strategy based on an underlying

economic model of a cumulative production process to estimate treatment effects in such

a setting. This approach is applied to the highly influential randomized class size study,

Project STAR. Estimates from our model are combined to recover the full set of dynamic

treatment effects, presenting a complete and different picture on the effectiveness of reduced

class size.
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1 Introduction

Many consider randomized experiments to be the gold standard of evaluation research due to

among other factors the ease in which causal effects can be explained to policymakers and lay

audiences.1 The validity of using a simple comparison of outcomes across treatment and control

groups to recover causal parameters relies critically on the experiment being implemented as

designed. In practice, researchers regularly confront violations to the randomization protocol.

Experiments that lack perfect compliance are often referred to as broken randomized trials and

the interpretation of traditional estimation strategies in this setting is not necessarily straight-

forward.2 Further, numerous randomized trials in social sciences and clinical medicine involve

repeated or multiple stages of intervention, where the participation of human subjects in the

next stage may be contingent on past participation outcomes. The study of causal effects from

a sequence of interventions is limited even in the case of perfect compliance.3 Only recently

in economics, Lechner and Miquel (2005), Lechner (2004) and Miquel (2002, 2003) examine

the identification of dynamic treatment effects under alternative econometric approaches when

attrition is ignorable. This paper concerns itself with randomized trials that provide a sequence

of interventions and suffer from various forms of noncompliance including nonignorable attrition

and selective switching in between treatment and control groups.

We examine these issues in the context of Tennessee’s highly influential class size experiment,

Project STAR. The experiment was conducted for a cohort of students with refreshment in 79

schools over a four-year period from kindergarten through grade 3. Within each participating

school, incoming kindergarten students were randomly assigned to one of the three intervention

groups: small class (13 to 17 students per teacher), regular class (22 to 25 students per teacher),

1The benefits of randomized field experiments have been widely known since the publication in 1935 of Fisher’s

seminal book, The Design of Experiments.
2The term “broken” refers to violations to the randomization protocol. Comprehensive surveys of recent

developments in the economics, biostatistics and statistics literature can be found in Heckman, LaLonde and

Smith (2001), Yau and Little (2001) and Frangakaris and Rubin (2002) respectively.
3The original investigation on treatment effects explicitly in a dynamic setting can be traced to Robins (1986).

More recent developments in epidemiology and biostatistics can be found in Robins, Greenwald and Hu (1999).

In these papers, subjects are required to be re—randomized each period to identify the counterfactual outcomes.
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and regular-with-aide class (22 to 25 students with a full-time teacher’s aide). Most published

findings from this study have reported large positive impacts of class size reduction on student

achievement, which has provided much impetus in the creation of large-budget class size reduc-

tion policies in many states and countries.4 Several of these studies have noted and attempted

to address complications due to missing background and outcome data and noncompliance with

the randomly assigned treatment that occurred during implementation.5 However, to the best of

our knowledge, an examination of the data as the result of a sequence of treatment interventions

with various noncompliance issues has not been explored.

Understanding how to interpret evidence from randomized experiments is becoming increas-

ingly important since governments continue to move towards developing policies based heavily

on scientific evidence. In experiments involving human subjects a variety of complications often

arise and as we discuss these have important implications. These complications include sub-

jects exiting the experimental sample in a non-random fashion, not taking the treatment when

assigned, or receiving the treatment or similar treatments when not assigned. These behav-

iors by subjects may respectively lead to what is known in the program evaluation literature

as attrition bias, dropout bias and substitution bias. Randomization does not overcome biases

from imperfect compliance. The scope of such noncompliance in Project STAR is extensive.

Approximately ten percent of the subjects switch class type annually, by grade three over 50%

of the subjects who participated in kindergarten left the STAR sample and 4 schools left the

experimental study.

It is worth stating explicitly that in an experiment in which a subset of participants in

4See Finn et al. (2001) and the references within for an updated list of STAR papers. The United States

Congress set aside $1.3 billion for class-size reduction in 2000-01, while individual states spend additional dollars.

California enacted legislation in 1996 aiming to reduce K-3 class sizes by roughly ten students per class and has

spent more than $10 billion on this categorical program between 1996 and 2003. Brewer et al. (1999) estimate

that the annual cost of these reductions ranges from 2 to 11 billion dollars in the US. The reported positive results

have influenced education policies in other countries such as Canada. For example, the government of Ontario

provided school boards in 1997 with $1.2 billion over three years to reduce class sizes. Other provinces including

Quebec, British Colombia and Alberta have similar programs.
5Krueger (1999) presents instrumental variable estimates to correct for biases related to deviations from as-

signed class type.
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both the treatment and control groups have selected to not comply fully with their assignment,

standard methods to analyze experimental data may be insufficient. Faced with noncompliance

researchers using data from single period experiments often report either the intent to treat

(ITT) parameter that compares outcomes based on being assigned to rather than actual receipt

of treatment or undertake an instrumental variables strategy. The IV estimate generally uses

the randomized treatment assignment as an instrumental variable for actual treatment receipt

and the resulting estimate is interpreted as a local average treatment effect (LATE).6 Yet, Balke

and Pearl (1997) demonstrate that in the face of imperfect compliance that these estimates are

potentially misleading as they may lie entirely outside the theoretical bounds for an average

causal effect of the intervention. Further, if the randomized intervention suffers from non-

ignorable attrition when subjects leave the sample in a non-random manner, Frangakis and

Rubin (1999) demonstrates that ITT estimators are biased and IV estimators are distorted

from a causal effect even with a randomized instrument. Taken together, this casts doubts on

the usefulness of traditional approaches in the presence of noncompliance to estimate impacts

of the intervention that are of direct use to policymakers.

Multi-period randomized trials have the potential to address numerous questions of interest

to policymakers beyond whether or not the intervention was successful. For instance one could

determine what is the impact on achievement of smaller classes for students who used them

throughout the experiment. How does the impact of the intervention evolve over time? Are pro-

gram impacts heterogeneous with respect to demographic characteristics? Unfortunately even if

attrition is random, these questions can not be addressed with ITT analysis as it does not pro-

vide information on the actual treatment experienced, particularly when compliance is an issue.

Similarly the IV approach that uses initial assignment as an instrument for treatment receipt

provides an estimate of the cumulative effects of a program only for compliers. Interpretation

of this parameter requires even stronger assumptions to become relevant for policy analysis as

6 It obtains this causal interpretation provided a series of assumptions detailed in Angrist, Imbens and Rubin

(1996a) and listed in footnote 13 are satisfied. The parameter is simply an estimate of the average impact of the

intervention for the subsample of subjects who would always comply with treatment assignment. This subsample

are usually not directly observed in the data.
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one must assume that the subpopulation that remains responsive to the instrument does not

change over time.

More generally, in multi-period experiments, implementation problems proliferate as subjects

may exit in different periods or switch back and forth in between the treatment and control

groups across time. To estimate the average treatment effects of reduced class size in a multi-

period setting, the researcher must compute counterfactual outcomes for each potential sequence

of classroom assignment. In the context of Project STAR this yields 16 possible paths for the

kindergarten cohort in grade three if attrition is random. Note that even if the experiment

perfectly re-randomized subjects annually, an instrumental variables approach would be unable

to estimate the full sequence of causal effects since the number of randomized instruments is

less than the number of counterfactual outcomes.

This study extends the burgeoning literature in the economics of education that seeks to use

experimental data to estimate the effectiveness of inputs to the education production process by

introducing a strategy for policy evaluation with multi-period experimental data that permits a

direct link between the structural parameters from an underlying economic model of education

production to dynamic treatment effect parameters. Past studies approach policy evaluation

with experimental data by generally undertaking either a structural approach or a treatment

effect approach. Since the goals of the literature on structural equation estimation and on

the estimation of treatment parameters are often different, few studies undertake both types

of analysis nor discuss how the parameters from these approaches are related with the same

data.7 Specifically in this study we consider estimation of the structural parameters from an

underlying model that allows cognitive achievement to be viewed as a cumulative process as

posited by economic theory. We consider a sequential difference in difference strategy allowing

the effects of observed inputs to the production process and treatment receipt on achievement

levels to vary at different grade levels. We account for non-ignorable attrition over time using

inverse probability weighting M-estimators. We describe how the structural parameter estimates

permit us to construct estimates of the full sequence of dynamic treatment effects, presenting

7Todd and Wolpin (2003) present a clear discussion of why estimates from these empirical approaches should

differ.
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a richer picture of the effectiveness of reduced class size. The framework that we introduce

could also be applied to evaluate interventions that affect other human capital outcomes that

are assumed to be a function of cumulative process such as health.

Our empirical analysis reaches three major conclusions:

1) Accounting for non-random attrition is important in Project STAR. The pattern of attri-

tion differed markedly between class types within and across schools and can not be ignored by

the analyst. By treating attrition as random and ignorable, we demonstrate that earlier studies

have overstated the benefits of reduced class size since those who withdrew from the study dif-

fered significantly in their initial behavioral relationships; receiving half of the average benefit

of attending a small class in kindergarten. Further, IV and ITT estimates occasionally lie out-

side of the range of tight bounds on the average treatment effect that account for non-random

implementation failures.

2) We present a more complete picture of the effectiveness of class size reductions. We find

benefits from small class attendance initially in all subject areas in kindergarten and grade one.

However, there does not exist additional benefits from attending small classes in both years in

grade one. Further, we find there are no significant dynamic benefits from continuous treatment

versus never attending small classes in all subjects in grades two and three. Attendance in small

classes in grade three is significantly negatively related to performance in all subject areas. We

conduct several robustness checks and demonstrate that these results are unlikely to be due

to statistical power. The data suggests that the decreasing returns to small class attendance

is related to significantly greater variation in incoming academic performance in small classes

relative to regular classes. Further, the weakest incoming students in mathematics in each

classroom experienced the largest gains in achievement, which is consistent with the story of

teaching towards the bottom.

3) Specification tests indicate that controlling for selection on unobservables is crucial and

necessary with data from Project STAR. A handful of subjects each year self-selected outside of

their assigned groups, leading the groups to no longer be equivalent in observed covariates prior

to subsequent treatment. Further, we find that in several subsequent periods, new students that

entered the experiment through refreshment samples were not assigned with equal probability
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between the treatment and control groups, exacerbating biases from outside confounding factors.

The rest of the paper is organized as follows. In Section 2, we provide a summary of the

causal inference literature on estimating treatment effects in single period interventions with and

without implementation failures. We subsequently describe the causal parameters of interest

in multi-period experiments. To estimate these causal parameters we introduce an empirical

framework that builds on the standard economic model of human capital accumulation in section

3. The assumptions underlying our identification strategy are discussed and the estimation

approached is described in this section. Section 4 presents a description of the data used in our

analysis. Our results are presented and discussed in Section 5. A concluding section summarizes

our findings and discusses directions for future research.

2 Causal Parameters of Interest

2.1 Single Period Interventions

Project STAR was conducted to evaluate the effect of class size on student achievement to

determine whether small class size should be extended to the schooling population as a whole.

Existing studies using Project STAR data treat the experiment as a single period intervention

and we begin by providing a brief overview of the parameter estimates and the effect of several

sources of implementation biases in a single period model of treatment.8

In the context of the STAR class size experiment, we refer to being in small classes as being

in the treatment group and regular classes in the control group. A student is initially assigned

to a small class,M = 1 or a regular class,M = 0 when she enters a school in the STAR sample.9

Due to the non-mandatory compliance nature of this social experiment, each year the actual

class type a student attends may differ from the initial assignment. We use St = 1 to denote

8Detailed discussions of dropout bias, substitution bias and attrition bias can be found in Heckman Smith

and Taber (1999), Heckman, Hohmann Smith and Khoo (2001) and in a special issue of The Journal of Human

Resources Spring 1998 respectively.
9Students were added to the sample in later years because either kindergarten was not mandatory and they

first entered school in grade 1, or had previously failed their grade and had to repeat it, or switched from a private

school or recently moved to the school district that contained a participating school.
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actually being in a small class in grade t and St = 0 as being in a regular class. At the completion

of each grade t, she takes exams and scores At (potential outcomes; A1t if attending a small class

and A0t if attending a regular class). The evaluation problem occurs since we cannot observe

A1t and A0t for the same individual.

In a single period class size reduction experiment the relevant parameter of policy interest

is the average treatment effect (ATE) 4ATEt = E(A1t− A0t) or in its conditional form E(A1t−

A0t|X) where X are characteristics that affect achievement. Project STAR was designed to use

random assignment to circumvent problems result from selection in treatment. If subjects were

random across class types the researcher is assured that the treatment and control groups are

similar to each other (i.e., equivalent) prior to the treatment and any difference in outcomes

between these groups is due to the treatment, not complicating factors. In implementation,

however, if people self-select outside of their assigned groups, risks rise that the groups may

no longer be equivalent prior to a period of treatment and the standard experimental approach

could no longer identify parameters of interest in a single period model of treatment intervention.

2.1.1 Sources of Bias in a Single Period Intervention

Self-selection has given rise to three categories of bias: dropout bias, substitution bias and

attrition bias. The first two biases involve noncompliance with treatment assignment while the

last term deals with missing data. In the context of Project STAR, dropout bias occurs if an

individual assigned to the treatment group (small class) does not comply with her assignment and

attends a regular class (M = 1, S = 0). In total, 12.0% of the subjects who were initially assigned

to small classes and completed all four years of the experiment dropped out of treatment.10

Correspondingly substitution bias arises if members of the control group transfer to small classes

(M = 0, S = 1).11 In contrast to claims in Finn et al. (2001) that “with few exceptions

students were kept in the same class grouping throughout the years they participated in the

10 Included among these individuals are 68 students who were moved to regular classes in grade 1 after being

termed incompatible (Finn and Achilles (1990)) with their classmates in Kindergarten. Eighteen of these students

returned to small classes after grade 1.
11Parental actions would result in substitution bias. It would also occur if members of the control group find

close substitutes for the experimental treatment through the use of services such as private tutoring.
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experiment”, simple summary statistics indicate that 15.20% of the students who participated

in the experiment all four years switched class type at least once.12

In the presence of noncompliance with treatment assignment, the standard experimental

impact which compares means of the outcome variable between individuals assigned to the

treatment and the control group is an estimate of the intention to treat (ITT). The ITT effect

can be defined as dITT = _
AM=1 −

_
AM=0 (1)

where
_
AM=1and

_
AM=0 are the sample mean achievements of individuals assigned to small and

regular classes respectively. Thus, the researcher carries out an “as randomized” analysis in

place of an “as treated” analysis. ITT is appropriate if one is interested in estimating the

overall effects of treatment assignment. The approach ensures that if randomization is violated,

factors associated with dropout or substitution will not corrupt the interpretation of ITT. Since

education policies on class sizes are concerned with the actual experience of students in different

class sizes and the average effects of treatment received, the ITT estimates are not valid for cost

benefit analysis of policies that mandate caps on class size for every student.

