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Abstract

Within New Keynesian economics, the optimality of a monetary policy that aims at zero in�ation

is surprisingly robust. Full price stability is optimal despite the ine¢ ciency of the nonstochastic steady

state and the existence of a positively sloped long-run Phillips-curve trade-o¤. Even under in�ation

persistence due to backward-looking price indexation by price setters, zero in�ation remains optimal.

We show how backward-looking rule-of-thumb behaviour by price setters results in optimal positive

long-run in�ation. The features that seem capable of delivering an endogenously optimal positive

in�ation target are costly disin�ation, long-run Phillips-curve trade-o¤, and steady-state distortions.
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1 Introduction

This paper contributes to the literature on optimal monetary policy and in�ation persistence by ana-

lytically deriving the optimal long-run in�ation target when the economy exhibits structural in�ation

persistence due to backward-looking rule-of-thumb behaviour by price setters.

It is often argued that the New Keynesian Phillips Curve (Roberts, 1995) de�es belief as it cannot

explain in�ation persistence: once the factors bringing about high in�ation have passed, in�ation can

return immediately to target without incurring any loss in output. Since Fuhrer and Moore (1995) the

literature has been concerned with providing theoretical explanations for structural in�ation persistence.

A widely used explanation relies on the assumption that a subset of price setters behave in a backward-

looking manner1. Christiano et al. (2005) and Smets and Wouters (2003) put forward a model with

backward-looking price indexation where �rms are continually indexing prices to past in�ation between

any two pricing decisions. Galì and Gertler (1999) and Steinsson (2003) propose a model with rule-

of-thumb behaviour where some price setters abide to a simple backward-looking rule-of-thumb when

resetting their prices.

This paper owes a lot to the landmark contribution by Woodford (2003) as it builds upon the basic

neo-Wicksellian model. Furthermore, we employ many of the techniques used in that work such as the

utility-based framework for the evaluation of monetary policy and the concept of optimality from a timeless

perspective (Woodford, 1999).

The problem of what constitutes optimal in�ation in the long-run is not trivial as monetary policy

cannot simultaneously eliminate steady-state distortions and distortions resulting from staggered price

setting2. With this respect, this paper reveals that the widespread practice in the New Keynesian literature

of restricting the attention to the case of an e¢ cient nonstochastic steady state is not innocuous. What we

show here is that a policy that is optimal for an economy with an e¢ cient steady state di¤ers from what

is optimal in an economy where the empirically unrealistic subsidies that achieve Pareto e¢ ciency are

unavailable. Of course, discretionary conduct of monetary policy would result in the well-known in�ation

bias stressed by Kydland and Prescott (1977) and Barro and Gordon (1983).

The combination of ine¢ cient nonstochastic steady state, from which stems the central bank�s desire

to stabilise output around a level that is higher than the ine¢ cient natural level of output (Friedman,

1968), and long-run Phillips-curve trade-o¤ makes positive in�ation forever in principles desirable as it

1A second explanation hinges on in�ation expectations not being formed rationally. See Woodford (2007) and the refer-
ences therein.

2Long-run and steady-state are used interchangeably in this paper.
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would result in positive output gap forever.

We show how extending an otherwise basic New Keynesian model to the case of in�ation persistence

due to backward-looking rule-of-thumb behaviour by price setters breaks the otpimality of zero long-run

in�ation target, namely the long-run in�ation target is generally positive.

As stressed by Goodfriend and King (1997), in the context of a basic New Keynesian model, price

stickiness is the only distortion that prevents rational-expectations equilibrium from achieving an optimal,

although ine¢ cient, allocation of resources. Full price stability is optimal despite the ine¢ ciency of

the nonstochastic steady state and the existence of a positively sloped long-run Phillips-curve trade-

o¤. Moreover, as shown in Woodford (2003), zero long-run in�ation is robust to the presence of partial

indexation to a lagged price index. The logic behind this result is quite intuitive. Backward-looking

price indexation does not introduce any trade-o¤ between stabilisation of the welfare-relevant measure of

in�ation and stabilisation of the output gap. As in the purely forward-looking model, the central bank is

capable of disin�ating without incurring any loss in output.

Conversely, backward-looking rule-of-thumb behaviour implies that disin�ations involve costly output

reduction. We show how costly disin�ation is what brings about a long-run incentive for positive in�ation,

even under an optimal commitment. The features that seem capable of delivering an endogenously optimal

positive long-run in�ation target are costly disin�ation, long-run Phillips-curve trade-o¤, and steady-state

distortions. Indeed, under backward-looking rule-of-thumb behaviour by price setters, optimal steady-

state in�ation collapses to zero in the absence of backward-looking rule-of-thumb behaviour, in the absence

of long-run Phillips-curve trade-o¤, and in the absence of steady-state distortions.

The remainder of the paper is organised in three sections. Section 2 presents the theoretical economy.

Section 3 studies the long-run in�ation target under the optimal commitment policy. Section 4 provides

concluding remarks.

2 The Model

The New Keynesian model laid out here is the basic neo-Wicksellian model in Woodford (2003). It shares

the basic neo-Wicksellian model�s notation3, assumptions, and general formalism. It integrates it with the

hybrid Phillips curve and the central bank�s objective that obtain under backward-looking rule-of-thumb

3This is precisely true for all variables and structural parameters but two. First, we denote with ! the degree of backward-
looking rule-of-thumb behaviour by price setters rather than the elasticity of real marginal cost with respect to own output,
which we denote with $. Second, to avoid confusion with the Lagrangian multiplier associated with the period t hybrid
Phillips Curve, 't, we denote with % the parameter vector that indexes aspects of policy that determine steady-state values
of in�ation and output gap, � and x.
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behaviour by price setters, speci�ed either à la Galì and Gertler (1999) or à la Steinsson (2003)4.

2.1 Households and market structure

There is a continuum of households of size one. The representative household seeks to maximize a

discounted sum of utility of the form

E0

1X
t=0

�tUt � E0
1X
t=0

�t

24u (Ct; �t)� 1Z
0

v(ht(i); �t)di

35 (1)

where 0 < � � 1 is the discount factor, Ct is an aggregate of the household�s consumption of each of the

individual goods that are supplied (indexed by i over the unit interval), �t is a vector of exogenous real

shocks (i.e. exogenous shocks to household�s impatience to consume and to the household�s willingness to

supply labour), and ht(i) is the supply of type i labour.

Following Dixit and Stiglitz (1977), the consumption aggregate is de�ned as

Ct =

24 1Z
0

ct(i)
(��1)=�di

35�=(��1) (2)

where ct(i) is the consumption of good i and � > 1 is the constant elasticity of substitution between

goods. For any given realisation of �t, the period utility function, u (Ct; �t), is assumed to be concave and

strictly increasing in Ct whereas the period disutility of supplying labour of type i, v(ht(i); �t), is assumed

to be convex and increasing in ht(i). Furthermore, we assume speci�c labour markets, namely type i

labour is only used in the production of good i , and that the representative household simultaneously

supplies all types of labour.

We assume full �nancial markets, such that, through risk sharing, households face the same budget

constraint, which is given by

1Z
0

pt(i)ct(i)di+ Et [Qt;t+1Bt+1] � Bt +
1Z
0

wt(i)ht(i)di+

1Z
0

�t(i)di� Tt (3)

where pt(i) is the price of good i , Bt is the nominal value of �nancial wealth brought into the period,

4The hybrid Phillips curve and the central bank�s objective in the case of backward-looking rule-of-thumb behaviour a là
Steinsson (2003) correct the ones reported in Steinsson (2003). The hybrid Phillips curve and the central bank�s objective in
the case of backward-looking rule-of-thumb behaviour a là Galì and Gertler (1999) coincide (up to x�) with the ones reported
in Amato and Laubach (2003).
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Qt;t+1 is the stochastic discount factor for one period ahead payo¤, Tt is net nominal tax collection by the

Government, wt(i) is the nominal wage for labour of type i , and �t(i) is the nominal pro�ts from sales

of good i. The budget constraint states that, in any period, �nancial wealth carried into the subsequent

period plus consumption cannot be worth more than the value of �nancial wealth brought into the period

plus after-tax non�nancial income earned during the period. Note that we assume that every household

owns an equal share of all the �rms operating in the economy. The assumption of complete �nancial

markets implies that the assumed �rms� ownership and the �ction that the representative household

supplies all types of labour directly are innocuous; dropping the assumptions would not change the

conditions that determine equilibrium prices and quantities.

