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Abstract

In an unobserved components framework of US output trend and cycle, this paper seeks

to determine the causal interaction between permanent and transitory innovations. For

the purpose of identification, strategies of augmenting the cyclical dynamics as well as

allowing for shifts in volatility are proposed. In the early 1980s, substantial predominance

of cycle shocks gives way to strong negative spillovers of trend impulses, consistent with

real business cycle theories. The coincident reduction of macroeconomic volatility mainly

traces back to pronounced dampening of transitory disturbances. This ascribes an impor-

tant role to the mitigation of policy interventions in explaining the Great Moderation.
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1 Introduction

What is the nature of business cycles? Are they a phenomenon simply triggered by

transitory shocks to the economy, or is it permanent innovations that drive both long-run

growth of output as well as its periodicity? Reversely, might the course of the business

cycle leave a persistent imprint on a country’s development? These issues have initiated

important progress in theoretical research, including prominent concepts like real business

cycles (RBC) and New Keynesian economics, amongst others.

On the empirical side, unobserved components (UC) models, which specify the latent

growth and cycle paths directly, naturally bear the potential to answer the introductory

questions. However, the first UC models built to decompose GDP into trend and cycle

assumed uncorrelated innovations (e.g. Harvey 1985, Clark 1987), thereby neglecting

potential interactions a priori. More recently, Balke and Wohar (2002) as well as Morley

et al. (2003) showed that correlation between permanent trend and transitory cycle shocks

can be taken into account while maintaining identifiability of the structural model form.

Indeed, the latter authors found a large negative correlation in their application to US

GDP, just as the former for real dividend growth.

Economically, the prevalent interpretation sees the correlation as a causal effect from

trend to cycle in the sense of partial GDP adjustment: When a positive permanent shock

shifts up the long-run output path, we will see a negative transitory component, which

vanishes over time while realigning real output with the elevated production potential.

This view is consistent with Stock and Watson (1988) as well as RBC theories, see Kydland

and Prescott (1982). The latter suggest that transitory fluctuations represent dynamic

reactions of output to real shocks, delayed by time-to-build effects. A further theoretical

interpretation stresses the role of nominal rigidities triggering negative initial impacts of

positive supply or technology shocks (e.g. Blanchard and Quah 1989, Gaĺı 1999). Even

though these particular explanations for the estimated correlation might appear plausible,

in terms of statistics no case can be made to exclude alternative ones, even comprising

totally reversed causality. That is to say, spillovers of cycle shocks to the trend can

produce an observationally equivalent outcome.

Different prominent approaches bear the potential to rationalise such a reversed mech-

anism: For instance, Okun (1962) argued that transitory recessions might leave their

mark on permanent output, when the average age of the nation’s capital stock rises (i.e.,

the vintage effect). The same effect on GDP is likely to occur in case unemployment

does not regress to its starting point after a temporary increase, so-called hysteresis (e.g.
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Blanchard and Summers 1986). Clark (1989) gives the example of a surge in investment

improving short-run demand along with long-run capacity. However, the previous consid-

erations direct at a positive linkage of trend and cycle disturbances. As Proietti (2006)

notes, negative correlation would go in line with adverse effects of temporary shocks on

the permanent GDP component. For example, Clark (1987) argues that initially pos-

itive demand effects of fiscal policy shocks may be followed by rising tax and interest

rates, lowering production potential hand in hand with output. The same may hold true

for inflationary, e.g. monetary, shocks, if they provoke increased uncertainty, dampened

trade development or inefficient product and labour substitution under price staggering of

Calvo or Taylor type. Moreover, labour market policy actions like increases in unemploy-

ment compensation (or disability benefits, following Clark 1989) might trigger short-run

consumption-based upturns, but discourage productive work in the long run.

This list is surely extendable. Economically, the different arguments call for answering

the much discussed question whether the dynamics of output are governed by permanent

or transitory shocks; see King et al. (1991) and many others. Empirically, a decision

between the two potential directions of causality critically hinges on the ability to identify

two simultaneous effects from the data. To this end, the present paper introduces the so-

called simultaneous unobserved components (SUC) model. Precisely, I seek to overidentify

correlated UC models in order to reveal statistical evidence discriminating between the

offered economic interpretations. For that purpose, I first propose to enhance the set of

available information by extending the dynamic specification of the cyclical component

and the reduced-form model version. Since this strategy turns out to suffer from weak

empirical identification, a second innovative model is put forward exploiting the shift in

shock variances going along with the so-called Great Moderation: As has been described

by Kim and Nelson (1999) and McConnell and Perez-Quiros (2000), amongst others, the

early 1980s saw a distinct decrease of variability in major macroeconomic indicators.