Standard IV analysis that makes use of initial random assignment as an instrument for cur-

rent class size recovers a local average treatment effect (LATE). Angrist, Imbens and Rubin

(1996a) list a series of assumptions that if satisfied, allow IV estimates to be interpreted as av-

erage treatment effects for compliers.13 Complying individuals are those who would only receive

the treatment when assigned.14 The identification of a group of compliers is not straightforward

12We compare small classes versus regular or regular with aide classes. We follow Krueger and Whitmore (2001)

and Finn et al. (2001) who create a single control group since we also find that there are no significant differences

in outcomes between regular class with and without teacher aides. Note, as many schools contained multiple

classes of the same class type there is likely to be even more transitions between classes of the same class type as

well as switches between regular classes with and without teacher aides.
13The assumptions include random assignment of the instrument, strong monotonicity of the instrument (i.e.

instrument affects probability of treatment receipt in only one direction), instrument affects outcomes only through

the endogenous treatment regressor (i.e. exclusion restriction) and the stable unit value treatment assumption

which posits that there are no general equilibrium effects. Without these assumptions, the IV estimator is simply

the ratio of intention-to-treat estimators with no interpretation as a causal effect.
14 In other words, these individuals were induced to switch classes by the instrument (complied with initial
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in general. The LATE can be defined as

dITT IV
=

_
A
c

M=1 −
_
A
c

M=0 (2)

where
_
A
c

M=1and
_

Ac
M0t refer to the sample mean potential achievement outcomes of complying

individuals if assigned to small and regular classes respectively.

The LATE estimate obtained using an IV approach implicitly re-scales the experimental

impact. Even with experimental data, non-experimental assumptions (see footnote 15) are

required to identify the LATE in the presence of dropout bias or substitution bias. With

dropout, the LATE estimate is given as

\LATE1 =
_
AM=1 −

_
AM=0

Pr(St = 1|Mt = 1)
(3)

The ITT is re-scaled by the sample proportion of compliers in the treatment group and implicitly

assumes that those who dropout received a zero impact from the intervention. With both

substitution and dropout the IV estimate recovers an alternative LATE given as

\LATE2 =
_
AM=1 −

_
AM=0

Pr(St = 1|Mt = 1)− Pr(St = 1|Mt = 0)
(4)

which re-scales the ITT by the difference between the compliance rate in the original treatment

group and noncompliance rate in the original control group. The estimator implicitly assumes

that those who drop out and those who substitute in received a zero impact from the intervention

as the dropouts would never have attended a small class and the substitutes would have attended

a small class in the absence of the experiment.

Past studies using Project STAR data treat the experiment as a single period intervention.

They report either a ITT or a LATE parameter using initial assignment as an instrument for

class attended. However, Frangakis and Rubin (1999) demonstrates that IV and ITT analyses

recover parameters that are distorted from a causal effect if selective attrition is present. In this

situation, bounds that place a range under which causal parameters including the ATE lies can

be more informative. These methods not only can shed some light on the parameter of policy

assignment). Since different instruments exploit different sources of variation in the data, the use of alternative

instruments will result in different LATE parameters.
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interest that are robust to non-random attrition but also have the advantage of placing weaker

assumptions about treatment selection and outcomes than methods used to recover the LATE

parameter. In our analysis, we will consider several alternative strategies that place bounds

on ATE and contrast them with estimates obtained from ITT and IV. Yet, analysis of Project

STAR data should not only account for non-random attrition but also consider the multiple

periods of interventions that occurred. As we discuss next, by explicitly accounting for the

dynamic structure of the intervention researchers are able to estimate a wider range of causal

parameters that can address a more complete series of policy relevant questions.

2.2 Multi-Period Experiments

The STAR project occurred for students in kindergarten through grade three. Answers to many

hotly debated questions, such as when class size reductions are most effective or whether small

classes provided any additional benefits in later grades, can be properly answered in a multi-

period intervention framework. For policy purposes, one may be interested in which treatment

sequence yields the largest benefits. In this context, the relevant parameters of interest are the

full sequence of dynamic average treatment on the treated parameters.

Dynamic average treatment effect for the treated parameters are the average difference be-

tween two alternative sequences of treatment received. Implicitly it calculates the average dif-

ference between groups of individuals with different historical paths of treatment received for

an individual who has selected one of these paths. Formally we define τ (x,y)(v,w)(x, y) as the

dynamic average treatment effect for the treated parameter, which for individuals who partici-

pated in program x in period 1 and program y in period 2 and measures the average difference

in outcomes between their actual sequence (x, y) with potential sequence (v, w). The number

of potential sequences in multi-period experiments depends not only on the number of stages

where treatment was offered but also on the degree of compliance at each stage.

To illustrate, consider a two period case with constant effects, perfect compliance, no attrition

bias and no refreshment samples. For each individual, Aij2 takes one of two possible outcomes

depending on which treatment sequence [(Si2 = Si1 = M = 1) or (Si2 = Si1 = M = 0)]

they were assigned to. A standard economic model of individual achievement would postulate
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that both current and lagged inputs affect current achievement. Equation (5) is a linearized

representation of the cumulative education production function in period two

Aij2 = β0S2Si2 + β0S1Si1 + εij2 (5)

where Aij2 is the level of educational achievement for student i in school j in year 2 and �ij2

captures unobserved random factors. Consider estimation of the following contemporaneous

equation in period two

Ai2 = γ0SSi2 + vi + υj + wij2 (6)

where wij2 may include lagged inputs if they affect current achievement. In this case, γ0S presents

an estimate of the cumulative effect of being in a small class for two periods.

It is not possible to separately identify βS2 and βS1 by estimating equation (5) since Si2 =

Si1 (perfectly colinear). With annual estimates of equation (6), one could examine the evolution

of the cumulative effect, γS. With the exception of the initial year of randomization one would

not be able to estimate the effect of being in a small class in that particular year without invoking

extra assumptions. These assumptions are similar to those that underlie education production

function studies (value added models) in that one must assume how lagged inputs affect future

achievement. For instance, if the impacts are assumed to depreciate at a constant rate (as

in a linear growth or gains specification in the education production function literature), it is

straightforward using repeated substitution to recover estimates of the effect of being in a small

class in a particular year.

If compliance was not perfect then individual achievement outcomes in period 2 would take

one of four possible sequences [(Si2 = 1, Si1 = 1), (Si2 = 1, Si1 = 0), (Si2 = 0, Si1 = 1), (Si2 =

0, Si1 = 0)]. In this case an individual’s outcome at the conclusion of the second period can be

expressed as

Ai2 = Si1Si2A
11
i + (1− Si1)Si2A

01
i + Si1(1− Si2)A

10
i + (1− Si1)(1− Si2)A

00
i (7)

where A11i indicates participation in small classes in both periods, A10i indicates small class

participation only in the first period, etc. It is clear that an individual who participated in

both periods (A11i ) has three potential counterfactual sequences to estimate (A
01
i , A10i and A00i )
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assuming the four paths are all the sequences an individual can take. While imperfect com-

pliance may break up the collinearity problem, unbiased estimates of equation (5) require that

individuals switch class type exogenously. If these transitions were due to observed past test

performance, individual characteristics (observed or unobserved), unobserved parental education

tastes, corresponding econometric solutions are required to address these selection issues.

2.3 Attrition Bias

While an intent-to-treat analysis is robust to the problem of students changing class types in

single and multi-period experiments, there still remains the problem of students being lost to

follow-up. Attrition bias is a common problem researchers face in longitudinal studies when

subjects non-randomly leave the study and the remaining sample for inference is choice based.

Unlike noncompliance with treatment assignment, the presence of non-random attrition in single

and multi-period intervention does not allow researchers who engage in IV or ITT analyses to

recover LATE and ITT parameters, since one must account for the additional bias introduced

by selective nonresponse.

More formally, let Lt+1 = 1 indicates that a subject leaves a STAR school and attends a

school elsewhere after the completion of grade t, if she remains in the sample for the next period

Lt+1 = 0. Assume that we are interested in the conditional population density f(At|Xt) but in

practice we observe g(At|Xt, Lt = 0) sinceAt is observed only if Lt = 0. Additional information is

required to infer f(∗) from g(∗). Assuming that attrition occurs when Lt+1 = 1{L∗t+1 > 0} where

L∗t+1 is a latent index that is a function of observables (Xt, At) and unobservable components.

Only when attrition is completely random (i.e. Pr(Lt+1 = 0|At,Xt) = Pr(Lt+1 = 0|Xt) =

Pr(Lt+1 = 0)) would traditional experimental analysis that compares outcomes of the treatment

and control groups recover unbiased parameter estimates. After all, dropping observations with

nonresponse from the analysis changes the sample for which causal effects are being estimated.

This is true even when the mechanism that leads to attrition is not affected by the assignment

and receipt of treatments because the (observed and unobserved) characteristics of respondents

are in general systematically different from those of nonrespondents. In addition to bias, an

inefficiency problem arises from the information loss due to the exclusion of some observations
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from the analysis.

Attrition may be due to selection on observables and / or selection on unobservables. Fitzger-

ald, Gottschalk and Moffitt (1998) provide a econometric framework for the analysis of attrition

bias and describe specification tests to detect and methods to adjust estimates in its presence.

Econometric solutions require one to determine the factors leading to non-random attrition.

Selection on observables is not the same as exogenous selection since selection can be made on

endogenous observables such as past academic performance (lagged dependent variables) that

are observed prior to attrition. If only selective attrition on observables is present, the attrition

probability is independent of the dependent variable (and hence unobserved factor), which im-

plies that Pr(Lt = 0|At,Xt) = Pr(Lt = 0|Xt). As such, estimates can be re-weighted to achieve

unbiased estimates and f(∗) can be inferred from g(∗).

Fewer than half of the kindergarten students participated in all four years of the experiment

(3085 out of 6325 students). The participation rate varied significantly by class type across

schools.15 To test for selection on observables, we follow Becketti, Gould, Lillard and Welch

(1988) and examine whether individuals who subsequently leave the STAR experiment are sys-

tematically different from those who remain in terms of initial behavioral relationships. The

following equation is estimated

Aij1 = β0Xij1 + β0LLijXij1 + υj + εij1 (8)

where Aij1 is the level of educational achievement for student i in school j in the first year,

Xij1 is a vector of initial school, individual and family characteristics, Lij is an indicator for

subsequent attrition (Lij = Lit+s for s = 1...T − 1), υj is included to capture unobserved school

specific attributes and �ij1 captures unobserved factors. The vector βL allows for both a simple

intercept shift and differences in slope coefficients for future attritors. Selection on observables

is non-ignorable if this coefficient vector is significantly related to scaled test score outcomes at

15For the full kindergarten sample, a linear probability model regression of subsequent attrition on initial class

assignment yields a statistically significant impact of class type. The pattern of attrition differed substantially

across schools. For example, students initially assigned to small classes in kindergarten were significantly less

likely to leave the sample if their small classes outperformed the regular classes in all three subjects areas.
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the point of entry (completion of kindergarten) conditional on the individual’s characteristics

and educational inputs at that point of the survey.

3 Empirical Model

In this section, we provide a simple model that guides our estimation and discuss the assumptions

necessary to nonparametrically identify the structural parameters and dynamic treatment effects.

Following Ben-Porath (1967) and Boardman and Murnane (1979) we view the production of

education outcomes (or cognitive achievement) as a cumulative process that depends upon the

potential interactions between the full history of family and school inputs as well as the child’s

innate characteristics. Formally, conditional on the selection of school j by child i’s parents (who

maximize household indirect utility), the complete history of inputs and class size treatments

[(XiT ...Xi0), (SijT ...Sijo)], and independent random shocks (�iT ...�i0), the child gains knowledge

as measured by a score on an achievement test at period T :

AijT = hT (XiT ...Xi0, SjTT ...SjTo , vi, �iT ...�i0) (9)

where hT is an unknown twicely differentiable function. NoteXijt is a vector of school, individual

and family characteristics in year t and vi is included to capture unobserved time invariant

individual attributes.

Assuming that the unobserved factors appear additively and T = 2 we can express achieve-

ment in each period as

Ai1 = h1(Xi1, Si1) + νi + εi1 (10)

Ai2 = h2(Xi2,Xi1, Si2, Si1) + t2 + νi + εi2 (11)

where h1 and h2 are unknown functions. To identify the structural parameters from this model

we must assume that i) the unobserved components νi, εi1 are independent of Xi1, Si1 ; ii)

(εi1, εi2) is independent of (Xi1, Si1,Xi2, Si2) and iii) t2 is a constant. Under these assumptions,

the structural parameters are functionals of conditional expectations of all observed variables.16

16Chesher (2003) demonstrates that a local insensitivity assumption is all that is needed to achieve local

identification of the partial derivatives of structural functions in such a triangular system of equations.
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To estimate dynamic treatment effects our approach builds on Miquel (2003), who demon-

strates that a conditional difference-in-differences approach of the achievement equations can

nonparametrically identify the causal effects of sequences of interventions.17 The full sequence

of causal effects are estimated under simple dynamic variants of the straightforward assumptions

of common trend, no pretreatment effects and a common support condition.18 Intuitively, the

idea builds upon classical difference in difference analysis which uses pre-intervention data to re-

move common trends between the treated and controls. In this setting, we consider a sequential

difference in difference estimator and use data between periods of the interventions to remove

common trends between individuals on alternative sequences, which permits us to recover the

full sequence of dynamic average treatment effect for the treated parameters.