Optimal household�s behaviour is described by three sets of requirements.

First, households face a decision in each period about how much to consume of each individual good.

They adjust the share of a particular good in their consumption bundle so to exploit any di¤erence in the

relative price. Minimising the level of total expenditure, given the consumption aggregate in (2), yields

the demand for each individual good

ct(i) =

�
pt(i)

Pt

���
Ct (4)

where the aggregate price level, Pt, is given by

Pt =

24 1Z
0

pt(i)
1��di

351=1�� (5)

This speci�cation of the price index has by construction the property that PtCt gives the minimum price

for which an amount Ct of the aggregate consumption can be purchased.

Market clearing implies that the total non�nancial income (i.e. the economy-wide sales revenues) can

be written as PtYt where Yt is an aggregate of the quantities supplied of the various di¤erentiated goods,

de�ned as in (2). The budget constraint can thus be rewritten as

PtCt + Et [Qt;t+1Bt+1] � Bt + PtYt � Tt (6)

The absence of arbitrage opportunities implies that there exists a unique stochastic discount factor,

Qt;t+1. The riskless short-term nominal interest rate, it, has a simple representation in terms of the

stochastic discount factor, namely 1=(1 + it) = Et [Qt;t+1]. A complete description of the household�s

budget constraint requires ruling out Ponzi schemes. The implied constraint for �nancial wealth carried
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into the subsequent period, Bt+1, is given by

Bt+1 � �
1X

T=t+1

Et+1 [Qt+1;T (PtYt � Tt)] <1 (7)

with certainty, that is, in each state of the world that may be reached in the subsequent period. (7) implies

that a household�s debt in any state of the world is bounded by the present value of all future after-tax

non�nancial income, which is assumed to be �nite. Furthermore, preventing unlimited consumption also

requires that the nominal interest rate satis�es the zero lower bound, it � 0, at all times: a negative

nominal interest rate would in fact allow to �nance unbounded consumption by selling enough bonds.

The entire in�nite series of �ow budget constraints and borrowing constraints in turn de�nes the lifetime

budget constraint for the household

1X
t=0

E0Q0;t [PtCt] � B0 +
1X
t=0

E0Q0;t [(PtYt � Tt)] (8)

We can now complete the description of optimal household behaviour. Maximising (1) subject to the

intertemporal budget constraint (8) delivers the familiar Euler equation for consumption

�Et

"
uc
�
Ct+1; �t+1

�
uc (Ct; �t)

Pt
Pt+1

#
=

1

1 + it
(9)

and the optimal supply of labour of type i

vh(ht(i); �t)

uc (Ct; �t)
=
wt(i)

Pt
(10)

where uc and vh denote respectively the partial derivative of u with respect to the level of consumption

and the partial derivative of v with respect to the supply of labour. Rational consumers are attempting

to smooth consumption over time such that the marginal utility of consumption is equal across periods.

2.2 Firms

We assume that each good i has the linearly homogeneous production function

yt(i) = Atht(i) (11)
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where At is an exogenous technology factor. It follows that the nominal marginal cost of supplying a

quantity yt(i) of good i is given by

MCt(i) = wt(i)A
�1
t (12)

As discussed in Woodford (2003, Chapter 3) the assumption of speci�c labour markets does not imply

that each price setter is a monopsonist in her labour market. The possibility of �rms having any market

power in their labour market is ruled out by assuming that price setters that change their prices at the

same time also hire labour from the same market. Speci�cally, this is achieved by assuming a double

continuum of di¤erentiated goods, indexed by (I , j) with an elasticity of substitution of � between any

two goods. Goods belonging to the same industry (i.e. with the same index I) are then assumed to

change their prices at the same time and to be produced using the same type of labour (type I labour)5.

The fact that now a continuum of price setters demand type I labour eliminates the possibility of market

power in their labour market without any change for the degree of market power of each price setter in

her product market.

Substituting (10) in (12) yields the real marginal cost speci�cation

mc(yt(i);Ct;e�t) � MCt(i)

Pt
=
vh(yt(i)=At; �t)

uc (Ct; �t)At
(13)

where labour is expressed in terms of output and e�t denotes the vector of exogenous disturbances, which
includes exogenous real shocks to technology, to household�s impatience to consume, and to the household�s

willingness to supply labour.

2.3 Market clearing

Goods market clearing requires, for each good i and at all times

yt(i) = ct(i) + gt(i) (14)

equivalently, in aggregate terms

Yt = Ct +Gt (15)

5The Calvo lottery is over industries�prices rather than goods�prices.
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where Gt, which is such that Gt < Yt at all dates, is the exogenous process that describes Government

purchases of the aggregate good6.

Substituting the market clearing condition in (9) and (13), we obtain the equilibrium conditions

�Et

"euc(Yt+1;e�t+1)euc(Yt;e�t) Pt
Pt+1

#
=

1

1 + it
(16)

mct(i) = mc(yt(i);Yt;e�t) = evy(yt(i);e�t)euc(Yt;e�t) (17)

where eu(Yt;e�t) � u(Yt � Gt; �t) and ev(yt(i);e�t) � v(yt(i)=At; �t) are the indirect utility functions. The

former, which is increasing and concave in Yt for each possible realisation of vector e�t, indicates the utility
�ow to the representative household as a function of its aggregate demand for resources, where aggregate

demand adds the household�s share of Government purchases to the household�s private consumption.

Under the assumption of Gt being exogenously determined, variations in the level of Government expen-

diture are simply another source of exogenous variation in the Euler equation for consumption7. The

latter, which is increasing and convex in yt(i) for each possible realisation of vector e�t, converts the house-
hold�s disutility of supplying labour used for the production of good i into the household�s disutility of

directly supplying good i. Accordingly, the model laid out here is identical to the one that obtains under

the assumption of a single yeoman farmer (i.e. continuum of yeoman farmers).

We now turn to the description of price setting behaviour. Following Calvo (1983), we assume that

only a fraction 1 � � of industries�prices are reset in each period. The probability of not resetting the

price in each period, 0 < � < 1, is independent of both the time that has gone by since the last price

revision and the misalignment between the actual price and the price that would be optimal to charge,

namely pricing decisions in any period are independent of past pricing decisions. Furthermore, we assume

that pro�ts are discounted using a stochastic discount factor that equals on average �. Firms allowed to

change their price at time t set it so to maximise expected future pro�ts subject to the demand they face.

The price setter�s objective is given by

Et

1X
s=0

(��)s�(pt(i); p
I
t+s; Pt+s; Yt+s;

e�t+s) (18)

where the price setter�s nominal pro�t function, �, is linearly homogeneous in its �rst three arguments

6The index Gt is again the Dixit-Stiglitz aggregate, as given in (2).
7Henceforth, the vector e�t includes exogenous real shocks to technology, to Government purchases, to household�s impa-

tience to consume, and to the household�s willingness to supply labour.
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(i.e. good�s price, industry�s price, pIt , and aggregate price level) and, for any value of the industry price

and the aggregate price level, single-peaked for some positive value of the good�s price8.

We now depart from full rationality by introducing backward-looking rule-of-thumb behaviour by price

setters. Following Galì and Gertler (1999), we assume that only a fraction 1 � ! of industries behave

optimally (i.e. in a forward-looking manner) when setting the price, the remaining fraction of industries

use the same backward-looking rule-of-thumb when revising their prices. The degree of backward-looking

rule-of-thumb behaviour, 0 � ! < 1, is thus constant over time and price setters cannot switch between

backward-looking and forward-looking behaviour.

