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Abstract

In this paper we provide a number of contributions of policy, practical and methodological
interest to the study of the returns to educational qualifications in the presence of misreporting.
First, we derive estimates of the returns to different qualifications for the UK that allow for the
possibility of misreported attainment using data from the British National Child Development
Survey. To date, any major empirical evidence on the importance of this issue is restricted to the
US, where it was shown that errors might indeed play a non-negligible role. Second, we aim to
provide the academic and policy community with estimates of the accuracy of commonly used types
of data on educational attainment: administrative files, self-reported information close to the date
of completion of the qualification and recall information ten years after completion. Third, by using
the unique nature of our data, we assess how the biases from measurement error and from omitted
ability and family background variables interact in the estimation of returns. We intend to produce
simple calibration rules to allow policymakers to use nationally representative data, such as the
Labour Force Survey, that totally rely on self-reported information on qualifications and contain
little or no information on individual ability and family background. On the methodological front,
we propose a semi-parametric estimation approach based on balancing scores and mixture models,
in particular allowing for arbitrarily heterogeneous individual returns. Since our proposed approach
is embedded in the general evaluation framework, it is applicable to the estimation of any causal
treatment effects in the presence of potentially misreported treatment status. Our approach also
deals with cases where the analyst does not want a priori to commit on the two educational
measures being independent.
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1 Introduction

This paper considers the identification and estimation of the returns to educational qualifications for

the UK allowing for misreporting of educational attainment.

The measurement of the return to education, that is of the individual wage gain from investing in

more education, has become probably the most explored and prolific area in labour economics. Poli-

cymakers too have shown increasing interest, with estimated returns feeding into debates on national

economic performance, educational policies, or the public funding of education. Reliable measures of

the impact of education on individual earnings are in fact needed to establish whether it is worthwhile

for individuals to invest in more education (and in which type), to compare private and social returns

to education, or to assess the relative value that different educational qualifications fetch on the labour

market.1

As to the measurement of education, a first issue is whether we can summarize it in the single,

homogeneous measure of years of schooling. Although particularly convenient, this ‘one-factor’ model

is a priori quite restrictive, in that it assumes that the returns increase linearly with each additional

year, irrespective of the level and type of educational qualifications the years refer to. When interested

in a wide range of education levels with potentially very different returns, a more adequate framework

is the ‘multiple-factor’ model, in which different educational levels are allowed to have separate effects

on earnings.2

In the schooling system in the US, grades generally follow years, and it has long been argued that

the returns to an additional year are reasonably homogeneous (see for example Card, 1999). In the UK

and other European countries, however, there are alternative nationally-based routes leading to quite

different educational qualifications, and the importance of distinguishing between different types of

qualifications is widely accepted. Blundell, Dearden and Sianesi (2005) highlight the potential short-

coming of the ‘one-factor’ model when applied to the UK’s educational system, in which individuals

with the same number of years of schooling have quite different educational outcomes. Not only would

this obfuscate the interpretation of the return to one additional year, but imposing equality of yearly

returns across educational stages was found to be overly restrictive.

A second important issue as to the measurement of education - and the one object of this paper

- is the possibility of errors in recorded education and its consequences on the estimated returns.

Misrecorded education could arise from data transcript errors, as well as from misreporting: survey
1For an extensive discussion of the policy interest of the individual wage return from education, see Blundell, Dearden

and Sianesi (2004).
2Another limitation of using years of schooling as a measure of educational attainment is that whilst in the UK and

the US students have increasingly been studying part-time, most surveys do not provide information on the mode of
study, and only ask about years of full-time study or the age a person first left full-time education.
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respondents may either over-report their attainment, not know if the schooling they have had counts

as a qualification or simply not remember.

With the continuous years-of-schooling measure of education, standard results based on classical

measurement error show that OLS estimates are downward biased and that appropriate IV methods

applied to the linear regression model provide consistent estimates. Indeed, the trade-off between

attenuation bias due to measurement error and upward bias due to omitted variables correlated with

both schooling and wages (the so-called ‘ability bias’) has been at the heart of the early studies

on returns to years of schooling. The received wisdom has traditionally been that ability bias and

measurement error bias largely cancel each other out (for a review see in particular Griliches, 1977,

and Card, 1999; for a recent UK study see Bonjour et al., 2003).

With the categorical qualification-based measure of education, however, any measurement error in

educational qualifications will vary with the true level of education. Individuals in the lowest category

can never under-report their education level and individuals in the top category cannot over-report,

so that the assumption of classical measurement error cannot hold (see, for example, Aigner, 1973).

In the presence of such non-classical measurement error, OLS estimates are not necessarily downward

biased, so that the cancelling out of the ability and measurement error biases cannot be expected to

hold in general. Moreover, the IV methodology cannot provide consistent estimates of the returns to

qualifications (see, for example, Bound, Brown and Mathiowetz, 2001).

To date, empirical evidence on the importance of these issues is restricted to the US, where it was

in fact shown that measurement error might play a non-negligible role (see the results in Kane, Rouse

and Staiger, 1999, Black, Sanders and Taylor, 2003, and Lewbel, 2005). For the UK there are no

estimates of the returns to educational qualifications that adequately correct for measurement error.3

This is of great concern, in view of the stronger emphasis on returns to discrete levels of educational

qualifications in the UK and given the widespread belief amongst UK researchers and policymakers

that ability and measurement error biases still cancel out (Dearden, 1999, Dearden et al., 2002, and

McIntosh, 2004).