In our empirical analysis, we linearize the production function at each time period. An

individual’s achievement outcome in period one is expressed as

Ai1 = vi + β01Xi1 + β0S1Si1 + εi1 (12)

where vi is a individual fixed effect. Similarly in period two achievement is given as

Ai2 = vi + α02Xi2 + α01Xi1 + α0S2Si2 + α0S1Si1 + α0S12Si2Si1 + t2 + εi2 (13)

and t2 reflects period two common shock effects. Since nearly all of the explanatory variables

in equations (12) and (13) are discrete dummy variables the only restrictive assumption by

linearization is the additive separability of the error term. Notice, we allow the effect of being in

a small class in the first year (Si1) on second period achievement (Aij2) to interact in unknown

ways with second year class assignment (Si2). For example, class size proponents argue that

teaching strategies differ in small versus large classes (i.e. “on-task events” versus “institutional

17Miquel (2002) proves that instrumental variable strategies are unable to identify the full set of dynamic

treatment effects.
18The common support assumption ensures that there are comparable individuals in each of the counterfactual

sequence. The common trend assumption assumes that the sole difference before and after is due to treatment

across groups as in the absence of treatment the comparing groups would have in expectation similar gains in

academic performance. The no pre-treatment assumption requires that there is no effect of the treatment on

outcomes at any point in time prior to actual participation. The extension to multi-period is not complex as

described in Miquel (2003).
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events” (e.g., disciplinary or organizational)) and one could imagine the effect of the current

class size treatment to potentially differ due to past learning experiences as well as incoming

knowledge or foundation. First differencing the achievement equations generates the following

system of two equations

Ai2 −Ai1 = α02Xi2 + α0S2Si2 + α0S12Si2Si1 + t2 + (α1 − β1)
0Xi1 + (αS1 − βS1)

0Si1 + ε∗i2(14)

Ai1 = β01Xi1 + β0S1Si1 + ε∗i1

where ε∗i2 = εi2 − εi1 and ε∗i1 = υi + εi1. Consistent estimates of the structural parameters of

the education production function in equations (12) and (13) are obtained from this system

of equations via full information maximum likelihood provided that the off-diagonal elements

of the variance-covariance matrix are restricted to equal zero to satisfy the rank condition for

identification. As this system is triangular, parameter estimates from full information maximum

likelihood are equivalent to equation by equation OLS which does not impose any assumptions

on the distribution of the residuals.19 Consistent and unbiased structural estimates of βS1 and

of the teacher characteristics in the Xi1 matrix can still be obtained with STAR data without

information on pre-kindergarten inputs since subjects and teachers were both randomized be-

tween class types in kindergarten and to the best of our knowledge compliance issues did not

arise until the following year.20 Since not all elements in the education production function in

kindergarten are assigned randomly it remains possible that a subset of the structural parameter

estimates for the Xi1 matrix may not be unbiased since they may be correlated with ε∗i1.

This implementation allows the effects of observed inputs and treatment receipt on achieve-

ment levels to vary at different grade levels. This is also more flexible than other commonly used

empirical education production function specifications in that it does not restrict the deprecia-

tion rate to be the same across all inputs in the production process. However, by assumption

19Note it is possible to exploit cross-equation restrictions by accounting for the error-component structure of

the residual but requires the assumption that υi is uncorrelated with the regressors. For example, efficiency gains

are possible using the GMM procedure proposed in Hausman, Newey and Taylor (1987).
20The importance of randomization and the fact that compliance was near perfect in kindergarten (this evidence

is discussed in the next section) is crucial to our identification strategy.
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the effect of unobserved inputs are restricted to be constant between successive grades.21

The full sequence of dynamic effects can be estimated as follows

τ (1,1)(0,0)(1, 1) = αS1 + αS2 + αS12 (15)

τ (1,1)(1,0)(1, 1) = αS2 + αS12

τ (0,1)(0,0)(0, 1) = αS2

where, τ (1,1)(0,0)(1, 1) provides an estimate of the average cumulative dynamic treatment effect

for individuals who received treatment in both periods, τ (1,1)(1,0)(1, 1) provides an estimate of

the effect of receiving treatment in the second year for individuals who received treatment in

both periods, and τ (0,1)(0,0)(0, 1) is the effect of receiving treatment in the second period for

individuals who received treatment only in period two. These parameters presented in equation

(15) are of policy interest. It is straightforward to extend the above two period regression

example to T periods.

While concerns regarding substitution bias and dropout bias are addressed by assuming the

effects of individual unobserved heterogeneities which include factors such as parental concern

over their child’s development are fixed over short time periods, attrition bias may still con-

taminate the results. As discussed in the preceding section it is possible to reweight the data

to account for attrition due to selection on observables. We consider estimating the following

attrition logit

Pr(Lit+1 = 0|Ait, Sit,Xit) = 1{α0Zit + wit ≥ 0) (16)

where t is the period being studied and Zit is a matrix of predetermined variables that are

observed conditional on Lt = 0 and also include lagged dependent variables (At−s) as well as

past test scores in all other subject areas. The predicted probability of staying in the sample

(
f
pit) are then constructed

f
pit = Fw(α̂

0Zit) (17)

21We tested and found support for restricting the effect of individual unobserved heterogeneity to equal one

between periods in grades two and three using a instrumental variables procedure developed in Ding and Lehrer

(2004). Note our assumption is not only supported by the data but places weaker restrictions on the effects of

unobserved inputs as compared to treating them as permanent unobserved heterogeneity
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where Fw is the logistic cumulative distribution function. This method of controlling for attrition

is robust with respect to any treatment experience.

Returning to our two period example, we now assume a random sample in period one and

non-random attrition due to observables at the end of period one. Following Wooldridge (2002)

we calculate the probability of remaining in the sample for period two
f
pi1and use it to reweight

observations in estimating equation (14) as follows

Ai2 −Ai1

f
pi1

=
α02Xi2 + (α1 − β1)

0Xi1 + α0S2Si2 + α0S12Si2Si1 + (αS1−βS1)0Si1+t2+ε∗i2
f
pi1

(18)

Ai1 = β01Xi1 + β0S1Si1 + εi1

Estimates from this system of equations are
√
N consistent and asymptotically normal. However,

the asymptotic variance is conservative since it ignores the fact that we are weighting on the

estimated and not the actual
f
pi1 .

22

We estimate equation (17) for grade one as well as corresponding versions for grade two and

grade three with the kindergarten sample.23 Attrition is an absorbing state and the weights used

in estimation for grades two and three (
f
r
2

i and
f
r
3

i ) are simply the product of all past estimated

probabilities

f
r
2

i =
f
pi2 ∗

f
pi1 (19)

f
r
3

i =
f
pi3 ∗

f
pi2 ∗

f
pi1

where
f
pis are estimated probabilities for staying in the sample for period s from a logit regression

using all subjects in the sample at s−1.24 Note, it is trivial to add school effects to the estimating
22The asymptotic variance matrix that adjusts for first stages estimates is smaller. See Wooldridge (2002) for

details and a discussion of alternative estimation strategies.
23To be specific on identification of

f
pi1in equation (18) consider the example of grade one mathematics. Kinder-

garten reading and word recognition test scores are the sole variables in the attrition equation that are not included

in the achievement equation. For grade two mathematics all kindergarten test scores as well as grade one reading

and word recognition test scores are included in the equations used to estimate weights and excluded form the

achievement equation.
24The assumption that attrition is an absorbing state holds in the STAR sample used in our analysis and allows

the covariates used to estimate the selection probabilities to increase in richness over time. See Wooldridge (2002)
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equations, however, identification of school effects will only come from the limited number of

school switchers.

Finally, in the above analysis we treat attrition as leaving the sample permanently and

assume other missing data problems are at random. That is if a student only has reading

and mathematics scores in the dataset we assume that she either randomly missed the word

recognition test or the data collector randomly missed entering her test score outcome. Selective

test completion would be simple to correct for in this setting by creating a subject specific

missing data indicator Ls
it+1 and follow the same estimation strategy using this new measure in

place of Lit+1assuming that test completion in kindergarten is random. The advantage of this

approach is that we can use more observations per subject area. We implement this approach

as a robustness check on our basic results.

4 Project STAR Data

Project STAR was a large scale experiment that initially randomized assigned over 7,000 students

in 79 schools into one of the three intervention groups: small class (13 to 17 students per teacher),

regular class (22 to 25 students per teacher), and regular-with-aide class (22 to 25 students with

a full-time teacher’s aide) as the students entered kindergarten.25 Teachers were also randomly

assigned to the classes they would teach. The experiment continued until the students were

in grade three. The public access data on Project STAR contains information on teaching

experience, the education level and race of the teacher, the gender, race and free lunch status

of the student. In addition, during each year of the experiment academic performance measures

were collected from the Reading, Mathematics and Word Recognition sections of the Stanford

Achievement test.26 In our analysis, we treat each test as a separate outcome measure because

for a discussion. Note, estimates of the test score parameters from equation (17) are presented in Appendix Table

2.
25Students were randomly assigned using a random school specific starting value based on their last name using

a centrally prepared algorithm that assigned every kth student from an alphabetical list to a class type.
26The Stanford Achievement Test is a norm-referenced multiple-choice test designed to measure how well a

student performs in relation to a particular group, such as a sample of students from across the nation. Scaled

scores are calculated from the actual number of items correct adjusting for the difficulty level of the question to
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subjects are not comparable and one may postulate that small classes may be more effective

in some subject areas such as mathematics where classroom instruction is used as opposed to

group instruction for reading.

The STAR data set contains the class types that students actually were enrolled in each year.

While the possibility exists that some students were switched from their randomly assigned class

to another class before kindergarten started, Krueger (1999) examined actual enrollment sheets

that were compiled in the summer prior to the start of kindergarten for 1581 students from

18 participating STAR schools and found that only one single student in this sample who was

assigned a regular or regular/aide class enrolled in a small class.

Summary statistics on the full Project STAR kindergarten sample are provided in Appendix

Table 1. In kindergarten, nearly half of the sample is on free lunch status. There are very

few Hispanic or Asian students and the sample is approximately 2
3 Caucasian and

1
3 African

American. There are nearly twice as many students attending schools located in rural areas

than either suburban or inner city areas. There are very few students in the sample (9.0%)

attending schools located in urban areas. Regression analysis and specification tests found no

evidence of any systematic differences between small and regular classes in any student or teacher

characteristics in kindergarten, suggesting that randomization was indeed successful. However,

among black students those on free lunch status were more likely to be assigned to regular classes

than small classes (33.67% vs. 27.69%, Pr(T > t) = 0.0091, one sided test).

Following the completion of Kindergarten there were significant non-random movements

between control and treatment groups as well as in and out of the sample which complicates any

analysis. As a result Appendix Table 1 indicates that the sample which completed tests each

year is increasingly likely to be currently attending a small class, white or Asian, female and

not on free lunch status. The full set of transitions for the cohort of students who participated

in Project STAR in kindergarten is shown in Figure 1. This graph displays the multitude of

transitions that were outlined in the preceding section. Notice that excluding attrition in grade

a single scoring system across all grades. This allows us to use differences in scales scores as measures to track

development betwen grades. As robustness checks we replicated the analysis with both percentile and standard

scores (which do not possess this property) and the basic patterns reported in Section 5 also emerge.
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two, there is support for all eight sequences and fourteen of the sixteen possible sequences in

grade three. Accounting for this large number of transitions further motivates treating the data

as a multi-period intervention.

In our empirical analysis, we include only the sample of students who participated in the

STAR experiment starting in kindergarten. Pooling the kindergarten sample with the refresh-

ment samples (students who joined the experiment after kindergarten) rests on two assumptions.

First, individuals leave the sample in a random manner.27 Second, subsequent incoming groups

are conditionally randomly assigned (based on seat availability/capacity constraint) within each

school. The second claim can be examined through simple regressions of the random assignment

indicator (MijT ) on individual characteristics and school indicators as follows

MijT = γ0XijT + υj + eijT (20)

for each group of students entering the experiment after kindergarten. If students are assigned

randomly there should be no evidence of a systematic differences in baseline characteristics (as

well as unknown confounders) between the treatment and control group.

OLS estimates of equation (20) are presented in the top panel of Table 1. The results clearly

demonstrate that incoming students were not conditionally randomly assigned in grades one

and three. The incoming students to the experiment that were on free lunch status in grades

one and three were more likely to be assigned to the control group. Estimates of equation

(20) that use the full sample of students are presented in the bottom panel of Table 1. They

further demonstrate significant differences in student characteristics between small and regular

classes in each year following Kindergarten. In the next section, we describe our strategy to

recover dynamic treatment effects considering the large number of sequences that the cohort

who participated in the experiment in Kindergarten completed.

27 In Section 5, we will reject the validity of this claim and present evidence of a selective attrition pattern.
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5 Empirical Results

5.1 Attrition and Bounds

Past research on Project STAR has treated the data assuming attrition is ignorable and consid-

ered ITT and IV analyses. As discussed in the introduction, estimates from these analyses are

distorted from a causal effect if there is evidence of non-random attrition. Further even if data

were missing at random, estimates from the ITT or IV analyses can be misleading for policy-

makers in that they may lie entirely outside the theoretical bounds for the average treatment

effect (ATE). In this sub-section we first present strong evidence of non-random attrition and

subsequently demonstrate that in some subject areas and grades the ITT and IV estimates lie

outside the bounds for the ATE.

To determine whether there is evidence of non-random attrition we present estimates of

equation (8) in Table 2. Wald tests indicate that the βL coefficient vector is significantly differ-

ent for attritors and non-attritors in all subject areas.28 The attrition indicator is significantly

negatively related to test score performance in all subject areas indicating that the levels of

performance for subsequent attritors is significantly lower in kindergarten. The joint effect of

attrition on all student characteristics and class type is significantly different from zero in all

subject areas. Students on free lunch status that left scored significantly lower than free lunch

students who remained in the sample in mathematics. Interestingly, female attritors out per-

formed female non-attritors in kindergarten in all subject areas but the magnitude is small.