It follows that in each period all forward-looking price setters will set the same price, which we denote

with pft , and all backward-looking price setters will as well charge a common price, which we denote with

pbt . The common forward-looking reset price, p
f
t , is implicitly de�ned by the relation

Et

1X
s=0

(��)s�1(p
f
t ; p

f
t ; Pt+s; Yt+s;

e�t+s) = 0 (19)

where �1(p
f
t ; p

f
t ; Pt+s; Yt+s;

e�t+s) = 0 (i.e. the �rst-order condition for optimal pricing by all the suppliers
of good i, which belongs to industry I) implicitly de�nes what Woodford (2003) labels the notional Short-

Run Aggregate Supply curve9. The common rule-of-thumb backward-looking reset price, pbt , is speci�ed

as in Steinsson (2003)

pbt = p
�
t�1
Pt�1
Pt�2

�
Yt�1
Y nt�1

��
(20)

where 0 � � � 1 is the degree of indexation to past demand conditions. Rule-of-thumb price setters thus

index the previous period overall reset price, p�t�1, to past in�ation (fully) and past demand conditions

(according to �). The aggregate price level hence evolves according to

Pt =
n
(1� �)(p�t )1�� + �P 1��t�1

o 1
1��

(21)

where

p�t = (1� !)p
f
t + !p

b
t (22)

denotes the overall reset price.

8That is, the nominal pro�t function satis�es Assumption 3:1 in Woodford (2003, Chapter 3).
9See Woodford (2003, Chapter 3) for a discussion of the notional of the SRAS curve.

9



2.4 Log-linearised model

Pro�t-maximising behaviour under perfectly �exible prices (i.e. all industries adjust prices optimally each

period, taking the path of aggregate variables as given) implies that �rms will operate at the point at

which the relative price is a markup over the real marginal cost

pt(i)

Pt
= mc(yt(i);Yt;e�t)� (23)

where � = �=1� � > 1 is the desired constant markup. The relative supply of good i must satisfy

�
yt(i)

Yt

��1=�
= mc(yt(i);Yt;e�t)� (24)

In a symmetric equilibrium, each good is supplied in the same quantity, which we denote with Yt.

Equilibrium output is then given by Yt = Y nt (
e�t), where the natural level of output, Y nt (e�t), is implicitly

de�ned by

mc(Y nt ;Y
n
t ;
e�t) = ��1 (25)

In the case of fully �exible prices, equilibrium output equals the natural level of output at all times. The

natural level of output in turn depends only on the exogenous real shocks, namely equilibrium output

under perfectly �exible prices is completely independent of monetary policy.

The natural steady-state level of output is the equilibrium level of output that obtains in the absence

of sticky prices and in the absence of exogenous real shocks (i.e. e�t = 0 at all times). The natural

steady-state level of output, Y , is implicitly de�ned by

mc(Y ;Y ; 0) = ��1 (26)

Henceforth, we log-linearise the structural equations around the natural steady-state level of output,

Y . If e�t = 0 and Yt = Y at all times, (21) has a solution with zero in�ation at all times (i.e. Pt = p�t =

pft = p
b
t = Pt�1 = P at all times). In the case of small enough �uctuations in e�t and Yt around 0 and Y

respectively, the solution to the log-linear approximate model is one in which any variable�s log-deviation

from its natural steady-state value (for instance, bPt � log(Pt=P )) remains always close to 010.
10Henceforth, a variable�s log-deviation from its natural steady-state value, which is denoted with a bar, is denoted with

a hat.
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Log-linearising (16), we obtain the intertemporal expectational IS relation

bYt = Et bYt+1 � � hbit � Et�t+1 � ��1(gt � Etgt+1)i (27)

where bit � log[(1 + it)=(1 + i)], �t � bPt � bPt�1 � log(Pt=Pt�1), � � �euc(euccY )�1 > 0 measures the

constant intertemporal elasticity of substitution of aggregate expenditure, and the disturbance term gt �

�euc�e�t(euccY )�1 indicates the percentage variation in output required to keep the marginal utility of
expenditure at its natural steady-state level (given shocks to Government purchases and to household�s

impatience to consume).

Log-linearising (17), we get that

cmct(i) = $ (byt(i)� qt) + ��1(bYt � gt) (28)

where cmct(i) � log(mct(i)=�), $ � evyyY ev�1y > 0 measures the constant elasticity of real marginal cost

with respect to own output, and the disturbance term qt � �evy�e�t(evyyY )�1 indicates the percentage
variation in output required to keep the marginal disutility of labour supply at its natural steady-state

level (given shocks to technology and to the household�s willingness to supply labour).

Under perfectly �exible prices, (28) reduces to

log

�
��1

��1

�
= $

�bY nt � qt�+ ��1(bY nt � gt) (29)

Solving for bY nt � log(Y nt =Y ), we obtain
bY nt = $qt + �

�1gt
$ + ��1

(30)

In the presence of a constant elasticity of substitution, percentage �uctuations in the natural level of output

are equal to the percentage �uctuations in the e¢ cient level of output, namely the equilibrium level of

output under perfect competition and perfectly �exible prices. The e¢ cient level of output, Y �t (e�t), is
implicitly de�ned by

mc(Y �t ;Y
�
t ;
e�t) = 1 (31)
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Accordingly, the e¢ cient steady-state level of output, Y
�
, is implicitly de�ned by

mc(Y
�
;Y

�
; 0) = 1 (32)

Using (28), percentage �uctuations in the e¢ cient level of output are then given by

bY �t = $qt + �
�1gt

$ + ��1
(33)

which equals percentage �uctuations in the natural level of output (i.e. (30)).

The natural steady-state level of output, Y , can be rewritten as

mc(Y ;Y ; 0) = ��1 � 1� �y (34)

where the parameter �y summarises the distortions in the natural steady-state level of output due to

monopolistic competition. When �y is small enough, the steady-state (i.e. constant over time) e¢ ciency

gap, x� � log(Y �=Y ) = O (k�yk), can be log-linearised as

log(Y
�
=Y ) =

�y
$ + ��1

(35)

Output gap, xt � bYt � bY nt � log(Yt=Y nt ), is the deviation of actual output from the natural level of

output. The intertemporal expectational IS relation, (i.e. (27)), can be expressed in terms of output gap

as

xt = Etxt+1 � �
�bit � Et�t+1 � brnt � (36)

where

brnt = ��1 h(gt � bY nt )� Et(gt+1 � bY nt+1)i (37)

is the natural rate of interest, namely the real interest rate consistent with output equalling the natural

level of output at all times. The interest rate gap, brt � brnt (with brt = bit � Et�t+1), thus indicates the
e¤ects on the actual level of output due to sticky prices.

We can now turn to the aggregate supply function. The aggregate in�ation rate and the aggregate
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output gap in any period satisfy an aggregate supply relation of the form11

�t = �f�Et�t+1 + �b�t�1 + �2xt + �3xt�1 (38)

with

� = �+ ! � (1� �)!�;�f =
�

�
;�b =

!

�
;�3 =

(1� �)!�
�

(39)

�2 =
(1� !)��� (1� �)��!�

�
;� =

(1� �)(1� ��)(��1 +$)
(1 +$�)�

If ! = 0, (38) and (39) collapse to Woodford (2003, 2:12 and 2:13, p. 187). If the fraction ! is reset

according to backward-looking rule-of-thumb behaviour à la Galì-Gertler (1999) (i.e. � = 0), (38), standing

(39), collapses to

�t = �f�Et�t+1 + �b�t�1 + �1xt (40)

2.5 Central bank�s loss function

In the case of small enough �uctuations in the production of each good around the natural steady-state

level of output, small enough exogenous real shocks, and small enough steady-state distortions, the period

utility Ut can be approximated to second order as in Woodford (2003, 2:13, p. 396)

Ut = �
Y euc
2

�
(��1 +$)(xt � x�)2 + (1 +$�)�vari log pt(i)

�
+ t:i:p+O

�


�y;e�; %


3� (41)

where vari log pt(i) is a measure of the degree of price dispersion across industries (i.e. goods), t:i:p

collect terms that are independent of monetary policy (i.e. irrelevant to the welfare ranking of alternative

equilibria), and % is the parameter vector that indexes aspects of policy that determine the steady-state

values of in�ation and output gap, � and x. In addition to stabilising output gap, around a level that

exceeds the ine¢ cient natural level of output by the steady-state e¢ ciency gap, it is also appropriate for

monetary policy to aim to curb price dispersion. This is achieved by stabilising the aggregate price level,

but how �uctuations in the general price level a¤ect price dispersion, hence welfare, depend upon the

details of the price setting12.