I show that implementing an additional variance regime allows identification of a random-

walk trend, an autoregressive cycle, two according innovations as well as simultaneous

cross-impacts between them from the output series alone. Furthermore, changes in the

trend-cycle composition of output and even the structural origins of the Great Moderation

can be assessed. Empirical evidence is twofold: On the one hand, transitory disturbances

clearly dominate the first post-war decades, possibly hinting at important policy influences

on economic activity. This is in notable contrast to the above-mentioned mainstream

interpretation given to the negative correlation phenomenon. However, permanent shocks

survive as the only relevant source of both macroeconomic growth and fluctuations since

2



the early 1980s. I.e., the correlation of reduced-form residuals can be traced back to

spillovers of trend innovations to the cycle. This supports approaches ascribing a leading

role to real shocks, such as RBC theories. Concerning the discussion on the causes of

the Great Moderation, the study makes a case for an important influence of changes

in macroeconomic policies, associated to the tremendous reduction in genuine cyclical

variability.

The reader can expect the following: Subsequently, the SUC model, including several

variants, is discussed along with key considerations on identification. Section 3 then

presents the application to US industrial production (IP). The last section summarises

and discusses the results and sets out implications for further research. Two appendices

cover identification and estimation issues, respectively.

2 Specification and Identification

The classical UC model is built on the idea that (seasonally adjusted) log output yt can

be represented as the sum of a stochastic trend τt and transitory deviations ct, called the

cycle. Formally, this is

yt = τt + ct (1)

τt = τt−1 + µ + ηt , ηt ∼ N(0, σ2
η) (2)

ct = b1ct−1 + . . . + bpct−p + εt , εt ∼ N(0, σ2
ε) , (3)

where in modulus, all roots of the lag polynomial B(L) = 1 −
∑p

i=1 biL
i lie outside the

unit circle. Thus, the cycle is described by a stationary autoregressive process of order

p (AR(p)). Periodic behaviour would only result for complex roots of B(L), but in any

case, I will stick to the name ”cycle” for the transitory part of the output fluctuations.

The trend component follows a random walk with a drift term µ that captures the steady-

state growth rate of the economy. As explained later on in section 3.4, more sophisticated

specifications for the drift proved inessential for the underlying analysis.

While the original contributions assumed zero covariance between the permanent and

transitory innovations, Balke and Wohar (2002) and Morley et al. (2003) relaxed this

constraint. The latter specified E(ηtεt) = rσησε, with r being the contemporaneous

correlation. Decisively, r becomes identifiable by setting the AR order p = 2, so that
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the structural UC model translates into a reduced-form autoregessive integrated moving

average − ARIMA(2,1,2) − by virtue of Granger’s lemma (Granger and Newbold 1977).

More precisely, substituting (2) and (3) into (1) leads to

B(L)∆yt = B(1)µ + B(L)ηt + ∆εt . (4)

The ARIMA representation in conventional form and notation is obtained as

B(L)∆yt = c + A(L)ut , ut ∼ N(0, σ2
u) , (5)

where A(L) is a p-dimensional lag polynomial. Its coefficients are in general determined

along with the variance σ2
u by matching autocovariances between the MA parts in (4)

and (5). Evidently, the bi, i = 1, . . . , k, from the cycle equation (3) are directly identified

by the autoregressive parameters in the reduced-form ARIMA process. Then, the drift

term µ can be easily recovered from the constant c. Furthermore, the right-hand-side

MA part delivers p + 1 non-zero autocovariances γ(0), . . . , γ(p), which are theoretically

given as γ(j) = E[(B(L)ηt + ∆εt)(B(L)ηt−j + ∆εt−j)]. For p = 2, the MA structure thus

provides sufficient information to exactly identify three unknown parameters given as the

correlation r in addition to the variances σ2
η and σ2

ε .