Finally, in both mathematics and word recognition attritors received half the gain of reduced

class sizes suggesting that non-attritors obtained the largest gains in kindergarten which may

bias future estimates of the class size effect upwards. These results provide strong evidence

that selective attrition on observables exists and is non-ignorable. Correcting for selection on

observables in the panel will reduce the amount of residual variation in the data due to attri-

28Fitzgerald et al. (1998) demonstrate that this test is simply the inverse of examining whether past academic

performance significantly affects the probability of remaining in the study in higher grades from logistic estimates

of equation (16). The results presented in Appendix Table 2 suggest that students who scored higher on their most

recent mathematics examination are more likely to remain in the sample at each grade level, further demonstrating

that attrition due to observables is not ignorable.

23



tion. As there is no evidence that attrition patterns differed between schools in Tennessee that

participated and did not participate in the STAR experiment concerns regarding selection on

unobservables are reduced.29

To assess the degree of bias introduced by noncompliance and selective attrition we consider

two different techniques to construct bounds for the ATE in the presence of missing outcome

data. The first approach follows Horowitz and Manski (2000) and uses information about the

support of the outcome variable to construct “worst-case” bounds for the treatment effect para-

meter when outcome and covariate data are non-randomly missing. Horowitz and Manski (2000)

construct bounds by imputing for those with missing information either the largest or smallest

possible values to compute the largest and smallest possible treatment effects. These bounds

are nonparametric and hold regardless of the process that led to the missing data.30 The second

approach introduced in Lee (2005) imposes some additional assumptions to gain tighter bounds

on the ATE.31 Lee (2005) trims the test score distribution using the differential probability of

remaining in the sample between the treatment and control groups. Intuitively Lee’s method

calculates the upper (lower) bound of the ATE by taking the conditional expectation of the

outcome variable where the bottom (top) trimming factor percentage of the data is dropped

for the treatment group. Those observations that exit or violate the experimental protocol are

assumed to exhibit an extreme form of sample selection by achieving outcomes in either the

upper or lower tail of the test score distribution. In our implementation we use the differential

probability of both remaining in the sample and continuing to follow the experimental protocol

29STAR researchers collected information on students in similar schools that did not participate in the experi-

ment. This data has not been made available to the authors or the general research community.
30A larger literature has emerged that constructs bounds that allows for imperfect compliance of the treatment

(Balke and Pearl 1997; Heckman and Vytlacil 1999, 2000a, 2000b and Manski 1990, 1995) but assumes data is

missing at random. Note Scharfstein, Manski and Anthony (2004) discuss an alternative method to construct

bounds under specific assumptions of the missing data mechanism. Some of these assumptions are similar to the

monotonicity assumption that underlies Lee (2005) bounds which are considered.
31The critical additional assumption of Lee (2005) is monotonicity and is equivalent to that which underlies

LATE estimates. The assumption requires that treatment assignment affect small class attendance in only one

direction. While this assumption cannot be directly tested with STAR data, it is likely only satisfied if we define

cells of individuals based on numerous observed covariates.
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as the trimming factor for the Lee (2005) bounds. In our analysis we construct bounds using

both approaches that also account for a school covariate since randomization was done at this

level. In all cases, these methods account for attrition due to observables as well as attrition

due to unobservabes.

Table 3 presents estimates of the ITT and LATE that account for attrition using inverse

probability weighting as well as bounds on the average treatment effect. The ITT and LATE

parameters are obtained from equations based on the empirical model where we include the

history of school and home inputs but not the full history of treatment. To recover the ITT we

include initial class type (Mi) and consider OLS estimation of the following equation

AijT

f
piT

=
β0TXijT + β0ITTMi +

PT−1
t=1 β0tXijt + υj + ψijT

f
piT

(21)

where ψijT is a composite error term. The regression accounts for attrition due to observables

as
f
piT are weights that are calculated using equations The weights are calculated using esti-

mates from equations (17) and (19). Similarly, estimates of the LATE are obtained from 2SLS

estimation of
AijT

f
piT

=
β0TXijT + β0LATESit +

PT−1
t=1 β0tXijt + ρj + ψijT

f
piT

(22)

where E(Sit, ψijT ) 6= 0 due to noncompliance with the treatment assignment. To recover the

LATE parameter Mi is used as an instrumental variable for Sit.32

ITT and LATE estimates are presented in the first two rows of Table 3 and are positively

and significantly related to academic achievement in all subject areas and grades. The LATE

parameter presented in the second row is greater than the estimated ITT effect in the first row

since the denominator of the LATE expression (equation (4)) in our data lies strictly between 0

and 1. Since the compliance rate decreases in higher grades, the denominator of this expression

32 It is worth noting that the use of initial assignment from randomization as an instrument for subsequent class

size violates the exclusion restriction in the cumulative education model since implicitly earlier class size is an

input to the production process of current academic performance. Angrist Imbens and Rubin (1996b pg. 468)

note that randomization alone does not make a candidate instrument valid because randomization alone does not

make the exclusion restriction more plausible.
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decreases and the LATE parameter becomes larger in magnitude relative to the ITT.33 The third

and fourth row present results from a series of DuMouchel and Duncan (1983) statistical tests

that evaluate whether weighting for attrition is necessary. Estimates that account for weighting

differ from unweighted estimates of achievement equations used to capture the ITT and LATE

if a series of first order interactions between the covariates and the weighting variable are jointly

significantly different. In the absence of sample selection bias due to attrition, unweighted

estimates are preferred since they are more efficient than the weighted estimates. Test results

suggest that accounting for attrition is necessary in all grades and subject areas.34

The fifth and sixth rows of Table 3 present Horowitz and Manski (2000) bounds. Since the

support of the outcome variable is wide so too are the treatment effect bounds. The interval is

almost as consistent with extremely large negative effects as it is with extremely large positive

effects. In contrast Lee (2005) bounds presented in the seventh and eighth row of Table 3 are

substantially tighter. These bounds suggest that the average treatment effect is clearly positive

in grade one but may include zero in higher grades. In general, Lee bounds have more support

on the positive side but still allow for small negative effects. The ITT and LATE estimates

generally lie near the upper bound in each subject and grade level. The LATE that accounts

for attrition for grade 3 reading actually exceeds the upper bound and does not lie within the

Lee bounds without school covariates. Further, the unweighted LATE exceeds the upper bound

for the ATE in grade 2 math, grade 3 word recognition as well as grades 1 and 2 reading. This

demonstrates that estimates based on intent-to-treat analysis and instrumental variables can be

misleading as they lie near the extremes and occasionally outside the theoretical bounds.35

33The decreasing compliance rate is the prime reason for the divergence of findings debated in Krueger (1999)

and Hanushek (1999) and would exist irrespective of the method used to measure test scores (Finn and Achilles,

1999).
34For completeness, the unweighted ITT and LATE parameters are reported in the bottom two rows of Table

3. In general, the unweighted estimates exceed the weighted estimates as expected since selective attrition should

reduce observed differences by test score performance leading to upward-biased estimates. However, the differences

between the two sets of estimates appear minor.
35We also calculated standard errors of the Lee bounds with no school covariates and computed Imbens and

Manski (2004) 95% confidence intervals for the average treatment effects. These confidence intervals (available

from the authors by request) are fairly wide and contain zero in all subject areas and grades.
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While the estimates presented in Table 3 are robust to noncompliance with the treatment

assignment and non-random attrition, they ignore the multi-period nature of the STAR experi-

ment. We next consider direct estimation of our empirical model to shed light on the effectiveness

of alternative sequences of class size reductions during the experiment.

5.2 Dynamic Treatment Effect Estimates

Our structural estimates of the causal effects of reduced class size are provided in Table 4. For

example, Si1 captures the unique regression adjusted average contribution of attending a small

class in grade one on achievement at different points in time. Thus alternative sequences at a

given time (i.e. SiKSi1Si2 versus SiKSi1(1− Si2)) are restricted to receiving the same common

effect of Si1.

Several interesting patterns emerge from these estimates. In kindergarten and grade one

small class attendance ((SiK) and (Si1)) has a positive and significant effect in all subjects

areas. However, there does not exist additional (nonlinear) benefits from attending small classes

in both years (SiKSi1) in grade one. After grade one, no significantly positive effect of small

class exists (P (t) ≤ 10%) except for grade two math. In the higher grades nearly all of the

estimated structural parameters are statistically insignificant. Thus, the structural estimates do

not lend much support for positive effect of small class attendance beyond grade one. In fact,

the average small class effect in grade three (Si3) is significantly (≤ 10%) negatively related to

achievement in all subjects.

Estimates of the dynamic average treatment effect for the treated are presented in Table 5

and are calculated with the structural parameter estimates discussed above using the formulas

presented in equations 15. A maximum of 1, 6, 28 and 120 effects can be calculated for kinder-

garten, grades 1, 2 and 3 respectively. However, due to lack of support of some treatment paths

only 78 effects can be calculated for grade 3. We present evidence that compares sequences

with the largest number of observations. These treatment effects can also be interpreted as

policy simulations explaining how much one would increase achievement by switching sequences

conditional on your full history of student, family and teacher characteristics.

In grade one, the set of dynamic treatment effects suggest that the largest gains in perfor-
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mance in all subject areas occur for students who attended small classes in either kindergarten

or in grade one (τ (0,1)(0,0)(0, 1) or τ (1,0)(0,0)(1, 0)). Benefits from attending small classes in

both kindergarten and grade one versus attendance in either but not for both of these years

(τ (1,1)(0,1)(1, 1) or τ (1,1)(1,0)(1, 1)) are statistically insignificant. While the economic significance

of attending a small class in grade one alone is slightly larger in all subject areas than attendance

in kindergarten alone (i.e. τ (0,1)(0,0)(0, 1) > τ (1,0)(0,0)(1, 0)), there does not exist a significant

difference between either sequence (τ (0,1)(1,0)(0, 1)). From a policy perspective the results sup-

port class size reductions, but only a single dose of small class treatment instead of continuing

treatment.

These estimates provide a richer picture of the structure and source of the gains in small

class reductions. A significant impact from smaller classes appears in kindergarten. Following

kindergarten, the positive effects of smaller classes in grade one appear only for those students

who made a transition between class types. Students who substituted into small classes and

dropped out of small classes both scored significantly lower than their grade one classmates in

each kindergarten subject and received a significantly larger improvement in grade one achieve-

ment compared to their grade one classmates.36 It is possible that teachers were targeting the

weaker students in the class. Further, these growth rates were significantly larger than those

achieved by their kindergarten classmates who did not switch in grade one. Since scaled scores

are developmental and can be used to measure growth across grades within the same test subject

area we can conduct these comparisons.37

The pattern in higher grades presents several additional insights into the effectiveness of re-

duced class size. The dynamic benefits from continuous treatment versus never attending small

classes (τ (1,1,1)(0,0,0)(1, 1, 1) and τ (1,1,1,1)(0,0,0,0)(1, 1, 1, 1)) become both statistically and econom-

ically insignificant in all subject areas. This result contrasts sharply with prior work (Finn et al.,

36These findings are obtained from within classroom regressions that control for kindergarten and grade 1

student, family and teacher characteristics.
37The Stanford Achievement Tests use a continuous scale from the lowest to the highest grade levels of the

tests. Thus a one point change from 50 to 51 is equivalent to a one point change from 90 to 91. Other test score

measures such as percentile scores, grade equivalent scores or standard scores are difficult to interpret since they

are not comparable between grades even in the same subject area.
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2001) that find the benefits of small classes persisting in later grade and increasing the longer an

individual stayed in small classes. Moreover, the economic significance of these dynamic benefits

from continuous treatment are smaller in magnitude than τ (1,1)(0,0)(1, 1). Together, this suggests

a erosion of the early gains in later grades. The raw data supports these findings as simple t-tests

between these two groups of students (always versus never attended small classes) indicate that

the growth in performance in each subject area was significantly higher for students who never

attended small classes in higher grades.38 Multiple regression results further demonstrate that

students who never attended small classes experienced larger growth in mathematics both from

grade one to grade two and grade two to grade three. These students also had greater gains in

reading from grade one to grade two.39

In grade one, approximately 250 students substituted into the treatment and received pos-

itive benefits. Continuing along this path and remaining in small classes in higher grades did

not provide any additional benefits as both τ (0,1,1)(0,0,0)(0, 1, 1) and τ (0,1,1,1)(0,0,0,0)(0, 1, 1, 1) are

statistically insignificant. Further, their economic significance is smaller than τ (0,1)(0,0)(0, 1).

Similar to Krueger (1999) we find that students received large benefits the first year they

spent in a small class in all subject areas in grade one and in grade two mathematics. In contrast

to Krueger (1999), we find in all that students who first entered small classes in grade three

38Students who never attended small classes has greater growth in performance from grade one to two in

mathematics and reading than those always in small classes ( t = 2.3068 with P > t = 0.0106 on one-sided test in

math and t = 2.1296, P > t = 0.0166 on one-sided test in reading. The hypothesis is that gains for those never

attended small classes is greater than gains for those always in small classes.), with no significant differences in

word recognition ( t = 0.9905, P > |t| = 0.3220). From grade two to three, never attendees gained more than

always attendees in math (t = 1.6844, P > t = 0.0461 in one sided test) with no significant differences in reading

and word recognition ( t = -0.1373, P > |t| = 0.8908, t = 0.0024, P > |t| = 0.9981 two-sided test respectively)

between these groups.
39The regressions include school indicators as well as student and teacher characteristics. The regressor of

interest is an indicator variable set equal to 1 if SiK = Si1 = Si2 = 1 and set to 0 if SiK = Si1 = Si2 = 0.