Two approaches have been developed to overcome the bias induced by misreported educational

qualifications. A first possibility is to derive bounds on the returns by making a priori assumptions

on the misclassification probabilities (see e.g. Manski, 1990, and Molinari, 2004). This approach

only allows partial identification of returns. In our companion paper (Battistin and Sianesi, 2006) we

suggest bounds that can be derived exploiting the observed propensity score in a non-parametric way,

in particular allowing for arbitrarily heterogeneous individual returns. The corresponding sensitivity
3Ives (1984) only offers a descriptive study of the mismatch between self-reported and administrative information on

qualifications in the NCDS, finding serious discrepancies particularly for the lower-level academic qualifications.
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analysis is easy to implement and can provide an often quite informative robustness check.

The alternative approach is more demanding in terms of data requirements but, if feasible, it

allows point identification of the returns. An additional appealing feature is that it provides direct

estimates of the measurement error in the educational measures, which may often be of independent

interest. What is needed is (at least) two categorical reports of educational qualifications for the same

individuals, both potentially affected by reporting error but independent of each other (for the proof

of non-parametric identification, see Lewbel, 2005, and Mahajan, 2006). Repeated measurements on

educational qualifications are typically obtained by combining complementary datasets, for example

exploiting administrative records and information self-reported by individuals. In this paper, we build

on this approach.

We provide a number of new contributions of considerable policy and practical relevance, as well

as of methodological interest.

On the methodological front, we propose a semi-parametric estimation approach based on balancing

scores and mixture models. As far as we are aware, we are the first ones to cast this problem in terms of

a mixture model, which combined with the propensity score allows us to proceed in a semi-parametric

way, allowing in particular for arbitrarily heterogeneous individual returns. A further advantage of our

approach is that it does not require the two educational measures to be independent. Independence can

be ruled out, for example, if the same information is repeatedly asked to the same individuals over time,

as done by longitudinal studies for educational qualifications and other information. Other less clear-

cut cases are those where selection/assortative matching may lead to questioning the independence

assumption, e.g. when the same question is asked to a child and its parents, to twins, to husband and

wife, to employee and employer, or to a child and its school. We thus offer an approach that deals with

cases where the analyst does not want a priori to commit on the two measures being independent.

This feature of the approach we propose will be particularly useful in our application, as for certain

important educational categories such as higher education we can only recover repeated measurements

self-reported by the same individuals over time.

Note that throughout we explore a unified general framework for the study of the impact of

misreported treatment status on the estimation of causal treatment effects (Molinari, 2004, Lewbel,

2005, and Mahajan, 2006, are the only examples we are aware of). Our proposal of a new estimation

method to address measurement error in educational qualifications is thus of far wider interest, since

the same issues arise in any application looking at the effect of a potentially misrecorded binary

or categorical variable, such as eligibility to policy schemes, participation in (multiple) government

programmes or work-related training.
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Second, we provide reliable estimates of the returns to educational qualifications in the UK that

allow for the possibility of misreported attainment. In order to focus fully on the potential biases arising

from measurement error, we use the uniquely rich data from the British National Child Development

Survey (NCDS) to avoid issues related to omitted variables bias. In particular, in this work we

only consider evaluation methods based on the selection on observables (or conditional independence)

assumption, and rely on Blundell, Dearden and Sianesi (2005) who could not find any strong evidence

of remaining selection bias given the information available in that data. The NCDS data is crucial also

in that it provides us with a number of repeated measurements of individual educational attainment.

Third, we identify the extent of measurement error in three different types of data sources on

educational qualifications: administrative school files, self-reported information very close to the dates

of completion of the qualifications and self-reported recall information ten years later. We thus provide

the academic and policy community with estimates of the relative reliability of commonly used types

of data. Results in this paper together with those in Battistin and Sianesi (2006) represent a new piece

of evidence for the UK, which will allow one to check the robustness of current estimates of returns

to the presence of misreported qualifications. Knowing the extent of misreporting also has obvious

implications for the interpretation of other studies that use educational attainment as an outcome

variable or for descriptive purposes.

Our final contribution is to explore how the biases from measurement error and from omitted

variables interact in the estimation of returns to educational qualifications in the UK. The aim is to

produce some simple calibration rules to allow policy makers to use nationally representative data

sets such as the Labour Force Survey to estimate returns to qualifications. These data totally rely

on recall about the qualifications individuals have and do not contain any information on individual

ability and family background.

The remainder of the paper is organized as follows. In Section 2 we allow for the possibility

of misclassification in the treatment status in the general evaluation framework. The identification

problem is discussed in Section 3. The estimation strategy that we exploit to correct for the bias

introduced by misclassification is presented in Section 4. Section 5 discusses how information in the

NCDS will allow us to implement this strategy under fairly weak assumptions on the nature of the

data collected. Estimates of the returns to educational qualifications in the UK that allow for the

possibility of misreported attainment are in Section 6, while Section 7 concludes.
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2 General formulation of the problem

In the potential-outcomes framework, interest lies in the causal impact of a given ‘treatment’ D∗ on

an outcome of interest Y .4 To fix ideas and with our application in mind, in the following let the

treatment be the qualification of interest and let the outcome be individual (log) wages. Let Y1 and Y0

denote the potential wages from having and not having the qualification of interest, respectively.5 Let

D∗ be a binary indicator for the qualification of interest, which we will later allow to be potentially

observed with error amongst individuals. The individual causal effect of (or return to) achieving

the qualification is defined as the difference between the two potential outcomes, β ≡ Y1 − Y0. The

observed individual wage can then be written as Y = Y0 + D∗β. We are interested in recovering the

average return for those individuals who have chosen to undertake the qualification of interest, that

is the average effect of treatment on the treated (ATT):6

∆∗ ≡ EY1|D∗ [Y1|1]− EY0|D∗ [Y0|1].