The discounted sum of utility of the representative household can then be approximated to second-

11See Appendix A.
12See Appendix A.
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order by

1X
t=0

�tUt = �

1X
t=0

�t

264 �2t + �1(xt � x�)2

+�2 [�t � (�t�1 + (1� �)�xt�1)]2

375+ t:i:p+O�


�y;e�; %;�1=2�1 


3� (42)

The de�nition of � in (39) holds. The constant 
 is given by 
 = Y euc(��1+$)�=2�. The relative weight
on output �uctuations is given by �1 = �=�. The relative weight on [�t � (�t�1 + (1� �)�xt�1)]2 is given

by �2 = != [(1� !)�]. If ! = 0, (42) collapses to Woodford (2003, 2:21 and 2:22, p. 400). In the presence

of backward-looking rule-of-thumb behaviour à la Galì-Gertler (1999) (i.e. � = 0), (42) collapses to

1X
t=0

�tUt = �

1X
t=0

�t
�
�2t + �1(xt � x�)2 + �2(�t � �t�1)2

�
+ t:i:p+O

�


�y;e�; %;�1=2�1 


3� (43)

Interestingly, in the presence of backward-looking rule-of thumb behaviour by price setters, the utility-

based central bank�s loss function can now be seen as penalising variations in in�ation as well as variations

in the di¤erence between general in�ation and rule-of-thumb price increases.

3 The Optimal Long-run In�ation

Following the theoretical literature on optimal monetary policy, we assume that the central bank�s policy

instrument is the short-term nominal interest rate. The assumption re�ects the actual practice of monetary

policy by large central banks such as the European Central Bank, the Federal Reserve, and the Bank

of England. The combination of cashless economy (i.e. there are no costs associated with varying the

nominal interest rate) and central�s bank control of the nominal interest rate implies that the intertemporal

expectational IS relation imposes no real constraint on the central bank. Given the central bank�s optimal

choices for in�ation and output gap, the expectational IS equation simply determines the path of nominal

interest rate necessary to achieve the optimal path for the output gap. As a consequence, it is more

convenient to treat output gap as if it were the central bank�s policy instrument. The analysis is conducted

in a purely deterministic setting (i.e. e� = 0 for all t), certainty equivalence guarantees that the results

obtained hold in the presence of random disturbances.

Under the optimal commitment policy, the central bank chooses paths for in�ation and output gap to

minimise the future discounted sum of losses from date 0 (i.e. when the policy is implemented) onward

subject to the constraint that the paths must satisfy the aggregate supply relation each period. In the

14



basic neo-Wicksellian model, the hybrid Phillips curve, namely a log-linear approximation to the model

structural equations, su¢ ces for a correct linear approximation to the optimal commitment policy only

in the case of small steady-state distortions (i.e. x� is small enough). Given the assumed deterministic

setting, the solution for the optimal paths of in�ation and output is accurate up to a residual that is only

of second order. This is enough for a characterisation of the �rst-order consequences of allowing for the

empirically realistic case of steady-state distortions (i.e. for ine¢ ciency of the natural rate of output).

Precisely, we analytically derive the unique long-run in�ation targets that are optimal from a timeless

perspective, �.

A constant in�ation target � is optimal from a timeless perspective if the problem of min-

imising the discounted sum of losses subject to the constraint that the bounded sequences,

f�t; xtg1t=0, satisfy the aggregate supply curve for each t � 0, and the additional constraint

that �0 = �, has a solution in which �t = � for all t. Woodford (2003, p. 475).

The two commitment policies (i.e. timeless-perspective and zero-optimal) in the literature di¤er

as the requirement that �0 = � under timeless-perspective is replaced by the initial condition '�1 =

0 (i.e. no ful�lment of expectations existing prior to the policy implementation) in the case of zero-

optimal commitment policy. The two commitment policies in the literature thus share the same target13.

Accordingly, we also assume that both in�ation and output gap in the period before policy is implemented

(i.e. date �1) are at their values of zero (i.e. the optimal paths for in�ation and output gap are �at at

their respective long-run optimal targets). As long as in�ation at date �1 is nonzero, and/or output gap

at date �1 is nonzero under Steinsson�s rule-of-thumb, backward-looking rule-of-thumb behaviour implies

that the optimal commitment policy, either zero-optimal or timeless-perspective, involves transition paths

for in�ation and the output gap to their respective long-run targets.

Under backward-looking rule-of-thumb behaviour by price setters à la Steinsson (2003), a central bank

acting under commitment faces the problem of choosing bounded deterministic paths for in�ation and

the output gap, f�t; xtg1t=0, to minimise (42) subject to the constraint that the sequences must satisfy

(38) each period. We form the following Lagrangian

L =

1X
t=0

�t

8><>:
1
2�

2
t +

�1
2 (xt � x

�)2 + �2
2 [�t � (�t�1 + (1� �)�xt�1)]

2

+'t
�
�t � �f��t+1 � �b�t�1 � �2xt � �3xt�1

�
9>=>; (44)

13There is a unique optimal long-run in�ation target. Hence, we can refer to it as the optimal long-run in�ation (i.e.
optimal steady-state in�ation).
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where 't is the Lagrangian multiplier associated with the hybrid Phillips Curve. Di¤erentiating with

respect to �t and xt, we get the two �rst-order conditions

�t + �2 [�t � (�t�1 + (1� �)�xt�1)]� ��2 [�t+1 � (�t + (1� �)�xt)] + 't � �f't�1 � ��b't+1 = 0 (45)

�1(xt � x�)� ��2(1� �)� [�t+1 � (�t + (1� �)�xt)]� �2't � ��3't+1 = 0 (46)

for each t � 0.

Proposition 1 Consider a cashless economy with �exible wages, Calvo pricing, backward-looking rule-

of-thumb behaviour à la Steinsson (2003) by price setters, and no real disturbances. Assume that the

initial price dispersion of prices ��1 � var
�
log�1(I)

	
is small, initial in�ation is zero ��1 = 0, initial

output gap is zero x�1 = 0, and steady-state distortions (measured by �y) are small as well, so that an

approximation to the welfare of the representative household of the form (42) is possible, with the steady-

state e¢ ciency gap, x�, a small parameter (x� = O(k�yk)). Then, at least among in�ation paths in which

in�ation remains forever in a certain interval around zero, there is a unique policy that is optimal from

a timeless perspective. Under this policy, the positive optimal long-run in�ation is given by

� =
(1� �)(1� �)���1! [(1� !)��+ (1� �)(1� ��)!�]8><>: (1� !)(1� �)(��1 � �)(1� �)2�!�+�

(1� !)��+ (1� �)2�!�
�
[(1� !)��+ (1� �)(1� ��)!�]

9>=>;
x� +O(




�1=2�1 ;�y


2) (b)

Under backward-looking rule-of-thumb behaviour by price setters à la Galì and Gertler (1999) (i.e. � = 0),

the positive optimal long-run in�ation is given by

� =
(1� �)(1� �)!�

(1� !)���+ (1� �)(1� �)2!x
� +O(




�1=2�1 ;�y


2) (a)

Under backward-looking rule-of-thumb behaviour by price setters, optimal steady-state in�ation is zero

in the absence of backward-looking rule-of-thumb behaviour (i.e. ! = 0), in the absence of long-run

Phillips-curve trade-o¤ (i.e. � = 1), and in the absence of steady-state distortions (i.e. x� = 0).