Individuals whose treatment histories are on alternative paths are not included in the regressions. The effect (and

standard error) of this regressor is -4.18 (1.46) in grade two reading gains and -2.75 (1.35), -2.18 (1.28) in grade

two and grade three mathematics gains respectively. Note in grade one, there are positive and significant gains

for always attending a small class in reading and word recognition which explains the dynamic benefits at that

time.
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achieved significant losses from attending a small class (τ (0,0,0,1)(0,0,0,0)(0, 0, 0, 1)) in all subject

areas. Finally, students who first switched in to small class in grade two did not have statistically

significant gains on reading and word recognition (τ (0,0,1)(0,0,0)(0, 0, 1)).

5.3 Discussion

The changes in the sign and significance of the dynamic treatment effects for the treated for

students who switched class types for the first time motivated a closer examination of their

behavior and changes in performance. Using classroom level regressions we compared students

who dropped out of or substituted into small classes with their new classmates based on prior

performance on examinations by subject area. In all subject areas in grades one and two,

students who joined small classes scored significantly lower than their new classmates with the

exception of reading for those who substituted in grade two. Only in mathematics did these

students receive significantly greater growth in performance between grades for each period.

Students who achieved benefits from attending small classes for the first time had significantly

lower past performance in math.

Coleman (1992) suggests that the focus of US education is on the bottom of the distribution

and it is much easier for teachers to identify weaker students in mathematics than other subject

areas. The major challenge in investigating this claim is separating the amount of test score

gains from teachers’ behavior from a statistical tendency called “regression to the mean,” which

is created by nonrandom error in the test scores. This error leads students to score poorly

at one point in time and subsequently receive scores that come closer to the average for the

whole population. To investigate this issue we classified the five students in each grade one

classroom that had the lowest scores on kindergarten tests in each as being a “weak” student.

We included an indicator variable for being one of these “weak” students in the classroom in

regression equations to explain growth in performance controlling for the full history of teacher,

family and student characteristics. Using multiple regression we separately examined whether

being a “weak” student in mathematics or reading or word recognition led to larger gains in test

performance in all subject areas.

Consistent with the regression to the mean argument students who were weak in mathematics
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and word recognition received larger gains in performance relative to classmates in these subject

areas. In contrast, being a “weak” student in reading significantly reduced gains in reading

performance in grade 1. Supporting Coleman’s hypothesis we found that students who achieved

the largest gains in the classroom in reading and word recognition in higher grades were defined

as “weak” students in mathematics.40 Further, we find among “weak” students in mathematics

those who substituted from regular classes to small classes received larger gains in performance

in all subject areas relative to their former “weak” classmates who remained in regular classes.

In general, individuals who substituted in grade one were “weak” in mathematics whereas those

students who substituted in grade three were not “weak” in mathematics which may explain

why (τ (0,0,0,1)(0,0,0,0)(0, 0, 0, 1)) is negative. Individuals who substituted in grade three did not

differ significantly from their grade two classmates on their grade two performance in all subject

areas.

Students who were classified as “weak” that substituted in to small classes increased the

variation of background subject knowledge within small classrooms in higher grades. In higher

grades, small classes had significantly more variation in past performance in mathematics and

reading than regular classes.41 Faced with relatively less variation in the incoming knowledge of

students, simple regressions indicate students in regular classes were able to achieve significantly

larger gains in mathematics and reading between grades one and two and in mathematics from

grade two to three.42 As regular classes became less heterogeneous in knowledge the dynamic

40Our results are robust to several alternative definitions of being a "weak" student. We also defined being a

"weak" student as having the lowest or one of the three or four lowest scores in the classroom. Note only in word

recognition varied by definition of a "weak" students.
41T-tests on the equality of variances in incoming test scores indicate significantly larger variation in small

classes in mathematics in grades two (P < F = 0.04) and three (P < F = 0.11) and in grade two reading (P < F=

0.06). Variation may influence student performance through teaching methods as having a more diverse classroom

may lead to increased difficulties for instructors at engaging the different levels of students. Note that in grade

one, we hypothesize the incoming students some of which did not attend kindergarten drive heterogeneity in the

classroom.
42Regressions including school indicators demonstrate that gains in reading between grades one and two (co-

efficient =-2.54, std. err.=1.05) and gains in mathematics between grades one and two (coefficient =-2.22, std.

err.=1.11) and between grades two and three (coefficient =-2.21, std. err.=0.88) were significantly lower in small
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benefits of small class attendance vanished. Between class types in grades two and three there

was neither any significant differences in the variation of prior performance nor significant dif-

ferences in gains in performance on the word recognition examinations. While the patterns

exhibited in higher grade may be explained by the existence of a trade-off between variation in

incoming student performance and class type, more investigation is needed and the underlying

economic model must be expanded to include peer effects to directly test this hypothesis.43

The benefits occurring to students who made transitions between class types following kinder-

garten runs counter to the hypothesis that students benefit from environmental stability. We

conducted a more detailed examination of the effects of environmental stability on small classes

in grade one.44 In each grade one small class, we identified members of the largest subgroup

of students who were taught by the same teacher in kindergarten. We then ran regressions of

growth in performance by subject area on this indicator controlling for school indicators and

the full history of student and teacher characteristics. Members of this largest subgroup had

significantly smaller gains than their classmates in mathematics (coeff.=-6.129, s.e. 2.714) and

word recognition (coeff.=-4.524, s.e. 3.008) and no significant differences in readings. Multi-

ple regressions using the number of your classmates who were taught by the your kindergarten

teacher (instead of a simple indicator variable) also find significantly smaller gains in mathemat-

ics (coeff.=-1.797, s.e. 0.572) and word recognition (coeff.=-1.179, s.e. 0.572) for each additional

former classmate. These results do not support arguments for environmental stability. Neither

classes.
43A discussion of peer effects estimation is beyond the scope of the current paper. Since students switch class

types, refreshment samples may be non-randomly assigned to class type there are a variety of selection issues that

need to be considered. Attempts at peer effect estimation with this data can be found in Boozer and Cacciola

(2001) and Graham (2005) who each find evidence of large impacts. Note our findings are consistent with evidence

on elementary school students presented in Hoxby (2000a) and Hoxby (2000b) who exploited natural variation in

age cohorts in the population and found evidence that class size does not affect student achievement in Connecticut

and peer group composition affects achievement in Texas respectively. Further, international evidence from the

TIMMS study finds that Korea (where students are ability streamed in the classroom) was the only country to

significantly outperform the US in both grade 4 science and mathematics.
44We do not analyze students in regular classes since they were re-randomized within schools between classes

with and without aides following kindergarten.
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do they directly contradict the stability hypothesis since peer groups (classmates) were no longer

exogenously formed after kindergarten.

5.4 Specification Tests

This study differs from past research on Project STAR not solely through the focus of treating

the experiment as a multi-period intervention but also in accounting for both attrition due to

observables and the possibility that other forms of noncompliance are due to unobservables.

DuMouchel and Duncan (1983) test were used to examine the importance of accounting for

attrition due to observables when estimating equation (14). Test results presented in Table 6

demonstrate that accounting for attrition due to observables is preferred in all subject areas and

grade levels at conventional levels in reading and mathematics and below the 20% level in word

recognition.

Assuming there does not exist selection on unobservables permits direct estimation of the

structural equations (12) and (13).45 A likelihood ratio test can be conducted to test whether

the individual intercept effects can be restricted to equal zero. Under the Null, the restriction

is valid and the efficient estimator is least squares without differencing. Table 7 present results

of this specification test. In all subject areas and grades the Null hypothesis is strongly rejected

supporting the presence of unobserved heterogeneity and the estimation of equation (14).

5.5 Robustness Checks

To check the robustness of our results we consider three strategies that increase the statistical

power of the structural parameter and dynamic treatment effect estimates. Specifically we i)

ignore potential nonlinear impacts of the treatments in equation (18), ii) relax the identification

assumptions for the attrition model allowing us to use a larger sample, and iii) present ITT

45This approach is implicitly undertaken in past studies using STAR data (even those that include school fixed

effects) since υi is assumed to be both uncorrelated with the regressors and equal to zero. It is worth noting that

DuMouchel and Duncan (1983) tests confirm that weighted estimates are preferred for these direct estimates of

the structural equations further indication that ignoring selective attrition in past studies leads to inconsistent

parameter estimates. These results are available from the authors by request.
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estimates for the subset of subjects who complied with their assignment throughout the study.

Since there are limited number of people on several treatment paths in Figure 1 we reestimate

equation (18) removing all the non-linear impacts of class size treatment. Specifically, in period

one and two we estimate

Ai2 −Ai1

f
pi1

=
α02Xi2 + (α1 − β1)

0Xi1 + α0S2Si2 + (αS1−βS1)0Si1+t2+ε∗i2
f
pi1

(23)

Ai1 = β01Xi1 + β0S1Si1 + εi1

with the identical sample as in Tables 4 and 5. This model is less flexible than equation (18),

and implicitly places several equality restrictions on several dynamic treatment effect paths. For

example, in grade two τ (0,1,1)(0,0,1)(0, 1, 1) = τ (0,1,0)(0,0,0)(0, 1, 0). Yet, it is worth stating explic-

itly that no additional assumptions are imposed on the underlying data to construct dynamic

treatment effects when equation (23) is used in place of equation (18). The underlying empirical

model differs and it is possible to construct F tests on the joint significance of the non-linear

interactions of treatment receipt. The results support the use of the restricted model (equation

(23)) in grade one, but the unrestricted model is preferred in four of the six specifications in

higher grades.

Structural parameter and dynamic treatment effect estimates from equation (23) are jointly

presented in Table 8. The qualitative picture that emerges from these results is fairly similar to

that which emerged in Tables 4 and 5. In grade one, the impacts of Si1 and Sik are smaller in

magnitude as they now capture part of the negative impact of the omitted SiKSi1. An additional

year of treatment appears to boost achievement in math and word recognition whereas having

attended small classes in both years relative to having only been in a small class in grade one

increases achievement in reading only. In grade two, we continue to find that new switchers only

have achievement gains in mathematics. Similarly, in grade three, we continue to find that first

time small class attendance is not positively related to achievement in any subject area and is

now statistically insignificant. As before, we find that nearly every path of multiple receipt of

treatment in the higher grades is not significantly related to achievement in any subject area.

The results suggest that there may be lasting effects from attending a small class in kindergarten
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alone in reading and word recognition. For mathematics, the results appear to suggest that small

class attendance in both kindergarten and grade two may have some lasting impacts.

Our second robustness check involved estimating equation (18) where the weights are con-

structed from an attrition model that imposes weaker data requirements using only the most

recent lagged test score for identification. By making this weaker restriction, we increase the

sample for analysis by over one thousand observations per subject area. In each attrition model,

the lagged dependent variable was significantly associated with remaining in the sample which

continues to indicate that selection on observables is not ignorable. We present weighted struc-

tural parameter estimates in Table 9.46

There are a few minor differences between the samples in the structural parameters. For

example, in grade one, the combined effect of being in small classes both years is significantly

negative in both mathematics and word recognition. This weakens evidence on a positive im-

pact of small class attendance in grade one. The larger sample also permits identification of

additional parameters in grade three such as Si1Si2Si3. Our focus is on the impact of changes in

these estimates on the dynamic treatment effects. We find few changes in the statistical signifi-

cance of the dynamic treatment effects presented in Table 5. In higher grades, we find the the

dynamic benefits of substituting into a small class in grade two become significantly smaller in

mathematics. Further, substituting into small classes in grade three (τ (0,0,0,1)(0,0,0,0)(0, 0, 0, 1))

becomes insignificant in all subject areas.

In grade one, the results lend increased support to only a single dose of class size reductions.

The economic significance of kindergarten increases and τ (0,1)(0,0)(0, 1) < τ (1,0)(0,0)(1, 0). How-

ever, (τ (0,1)(1,0)(0, 1)) remains statistically insignificant. In higher grades, kindergarten small

class attendance (SiK) is positively related to performance in grade two reading and grade three

reading and word recognition examinations. Whereas, attendance in small classes in grade one

(Si1) is either negatively related or unrelated to performance in both grades two and three.

Third, we consider a naive approach and assume that all noncompliance is random. We

consider ITT estimation of equation (21) using only the subsample of the data that complied

46Note the DuMouchel and Duncan (1983) test suggest that the weighted estimates are preferred for this sample

as well.
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with their initial assignment in all prior years of the experiment. Estimates that account for

non-random attrition using weights are presented in Table 10. We would anticipate that these

estimates would be biased upwards since those individuals that would stay in the study are

those who are receiving the largest benefits. Notice that the weighted estimates are statistically

insignificant in all subject areas in both grades one and two. When accounting for the probability

of remaining in the sample, having always been in small classes throughout the study leads to

a positive and significant estimate in grade three math and word recognition. Overall, the

quantitative results in Table 10 are similar to the dynamic average treatment effect for the

treated estimates that compares the path of always being in a small class versus never attending

a small class. These results increase our confidence that receiving multiple doses of small class

treatment does not yield substantial impacts relative to having never attended a small class.

The results clearly suggest that the differences in our findings from earlier work are unlikely

due to statistical power. Overall, these results suggest that the benefits of attending a small class

early are of small magnitude and a single dose in kindergarten yields most of the benefit. The

results do not provide strong evidence supporting long-term large scale class size reductions. The

substantial heterogeneity in the treatment effects makes it important to understand the reason

why small classes work when they are effective, and similarly understand the explanations for

their failures.47 Comparing the alternative treatment sequences sheds light on some of these

circumstances but clearly more research is needed. For example, more understanding of the

nature of class size and relationship with teaching practices is needed. To summarize the results

suggest that small classes do not work consistently and unconditionally.

6 Conclusion

This paper considers the analysis of data from randomized trials which offer a sequence of

interventions and suffer from a variety of problems in implementation. In this setting, neither

traditional program evaluation estimators nor non-experimental estimators recover parameters of

47We find that the positive results in kindergarten are driven by one quarter of the schools. Krueger (1999)

presents additional evidence of the heterogeneous treatment impacts across schools.
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interest to policy makers, particularly if there is non-ignorable selective attrition. We introduce

a strategy to estimate treatment effects in this setting and apply it to the highly influential

randomized class size study, Project STAR. We discuss how a researcher could estimate the full

sequence of dynamic treatment effects for the treated using a sequential difference in difference

strategy that accounts for attrition due to observables using inverse probability weighting. These

estimates allow us to recover the structural parameters of the small class effect in the underlying

education production function and construct dynamic average treatment effects.