As has been set out in the Introduction, the present paper aims at incorporating further

structure into the model in order to represent the causal mechanisms underlying the

correlation of residuals. Thus, I split up the trend and cycle shocks from (2) and (3)

according to the linear combinations

ηt = k11η̃t + k12ε̃t , (6)

εt = k21η̃t + k22ε̃t . (7)

This simultaneous system is normalised by E(η̃2
t ) = 1 and E(ε̃2

t ) = 1 as well as k11 ≥ 0 and

k22 ≥ 0. η̃t and ε̃t denote structural uncorrelated trend and cycle shocks, respectively.

Therefore, k12 and k21 pick up the mutual spillover effects between both unobserved

components.

Note that the equation system (6), (7) replaces the three parameters σ2
η, σ2

ε and r by the

four kij, i, j = 1, 2. Naturally, the fully simultaneous SUC specification lacks one piece of

information for identification. A straightforward solution to this problem works through
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raising the AR order p of the cycle. That is, p = 3 implies an ARIMA(3,1,3) structure

for the reduced form, which delivers one additional AR coefficient and a third non-zero

autocorrelation from the MA part. Thereby, one gains the required piece of information,

because the number of unknowns in the structural form rises only by one (b3).

While the application in the next section might even be able to justify p = 3 for US IP,

the likelihood function around the estimates for the spillover coefficients k12 and k21 will

be extremely flat. This hints at weak identification power of the determining equations

arising from the autocovariances of the MA part in (5). More specifically, the expressions

for γ(0) till γ(3) (see Appendix A for details) are to be solved for the kij, i, j = 1, 2.

Amongst other cases, it can be shown that this equation system possesses no unique

solution, and therefore fails to meet the sufficient condition for identification, if b2 = 0

or b3 = 0. Empirically, inference on the spillover parameters can thus not be expected

to effectively discriminate between different hypotheses, if the estimate of one of the

aforementioned AR parameters cannot be convincingly distinguished from zero. In short,

empirical identification may fail.

Since the aim of the underlying paper requires distinct discriminating power, I offer a

more elaborate solution to the fundamental identification problem. In essence, the task

is to enlarge the set of information obtainable from the reduced form while extending

the set of unknowns by as little as passable. For that purpose, imagine two regimes for

the generating processes of the structural SUC shocks η̃t and ε̃t, one of high and one

of low volatility. One retains the variance normalisations say for the first regime, that

is σ2
η1 = E(η̃2

t |t ∈ R1) = 1 and σ2
ε1 = E(ε̃2

t |t ∈ R1) = 1, where Ri denotes the set of

time points belonging to the ith regime. Accordingly, the variances for the second regime

σ2
η2 = E(η̃2

t |t ∈ R2) and σ2
ε2 = E(ε̃2

t |t ∈ R2) are free parameters differing from unity in

case breaks indeed occur.

Clearly, this specification introduces two additional unknown variance coefficients (σ2
η2

and σ2
ε2) into the structural model. However, for the second variance regime, a completely

new2 set of autocovariances from the reduced-form MA part can be calculated, providing

p+1 additional determining equations. It follows that for p ≥ 2, the necessary summing-

up condition for identifying the four kij in addition to σ2
η2 and σ2

ε2 is fulfilled. In detail,

the number of unknowns (constant, AR parameters, shock loadings, variances) is given by

1+p+4+2(s−1), where s is the number of regimes. The number of pieces of information

2”Completely new” holds as long as the variances do not break proportionally to each other. Other-

wise, the new set of autocovariances would linearly depend on the existing one, delivering no additional

identifying information. Again, see Appendix A for details.
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from the reduced form (constant, AR parameters, MA autocovariances) amounts to 1 +

p + s(1 + p). Comparing these terms, identification requires s(p− 1) ≥ 2, what is met by

AR orders of at least three with a single regime (the case discussed first in this section)

and of at least two in the presence of multiple regimes.

The idea of attaining identification by non-constant variances goes back as far as Wright

(1928) and is comparable to Sentana and Fiorentini (2001) and Rigobon (2003), who

treat factor models and simultaneous systems. However, while these authors rely on

the contemporaneous residual covariance matrix as source of identifying information, the

present approach involves the whole autocorrelation structure of the data. Furthermore,

it identifies simultaneous impacts between unobserved components (i.e., SUC) determined

from a single observed series. In contrast, the existing approaches employ the conventional

setup of left-hand-side observed variables depending on latent factors right hand side.

For estimation purposes, the structural model is cast in state-space form, see Appendix B.

Maximum Likelihood is applied to estimate the model parameters. Thereby, the likelihood

function is constructed using the prediction error decomposition from the Kalman filter,

which delivers estimates of the states of the unobserved components.