Proof. See appendix B

The combination of steady-state distortions, from which stems the central bank�s desire to stabilise

output around a level that is higher than the ine¢ cient natural level of output, and long-run Phillips-curve
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trade-o¤ makes positive in�ation forever in principles desirable as it would result in positive output gap

forever.

Positive in�ation forever obtains if and only if there is a steady-state incentive for positive in�ation,

namely the stimulative e¤ect of in�ation on output is not o¤set by the output cost of in�ation. In all

the variants of the basic neo-Wicksellian model, the optimal plan �rst-order condition for output gap

determines a positive relationship between the long-run value of the Lagrange multiplier, ', and the

long-run value of the output gap, x. Precisely, ' is found to be a positive function of the di¤erence

between the long-run value of the output gap and the steady-state e¢ ciency gap, x�. Analysing the

absence/presence of long-run incentive for positive in�ation thus amounts to consider whether there is a

steady-state relationship between in�ation and the Lagrange multiplier. If the stimulative e¤ect of higher

in�ation on output is greater than the output cost of higher in�ation, � would then be negatively related

to '. Hence, optimal long-run in�ation would be found to be a positive function of the steady-state

e¢ ciency gap. In what follows, we are analysing the optimal plan �rst-order condition for in�ation so to

check whether the coe¢ cients on the Lagrange multipliers add up to zero.

In the basic neo-Wicksellian model with backward-looking rule-of-thumb behaviour à la Galì and

Gertler (1999) the optimal plan implies that in�ation evolves according to (45) with � = 0. Substituting

for �f and �b in terms of structural parameters yields

�t + �2(�t � �t�1)� ��2(�t+1 � �t) + 't �
�

�
't�1 �

�!

�
't+1 = 0 (47)

Higher in�ation in any period results in output increase in the same period, 't, and reduction in output in

both the previous period as a result of expected higher in�ation, (�=�)'t�1, and the subsequent period,

(�!=�)'t�1. Recalling that � � � + ! [1� �(1� �)] ; the absolute value of the overall output cost of

higher in�ation in any period is given by

�+ �!

�+ ! [1� �(1� �)] (48)

Checking the relationship between the stimulative e¤ect of higher in�ation on output and the output cost

of higher in�ation amounts to solve the inequality

1 � �+ �!

�+ ! [1� �(1� �)] (49)
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The solution is given by

!(1� �)(1� �) � 0 (50)

Note that (50) equally applies to the basic neo-Wicksellian model with backward-looking rule-of-thumb

behaviour à la Steinsson (2003) as the Lagrange multipliers enter the optimal plan �rst-order condition

for in�ation in the same way. Backward-looking rule-of-thumb behaviour results in the stimulative e¤ect

of higher in�ation being generally greater than the output cost of higher in�ation. Not surprisingly, the

stimulative e¤ect of higher in�ation equals the output cost of higher in�ation in the absence of backward-

looking rule-of-thumb behaviour (i.e. ! = 0) or in the absence of long-run Phillips curve trade o¤ (i.e.

� = 1). Otherwise, there exists a long-run incentive for positive in�ation and the optimal long-run

in�ation, �, is then found to be a positive function of the steady-state e¢ ciency gap, x�.

In the purely forward-looking basic neo-Wicksellian model, the optimal plan implies that in�ation

evolves according to14

�t + 't � 't�1 = 0 (51)

The increase in output in any period caused by higher in�ation in the same period, 't, is thus o¤set by

the cost of the reduction in output in the previous period as a result of expected higher in�ation, 't�1.

Hence, there is no long-run incentive for positive in�ation, the optimal long-run in�ation target is zero.

The same conclusion holds in the basic neo-Wicksellian model with backward-looking price indexation.

Woodford (2003, Chapter 3) shows that the aggregate-supply relation is given by

�t � 
�t�1 = �Et(�t+1 � 
�t) + �xt (52)

and Woodford (2003; Chapter 6) proves that the discounted sum of utility can be approximated to second

order by

1X
t=0

�tUt = �

1X
t=0

�t
�
(�t � 
�t�1)2 + �1(xt � x�)2

�
+ t:i:p+O

�


�y;e�; %;�1=2�1 


3� (53)

where 0 � 
 � 1 measures the degree of indexation to past in�ation. In e¤ect, backward-looking price

indexation does not introduce any trade-o¤ between stabilisation of the welfare-relevant measure of in-

�ation, �t � 
�t�1, and stabilisation of the output gap. As in the purely forward-looking model, the

central bank is thus capable of disin�ating, precisely along �t = 
�t�1, without incurring any loss in

14This can be easily seen by setting ! = 0 in (45), which implies �2 = �b = 0 and �f = 1.
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output and optimal policy involves a commitment to full price stability15. Indeed, the only consequence

of introducing in�ation inertia due to backward-looking price indexation is that nonzero in�ation at date

�1 involves transition to the zero optimal long-run target.

3.1 Calibration

We now proceed to evaluate the positive optimal long-run in�ation that obtains under backward-looking

rule-of-thumb behaviour. Equation (a) contains six structural parameters (�, �, �, $, ��1, !) for which

values must be speci�ed. Four parameters are chosen to equal those used by Woodford (2003, p. 431),

which stem from the estimation results in Rotemberg and Woodford (1997). These values are given in

Table 1. The steady-state e¢ ciency gap, x�, is accordingly set equal to 0:2, which is the value implied by

(34) and (35). Under Steinsson�s rule-of-thumb the structural parameters are seven (�, �, �, �, $, ��1,

!). Given the absence of an estimate for �, we follow Steinsson (2003) and set it to 0:052.

Letting � and ! vary over their respective ranges, annualized percentage optimal steady-state in�ation

is then observed to spike for low values of �, which are empirically unrealistic. We thus focus on empirically

realistic values of the degree of price stickiness, namely between 2 and 5 quarters (0:5 � � � 0:8). As for

!, Galì and Gertler (1999) report estimates of ! between 0:077 and 0:552, but we extend the range up to

! = 0:7. This is because ! = 0:7 implies that the hybrid Phillips curve under rule-of-thumb behaviour

correspond closely to the one in Fuhrer and Moore (1995), which puts equal weight on future expected

in�ation and lagged in�ation.

Figure 1 reports the annualized percentage optimal steady-state in�ation under rule-of-thumb à la

Galì and Gertler (1999). Figure 2 presents the annualized percentage optimal steady-state in�ation under

rule-of-thumb à la Steinsson (2003). The deviation from full price stability is observed to be minimal.

In e¤ect, in developed countries in�ation targets vary between 2% and 4% per year whereas slightly

higher targets are observed in developing countries. Speci�cally, the optimal long-run in�ation target

is monotically increasing in the degree of rule-of-thumb behaviour and monotonically decreasing in the

degree of price stickiness16.

However, low levels of annualized optimal steady-state in�ation hinge on the extremely low relative

15 It is only in the special case of full price indexation (i.e. 
 = 1) that zero steady-state in�ation does not obtain.
See Woodford (2003, Chapter 6) for a discussion of the generality of zero long-run in�ation under backward-looking price
indexation.
16Speci�cally, under Galì-Gertler�s rule-of-thumb, the long-run in�ation target is monotically increasing in (!, ��1, �y)

and monotically decreasing in (�, �, �, $). Under Steinsson�s rule-of-thumb, comparative statics is cumbersome. We resort
to numerical methods and reach the same conclusion. Additionally, long-run in�ation is also monotically decreasing in �.
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weight on output �uctuations17. With this respect, we share Steinsson�s (2003) discontent about the

utility-based central bank�s loss function being so strongly skewed toward in�ation stabilisation, most

likely due to the fact that all frictions in the model are frictions to the price setting.