The evidence presented in this study presents a more complete picture of the effectiveness

of reduced class sizes. Past estimates generally treat the data as if it were from a single period

intervention, ignore the influences of past educational inputs and recover parameters not of

interest to policy makers. Further, by ignoring selective attrition on observables past estimates

are likely to be upward biased since attritors received half the benefits of reduced class size in

kindergarten. Past estimates generally treat other forms of noncompliance as random whereas we

find strong evidence for selection due to individual unobserved heterogeneity. We demonstrate

that even if one accounts for attrition, ITT and IV estimates recover treatment effects that are

outside of the bounds for the average treatment effect. Finally, estimates of conditional random

assignment demonstrates that analysis with any sample above the kindergarten year may require

further bias corrections.

We find that small class attendance is most effective in kindergarten. The benefits of at-

tending a small class in early years does has some lasting impacts but there are no lasting

benefits from either receiving multiple doses of treatment or receiving the treatment beyond

grade one. The dynamic treatment effects indicate that there were no significant benefits of

receiving instruction in small classes in the current and all prior years of the experiment as

compared to never being in a small class in mathematics and above grade two in reading and

word recognition. Finally, we present evidence that teachers are able to identify weak students

in mathematics and boost their achievement relative to their classmates and in higher grades a

trade-off between variation in background knowledge and class size may account for decreasing

small class achievement gap.

While we believe this paper presents compelling new evidence to one of the hotly debated
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education policy areas several questions remain. For example, a more complete understanding

of the trade-off between increased student variability, class size and teaching methods is needed

to see if this hypothesis accounts for the reduced class size benefits in higher grades and larger

benefits to low achieving students in mathematics. Data on teaching practices, teacher expec-

tations and family involvement have been collected from process evaluations as well as surveys

completed by the teachers. However, the original STAR researchers have not made this informa-

tion available to the general research community. Answers to this and other questions present

an agenda for future research.

38



References

[1] Angrist, Joshua D.; Imbens, Guido W. and Rubin, Donald B. “Identification of Causal
Effects Using Instrumental Variables.” Journal of the American Statistical Association,
1996a, 91(434), pp. 444-55.

[2] Angrist, Joshua D.; Imbens, Guido W. and Rubin, Donald B. “Rejoinder to Identifica-
tion of Causal Effects Using Instrumental Variables.” Journal of the American Statistical
Association, 1996b, 91(434), pp. 468-72.

[3] Balke, A. and Pearl, Judea. “Bounds on Treatment Effects from Studies With Imperfect
Compliance.” Journal of the American Statistical Association, 1997, 92, pp. 1171-1177.

[4] Becketti, Sean; Gould, William; Lillard, Lee and Welch Finis. “The Panel Study of Income
Dynamics after Fourteen Years: An Evaluation.” Journal of Labor Economics, 1988, 6(4),
pp. 472-92.

[5] Ben-Porath, Yoram. “The Production of Human Capital and the Life-Cycle of Earnings.”
Journal of Political Economy, August, 1967.

[6] Boozer, Michael A. and Cacciola, Stephen. “Inside the ’Black Box’ of Project STAR: Esti-
mation of Peer Effects Using Experimental Data.” Working Paper, Yale University, 2001.

[7] Boardman, Anthony E. and Murnane, Richard J. “Using Panel Data to Improve Estimates
of the Determinants of Educational Achievement.” Sociology of Education, 1979, 52, pp.
113-121.

[8] Brewer, Dominic J.; Krop, Cathy; Gill, Brian and Reichardt, Robert. “Estimating the
Cost of National Class Size Reductions Under Different Policy Alternatives.” Educational
Evaluation and Policy Analysis, 1999, 21(2), pp. 179-192.

[9] Chesher, Andrew “Identification in Nonseparable Models,” Econometrica, 2003, 71, pp.
1405-1441.

[10] Coleman, James S. “Some Points on Choice in Education.” Sociology of Education, 1992,
65(4), pp. 260-2.

[11] Ding, Weili and Lehrer, Steven F. “Accounting for Unobserved Ability Heterogeneity within
Education Production Functions.” Working Paper, Queen’s University, 2004.

[12] DuMouchel, William H. and Duncan, Greg J. “Using Sample Survey Weights in Multiple
Regression Analyses of Stratified Samples." Journal of the American Statistical Association,
1983, 78(383), pp. 535-43.

[13] Finn, Jeremy D.; Gerber, Susan B.; Achilles, Charles M. and Boyd-Zaharias, Jayne. “The
Enduring Effects of Small Classes.” Teachers College Record, 2001, 103(2), pp. 145-83.

39



[14] Finn, Jeremy D. and Achilles, Charles M. “Answers about Questions about Class Size: A
Statewide Experiment.” American Educational Research Journal, 1990, 27, pp. 557-77.

[15] Fitzgerald, John; Gottschalk, Peter and Moffitt, Robert. “An Analysis of Sample Attri-
tion in Panel Data: The Michigan Panel Study of Income Dynamics.” Journal of Human
Resources, 1998, 33(2), pp. 300-44.

[16] Frangakis, Costas E. and Rubin, Donald B. “Principal stratification in causal inference.”
Biometrics, 2002, 58(1), pp. 21-9.

[17] Frangakis, Costas E. and Rubin, Donald B. “Addressing complications of intention-to-treat
analysis in the presence of all-or-none treatment-noncompliance and subsequent missing
outcomes.” Biometrika, 1999, 86(2), pp. 365-79.

[18] Graham, Bryan S. “Identifying social interactions through excess variance contrasts.” Work-
ing Paper, University of California-Berkeley, 2005.

[19] Hanushek, Eric A. “Some Findings from an Independent Investigation of the Tennessee
STAR Experiment and from Other Investigations of Class Size Effects." Educational Eval-
uation and Policy Analysis, 1999, 21(2), pp. 143-63.

[20] Hausman, Jerry A.; Newey, Whitney K. and Taylor, William E. “Efficient Estimation and
Identification of Simultaneous Equation Models with Covariance Restrictions." Economet-
rica, 1987, 55(4), pp. 849-74.

[21] Heckman, James J.; Lalonde, Robert and Smith, Jeffrey. “The Economics and Econometrics
of Active Labor Market Programs,” in Orley Ashenfelter and David Card, eds., Handbook
of Labor Economics, Volume 3, Amsterdam: Elsevier Science, 2001.

[22] Heckman, James J.; Hohmann, Neil, Khoo, Michael and Smith Jeffrey. “Substitution and
Dropout Bias in Social Experiments: A Study of an Influential Social Experiment.” Quar-
terly Journal of Economics, 2000, 115(2), pp. 651-90.

[23] Heckman, James J.; Smith, Jeffrey and Taber, Chris. “Accounting For Dropouts in the
Evaluation of Social Experiments.” Review of Economics and Statistics, 1998, 80(1), pp.
1-14.

[24] Heckman, James J. and Vytlacil, Edward J. “Local Instrumental Variables and Latent Vari-
ables Models for Identifying and Bounding Treatment Effects.” Proceedings of the National
Academy of Sciences, 1999, 96, pp. 4730-4734.

[25] Heckman, James J. and Vytlacil, Edward J. “Local Instrumental Variables in Nonlinear
Statistical Modeling.” Proceedings of the Thirteenth International Symposium in Economic
Theory and Econometrics: Essays in Honor of Takeshi Amemiya, ed. by C. Hsiao, K.
Morimune, and J. Powell, pp. 1-46, Cambridge: Cambridge University Press, 2000a.

40



[26] Heckman, James J. and Vytlacil, Edward J. “Local Instrumental Variables.” NBER Work-
ing Paper No. T0252, 2000b.

[27] Horowitz, Joel and Manski, Charles F. “Nonparametric Analysis of Randomized Exper-
iments with Missing Covariate and Outcome Data.” Journal of the American Statistical
Association, 2000, 95, pp. 77-84.

[28] Hoxby, Caroline M. “The Effects of Class Size on Student Achievement: New Evidence
from Population Variation.” Quarterly Journal of Economics, (2000a) 115(4), pp. 1239-85.

[29] Hoxby, Caroline M. “Peer Effects in the Classroom: Learning from Gender and Race Vari-
ation” Peer Effects in the Classroom: Learning from Gender and Race Variation.” NBER
Working Paper No. W7867, 2000b.

[30] Imbens, Guido W. and Manski, Charles F. “Confidence Intervals for Partially Identified
Parameters.” Econometrica, 2004, 72, pp. 1845-1857.

[31] Krueger, Alan B. and Whitmore, Diane. “The Effect of Attending a Small Class in the Early
Grades on College-Test Taking and Middle School Test Results: Evidence from Project
STAR.” Economic Journal, 2001, 111(1), pp. 1-28.

[32] Krueger, Alan B. “Experimental Estimates of Education Production Functions.” Quarterly
Journal of Economics, 1999, 114(2), pp. 497-532.

[33] Lechner, Michael. “Sequential Matching Estimation of Dynamic Causal Models.” Working
Paper, University of St. Gallen, 2004.

[34] Lechner, Michael and Miquel, Ruth. “Identification of Effects of Dynamic Treatments by Se-
quential Conditional Independence Assumptions.” Working Paper, University of St. Gallen,
2005.

[35] Lee, David S. “Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treat-
ment Effects.” National Bureau of Economic Research Working Paper No. 11721, 2005.

[36] Manski, Charles F. “Nonparametric Bounds on Treatment Effects.” American Economic
Review Papers and Proceedings, 1990, 80(2), pp. 319-323.

[37] Manski, Charles F. “Identification Problems in the Social Sciences.” Cambridge, MA: Har-
vard University Press, 1995.

[38] Miquel, Ruth. “Identification of Effects of Dynamic Treatments with a Difference-in-
Differences Approach,” Working Paper, University of St. Gallen, 2003.

[39] Miquel, Ruth. “Identification of Dynamic Treatment Effects by Instrumental Variables.”
Working Paper, University of St. Gallen, 2002.

41



[40] Robins, James M.; Greenland, Sander and Fu-Chang, Hu, “Estimation of the causal effect
of a time-varying exposure on the marginal mean of a repeated binary outcome.” Journal
of the American Statistical Association - Applications and Case Studies, 1999, 94(447), pp.
687-700.

[41] Robins, James M. “A new approach to causal inference in mortality studies with sustained
exposure periods - Application to control of the healthy worker survivor effect,” Mathe-
matical Modelling, 1986, 7, pp. 1393-1512, with 1987 Errata to “A new approach to causal
inference in mortality studies with sustained exposure periods - Application to control of
the healthy worker survivor effect,” Computers and Mathematics with Applications, 14,
pp. 917-21; 1987 Addendum to “A new approach to causal inference in mortality studies
with sustained exposure periods - Application to control of the healthy worker survivor
effect,” Computers and Mathematics with Applications, 14, pp. 923-45; and 1987 Errata
to “Addendum to ’A new approach to causal inference in mortality studies with sustained
exposure periods - Application to control of the healthy worker survivor effect,” Computers
and Mathematics with Applications, 18, pp. 477.

[42] Scharfstein, Daniel O.; Manski, Charles F. and Anthony, James C. “On the Construction of
Bounds in Prospective Studies with Missing Ordinal Outcomes: Application to the Good
Behavior Game Trial.” Biometrics, 2004, 60, pp. 154-164.

[43] Todd, Petra E. and Wolpin, Kenneth I. “On the Specification and Estimation of the Pro-
duction Function for Cognitive Achievement.” Economic Journal, 2003, 113, F3-F33.

[44] Wooldridge, Jeffrey M. “Inverse Probability Weighted M-estimators for Sample Selection,
Attrition and Stratification.” Portuguese Economic Journal, 2002, 1(2), pp. 117-39.

[45] Yau, Linda and Little, Roderick J. A. “Inference for the Complier-Average Causal Effect
from Longitudinal Data Subject to Noncompliance and Missing Data, with Application
to a Job Training Assessment for the Unemployed.” Journal of the American Statistical
Association, 2001, 96(456), pp. 1232-44.

42



 43

Figure 1: Transitions During Project Star for Kindergarten Cohort 
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 Li1 = 1, [499]  Li3 = 1, [2] 
  

 

Si2 =1, [17] 
 

 
   Si2 = 0, [55] Si3 = 1, [3] 
   Li2 = 1, [36] 

 
Si3 = 0, [46] 

     Li3 = 1, [6] 
Si0 = 1, [1900] 

 

     
      Si3 = 1, [158] 
Si0 = 0, [4425]     Si3 = 0, [9] 
    Li3 = 1, [20] 
   Si2 = 1, [187] 

 
 

  Si2 = 0, [8] Si3 = 1, [0] 
  Li2 = 1, [53] 

 
Si3 = 0, [4] 

 Si1 = 1, [2480] 

 

  Li3 = 1, [4]   
      
 

 

Si1 = 0, [2867]   Si3 = 1, [75]   
     Si3 = 0, [5] 
  Li1 = 1, [1310] 

 

 Li3 = 1, [13] 
    Si2 = 1, [93] 

 
 

    Si2 = 0, [2135] Si3 = 1, [101] 
    Li2 = 1, [639] 

 
Si3 = 0, [1758] 

      Li3 = 1, [276] 
Note: Number or individuals are in [ ] parentheses.. 