3 Application to US Output

3.1 Data

Previous unobserved components studies have routinely employed quarterly US GDP.

While in principle, applying the newly developed methodology to this series is feasible,

I encountered no sufficient significance for effectively discriminating between competing

theoretical explanations. In particular, estimation uncertainty around the spillover coef-

ficients k12 and k21 proved to be too large. Instead, I use IP, what considerably raises the

number of observations given that monthly data are available.3 Two well-known points

should be addressed: First, IP development can differ quite substantially from GDP.

However, IP is quite common as an output measure in the macroeconomic literature, and

in particular, the mere point estimates in my model lead to similar conclusions for GDP

and IP. That is, it is solely the precision of estimates that was improved by raising the

3Quarterly GDP could be included along with monthly IP in a mixed-frequency state space setup.

I leave this issue for future research, focusing the interest of the current paper on the fundamental

identification problem in the case of a single observed variable.
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frequency. Second, augmenting the number of observations through higher data frequency

often does not provide the same quality of additional information as collecting time series

of higher overall length. Nonetheless, in the present case, the gains in significance allow

clear-cut economic interpretation based on statistical evidence.

The monthly seasonally adjusted IP index of the United States for the sample 1947:1-

2008:12 is obtained from the Federal Reserve. Slight changes in the start and end points

would be uncritical, see section 3.4. Log IP (multiplied by 100) and its first differences

are plotted in Figure 1.
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Figure 1: Log real US IP (×100) and first differences

3.2 Preliminary Steps

In a first step, I estimate a correlated UC model similar to Morley et al. (2003). For

determining the lag length p of the cycle, ARIMA(p,1,p) models as in (5) are specified

for the log IP series. Both the Akaike and the Schwarz criterion consistently prefer a

lag length of p = 3. All coefficients (apart from the MA(1) parameter) are significant4,

and the residual autocorrelations are rather low. Therefore, it seems justified to let the

unobserved cyclical component follow an AR(3) process.

The correlation r is found to be close to −1. Statistical significance can be conveniently

assessed by means of confidence sets based on the likelihood ratio (LR) principle: In

4Admittedly, these coefficients might be subject to near cancellation, causing bias in t-tests (e.g.

Nelson and Startz 2007). Indeed, the largest AR and MA roots of the ARIMA(3,1,3) model almost lie on

the unit circle. However, for the moment I continue with the decision of the information criteria, which

should be fairly reliable.

7



detail, LR tests reject the null hypothesis r = r0 for all r0 ≥ −0.55 (i.e., closer to zero

than −0.55 or positive) on the 5% level. Morley et al. (2003), using quarterly data

until 1998:2, nearly failed to reject even a zero correlation. Evidently, the additional ten

years in my sample and the monthly frequency provide essential information for precise

estimation. This fact shall be of avail for the analysis of the even more demanding SUC

model below.

The large negative estimate for the correlation leads Morley et al. (2003) to the interpre-

tation that positive real trend shocks leave a lower transitory component, which gradually

adjusts to the permanent output path with a lag. Balke and Wohar (2002) propose a sim-

ilar explanation with regard to their real dividend growth model. I now head to reassess

this assertion by identifying the causal structure underlying the inferred residual correla-

tion. Particularly, this correlation could be either generated by two shocks with strong

mutual spillovers or by a single relevant shock affecting trend and cycle alike. Here, one

obviously faces a fundamental identification problem.

The first solution presented in the methodological section was based on augmented cyclical

dynamics. The selected lag length of p = 3 should be appropriate for this strategy, since it

fulfils the necessary identification condition. The trend and cycle equations, with standard

errors in parentheses, are estimated as

τt = τt−1 + 0.116
(0.020)

+ 0.370
(1.051)

η̃t − 0.488
(0.806)

ε̃t (8)

ct = 1.473
(0.074)

ct−1 − 0.272
(0.149)

ct−2 − 0.241
(0.093)

ct−3 − 0.232
(0.650)

η̃t + 0.306
(0.512)

ε̃t . (9)

Strikingly, all shock loadings are clearly smaller than their standard errors. Indeed, the

likelihood differences between the model in its general form and under both hypotheses

k12 = 0 and k21 = 0 are negligible. That is, identification of the simultaneous structure

is extremely weak, as it has been anticipated in section 2. Since we should not draw

economic conclusions based on such an empirical result, I turn towards the alternative

strategy of identification by variance regimes.
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3.3 Identification and the Great Moderation