To illustrate this point we can consider the hybrid Phillips curve in Walsh (2003, Chapter 5)

�t = (1� ")�Et�t+1 + "�t�1 + knxt (54)

where " is often described as a measure of the degree of backward-looking behaviour in price setting. It

must be stressed that (54) is simply the NKPC augmented with lagged in�ation. The motivation for

in�ation persistence in (54) is purely empirical as there is no theoretical explanation underpinning the

lagged in�ation term. Borrowing the terminology in Altissimo et al. (2006), the lagged in�ation term

re�ects "intrinsic persistence", that is the dependence of in�ation on its own past.

However, the exercise is informative for two main reasons.

First, since Fuhrer and Moore (1995), the literature has given increasing attention to an hybrid

speci�cation for the Phillips curve, although there remains considerable uncertainty about the relative

importance of future expected in�ation and lagged in�ation18. With this respect, note that in the absence

of a long-run Phillips-curve trade-o¤ (i.e. � = 1), (54) collapses to the hybrid Phillips curve implied by

Fuhrer-Moore�s model with two period overlapping wage contracts. Moreover, �f + �b = 1 is satis�ed

for !�(1� �) = 0, namely the sum of the coe¢ cients on future expected in�ation and lagged in�ation in

the hybrid Phillips curve under rule-of-thumb behaviour is always greater than one, collapsing to one in

the absence of long-run Phillips-curve trade-o¤ (i.e. � = 1) and, trivially, in the absence of rule-of-thumb

behaviour (i.e. ! = 0).

Second, a desirable property of rule-of-thumb behaviour à la Galì and Gertler (1999) is that all

price setters behave identically once shocks are eliminated from the economy. That is, Galì-Gertler�s

backward-looking rule-of-thumb behaviour does does not alter the steady state that would obtain under

forward-looking behaviour by all price setters. Indeed, the term in in�ation acceleration, �t � �t�1, in

(43) does not matter for the determination of the optimal long-run in�ation target.

17 Indeed, the long-run in�ation target is increasing in the relative weight on output �uctuations. This can be easily
seen if we express the long-run in�ation target in terms of the hybrid Phillips curve parameters and the central bank�s loss
parameters, as given by (90) and (97) in Appendix A.
18See Steinsson (2003) for a survey of papers that have assessed the issue of relative weights on expected future in�ation

and lagged in�ation in the hybrid Phillips curve.
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Hence, we can assume the monetary policy objective without too much ado

1X
t=0

�t
�
�2t + �n(xt � x�)2

�
(55)

A central bank acting under commitment faces the problem of choosing bounded deterministic paths for

in�ation and the output gap, f�t; xtg1t=0, to minimise (55) subject to the constraint that the sequences

must satisfy (54) each period. The optimal long-run in�ation target is easily seen to be given by19

� =
(1� �)"�n�n

�2n + (1� ")(1� �)2"�n
x� (c)

Given kn > 0 and �n > 0, optimal long-run in�ation is always positive and collapses to zero in the absence

of intrinsic in�ation persistence (i.e. " = 0), in the absence of steady-state distortions (i.e. x� = 0), and

in the absence of long-run Phillips curve trade o¤ (i.e. � = 1).

Equation (c) contains �ve parameters (�, ", �n, �n, x�) for which values must be speci�ed. Keeping

x� set equal to 0:2, the remaining parameters are chosen to equal those used in Walsh (2003, Chapter

11)20. These values are given in table 2. Figure 3 reports the annualized percentage optimal steady-state

in�ation for values of " up to 0:7 and values of �n up to 0:5. The deviation from full price stability is in

line with observed in�ation targets21.

4 Conclusions

This paper makes two distinct contributions to the literature on in�ation persistence and optimal monetary

policy.

First, we show how backward-looking rule-of-thumb behaviour by price setters, speci�ed either à la

Galì and Gertler (1999) or à la Steinsson (2003), breaks the surprising robustness of zero long-run in�ation

target. Hence, the paper can be read as a �rst answer to the urgency of a model that endogenously delivers

an optimal positive long-run in�ation target.

Second, the features that seem capable of delivering an endogenously optimal positive in�ation target

are costly disin�ation, long-run Phillips-curve trade-o¤, and steady-state distortions. If optimal policy

should aim to full price stability despite the ine¢ ciency of the nonstochastic steady state and the existence

19See Appendix C.
20See Walsh (2003, Chapter 11) for a discussion of the calibration.
21The annualized percentage optimal steady-state in�ation is observed to be an arithmetic progression in ". Under bench-

mark estimates, optimal steady-state in�ation is 1:995% per year.
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of a positively sloped long-run Phillips-curve trade-o¤, zero long-run in�ation target ceases to be optimal

once disin�ations involve costly output reduction. Costly disin�ation is what brings about a long-run

incentive for positive in�ation. The Phillips curve is then exploited, resulting in positive in�ation forever,

even under an optimal commitment.

Moreover, this paper reveals that the widespread practice in the New Keynesian literature of restricting

the attention to the case of an e¢ cient nonstochastic steady state is not innocuous. What we show here

is that a policy that is optimal for an economy with an e¢ cient steady state di¤ers from what is optimal

in an economy where the empirically unrealistic subsidies that achieve Pareto e¢ ciency are unavailable.

The result is obviously sensitive to Calvo�s (1983) assumption of a constant probability of price ad-

justment, irrespective of the duration of prices. Sheedy (2007a) drops such assumption and derives a

simple and tractable expression for the Phillips curve that exhibits intrinsic in�ation persistence. In�a-

tion persistence is intrinsic, rather than structural, in the sense that in�ation determination is partially

backward-looking even though all agents remain forward-looking. Sheedy (2007b) goes on to analyse

optimal monetary policy in response to shocks, but the steady state he considers is Pareto e¢ cient. Ex-

tending the analysis to the case of an ine¢ cient steady state is a natural way to con�rm the importance

of steady-state distortions for the optimality of positive in�ation targets.

It should be stressed however that the model studied in this paper is a basic closed economy New

Keynesian model. Papers such as Khan et al. (2003) and Altig et al. (2005) also consider other features

such as transaction frictions, wage stickiness, capital goods, and investment in addition to price stickiness.

In future research, we are particularly interested in extending the analysis to a model that is capable to

account fairly well for business-cycle �uctuations.
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6 Tables

Structural parameter � � $ ��1

Value 0:99 7:88 0:47 0:16

Table 1. Woodford�s (2003) benchmark calibration (quarterly)

Structural parameter � " �n �n

Value 0:99 0:5 0:25 0:05

Table 2. Walsh�s (2003) benchmark calibration (quarterly)
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7 Figures

Figure 1: The annualized percentage optimal steady-state in�ation under Galì-Gertler�s

backward-looking rule-of-thumb behaviour in price setting.
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Figure 2: The annualized percentage optimal steady-state in�ation under Steinsson�s backward-looking

rule-of-thumb behaviour in price setting.
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Figure 3: The annualized percentage optimal steady-state in�ation under nonmicrofounded

backward-looking behaviour in price setting.
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8 Appendix A. Derivations

In this Appendix, we present details of the derivations of the hybrid Phillips curve, the second-order

approximation to the period utility, and the degree of price dispersion, which in turns delivers the second-

order approximation to the discounted sum of utility. Speci�cally, we present the hybrid Phillips curve

and the discounted sum of utility that obtain under rule-of-thumb behaviour à la Steinsson (2003).