In the absence of misreporting of D∗, identification of the unobserved counterfactual term EY0|D∗ [Y0|1]

follows straightforwardly from the following two assumptions, which we will maintain throughout:

Assumption 1 (Unconfoundness) Conditional on a set of observable variables X, the educational

choice D∗ is independent of the two potential outcomes:

fY0,Y1|D∗,X [y0, y1|d∗, x] = fY0,Y1|X [y0, y1|x].

For the plausibility of this assumption, which allows one to focus on the impact of measurement

error in the reporting of D∗, we draw on Blundell, Dearden and Sianesi (2005), who find the set of

regressors X available in our NCDS data to be rich enough to control for the endogeneity of educational

choices. To give empirical content to Assumption 1, we also require the following condition on the

support of the X variables:

Assumption 2 (Common Support) Individuals with and without the qualification of interest can

be found at all values of X, that is

0 < e∗(x) ≡ Pr[D∗ = 1|X = x] < 1, ∀x
4For reviews of the evaluation problem see Heckman, LaLonde and Smith (1999) and Imbens (2004). For the potential

outcome framework, the main references are Fisher (1935), Neyman (1935), Roy (1951), Quandt (1972) and Rubin (1974).
5For this representation to be meaningful, the stable unit-treatment value assumption needs to be satisfied (Rubin,

1980), requiring that an individual’s potential wages and the chosen qualification are independent from the qualification
choices of other individuals in the population.

6In the remainder of this paper, fY |X [y|x] and EY |X [Y |x] will denote the conditional distribution and the conditional
mean of Y given X = x, respectively. Also, we will use upper-case letters for random variables and lower-case letters for
their realisations.
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where e∗(x) is the propensity score.

Under these two assumptions, but without invoking any functional form or constant-effect as-

sumption, one can perform any type of semi-non-parametric estimation of the conditional expectation

function in the non-participation group, EY0|D∗,X [Y0|0, x], and then average it over the distribution of

X in the participants’ group (within the common support) to get the counterfactual term of interest

(see Heckman, LaLonde and Smith, 1999, and Imbens, 2004). Conditions 1-2 together make the strong

ignorability condition of Rosenbaum and Rubin (1983).

When qualifications are misreported, either because individuals are left to self-report or because

of transcript errors, the treatment information recorded in the data may differ from the actual status

D∗. From now on, we assume that we observe two measurements of educational qualifications for each

individual, DA and DB. Note that they need not be independent of each other; for example, they can

be measures of educational qualifications reported by the same individuals in two different interview

waves. Neither of these measures need correspond with D∗, that is either of them can potentially be

affected by misclassification. Throughout our discussion we will however assume that the classification

error in either measure is non-differential, that is conditional on a person’s actual qualification and

on other covariates, reporting errors are independent of wages (see Battistin and Sianesi, 2006, for a

more detailed discussion of the implications of this assumption).

Assumption 3 (Non-Differential Misclassification given X) Any variables DA and DB which

proxy D∗ do not contain information to predict Y conditional on the true measure D∗ and X:

fY |D∗,DA,DB ,X [y|d∗, a, b, x] = fY |D∗,X [y|d∗, x].

As shown in Battistin and Sianesi (2006), even under Assumptions 1-3, causal inference drawn from

the triples (Y, DA, X) or (Y,DB, X) will in general be invalid for the ATT, with the magnitude of this

bias depending on the extent of misclassification. The extent of misclassification can be conveniently

summarised by the misclassification probabilities. In particular, the probabilities of exact classification

relative to DA and DB are defined as:

λj
0(x) ≡ Pr[D∗ = 0|Dj = 0, x],

λj
1(x) ≡ Pr[D∗ = 1|Dj = 1, x],

for j ∈ {A,B}, and may in general depend on X. The λj
1(x)’s represent the proportion of individuals

actually having the qualification of interest amongst those reporting so, separately for the two reported

measures DA and DB. A similar interpretation applies to the λj
0(x)’s, summarising the extent of exact

reporting amongst those reporting not to have the qualification.
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Under the assumption of non-differential misclassification (Assumption 3), the distribution of ob-

served wages conditional on X for the 2× 2 groups defined by DA ×DB can be written as a mixture

of two latent distributions: the distribution of wages in the presence of the qualification, i.e. Y1, and

the distribution of wages in the absence of the qualification, i.e. Y0:

fY |DA,DB ,X [y|a, b, x] = [1− pa,b(x)]fY0|X [y|x] + pa,b(x)fY1|X [y|x], (1)

where the equality follows from Assumption 1 and the probability

pa,b(x) ≡ ED∗|DA,DB ,X [D∗|a, b, x]

denotes the true proportion of individuals with the qualification of interest amongst those with DA = a

and DB = b within cells defined by X.

Knowledge of the pa,b(x)’s suffices to identify the extent of misreporting in either measure of

educational qualifications, since

λA
0 (x) = 1−

∑

b

p0,b(x)P [DB = b|DA = 0, x],

λA
1 (x) =

∑

b

p1,b(x)P [DB = b|DA = 1, x],

for DA, and

λB
0 (x) = 1−

∑
a

pa,0(x)P [DA = a|DB = 0, x],

λB
1 (x) =

∑
a

pa,1(x)P [DA = a|DB = 1, x],

for DB. Knowing the probabilities of exact classification in turn allows identification of

∆∗(x) ≡ EY1|D∗,X [Y1|1, x]− EY0|D∗,X [Y0|1, x]