To begin with, reconsider the IP growth rates in Figure 1. The early 1980s witnessed

a striking reduction in the volatility of macroeconomic fluctuations.5 This phenomenon,

mainly for GDP growth, which features an even clearer effect than IP, found its way into

the literature as the Great Moderation (see Kim and Nelson 1999, McConnell and Perez-

Quiros 2000). Concerning its reasons, the debate goes on ”good policies” (e.g. Clarida

et al. 2000) versus ”good luck”, meaning a simple reduction in the size of shocks hitting

the economy (e.g. Stock and Watson 2003).6 I do not claim to be able to decide this

discussion based on inference on a single time series, i.e. IP. However, one might still

arrive at straightforward conclusions even on a high level of abstraction. So, if the origin

of the Great Moderation lies in better policies, and if one is willing to accept that policy

shocks exert a transitory impact on the real economy, then the policy argument might

be roughly associated with the cycle innovation in the present framework. Accordingly,

the trend disturbance is more prone to represent structural growth shocks not under the

control of single political institutions. That is, identifying the SUC structure provides

the means for discriminating between competing explanations of the Great Moderation

by determining the contributions of both types of shocks prior and subsequent to the

breakpoint. Of course, this comes in addition to the potential of assessing strength and

nature of the trend-cycle interaction and the consequences for output dynamics.

Technically, I introduce shift dummies for the variances of both innovations, letting the

data decide about the respective contributions. This shift in variability provides the

statistical information required for identifying the simultaneous structure. As for the

exact date of the change in regimes, I pick February 1984 based on visual inspection of

the growth rates in Figure 1; that is, the last in a row of pronounced spikes might have

immediately occurred in the preceding month. Indeed, for GDP, the literature (as cited

above) has often identified the first quarter of 1984. However, one or two years more or

less would not make a decisive difference, neither to the parameter estimates nor to the

likelihood. After the third AR coefficient has been eliminated due to insignificance, the

model is estimated as follows:

5Given the available sample, it is too early to assess the high fluctuations in the 2008 financial and

economic crisis. Notwithstanding, cutting the last few observations does not change the outcome of this

paper.
6A third issue, changes in the structure of the economy, shall be left open in the present paper.
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τt = τt−1 + 0.088
(0.025)

+ 0.618
(0.079)

η̃t − 0.760
(0.182)

ε̃t (10)

ct = 1.074
(0.154)

ct−1 − 0.247
(0.129)

ct−2 − 0.316
(0.094)

η̃t + 0.936
(0.199)

ε̃t (11)

σ2
η2 = 0.599

(0.160)
, σ2

ε2 = 0.028
(0.090)

. (12)

The new identification strategy shows its merits in a tremendous reduction of the standard

errors, leading to highly significant impact coefficients. In the first regime, where both

variances are normalised to 1, the SUC system is dominated by the cycle shock ε̃t. It

hits the cyclical component three times stronger than the trend innovation does, and

even prevails in its effect on the trend component itself. It follows that until the Great

Moderation, real persistent shocks driving output dynamics are not at the heart of an

appropriate economic interpretation.7 This stands in notable contrast to the currently

prevalent interpretations discussed above.

However, the situation changes in the second regime: Here, variability of the cycle dis-

turbances nearly vanishes, while it is reduced by only 40% for η̃t. The LR test statistic

of H0 : σ2
ε2 = 0 amounts to 0.049. Usual significance levels are unlikely to hold in this

case, since under the null hypothesis, the variance is on the boundary of the admissible

parameter space. Nevertheless, statistical (and economic) insignificance is too clear to be

revised by any modification of the inference procedure. Consequently, the negative cor-

relation between the reduced-form error terms can be fully traced back to transmission

of trend shocks to the cyclical component. The phenomenon of the Great Moderation

can thus be explained by (nearly) complete disappearance of genuine cyclical volatility,

complemented by a much less important reduction of the size of trend innovations.

Finally, to gain a graphical impression, Figure 2 plots the filtered unobserved compo-

nents. As it has usually been discovered in Beveridge-Nelson-type decompositions and

correlated UC models, the cycle is highly volatile. Since the lag polynomial in (11) has

no complex roots, one cannot observe any pronounced periodicity. In this context, recall

the important result that volatility of the cycle shock η̃t declined enormously during the

Great Moderation. However, this does not imply that business cycles totally disappear

− instead, they are driven by permanent rather than by transitory innovations. Fig-

ure 2 reflects exactly this fact, since the amplitude of the cyclical UC drops, but not as

overwhelmingly as exclusive inspection of σ2
ε2 would suggest.