Table 1: Testing Randomization of Student Characteristics across Class Types
Kindergarten Grade One Grade Two Grade Three

INCOMING STUDENTS

White or Asian Student
2.35*10E-4
(0.012)

-0.275∗

(0.193)
-0.061∗

(0.041)
7.63*10E-4
(0.063)

Female Student
0.012
(0.019)

0.199∗

(0.126)
-0.020
(0.021)

-0.017
(0.028)

Student on Free lunch
-8.74*10E-3
(0.017)

-0.262∗

(0.167)
0.013
(0.022)

-0.057∗

(0.037)
Joint Test of Student
Characteristics

0.29
[0.831]

1.83∗

[0.150]
1.24
[0.301]

1.01
[0.392]

Number of Observations 6300 2211 1511 1181
R Squared 0.318 0.360 0.248 0.411

FULL SAMPLE

White or Asian Student
2.35*10E-4
(0.012)

-0.003
(0.021)

-0.008
(0.025)

-0.021
(0.027)

Female Student
0.012
(0.019)

0.007
(0.009)

0.004
(0.009)

0.008
(0.009)

Student on Free lunch
-8.74*10E-3
(0.017)

-0.038∗∗∗

(0.016)
-0.030∗∗

(0.016)
-0.044∗∗∗

(0.016)
Joint Test of Student
Characteristics

0.29
[0.831]

2.05∗

[0.114]
1.38
[0.255]

2.98∗∗∗

[0.037]
Number of Observations 6300 6623 6415 6500
R Squared 0.318 0.305 0.328 0359
Note:Regressions include school indicators. Standard errors corrected at
the school level are in ( ) parentheses. Probability > F are in [ ] parentheses.
***,**,* indicate statistical significance at the 5%, 10% and 20% level respectively.
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Table 2: Are Attritors Different from Non-attritors?
Subject Area Mathematics Reading Word Recognition

Kindergarten Class Type
10.434∗∗∗

(2.332)
6.513∗∗∗

(1.440)
7.370∗∗∗

(1.628)

White or Asian Student
20.499∗∗∗

(2.760)
8.608∗∗∗

(2.005)
8.505∗∗∗

(2.524)

Female Student
2.587∗∗

(1.363)
3.349∗∗∗

(1.074)
2.488∗∗

(1.296)

Student on Free lunch
-13.729∗∗∗

(1.679)
-12.239∗∗∗

(1.187)
-13.916∗∗∗

(1.480)

Years of Teaching Experience
0.323∗

(0.220)
0.255∗∗∗

(0.123)
0.329∗∗∗

(0.135)

White Teacher
-0.926
(4.366)

-1.577
(3.068)

-1.578
(3.506)

Teacher has Master Degree
-1.482
(2.396)

-1.211
(1.423)

-0.491
(1.729)

Attrition Indicator
-17.305∗∗∗

(3.838)
-13.674∗∗∗

(2.537)
-13.198∗∗∗

(3.251)
Attrition Indicator Interacted with
Kindergarten Class Type

-5.383∗∗∗

(2.616)
-2.069
(1.686)

-3.004∗

(2.045)
Attrition Indicator Interacted with
White or Asian Student

-3.949∗

(2.732)
-.259
(1.824)

-1.177
(2.368)

Attrition Indicator Interacted with
Female Student

5.597∗∗∗

(2.078)
2.943∗∗∗

(1.454)
3.750∗∗∗

(1.739)
Attrition Indicator Interacted with
Student on Free lunch

-5.186∗∗∗

(2.384)
-0.496
(1.554)

0.549
(1.891)

Attrition Indicator Interacted with
Years of Teaching Experience

0.188
(0.210)

0.075
(0.131)

-0.060
(0.164)

Attrition Indicator Interacted with
White Teacher

1.263
(3.490)

2.269
(2.133)

0.642
(2.678)

Attrition Indicator Interacted with
Teacher has Master Degree

-1.370
(2.490)

0.939
(1.586)

1.552
(1.876)

Number of Observations (R-Squared) 5810 (0.305) 5729 (0.295) 5789 (0.259)
Joint Effect of Attrition on Constant
and Coefficient Estimates

42.39∗∗∗

[0.000]
32.68∗∗∗

[0.000]
25.76∗∗∗

[0.000]
Joint Effect of Attrition on all
Coefficient Estimates but not constant

3.14∗∗∗

[0.003]
1.23
[0.280]

1.45∗

[0.181]
Effect of Attrition
on Constant Alone

20.33∗∗∗

[0.000]
29.06∗∗∗

[0.000]
16.48∗∗∗

[0.000]
Note:Regressions include school indicators. Standard errors corrected at
the classroom level are in ( ) parentheses. Probability > F are in [ ] parentheses.
***,**,* indicate statistical significance at the 5%, 10% and 20% level respectively.
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Table 3: Traditional Single Period Causal Estimates of The Impacts of Reduced Class Size    
Method Mathematics Reading Word Comprehension 
 Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3 
ITT Analysis 9.023 

(1.946) 
5.389 
(2.48) 

4.329 
(2.048) 

10.409 
(2.288) 

4.698 
(2.316) 

7.189 
(1.917) 

9.036 
(2.377) 

4.622 
(2.314) 

8.127 
(2.45) 

IV Analysis (LATE) 10.353 
(2.231) 

6.417 
(2.953) 

5.781 
(2.035) 

11.948 
(2.625) 

5.602 
(2.536) 

9.584 
(2.633) 

10.296 
(2.696) 

5.513 
(2.748) 

10.862 
(3.351) 

Attrition Test for ITT 61.60 
[0.00] 

79.89 
[0.00] 

86.12 
[0.00] 

62.21 
[0.00] 

89.73 
[0.00] 

78.22  
[0.00] 

36.55 
[0.00] 

73.2 1 
[0.00] 

63.19 
[0.00] 

Attrition Test for IV 26.93 
[0.00] 

22.43  
[0.00] 

22.11 
[0.00] 

22.21 
[0.00] 

25.69 
[0.00] 

18.90 
[0.00] 

 14.22 
[0.00] 

18.93 
[0.00] 

13.41 
[0.00] 

Horowitz-Manski Bounds {-73.174, 
86.647} 

{-111.487, 
117.794 

{-144.049, 
149.045} 

{-67.039, 
81.720}  

{-114.397, 
120.315} 

{-130.950, 
135.940} 

{-102.133, 
119.564} 

{-97.005, 
105.765} 

{-112.028, 
118.986} 

Horowitz-Manski Bounds 
with school covariates 

{-93.935, 
94.805} 

{-87.347 
87.861} 

{-97.246, 
98.414} 

{-82.452, 
83.447}  

{-89.447, 
90.532} 

{-87.716, 
88.713} 

{-98.434, 
98.632} 

{-78.441, 
78.359} 

{-77.924, 
79.558} 

Lee Bounds with no 
covariates 

{5.844, 
11.126 

{-3.010 
6.502} 

{-3.296, 
6.005} 

{5.443, 
12.152}  

{-2.575, 
6.387} 

{-0.834, 
7.627} 

{5.471, 
11.407} 

{-1.097, 
7.110} 

{-2.523, 
8.547} 

Lee Bounds with school 
covariates 

{0.487, 
20.992} 

{-6.782 
20.011} 

{-8.055, 
17.619} 

{-2.024, 
24.360} 

{-8.177 
18.779} 

{-6.286, 
19.227} 

{-4.357, 
26.532} 

{-9.301, 
21.683} 

{-8.796, 
22.948} 

ITT Ignoring Selective 
Attrition 

9.297 
(1.894) 

5.554 
(2.070) 

4.034 
(1.637) 

10.659 
(2.141) 

5.488 
(1.86) 

5.437 
(1.545) 

9.737 
(2.283) 

5.649 
(2.004) 

6.436 
(1.922) 

IV Ignoring Selective 
Attrition 

10.852 
(1.449) 

6.707 
(1.854) 

5.642 
(2.035) 

12.45 
(1.87) 

6.783 
(1.837) 

7.56 
(1.959) 

11.323 
(1.951) 

6.918 
(2.081) 

9.004 
(2.352) 

Note: All of the ITT and IV estimates are statistically significant at the 5% level. The IV and ITT analyses include the full history of teacher inputs, free 
lunch status, race, gender and school indicators. Standard errors corrected at the classroom level are in parentheses. For the specification tests the Probability 
that the Null is rejected is contained in [] brackets. For all the bounds on the ATE analysis {lower bound, upper bound}.



Table 4: Structural Estimates of the Treatment Parameters in Education Production Functions
Subject Area Mathematics Reading Word Recognition
Kindergarten
SiK 8.595 (1.120)∗∗∗ 5.950 (0.802)∗∗∗ 6.342 (0.945)∗∗∗

Grade One
SiK 7.909 (4.625)∗∗ 8.785 (5.284)∗∗ 11.868 (6.722)∗∗

Si1 9.512 (3.307)∗∗∗ 9.315 (4.350)∗∗∗ 15.394 (5.730)∗∗∗

SiKSi1 -6.592 (5.648) -2.229 (6.992) -11.060 (8.965)
Grade Two
SiK -2.078 (7.276) 11.320 (7.240)∗ 9.959 (8.438)
Si1 -4.010 (3.855) -20.036 (19.189) 4.298 (7.763)
Si2 15.150 (5.430)∗∗∗ 3.040 (4.428) 0.526 (5.814)
SiKSi1 3.851 (11.678) 1.148 (24.059) -12.074 (17.673)
SiKSi2 -4.049 (13.112) -31.513 (17.366)∗∗ -23.084 (13.237)∗∗

Si1Si2 -4.944 (6.617) 25.122 (19.480)∗ 7.868 (8.537)
SiKSi1Si2 6.653 (16.067) 23.634 (28.632) 30.111 (19.851)∗

Grade Three
SiK -7.298 (10.901) 1.215 (10.372) 13.071 (12.202)
Si1 43.514 (32.898)∗ 22.083 (30.097) -6.920 (37.200)
Si2 25.263 (42.080) -22.085 (26.069) -25.024 (22.031)
Si3 -6.835 (3.932)∗∗ -10.590 (4.179)∗∗∗ -12.738 (5.952)∗∗∗

SiKSi1 -38.612 (30.944) 7.978 (39.071) -18.002 (32.872)
SiKSi2 37.355 (28.625)∗ -42.740 (25.731)∗∗ -2.932 (22.527)
SiKSi3 -39.819 (19.922)∗∗∗ 17.870 (18.147) 7.328 (14.855)
Si1Si2 -61.947 (52.749) 25.388 (35.964) -7.586 (36.814)
Si1Si3 17.163 (43.057) -6.613 (32.183) -7.954 (29.718)
Si2Si3 -14.366 (42.280) 35.547 (22.836)∗ 29.203 (26.267)
SiKSi1Si3 -4.651 (52.881) -41.180 (43.335) -14.706 (35.985)
SiKSi1Si2Si3 48.084 (48.704) 6.834 (30.521) 14.377 (33.920)
Note: Corrected standard errors in parentheses. The sequences
SiKSi1Si2, SiKSi2Si3 and Si1Si2Si3 lack unique support to
permit identification in grade 3. ***,**,* indicate statistical
significance at the 5%, 10% and 20% level respectively.
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Table 5: Dynamic Average Treatment Effect for the Treated Estimates
Subject Area Mathematics Reading Word Recognition
Kindergarten

τ (1)(0)(1) 8.595 (1.120)∗∗∗ 5.950 (0.802)∗∗∗ 6.342 (0.945)∗∗∗

Grade One
τ (0,1)(0,0)(0, 1) 9.512 (3.307)∗∗∗ 9.315 (4.350)∗∗∗ 15.394 (5.730)∗∗∗

τ (1,0)(0,0)(1, 0) 7.909 (4.625)∗∗ 8.785 (5.284)∗∗ 11.868 (6.722)∗∗

τ (1,1)(0,0)(1, 1) 10.829 (8.021)∗ 15.872 (9.787)∗ 16.203 (12.587)∗

τ (1,1)(1,0)(1, 1) 2.920 (6.544) 7.086 (8.235) 4.334 (10.640)
τ (1,1)(0,1)(1, 1) 1.317 (7.300) 6.556 (8.764) 0.808 (11.205)
τ (0,1)(1,0)(0, 1) 1.603 (5.686) 0.530 (6.844) 4.066 (8.833)
Grade Two
τ (0,0,1)(0,0,0)(0, 0, 1) 15.150 (5.430)∗∗∗ 3.040 (4.428) 0.526 (5.814)
τ (1,0,0)(0,0,0)(1, 0, 0) -2.078 (7.276) 11.320 (7.240)∗ 9.959 (8.438)
τ (1,1,1)(0,0,0)(1, 1, 1) 10.574 (26.606) 12.714 (50.199) 17.603 (33.463)
τ (1,1,1)(1,0,0)(1, 1, 1) 12.651 (25.589) 1.394 (49.674) 7.644 (32.381)
τ (1,1,1)(1,1,0)(1, 1, 1) 12.810 (22.436) 20.282 (38.993) 15.421 (25.999)
τ (0,1,1)(0,0,0)(0, 1, 1) 6.196 (9.400) 8.125 (27.700) 12.691 (12.920)
τ (0,0,1)(1,0,0)(0, 0, 1) 17.228 (9.084)∗∗ -8.208 (8.490) -9.433 (10.249)

Grade Three
τ (0,0,0,1)(0,0,0,0)(0, 0, 0, 1) -6.835 (3.932)∗∗ -10.590 (4.179)∗∗∗ -12.738 (5.952)∗∗∗

τ (1,1,1,1)(0,0,0,0)(1, 1, 1, 1) -2.148 (129.436) -17.192 (93.135) -20.985 (102.228)
τ (1,1,1,1)(1,1,0,0)(1, 1, 1, 1) 0.247 (120.810) -22.487 (81.117) -35.114 (85.973)
τ (1,1,1,1)(1,1,1,0)(1, 1, 1, 1) -0.424 (96.033) 10.115 (63.543) 7.262 (70.360)
τ (1,1,1,1)(0,1,1,1)(1, 1, 1, 1) -4.940 (86.378) -20.263 (64.365) -30.626 (75.468)
τ (0,1,1,1)(0,0,0,0)(0, 1, 1, 1) 2.792 (96.397) 3.071 (67.314) 9.641 (68.958)
τ (0,0,1,1)(0,0,0,0)(0, 0, 1, 1) 4.062 (59.781) -3.472 (37.243) -2.215 (32.284)
τ (0,0,1,1)(1,1,0,0)(0, 0, 1, 1) 6.458 (75.714) -8.767 (59.001) -16.344 (64.043)

Note: Standard Errors in parentheses.
***,**,* indicate statistical significance at the 5%, 10% and 20% level respectively.
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Table 6: Tests of Weighted versus Unweighted Estimates
Subject Area Mathematics Reading Word Recognition

Grade One
8.74
[0.000]

3.39
[0.000]

1.35
[0.169]

Grade Two
1.48
[0.071]

3.86
[0.000]

2.08
[0.002]

Grade Three
1.72
[0.008]

1.91
[0.002]

1.03
[0.424]

Note: Probability > F are in [ ] parentheses.