(see Battistin and Sianesi, 2006), corresponding – under Assumption 1 – to the causal effect of having

the qualification of interest for individuals with X = x. Alternatively, note that ∆∗(x) can be obtained

from the difference of the first moments of the mixture components in (1). Moreover, as the ATT is

obtained by integrating ∆∗(x) with respect to:

fX|D∗ [x|1] =
Pr[D∗ = 1|x]fX [x]∫
Pr[D∗ = 1|x]fX [x]dx

,

it follows from

Pr[D∗ = 1|x] = [1− λA
0 (x)] + Pr[DA = 1|x][λA

0 (x) + λA
1 (x)− 1],

= [1− λB
0 (x)] + Pr[DB = 1|x][λB

0 (x) + λB
1 (x)− 1],
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that the ATT is also identified by knowing the pa,b(x)’s (see Battistin and Sianesi, 2006, for the

exact characterisation of the relationship between the true ATT, the effect estimated using either

misrecorded measure and the latter’s misclassification probabilities).7

When DA and DB are independent reports, Kane, Rouse and Staiger (1999) and Black, Berger and

Scott (2000) have developed a procedure to simultaneously estimate the returns to qualifications and

the distribution of reporting error in each educational measure in a parametric way. The identification

problem in the case of independent reports has been further investigated in a more general setting

by Mahajan (2006), whose results imply that the pa,b(x)’s are non-parametrically identified from

(Y, DA, DB, X). Information on the number of individuals classified differently by DA and DB can be

combined with information on the difference in their earnings to estimate the distribution of reporting

errors (i.e. the misclassification probabilities) in both measures.8 To the best of our knowledge, for

the case of dependent reports there are no results on non-parametric identification of the pa,b(x)’s.

3 The curse of dimensionality

The main problem that hampers estimation of the ATT is the curse of dimensionality arising from a

large number of regressors in X. While non-parametric identification has been extensively dealt with

in the literature (see Lewbel, 2005, and Mahajan, 2006), to the best of our knowledge all applications

to real data rely upon a fully parametric approach to model to relationship (Y, DA, DB, X).

In this section we propose a method to reduce the dimensionality of the problem based on the

properties of balancing scores (see Theorem 1 by Rosembaum and Rubin, 1983, and Imbens, 2000).

Let S(X) be a balancing score such that the conditional distribution of X within cells defined by S(x)

is independent of (DA, DB):

fX|DA,DB ,S(X)[x|a, b, s] = fX|S(X)[x|s]. (2)

In what follows, we discuss under which conditions the mixture representation given X in (1) implies a

mixture representation given S(X). The idea is most simply put across by assuming that the pa,b(x)’s

do not vary with X, i.e. by assuming pa,b(x) = pa,b.

By using (2) and from the fact that X is finer than S(X) we can write

fY |DA,DB ,S(X)[y|a, b, s] =
∫

fY |DA,DB ,X [y|a, b, x]fX|S(X)[x|s]dx.

7It is worth noting that the ATT is actually over -identified, as ∆∗(x) and the distribution fX|D∗ [x|1] can be recovered
from either knowledge of λA

0 (x) and λA
1 (x) or knowledge of λB

0 (x) and λB
1 (x).

8One might be tempted to use the second measurement DB to instrument the first one, DA. Albeit similar, the
approach suggested in this section is different from IV estimation: actually, it can be shown that instrumenting one report
with the other tend to produce upward biased estimates of treatment effects because of the non-classical measurement
error (see Bound, Brown and Mathiowetz, 2001).
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Using (1) and the fact that the pa,b(x)’s do not vary with X, the term on the right-hand-side of the

last expression can be written as

[1− pa,b]
∫

fY0|X [y|x]fX|S(X)[x|s]dx + pa,b

∫
fY1|X [y|x]fX|S(X)[x|s]dx,

so that

fY |DA,DB ,S(X)[y|a, b, s] = [1− pa,b]fY0|S(X)[y|s] + pa,bfY1|S(X)[y|s],

where the last relationship again follows from X being finer than S(x). Accordingly, the distribution

of wages for the group (DA = a,DB = b) conditional on S(X) = s is again a mixture of two latent

distributions. The components of this mixture are weighted means of the components in (1) taken over

individuals with S(X) = s, with mixture weights given by pa,b. Note that the mixture representation

holds for all groups defined by DA × DB; most importantly, because of the balancing property of

S(X), the mixture components remain the same for all four groups, while the mixture weights are

group specific.

Note also that the same representation would hold if the pa,b(x)’s were left to vary with X through

the index S(x) (or if they were constant within cells defined by the balancing score):

fY |DA,DB ,S(X)[y|a, b, s] = [1− pa,b(s)]fY0|S(X)[y|s] + pa,b(s)fY1|S(X)[y|s]. (3)

A similar argument applies if these probabilities only depend on a finite number of X’s that can be

non-parametrically controlled for in the analysis. The identification problem is similar to the one

described in the previous section. If mixing weights can be recovered from (3), then one could identify

the extent of misreporting in either measure of educational qualifications, and therefore the ATT,

using the results in Battistin and Sianesi (2006).9

4 Estimation issues

4.1 Mixture representation of the problem

In this section we build on the mixture representation (3) to identify mixture weights (i.e. the pa,b(x)’s)

and mixture components. Clearly, non-parametric identification is not feasible, i.e. from raw mixture

probabilities one cannot non-parametrically recover mixture weights and mixture components. For

this reason, in what follows we shall consider mixtures in which all components come from the same

parametric class. It is worth noting that the mixture we deal with is finite with a known number of

components. More in general, if we were to consider the case of multiple ‘treatments’ (i.e. multiple
9However, identification of the pa,b(s)’s is not easily achieved in (3), as conditional distributions are defined with

respect to S(x) and not X. The problem is S(x) being a balancing score for (DA, DB) but not for D∗. Apparently, the
proof of identification in Mahajan (2006) no longer holds for this case.
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qualifications) the number of mixture components would correspond to the number of alternative

qualifications.