7Note that since in the first regime both variances are normalised to one, variance decompositions

yield identical conclusions.
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Figure 2: Filtered IP trend and cycle

3.4 Robustness Checks

Robustness of the model estimates to the following issues was checked. The tests support

the reported empirical results, notably including the identified causalities.

• The deterministic drift term µ was allowed to follow a random walk. However, I

encountered no relevant differences to the current investigation. This is in line with

Oh and Zivot (2006), who showed that the ”double-drift” specification yields results

similar to Morley et al. (2003).

• Likewise, no important contribution of a trend break in 1973, as proposed by Perron

and Wada (2005), could be found.

• While in section 3.2, the cycle had been specified as an AR(3) process, the third lag

was omitted in section 3.3 due to insignificance. Keeping it in the model did not

change the conclusions.

• Quasi Maximum Likelihood was adopted in order to make statistical inference robust

against deviations from the normality assumptions. Since the standard errors did

not change by much, all test results remained unaltered. In particular, the impact

coefficients identified by use of variance regimes were still precisely estimated.

• The sample could be shortened without notable effects either at the beginning to

leave out the Korean War, or at the end to cut off the observations affected by the

subprime crisis.
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4 Summary and Discussion

The underlying paper has presented the novel SUC approach to assess the importance of

trend and cycle shocks in a macroeconomy. Building on the conventional UC model and

its correlated extension, the focus was on determining causal structure in the interaction

of permanent and transitory output components. This task makes high demand on the

extraction of identifying information from the data. A first solution to this problem relied

on exploiting the autocovariance structure of augmented cyclical dynamics. However, em-

pirical identification proved to be insufficient. A more effective strategy was developed by

specifying a shift in the volatility of the structural disturbances. By providing more statis-

tical information than introducing additional unknowns, such a type of heteroscedasticity

bears the potential to identify simultaneity among unobserved components.

The application to US IP revealed strikingly different patterns in the periods prior and

subsequent to the Great Moderation. The first post-war decades were dominated by cycle

shocks driving the transitory component and even leaving a sustained mark on the long-

run growth path. As for the first regime, this stands in contrast to the popular view of

prevailing real or permanent shocks. Recurring to the Introduction, one might instead

locate an important source of both transitory and persistent output variability in the

conduct of interventionist and discretionary monetary, fiscal and labour market policy,

which might have characterised the decades until the 1980s.

Coinciding with the Great Moderation, the cyclical influence has disappeared, leaving a

permanent-transitory composition of IP largely governed by trend impulses. Logically, in

the second regime the spillovers underlying the residual correlation found in UC models

mainly originate from the trend innovations. The Great Moderation phenomenon seems

to be a product of sustained reduction of the size of transitory shocks. In other words,

until the early 1980s, the cycle was predominantly triggered by transitory shocks with

independent variation. Since then, however, it represents temporary adjustments of actual

IP to the development of the production potential. The latter fact is in line with RBC-

type theories emphasising the role of real innovations in driving business cycles in addition

to long-run economic growth.

Furthermore, the results are compatible with the ”good policies” position in the discus-

sion on the origins of the Great Moderation. So, it is plausible that the reduction of

excessive policy interventions, most likely in place until the 1980s, at least in part stands

behind the decline of the size of transitory shocks. Nevertheless, it is clear that policy

impacts cannot be uniquely identified for instance from other demand shocks within the
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underlying highly parsimonious framework. That is, the statistical evidence should not

be unduly stressed, since inference on a single time series cannot be expected to deliver

imperatively compelling arguments on a topic as complex as the functioning of a whole

macroeconomy. By the same token, the potentially important issue of changes in the

structure of the economy was relieved. Including policy variables in an augmented model

and explicitly identifying further shocks can be expected to dissolve the remaining am-

biguity. Moreover, it should not be overlooked that the general volatility decrease also

includes the trend disturbances, to a much lesser extent though. As far as those can be

associated to structural growth shocks exogenous to macroeconomic policy, the ”good

luck” hypothesis additionally helps in explaining the Great Moderation.