8.1 The hybrid Phillips curve

We begin by log-linearising (21) bPt = (1� �)bp�t + � bPt�1 (56)

with

bp�t = (1� !)bpft + !bpbt (57)

As shown in Woodford (2003, Chapter 3), a log-linearisation to the notional SRAS is given by

log(pft =Pt) = �xt (58)

where � is the elasticity of the notional SRAS curve, which, under the assumption of speci�c labour

markets, is given by � = (��1 +$) (1 +$�)�1 > 0. Combining (19) with (58) and quasi-di¤erencing, we

obtain

bpft = (1� ��)�xt + (1� ��) bPt + ��Etbpft+1 (59)

Log-linearising (20) delivers

bpbt = bp�t�1 + �t�1 + �xt�1 (60)

Combining (56) with (57), the aggregate in�ation rate, �t, evolves according to

�t =
1� �
�

h
(1� !)(bpft � bPt) + !(bpbt � bPt)i (61)

Using (56), bpbt � bPt is given by bpbt � bPt = 1

1� ��t�1 � �t + �xt�1 (62)
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Rewriting (59) in terms of bpft � bPt yields
bpft � bPt = (1� ��)�xt + ��Et(bpft+1 � bPt) (63)

Combining (56) with (57) and (62), we get that

Et(bpft+1 � bPt) = 1

(1� �)(1� !)Et(�t+1 � !�t)�
!�

(1� !)xt (64)

Substituting (64) in (63), bpft � bPt is given by
bpft � bPt = (1� ��)�xt + ��

(1� �)(1� !)Et(�t+1 � !�t)�
��!�

(1� !)xt (65)

Combining (61) with (62) and (65), we obtain (38) and (39) in the main text.

8.2 The second-order approximation to the period utility

We consider a scenario of small steady-state distortions, namely

uc(C; 0) = O (k�yk) (66)

Substituting the indirect utility functions, the period utility of the representative household in (1) can be

rewritten as a function solely of all

yt(i)Ut = eu(Yt;e�t)� Z 1

0
ev(yt(i);e�t)di (67)

A second-order Taylor approximation of the �rst term in (67) is given by22

eu(Yt;e�t) = u+ euc eYt + eu�e�t + 12eucc eY 2t + euc� eYte�t + 12e�0teu��e�t +O
�


e�; %


3� (68)

22 In what follows, we use the same notation as in Woodford (2003, Appendix E:1). Subscript � denotes partial derivatives
with respect to the entire vector of exogenous disturbances e�t. Subscript c denotes partial derivatives of the indirect utility
functions with respect to the level of production, as these derivatives are identical to the partial derivatives of the direct
utility functions with respect to the level of aggregate consumption.
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where u = eu(Y ; 0) and eYt = Yt � Y . eYt is related to bYt through the second-order Taylor approximation,
Yt = Y (1 + bYt + 1

2
bY 2t ) +O(


e�; %


3). Substituting this in (68) yields

eu(Yt;e�t) = u+ eucY (bYt+ 12 bY 2t ) + eu�e�t+ 12euccY 2
�bYt + 1

2
bY 2t �2+ Y euc�e�t bYt+ 12e�0teu��e�t+O

�


e�; %


3� (69)

Dropping the terms that are higher than second order and collecting terms that are independent of policy

in t:i:p, we obtain

eu(Yt;e�t) = Y euc�bYt + 12(1� ��1)bY 2t + ��1gt bYt
�
+ t:i:p+O

�


e�; %


3� (70)

where � and gt are de�ned in the main text. With similar manipulations, the second term in (67) can be

approximated to second order by

ev(yt(i);e�t) = Y vy �byt(i) + 12(1 +$)byt(i)2 �$qtbyt(i)
�
+ t:i:p+O

�


e�; %


3� (71)

where $ and qt are de�ned in the main text. Using (17) and ( 34) to substitute euc(1 � �y) for evy, with
�y being an expansion parameter, (71) can be rewritten as

ev(yt(i);e�t) = Y euc�(1� �y)byt(i) + 12(1 +$)byt(i)2 �$qtbyt(i)
�
+ t:i:p+O

�


�y;e�; %


3� (72)

Integrating this over the di¤erentiated goods i gives

Z 1

0
ev(yt(i);e�t)di = Y euc

8><>: (1� �y)Eibyt(i)�$qtEibyt(i)
+1
2(1 +$)

�
(Eibyt(i))2 + varibyt(i)�

9>=>;+ t:i:p+O
�


�y;e�; %


3� (73)

where Eibyt(i) and varibyt(i) denote respectively the mean value and the variance of byt(i) across all dif-
ferentiated goods i at date t. Using a second-order approximation to the Dixit-Stiglitz output index,bYt = Eibyt(i) + 1

2(1� �
�1)varibyt(i) +O(


e�; %


3), to substitute for Eibyt(i) yields

Z 1

0
ev(yt(i);e�t)di = Y euc

8><>: (1� �y)bYt + 1
2(1 +$)

bY 2t �$qt bYt
+1
2(�

�1 +$)varibyt(i)
9>=>;+ t:i:p+O

�


�y;e�; %


3� (74)
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Combining (70) with (74) and using (30) and (35), we get that

Ut = �
Y euc
2

8><>: (��1 +$)
h
�2x� bYt + bY 2t � 2bY nt bYti

+(��1 +$)varibyt(i)
9>=>;+ t:i:p+O

�


�y;e�; %


3� (75)

Recalling that each supplier faces a constant elasticity demand as given by (4) , it follows that vari log yt(i) =

�2vari log pt(i). Using this and noting that (xt � x�)2 �,bY 2t � 2x� bYt +�2bY nt bYt + t:i:p, we obtain (41) in
the main text.

8.3 The second-order approximation to the discounted sum of utility

Under Calvo (1983) staggered price setting and backward-looking rule-of-thumb behaviour by price setters,

the distribution of prices in any period, fpt(i)g, consists of � times the distribution of prices in the previous

period, fpt�1(i)g, an atom of size (1 � �)(1 � !) at the forward-looking reset price, pft , and an atom of

size (1� �)! at the rule-of-thumb backward-looking reset price, pbt

fpt(i)g = � fpt�1(i)g+ (1� �)(1� !)pft + (1� �)!pbt (76)

Let �t � vari log pt(i) denote the degree of price dispersion and P t � Ei flog pt(i)g denote the average

price, hence P t � P t�1 = Ei
�
log fpt(i)g � P t�1

�
. Recalling log p�t = (1 � !) log pft + ! log pbt and using

(76), P t � P t�1 can be rewritten as

P t � P t�1 =

0z }| {
�Ei

�
flog pt�1(i)g � P t�1

�
+ (1� �)(1� !)(log pft � P t�1) + (1� �)!(log pbt � P t�1)

= (1� �)(log p�t � P t�1) (77)

Similarly, �t can be rewritten as

�t = vari
�
log fpt(i)g � P t�1

�
= Ei

n�
log fpt(i)g � P t�1

�2o� �Ei log fpt(i)g � P t�1�2
=

264 �Ei
n�
log fpt�1(i)g � P t�1

�2o
+ (1� �)(1� !)(log pft � P t�1)2

+(1� �)!(log pbt � P t�1)2 � (P t � P t�1)2

375 (78)
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P t is related to the Dixit-Stiglitz price index through the log-linear approximation

P t = logPt +O

�


�1=2�1 ;e�; %


2� (79)

the second-order residual follows from the fact that the equilibrium in�ation process (as the equilibrium

output process) satis�es a bound of second order O(



e�; %


2) together with a second-order bound on

the initial (i.e. date �1, policy is implemented at date 0) degree of price dispersion, ��1. Note that,

as in Woodford (2003), ��1 is assumed to be of second order (that is why it enters the second-order

residual in (79) to the power of 1=2). It then follows that this measure of price dispersion continues to

be only of second order in the case of �rst-order deviations of in�ation from zero. Recalling log pbt =

log p�t�1 + �t�1 + �xt�1 and using (79), log p
b
t � P t�1 is given by

log pbt � P t�1 = log p�t�1 � P t�2 � (P t�1 � P t�2) + �t�1 + �xt�1

= log p�t�1 � P t�2 + �xt�1 +O
�


�1=2�1 ;e�; %


2� (80)

Recalling log p�t = (1� !) log p
f
t + ! log p

b
t , log p

b
t = log p

�
t�1 + �t�1 + �xt�1, and using (79), log p

f
t � P t�1

is given by

log pft � P t�1 =
1

1� ! log p
�
t �

!

1� ! (log p
�
t�1 + �t�1 + �xt�1)� P t�1

=

264 1
1�! (log p

�
t � P t�1)� !