We will assume throughout that within cells defined by S(x) the mixture components are nor-

mally distributed with cell-specific parameters. This correspond to assuming log-normality of wages

conditional on the balancing score.10 The reason for this choice is twofold. First, it can be shown

that any finite mixture of univariate normal distributions is identifiable (see Everitt and Hand, 1981,

and Titterington, Smith and Makov, 1985). Perhaps the most natural and intuitive way of address-

ing the identification problem for mixtures of parametric distributions is in Yakowitz and Spragins

(1968), who show that a necessary and sufficient condition for the mixture to be identifiable is that

the mixture components be a linearly independent set over the field of real numbers. This condition

is met for the case of mixtures of normal distributions. Second, a variety of procedures have been

developed to estimate mixture of normal distributions. Maximum likelihood estimators are well known

to have desirable asymptotic properties (see Everitt and Hand, 1981), and it is natural to use the EM

algorithm (Dempster, Laird and Rubin, 1977) for estimating the parameters of the mixture.11

A few technical considerations are worth mentioning. First, under the hypothesis of no ‘treatment’

effects (i.e of no returns) the two mixture components coincide and thus the mixture representation

in invalid. More precisely, if we had

fY0|X [y|x] = fY1|X [y|x], ∀x

so that ∆∗(x) and the ATT are both zero, then the mixture representation in (1) would be invalid,

which in turn would invalidate the mixture representation in (3). This problem is known in the

statistical literature on mixtures as the problem of homogeneity. Note that testing homogeneity, that

is testing no mixture against a mixture of two distributions, is a non-regular problem, in that the null

hypothesis belongs to the boundary of the parameter space. However, using the results in Yakowitz

and Spragins (1968), it follows that any non-degenerate finite mixture of normal distributions cannot

itself be normal. It follows that in our application, testing for the presence of treatment effects under

the maintained assumption of normal components and non-trivial pa,b’s in (3) corresponds to testing

normality of the observed mixture distributions.12

Second, the likelihood function for a two-component univariate normal distribution is unbounded,

so that a global maximiser does not exist. Singularities occur at certain points on the boundary of
10Our estimation procedure can be extended to more general families of parametric distributions.
11Identification of returns through normality of the mixture components is in the spirit of the work by Heckman and

Honore (1990), where it is shown that under normality it is possible to estimate the distribution of potential wages in
the Roy model from a single cross-section of data. See also the discussion by Heckman (2001).

12We could not reject this condition for the empirical exercise presented in Section 6 below.
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the parameter space as the variances of the mixture components tend to zero.13 Everitt and Hand

(1981) state that “empirically meaningful maximum likelihood solutions can be obtained if attention

is restricted to the largest of finite local maxima of the likelihood function”, though singularities may

present a problem when the sample size is small and the components are not well separated. Moreover,

it has been shown in the literature that the limit of an EM sequence depends on the initial guess used,

and that convergence to a spurious maximiser or singularity of the likelihood function may be possible.

4.2 Definition of the balancing score

Let G be a variable identifying the 2× 2 groups obtained by tabulating DA and DB:

G =





1 ⇔ (DA = 1, DB = 1),
2 ⇔ (DA = 1, DB = 0),
3 ⇔ (DA = 0, DB = 1),
4 ⇔ (DA = 0, DB = 0).

To account for the curse of dimensionality arising from the X’s, we define S(X) as a partition that

maps all observations into mutually exclusive sets s1, . . . , sJ according to the values taken by e1(x),

e2(x) and e3(x), where

eg(x) ≡ Pr(G = g|x), g = 1, . . . , 4.

Accordingly, the eg(x)’s are the propensity scores defined by the multinomial regression of G on the x’s.

As we have shown above, letting the partition depend on values of the propensity scores is convenient

to reduce the dimensionality problem. Results in Imbens (2000) and Lechner (2001) can be directly

applied to conclude that S(X) is actually a balancing score for (DA, DB).

Our estimation strategy to recover the ATT consists of the following steps. First, by assuming

normality of the mixture components in (3) we maximize the likelihood function defined over the four

groups given by DA×DB and the J elements of the partition, the latter being defined to ensure strata

of reasonable sample size. The resulting likelihood depends on J×8 unknowns (note that we allow the

pa,b’s to be stratum-specific): p0,0(sj), p1,0(sj), p0,1(sj), p1,1(sj), µ0j , σ0j , µ1j , and σ1j , j = 1, . . . , J ,

the µ’s and the σ’s being mean and standard deviation of a normal distribution for the Y0 and the Y1

components, respectively. The EM algorithm is particularly useful to obtain the maximum likelihood

estimates of the mixing weights in this case (Dempster, Laird and Rubin, 1977).14

13Many examples of this can be made - see the discussion in Everitt and Hand (1981).
14Our estimates proved robust to different starting values for the EM algorithm, obtained by generating random draws

from [0, 0.10] for p0,0(sj), from [0, 0.50] for p1,0(sj) and p0,1(sj), and from [0.90, 1.00] for p1,1(sj) and by fixing the µ’s
and the σ’s to mean and standard deviation of log-wages in cells defined by (DA = 0, DB = 0) and (DA = 1, DB = 1).
The numbers 0.10 and 0.90 were chosen with our application in mind so to reflect results in Kane, Rouse and Staiger
(1999). To avoid numerical problems, we set J = 8 and allowed stratum-specific pa,b’s only in strata with at least 15
observations.
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Second, we derive the probabilities of exact classification from the mixture weights estimated in

the previous step:

λA
0 (xi) = 1−

∑

b

p0,b(si)P [DB = b|DA = 0, xi],

λA
1 (xi) =

∑

b

p1,b(si)P [DB = b|DA = 1, xi],

λB
0 (xi) = 1−

∑
a

pa,0(si)P [DA = a|DB = 0, xi],

λB
1 (xi) =

∑
a

pa,1(si)P [DA = a|DB = 1, xi].