Table 7: Likelihood Ratio Tests for the Presence of Selection on Unobservables
Subject Area Mathematics Reading Word Recognition

Grade One
2661.91
[0.000]

4468.98
[0.000]

3293.98
[0.000]

Grade Two
1648.11
[0.000]

1478.86
[0.000]

5480.28
[0.000]

Grade Three
1606.95
[0.000]

1421.94
[0.000]

839.84
[0.000]

Note: Probability > χ2 are in [ ] parentheses.
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 Table 8: Structural Parameters and Dynamic Treatment Effect Estimates From an Education 
Production Functions That Ignores Non-Linear Treatment Effects 
Subject Area  Mathematics Reading Word Recognition 

Grade One 
SiK 4.174 (2.829)* 9.351 (2.805)*** 5.434 (3.250)** 
Si1 6.608 (2.488)*** 2.779 (2.582) 6.415 (3.016)*** 

Grade Two 
SiK 6.191 (4.034)* 10.479 (4.34) *** 6.035 (4.659)* 
Si1 -8.916 (5.191)** -6.529 (5.949) 0.742 (5.784) 
Si2 12.805 (4.152)*** 5.730 (4.659) 4.114 (4.138) 

Grade Three 
SiK 0.131 (5.286) 8.885 (5.088)** 12.057 (5.940)*** 
Si1 -1.168 (7.588) -0.057 (7.500) -5.097 (8.118) 
Si2 11.747 (7.162)* 3.152 (6.784) 11.079 (7.655)* 
Si3 -2.596 (3.717) -1.370 (3.244) -6.679 (4.691)* 

DYNAMIC TREATMENT EFFECTS 
Grade One 

τ (1,1)(0,0)(1,1) 10.782 (3.767)*** 11.933 (3.81)*** 11.849 (4.434)*** 
τ (1,1)(1,0)(1,1) 6.608 (2.488)*** 2.779 (2.582) 6.415 (3.016)*** 
τ (1,1)(0,1)(1,1) 4.174 (2.829)* 9.351 (2.805)*** 5.434 (3.250)** 
τ (0,1)(1,0)(0,1) 2.434 (3.767) -6.572 (3.813)** 0.981 (4.434) 

Grade Two 
τ (0,0,1)(0,0,0) (0,0,1) 12.805 (4.152)*** 5.730 (4.659) 4.114 (4.138) 
τ (1,0,0)(0,0,0) (1,0,0) 6.191 (4.034)* 10.479 (4.34) *** 6.035 (4.659)* 
τ (1,0,0)(0,1,0) (1,0,0) 15.107 (6.574)** 8.942 (7.364) 17.154 (7.427)*** 
τ (1,1,1)(0,0,0)(1,1,1) 10.080 (7.776)* 9.680 (8.714) 10.891 (8.502)* 
τ (1,1,1)(1,0,0) (1,1,1) 3.889 (6.647) -0.799 (7.556) 3.372 (7.112) 
τ (0,0,1)(0,1,0) (0,0,1) 21.721 (6.647)** 12.259 (7.556)* 4.856 (7.112) 
τ (0,0,1)(1,0,0) (0,0,1) 6.614 (5.789) -4.749 (6.367) -1.921 (6.231) 

Grade Three 
τ (0,0,0,1)(0,0,0,0)(0,0,0,1) -2.596 (3.717) -1.370 (3.244) -6.679 (4.691)* 
τ (1,0,0,0)(0,0,0,0)(1,0,0,0) 0.131 (5.286) 8.885 (5.088)** 12.057 (5.940)*** 
τ (1,1,1,1)(0,0,0,0)(1,1,1,1) 8.114 (12.273) 10.580 (11.776) 11.360 (13.483) 
τ (1,1,1,1)(1,1,0,0)(1,1,1,1) 9.151 (8.069) 1.782 (7.520) 4.400 (8.798) 
τ (1,1,1,1)(1,1,1,0)(1,1,1,1) -2.596 (3.717) -1.370 (3.244) -6.679 (4.691)* 
τ (1,1,1,1)(0,1,1,1)(1,1,1,1) 0.131 (5.286) 8.885 (5.088)** 12.057 (5.940)*** 
τ (0,1,1,1)(0,0,0,0)(0,1,1,1) 7.983 (11.076) 1.695 (10.621) -0.697 (12.104) 
τ (1,1,1,1)(1,0,0,0)(1,1,1,1) 7.983 (11.076) 1.695 (10.621) -0.697 (12.104) 
τ (0,0,1,0)(,0,0,0,0)(0,0,1,0) 11.747 (7.162)* 3.152 (6.784) 11.079 (7.655)* 
τ (1,0,1,0)(0,0,0,0)(1,0,1,0) 11.878 (6.426)** 12.037 (6.03)*** 23.129 (7.570)*** 
τ (1,0,0,0)(0,0,1,0)(1,0,0,0) -11.616 (6.426)** 5.733 (6.034) 0.971 (7.570) 
Note: Standard Errors in parentheses. ***,**,* indicate statistical significance at the 5%, 10%, 
and 20% level respectively.  



Table 9: Structural Estimates of the Treatment Parameters in Education Production Functions
using Simpler Attrition Model to Account for Test Completion

Subject Area Mathematics Reading Word Recognition
Kindergarten
SiK 8.595 (1.120)∗∗∗ 5.950 (0.802)∗∗∗ 6.342 (0.945)∗∗∗

Grade One
SiK 12.794 (4.742)∗∗∗ 11.221 (5.088)∗∗∗ 12.580 (5.433)∗∗∗

Si1 10.322 (2.798)∗∗∗ 4.032 (2.962)∗ 9.282 (3.568)∗∗∗

SiKSi1 -12.748 (5.461)∗∗∗ -3.164 (5.914) -10.514 (6.603)∗

Grade Two
SiK 8.993 (7.063) 17.40 (8.054)∗∗∗ -1.690 (4.068)
Si1 -15.755 (11.672)∗ -37.592 (16.710)∗∗∗ -23.035 (16.522)∗

Si2 9.001 (4.839)∗∗ -2.471 (4.4149) 7.278 (8.297)
SiKSi1 0.437 (15.122) -0.044 (22.636) 0.061 (21.173)
SiKSi2 -0.933 (8.931) -19.001 (11.704)∗ -10.165 (21.262)
Si1Si2 14.477 (12.686) 43.044 (17.248)∗∗∗ 29.128 (17.002)∗∗

SiKSi1Si2 -7.712 (16.250) 8.050 (24.184) 9.189 (28.858)
Grade Three
SiK 2.512 (11.252) 12.487 (9.726)∗ 20.241 (11.072)∗∗

Si1 7.347 (11.921) 3.743 (19.584) 3.533 (27.390)
Si2 32.700 (25.589) -14.059 (11.435) -16.140 (8.272)∗∗

Si3 -2.991 (3.932) -3.547 (3.411) -5.491 (4.815)
SiKSi1 -2.424 (19.982) -14.738 (27.662) -18.626 (33.645)
SiKSi2 42.515 (28.165)∗ -19.929 (26.944) -49.423 (35.623)∗

SiKSi3 -9.926 (26.641) 20.363 (23.145) 29.862 (26.369)
Si1Si2 -30.957 (29.537) 6.710 (27.010) -3.718 (36.282)
Si1Si3 -34.354 (28.549) -45.065 (25.648)∗∗ -65.591 (29.914)∗∗∗

Si2Si3 -27.291 (25.802) 13.957 (11.755) 25.368 (9.699)∗∗∗

SiKSi1Si2 -43.321 (34.722) 38.333 (40.920) 94.618 (53.809)∗∗

Si1Si2Si3 66.369 (39.566)∗∗ 46.807 (31.803)∗ 69.728 (38.514)∗∗

SiKSi1Si2Si3 8.646 (28.371) -34.171 (28.758) -72.552 (36.493)∗∗∗

Note: Corrected standard errors in parentheses. The sequences
SiKSi1Si3 and SiKSi2Si3 lack unique support to permit
identification in grade 3. ***,**,* indicate statistical
significance at the 5%, 10% and 20% level respectively.
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Table 10: OLS Estimates of the Cumulative Impact of Treatment for Subjects who 
Always Complied with Their Kindergarten Assignment  
 Reading Math Word 

Weighted Estimates 
Kindergarten 5.950*** 

(1.280 
8.595*** 
(2.025) 

6.342*** 
(1.415) 

Grade One 
 

-11.642 
(14.768) 

-4.655 
(11.692) 

-16.51 
(16.263) 

Grade Two 2.131 
(6.533) 

10.200* 
(6.844) 

-1.095 
(7.552) 

Grade Three 15.231*** 
(7.322) 

13.134* 
(7.882) 

5.714 
(8.913) 

Unweighted Estimates 
Grade One -0.044 

(2.97) 
-3.576* 
(2.369) 

-1.770 
(3.426) 

Grade Two 6.032*** 
(2.258) 

7.498*** 
(2.465) 

5.969*** 
(2.497) 

Grade Three 4.626** 
(2.624) 

2.438 
(2.902) 

5.868** 
(3.366) 

Note: Each coefficient is from a regression that includes school effects, the full history of 
demographic and teacher characteristics. Standard errors corrected at the classroom level 
are in parentheses. ***,**,* indicate statistical significance at the 5%, 10%, and 20% 
level respectively. 
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Appendix Table 1: Descriptive Statistics of the Sample that Participated in Project STAR 
during Kindergarten 
 Kindergarten Grade One Grade Two Grade 3 
Class Size 20.299 

(3.959) 
  20.386 
(3.994) 

20.279 
(4.194) 

20.400 
(4.441) 

Currently 
Receiving Small 
Class Treatment 

0.300 
(0.458) 

0.347 
(0.476) 

0.371 
(0.483) 

0.396 
(0.489) 

Math Test Score 485.610 
(47.732) 

536.544 
(43.929) 

590.571 
(44.822) 

627.977 
(40.181) 

Reading Test 
Score 

436.734 
(31.731) 

529.073 
(56.694) 

594.846  
(45.240) 

625.634 
(37.125) 

Word 
Recognition Test 
Score 

434.375 
(36.799) 

521.050  
(53.027) 

595.653 
(49.374) 

622.771 
(43.932) 

Free Lunch 
Status 

0.483 
(0.499) 

0.444 
(0.496) 

0.388 
(0.487) 

0.353 
(0.478) 

Student is White 
of Asian 

0.677 
(0.468) 

0.702 
(0.457) 

0.726 
(0.446) 

0.753 
(0.432) 

Student is 
Female 

0.486 
(0.500) 

0.500 
(0.500) 

0.514 
(0.500) 

0.518 
(0.500) 

Teacher Race is 
Non-White 

0.159 
(0.366) 

0.160 
(0.367) 

0.188 
(0.390) 

0.165 
(0.372) 

Teacher has a 
Masters Degree 

0.353 
(0.478) 

0.345 
(0.475) 

0.357 
(0.479) 

0.443 
(0.497) 

Teacher Years of 
Experience 

9.624 
(5.497) 

11.838 
(8.795) 

14.053 
(8.567) 

13.547 
(8.471) 

School is In 
Inner City Area  

0.224 
(0.417) 

0.191 
(0.393) 

0.170 
(0.375) 

0.146 
(0.353) 

School is in 
Suburban Area 

0.216 
(0.412) 

0.192 
(0.394) 

0.197 
(0.398) 

0.188 
(0.390) 

School is in 
Rural Location 

0.470 
(0.499) 

0.529 
(0.499) 

0.565 
(0.496) 

0.595 
(0.492) 

School is in 
Urban Location 

0.089 
(0.286) 

0.088 
(0.283) 

0.068 
(0.251) 

0.072 
(0.258) 

 Note: Each cell reports the mean and standard deviations are presented in parentheses. 
The sample presented in this table wrote all three exams in the current and all preceding 
years of the experiment.  
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Appendix Table 2: Logit Estimates of the Probability of Remaining in the 
Sample 
Grade remaining in 
the sample 

Grade One Grade Two Grade Three 

Kindergarten 
Reading 

0.00720*** 
(0.00322) 

0.00230 
(0.00494) 

0.00041 
(0.00597) 

Kindergarten 
Mathematics 

0.00865*** 
(0.00116) 

-0.00152 
(0.00189) 

0.00126 
(0.00252) 

Kindergarten 
Word 

-0.00035 
(0.00242) 

-0.00061 
(0.00369) 

-0.00546 
(0.00464) 

Grade One 
Reading 

Not included .00189 
(0.00293) 

0.00053 
(0.00397) 

Grade One 
Mathematics 

Not included .01262*** 
(0.00222) 

-0.00494* 
(0.00307) 

Grade One 
Word 

Not included .00834*** 
(0.00260) 

0.00834*** 
(0.00258) 

Grade Two 
Reading 

Not included Not included 0.00868*** 
(0.00404) 

Grade Two 
Mathematics 

Not included Not included 0.00728*** 
(0.00289) 

Grade Two 
Word 

Not included Not included -0.00195 
(0.00292) 

Log likelihood 
  

-2755.54 -1239.39 -743.39 

Number of 
Observations  

5703 3127 2452 

Note: Specifications include the complete history of teacher characteristics, free lunch 
status, class size treatment, school indicators, child gender and child race. Standard errors 
corrected at the teacher level in parentheses. ***,**,* indicate statistical significance at 
the 5%, 10%, and 20% level respectively. 
 