There is considerable potential for future research drawing on this paper’s accomplish-

ments. Particularly, it seems promising to extend multivariate approaches as in Cochrane

(1994), Morley (2007), Basistha (2009) or Sinclair (2009). Clearly, before having confi-

dence in the conclusions of the underlying investigation, further time series containing

valuable information on macroeconomic trends and cycles should be employed. Those

might put the permanent-transitory identification on an empirically even more firm foot-

ing and allow more precise economic interpretation. By the same token, richer causal

structures implied by economic theory might be assessed econometrically. Finally, inter-

esting studies may gauge how both the simultaneous setup and heteroscedasticity relate

to identifiability of further UC specifications, for example incorporating cyclical growth,

hysteresis or ARMA cycles as discussed in Proietti (2006).

5 Appendix

A Sufficient Identification Conditions

Applying the simultaneous specification (6), (7) to the ARIMA model (4) leads to

B(L)∆yt = B(1)µ + B(L)(k11η̃t + k12ε̃t) + k21∆η̃t + k22∆ε̃t . (13)

The autocovariances γ(j) of the MA part are calculated according to
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γ(j) = E[(B(L)(k11η̃t + k12ε̃t) + k21∆η̃t + k22∆ε̃t)·

(B(L)(k11η̃t−j + k12ε̃t−j) + k21∆η̃t−j + k22∆ε̃t−j)] . (14)

For j = 0, . . . , p, one gets p + 1 equations. This nonlinear equation system has a locally

unique solution, if the first derivatives matrix ∂γ/∂k′ has full rank p + 1. Therein, the

column vectors γ and k stack all γ(j), j = 0, . . . , p, respectively kij, i, j = 1, 2. In presence

of nonlinear terms, the rank naturally depends on unknown parameters kij. Plugging in

estimates from the system (8), (9), the rank is numerically not reduced. Nonetheless,

since the determinant of ∂γ/∂k′ is near zero, empirical identification is likely to be weak.

Concerning the reasons for that outcome, it can for instance be shown that the matrix is

in general irregular if b2 = 0 or b3 = 0.

Above, E(η̃2
t ) = 1 and E(ε̃2

t ) = 1 applied. In the two-regime case, these normalisations

are retained for the first regime, while the variances σ2
η2 and σ2

ε2 in the second regime are

freely estimated. The autocovariances γ1(0), . . . , γ1(p) and γ2(0), . . . , γ2(p) can thus be

calculated separately for both regimes, providing extra equations available for identifying

the simultaneity. In this, a further (sufficient) condition must be taken into account: A

proportional break would occur for σ2
η2 = σ2

ε2 (since the variances are identical in the first

regime by definition). Then, the γ2(j), j = 0, . . . , p, would simply result as multiples of

their first-regime counterparts, a special case of linear dependence. Formally, let vector

γR (R for ”regime”) stack all γ1(j) and γ2(j) and vector kR stack all kij, as well as

σ2
η2 and σ2

ε2. Then, even though the dimension of the first derivatives matrix ∂γR/∂k′

R

would rise compared to the constant variance case, its rank would not be augmented

by the introduction of the shift in volatility. Finally, note that the condition of linear

independence does not require breaks in both of the structural variances.

B State-Space Model

Setting up a spate-space model, both trend and cycle are treated as state variables.

According to (1), the observation equation is the simple identity
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yt =
(

1 1 0 0
)
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. (15)

Combining (2) and (3) gives the transition equation
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. (16)

Based on the simultaneous extensions (6) and (7), the covariance matrix of the vector of

transition errors can be written as













k2
11 + k2

12 k11k21 + k12k22 0 0

k11k21 + k12k22 k2
21 + k2

22 0 0

0 0 0 0

0 0 0 0













. (17)

Note that the covariance matrix of ηt and εt (the upper left block) as a quadratic form

in the matrix of the kijs is guaranteed to be positive definite. In the two-regime case, for

the observations after the shift a second covariance matrix applies. It differs from (17)

only in that each ki1 is to be multiplied by ση2 and each ki2 by σε2, i = 1, 2.

Initial values for the AR parameters and the constant are obtained from estimating the

appropriate ARIMA process. The trend starts at the first observation of the series yt and

is assigned an extremely large variance. The cycle is initialised at zero with the variance of

the IP growth rates. Then, the log-likelihood function can be constructed and numerically

maximised passing through the standard Kalman filter equations.
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