These expressions depend on P [DB = b|DA = a, x] and P [DA = a|DB = b, x], which we estimate from

parametric binary regressions on X.

At the end of this procedure, two estimates of the ATT can be recovered using either (DA, λA
0 (x), λA

1 (x))

or (DB, λB(x), λB
1 (x)). Estimates of the ATT can be obtained by using the characterisation result

in Battistin and Sianesi (2006). Under the assumptions made in the paper, they are both consistent

estimates of the same parameter. The two estimates are then combined so to define a new estimate

with minimum variance.

5 Data and educational qualifications of interest

5.1 Data

In this paper we only consider methods relying on Assumption 1, and we thus require very rich back-

ground information capturing all those factors that jointly determine the attainment of educational

qualifications and wages. We use the uniquely rich data from the British National Child Development

Survey (NCDS), a detailed longitudinal cohort study of all children born in a week in March 1958.

There are extensive and commonly administered ability tests at early ages (mathematics and reading

ability at ages 7 and 11), as well as accurately measured family background (parental education and

social class) and school type variables, all ideal for methods relying on the assumption of selection on

observables. In fact, Blundell, Dearden and Sianesi (2005) could not find evidence of remaining selec-

tion bias for the higher education versus anything less decision once controlling for the same variables

we use in this paper. We thus invoke this conclusion in assuming that there are enough variables to

be able to control directly for selection.

Our outcome is real gross hourly wages at age 33.

As to educational attainment, of particular interest to our purposes is that cohort members were

asked to report the qualifications they had obtained as of March 1981 (aged 23) not only in 1981

(aged 23), but also in 1991 (aged 33). We can thus construct two separates measures of qualifications

13



Table 1: Sample selection
sample size

NCDS birth cohort 17,000

Non-missing education
1978 Exam Files 14,331
1981 Survey 12,537
1991 Survey 11,407
None missing 8,504

Males with non-missing wage in 1991 3,639
Non-missing wage in 1991 and education ever 2,713

obtained up to 1981, based either on responses in the 1981 or in the 1991 survey. Furthermore, in

1978 the schools cohort members attended when aged 16 provided information on the results of public

academic examinations entered up to 1978 (i.e. by age 20).15 For each individual we thus have three

measurements of educational qualifications acquired up to age 20.

We focus on males, further restricting attention to those in work (and with wage information) in

1991 and for whom neither of the three educational measure is ever missing. These criteria, summarised

in Table 1, leave us with a final sample of 2,713.

5.2 Educational qualifications of interest

Non-parametric identification of the misclassification probabilities requires access to at least two in-

dependent measures of educational attainment. In the NCDS data, such measures are offered by

self-reported attainment and by the School Files, the latter however only recording academic qualifi-

cations and only those achieved by age 20, that is O- and A levels.16

Although driven by the availability of an independent school measure for O and A levels only,

focusing on academic qualifications offers clear advantages, and allows one to estimate highly policy

relevant parameters.

First, academic qualifications are well defined and homogenous, with the central government tra-

ditionally determining their content and assessment. By contrast, the provision of vocational qualifi-

cations is much more varied and ill-defined, with a variety of private institutions shaping their content
15Similar details were collected from other institutions if pupils had taken such examinations elsewhere. Results were

obtained for approximately 95% of those whose secondary school could be identified.
16In the British educational system, those students deciding to stay on past the minimum school leaving age of 16 can

either continue along an academic route or else undertake a vocational qualification before entering the labour market.
Until 1986, pupils choosing the former route could take Ordinary Levels (O level) at 16 and then possibly move on to
attain Advanced Levels (A levels) at the end of secondary school at 18. A levels still represent the primary route into
higher education (HE).

14



and assessment.17 A second advantage of focusing on O and A levels is that they are almost univer-

sally taken through uninterrupted education, whereas vocational qualifications are often taken after

having entered the labour market. It is thus more difficult to control for selection into post-school

(vocational) qualifications, since one would ideally want to control also for the labour market history

preceding the acquisition of the qualification.

A highly policy relevant parameter and the one we focus on in our application is the return from

attaining any academic qualification (that is, from acquiring at least O levels) compared to leaving

school at the minimum age of 16 without any formal qualification.18 Special interest in O levels arises

from the finding that in the UK, reforms raising the minimum school leaving age have impacted on

individuals achieving low academic qualifications, in particular O levels. In particular, Chevalier et al.

(2003) show that the main effect of the reform was to induce individuals to take O levels. Del Bono

and Galindo-Rueda (2004) similarly show that changes in features of compulsory schooling have been

biased towards the path of academic attainment; the main effect of the policy was not to increase the

length of schooling, but rather to induce individuals to leave school with an academic certification.

In such a context it is thus of great policy interest to estimate the returns to finishing school with

O levels compared to leaving with no qualifications. Indeed, Blundell, Dearden and Sianesi (2005)

found a non-negligible return of 18% for those who did leave with O levels and of 13% for those who

dropped out at 16 without any qualifications. Furthermore, the return to acquiring at least O levels

compared to nothing captures all the channels in which the attainment of O levels at 16 can impact

on wages later on in life, in particular the potential contribution that attaining O levels may give to

the attainment of A levels and then of higher education.

It is important to highlight that since we compare O level attainment recorded by the schools by

the time the individuals were aged 20 to O level attainment self-reported by individuals by the time

they were aged 23, we need to further assume that O level qualifications are completed by age 20. We

can however safely consider this assumption to be met, at the very least for our NCDS cohort. From

the school files, we could verify that only a negligible fraction of O levels achieved by age 20 had in

fact been achieved after the typical age of 16.

Table 2 presents cross tabulations between our three educational measurements.19 Before briefly
17In fact, there is a wide assortment of options ranging from job-specific, competence-based qualifications to more

generic work-related qualifications, providing a blend of capabilities and competencies in the most disparate fields.
18Although the British system is quite distinct from the one in the US, one could regard the no-qualifications group as

akin to the group of high-school drop-outs. The ‘None’ category also includes very low-level qualifications at NVQ level 1
or less, in particular the academic CSE grade 2 to 5 qualifications. Students at 16 could take the lower-level Certificates
of Secondary Education (CSE) or the more academically demanding O levels. The top grade (grade 1) achieved on a
CSE was considered equivalent to an O level grade C. Most CSE students tended to leave school at 16.

19Note that our measures are in terms of highest achievement, and are thus not directly comparable to the ones used
by Ives (1984).
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Table 2: Academic qualifications: conditional probabilities by qualifications in the School files
age 20 age 23, at 23 age 23, at 33

None O A None O A HE
None 80.6 18.3 1.1 76.1 22.5 1.1 0.3

O 4.8 82.5 12.7 10.5 74.8 10.1 4.6
A+ 0.2 1.2 98.6 3.7 1.2 48.2 46.9

discussing the table, it is reassuring to note that the patterns that emerge from them are the same

irrespective of the samples selected on the basis of non-missing educational information ever or non-

missing wage information in 1991 (the latter obviously also restricting attention to those employed in

1991).

If we were to believe the school files, almost 5% of those students who did achieve O-levels reported

to have no academic qualifications at age 23, while only a much smaller proportion (1.4%) incorrectly

denied having taken their A-levels. At age 33, when asked to recall the qualifications they had attained

by age 23, individuals are observed to make more mistakes, with over 10% of O-level achievers and 5%

of A-level achievers ‘forgetting’ their attainment. Conversely, still taking the school files at face value,

it appears that almost one fifth of those with no formal qualifications over-report their achievement,

mostly stating that they have obtained O levels. A smaller but still sizeable fraction of 13% of those

who according to the school files have only achieved O levels maintain to have in fact A levels. As was

the case with under-reporting, over-reporting behaviour seems to worsen when moving further away

from the time the qualification was achieved. When relying on recall information, almost one fourth

of individuals with no formal qualifications state to have some, while almost 15% of individuals with

O levels as their highest qualification according to the administrative files affirm to have A levels or

even HE.20

Overall, we have the needed variation in the two measures. If we take the school files at face

value, we find much more over- than under-reporting, although some under-reporting still remains.

Always trusting the school files, we find most reporting errors to concern adjacent levels, though some

non-negligible errors are still present even if move two levels. Finally, reporting errors get worse when

individuals are asked to recall their qualifications.

Moving now to our more aggregate educational measure of any (academic) qualifications versus

none, Table 3 highlights significant differences between the information contained in the two reports,

with 10% of student-school matches disagreeing. Of particular interest for later comparison with our

results, the incidence of academic qualifications in the population is 58.8% according to transcript
20This discussion on over-reporting crucially relies on the assumption that O and A level be completed by age 20.

Although there is indirect support for this from the data and anecdotal evidence, in future research we will explore the
sensitivity of our estimates to violations of this assumption.
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Table 3: Sample size: academic qualifications (cell frequencies in brackets)
Self-reported at age 23

Admin None Any
None 901 (33.2%) 218 (8.0%) 1,119 (42.2%)
Any 49 (1.8%) 1,548 (57.0%) 1,597 (58.8%)

950 (35.0%) 1,766 (65.0%) 2,716 (100.0%)

information, whilst according to self-reports it is considerably higher, 65%.

6 Results

This section presents estimation results for our parameter of interest, namely the return to acquiring

any academic qualification. We first combine administrative data from the School Files and informa-

tion on academic qualifications self-reported at age 23 to recover the misclassification probabilities

λ’s, thus providing the first estimates for the UK of both exam transcript errors and individual mis-

reporting probabilities.

6.1 Misclassification probabilities

Figures 1 and 2 present our estimates of the probabilities of correctly reporting attainment of academic

qualifications. In particular, Figure 1 presents the percentage of individuals who report correctly to

have any academic qualification (λ1) and who report correctly not to have any academic qualification

(λ0). In Figure 2 we present the same quantities calculated from administrative data. The probabilities

of exact classification have been calculated for all individuals in the sample using the methodology

described in Section 4.2.21 Table 4 reports their modes and corresponding bootstrap standard errors.

Our results suggest that individuals are appreciably more accurate than transcripts when it looks

as if they don’t have any academic qualification. The difference between the mode of the distributions

of λ0 from self-reported and administrative data is 5.2 percentage points and is significant at the

conventional level. In other words, individuals are over 5 percentage points less likely than schools

to under-report (forget) their qualifications. On the other hand, by comparing the modes of the

distributions of λ1 it seems that individuals are slightly less accurate than transcripts when it looks

as if they do have academic qualifications (the difference between the modes of 1.8 percentage points

is again significant at the conventional level). Individuals are thus almost 2 percentage points more

likely than schools to over-report their attainment. Thus, and in line with the little evidence available
21After estimating cell-specific pa,b’s depending on values of the balancing score, we were not able to reject the

hypothesis of constant mixture weights across cells. We therefore estimated the mixture in (3) by imposing this restriction.
The quantities P [DB = b|DA, x] and P [DA = a|DB , x] were predicted from parametric regressions considering only the
coefficients of significant regressors.
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Figure 1: Extent of misclassification in self-reported information: percentage of individuals with any
academic qualification amongst those reporting so (λ1, top panel) and percentage of individuals with
no academic qualification amongst those reporting so (λ0, bottom panel)
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Figure 2: Extent of misclassification in administrative information: percentage of individuals with any
academic qualification amongst those reporting so (λ1, top panel) and percentage of individuals with
no academic qualification amongst those reporting so (λ0, bottom panel)
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Table 4: Extent of misclassification
Self-reported Administrative

Mode Std. Err. Mode Std. Err.
λ1 0.970 0.119 0.988 0.120
λ0 0.961 0.043 0.909 0.046

from the US, no source appears to be uniformly better.

Using the misclassification probabilities λ(x)’s we have recovered and the observed propensity

score e(x), from the law of iterated expectations (see Section 2) we obtain an estimate of the true

incidence of academic qualifications in the population, namely P (D∗ = 1|x), of 55.6%. Interestingly,

this is considerably lower than the incidence according to either educational measure; at 65%, however,

individuals tend to over-report to a much larger extent than schools (58.8%).

6.2 Returns to any academic qualification

With the misclassification probabilities in hand, we can then proceed to estimate the returns to

achieving any academic qualification as outlined in Section 4.2 above. In the current version of the

paper, all the ATT’s have been computed using constant probabilities λ0 and λ1 set to the mode of

their distributions, and using the characterisation result in Battistin and Sianesi (2006). In future

work, we plan to use the results in our companion paper and to allow for individual specific λ’s. Our

estimation results are reported in Table 5.22

We start by reporting the return as estimated from the raw data (∆LFS). Such an estimate

relies on the self-reported educational measure and is obtained by controlling only for the Labour

Force Survey-style variables of gender, age, ethnicity and region (gender and age via sample choice).

Ignoring both omitted-ability bias and potential misclassification in self-reported attainment we thus

find a return to academic qualifications of 32.9%.

We then include the full set of rich controls of Blundell, Dearden and Sianesi (2005): in addition

to gender, age, ethnicity and region, we now control for math and reading ability test scores at 7 and

11, various family background measures (mother’s and father’s education, mother’s and father’s age,

father’s social class, mother’s employment status and number of siblings when the child was 16) and

school type. As one would expect in a situation of positive selection into education, the corresponding

return, ∆FULL, falls to 25.5%.
22Numbers in the table should be read as follows. FULL: Misclassification probabilities and returns estimated using

the full set of controls, as in Blundell, Dearden and Sianesi (2005): gender and age (implicitly), math and reading ability
test scores at 7 and 11, family background (mother’s and father’s education, mother’s and father’s age, father’s social
class when child was 16, mother’s employment status when child was 16 and number of siblings when child was 16), school
type, ethnicity and region. LFS = Misclassification probabilities and returns estimated using Labour Force Survey-style
controls: gender and age (implicitly), ethnicity and region.
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We subsequently implement our empirical strategy to correct for potential error in reported quali-

fications by exploiting the second, independent measure provided by the School files. In a first step we

pretend to be using a Labour Force Survey-type of data and use the restricted (LFS) set of controls.

Note that we use such limited set of variables both to estimate the misclassification probabilities and

to then estimate the return. The corresponding estimate of ∆∗
LFS , at 36.1%, has increased by over 3

percentage points once accounting for measurement error.

We finally make full use of our rich NCDS data and implement our strategy to account for reporting

errors. The estimates of the misclassification probabilities λ based on the full set of controls are those

we discussed in the previous subsection. The resulting return is ∆∗
FULL (which in the rest of the paper

we had simply termed ∆∗). Our estimate of the ATT from acquiring any academic qualification is

26.4%.

So what can we say about the relative importance of omitted ability and measurement error biases,

and about the possibilities that the two cancel out? By comparing the true return ∆∗
FULL to the one

ignoring both types of potential biases ∆LFS , we do not find any evidence of balancing biases; quite

to the contrary, ignoring both biases leads to a sizeable upward bias in estimated returns of 19%. The

resulting calibration rule to get the LFS-style estimate of the average return to academic qualifications

for males close to the true return suggests to multiply the ‘raw’ estimate by 0.81.

As to the relative importance of ability and measurement error biases, we find that what is crucial

is to control for ability bias. In particular, estimates that correct for measurement error but not for

omitted ability incur a 27% upward bias (compare ∆∗
FULL to ∆∗

LFS), whilst controlling for ability but

ignoring misclassification error leads to a 4% downward bias, which is not statistically significant at

conventional levels (compare ∆∗
FULL to ∆FULL).

In this application, we thus find that the policymaker or analyst can not simply rely on mea-

surement error to cancel out the ability bias. It is important to note that such a result pertains to

measurement error in educational reports that were obtained relatively close to the completion of the

qualification of interest. We also intend to provide estimates of individual misreporting probabilities

at different elapsed times after completion of the qualification, which will allow us to assess whether

the relative balance of the two biases is shifted once we turn to recall information, which is likely to

suffer from a larger extent of measurement error.

7 Conclusions

In this paper we provide reliable estimates of the returns to educational qualifications in the UK that

allow for the possibility of misreported attainment. We additionally identify the extent of misreport-
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Table 5: Estimates of returns
Parameter Control for Estimate Std. Err.
∆LFS nothing 0.329 0.015
∆FULL ability bias 0.255 0.026
∆∗

LFS meas. err. bias 0.361 0.025
∆∗

FULL both 0.264 0.047

ing in different types of commonly used data sources on educational qualifications and thus provide

estimates of their relative reliability. In particular, we provide estimates of exam transcript errors,

as well as of individual misreporting probabilities at different elapsed times after completion of the

qualification of interest.

We also provide evidence on the relative importance of ability and measurement error biases, and

produce some simple calibration rules as to how to correct returns estimated on data that rely on

recall about individual qualifications and contain limited or no information on individual ability and

family background characteristics (such as the Labour Force Survey).

On the methodological front, we propose a semi-parametric estimation based on balancing scores

and mixture models.
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