1�! (log p
�
t�1 � P t�2)

� !�
1�!xt�1 +O

�


�1=2�1 ;e�; %


2�
375 (81)

Using (79), (77) can be rewritten as

�t = (1� �)(log p�t � P t�1) +O
�


�1=2�1 ;e�; %


2� (82)

Accordingly, (80) and (81) become respectively

log pbt � P t�1 =
1

1� ��t�1 + �xt�1 +O
�


�1=2�1 ;e�; %


2� (83)

log pft � P t�1 =
1

(1� !)(1� �)�t �
!

(1� !)(1� �)�t�1 �
!�

(1� !)xt�1 +O
�


�1=2�1 ;e�; %


2� (84)
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Substituting (79), (83), and (84) in (78), we get that

�t = ��t�1 +
�

(1� �)�
2
t +

!

(1� !)(1� �) [�t � �t�1 � (1� �)�xt�1]
2 +O

�


�1=2�1 ;e�; %


2�

Integrating forward, starting from any small initial degree of price dispersion, ��1, the degree of price

dispersion in any period t � 0 is given by

�t =
1X
s=0

�t�s

264 �
(1��)�

2
t+

!
(1�!)(1��) [�t � �t�1 � (1� �)�xt�1]

2

375+ �t�1��1 +O�


�1=2�1 ;e�; %


3� (85)

The term �t�1��1 is independent of monetary policy. Taking the discounted value of (85) over all periods

t � 0 gives

1X
t=0

�t�t =
1

1� ��

1X
t=0

�t

266664
�

(1��)�
2
t+

!
(1�!)(1��)

264 �t � �t�1

�(1� �)�xt�1

375
2

377775+ t:i:p+O
�


�1=2�1 ;e�; %


3� (86)

Taking the discounted value of (41) over all periods t � 0 delivers

1X
t=0

�tUt = �
Y euc
2

"
(��1 +$)

1X
t=0

�t(xt � x�)2 + (1 +$�)�
1X
t=0

�t�t

#
+ t:i:p+O

�


�y;e�; %


3� (87)

Combining (86) with (87) and normalizing on in�ation, we obtain (42) in the main text.

9 Appendix B. Proof of Proposition 1

Proof. Condition (45) has a solution with in�ation constant over time only if the Lagrange multiplier is

also constant over time. Substituting a constant value for the Lagrange multiplier in (45) and (46), the

two conditions can be simultaneously satis�ed only if

� =

8><>:
f(�2+��3)[(1��)(1��)��2]g�f(1��f���b)[�1+��2(1��)2�2]g

(�2+��3)
x

+
(1��f���b)�1
(�2+��3)

x�

9>=>; (88)
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The hybrid Phillips curve (38) implies an upward-sloping relation

x =
(1� ��f � �b)
(�2 + �3)

� (89)

between long-run in�ation and long-run output gap. Combining (88) with (89) yields the optimal steady-

state in�ation

� =
(1� �f � ��b)(�2 + �3)�1

(�2 + ��3)(�2 + �3) + (1� �f� � �b)

8><>:
�
(1� �f � ��b)

�
�1 + ��2(1� �)2�2

�	
�f(�2 + ��3) [(1� �)(1� �)��2]g

9>=>;
x� (90)

The sign of the relation is more easily determined by substituting all parameters in (90) in terms of

structural parameters (keeping � implicit)

� =
(1� �)(1� �)���1! [(1� !)��+ (1� �)(1� ��)!�]8><>: (1� !)(1� �)(��1 � �)(1� �)2�!��

(1� !)��+ (1� �)2�!�
�
[(1� !)��+ (1� �)(1� ��)!�]

9>=>;
x� (91)

which is (b). Given k > 0 and 0 < � < 1, optimal long-run in�ation is always positive and collapses to

zero in the absence of backward-looking rule-of-thumb behaviour (i.e. ! = 0), in the absence of long-run

Phillips-curve trade-o¤ (i.e. � = 1), and in the absence of steady-state distortions (i.e. x� = 0). We

now turn to the case of backward-looking rule-of-thumb behaviour by price setters à la Galì and Gertler

(1999). What constitutes optimal long-run in�ation is implied by setting � = 0 in (b). Here we prefer to

derive it. A central bank acting under commitment faces the problem of choosing bounded deterministic

paths for in�ation and the output gap, f�t; xtg1t=0, to minimise (43) subject to the constraint that the

sequences must satisfy (40) each period. We form the following Lagrangian

L =

1X
t=0

�t
�
1

2

�
�2t + �1(xt � x�)2 + �2(�t � �t�1)2

�
+ 't

�
�t � �f��t+1 � �b�t�1 � �1xt

��
(92)

Di¤erentiating with respect to �t and xt, we get the two �rst-order conditions

�t + �2(�t � �t�1)� ��2(�t+1 � �t) + 't � �f't�1 � ��b't+1 = 0 (93)

�1(xt � x�)� �1't = 0 (94)
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for each t � 0. Condition (93) has a solution with in�ation constant over time only if the Lagrange

multiplier is also constant over time. Substituting a constant value for the Lagrange multiplier in (93)

and (94), the two conditions can be simultaneously satis�ed only if

� = �
(1� �f � ��b)�1

�1
(x� x�) (95)

The hybrid Phillips curve (40) implies an upward-sloping relation

x =
(1� ��f � �b)

�1
� (96)

between long-run in�ation and long-run output gap. Combining (95) and (96) yields the optimal long-run

in�ation target

� =
(1� �f � ��b)�1�1

�21 + (1� �f � ��b)(1� ��f � �b)�1
x� (97)

The sign of the relation is more easily determined by substituting all parameters in (97) in terms of

structural parameters (keeping � implicit). Here, rather than simply substituting, we can double-check

the result obtained. Combining (94) with (93), optimal paths for in�ation and output gap satisfy

264 �t + !
(1�!)�(�t � �t�1)

� �!
(1�!)�(�t+1 � �t)

375 = 1

(1� !)��

264 �(xt�1 � x�) + !�(xt+1 � x�)
��(xt � x�)

375 (98)

Solving analytically for the optimal paths for in�ation and output gap would require combining (98) with

(40) and solve the resulting di¤erence equation. Here we are content with deriving the optimal long-run

in�ation. The hybrid Phillips Curve (40) can be rewritten in terms of structural parameters as

xt =
1

�
(�t � ��t+1)�

!�

(1� !)�(�t+1 � �t) +
!

(1� !)��(�t � �t�1) (99)

where the equivalence �t+1 � !�t+1 + (1 � !)�t+1 is used to obtain a term in the rate of in�ation

acceleration at date t+ 1. Combining (98) and (99) optimal long-run in�ation is given by

� =
(1� �)(1� �)!�

(1� !)���+ (1� �)(1� �)2!x
� (100)

which is (a) (i.e. (97) in terms of structural parameters, (b) under � = 0). Given k > 0 and 0 < � < 1,

optimal long-run in�ation is always positive and collapses to zero in the absence of backward-looking
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rule-of-thumb behaviour (i.e. ! = 0), in the absence of long-run Phillips-curve trade-o¤ (i.e. � = 1), and

in the absence of steady-state distortions (i.e. x� = 0).

10 Appendix C. Derivation of equation (c)

A central bank acting under commitment faces the problem of choosing bounded deterministic paths for

in�ation and the output gap, f�t; xtg1t=0, to minimise (55) subject to the constraint that the sequences

must satisfy (54) each period. We form the following Lagrangian

L =

1X
t=0

�t

8><>:
1
2

�
�2t + �n(xt � x�)2

�
+'t [�t � (1� ")��t+1 � "�t�1 � knxt]

9>=>; (101)

Di¤erentiating with respect to �t and xt, we get the two �rst-order conditions

�t + 't � (1� ")'t�1 � �"'t+1 = 0 (102)

�n(xt � x�)� �n't = 0 (103)

for each t � 0. Condition (102) has a solution with in�ation constant over time only if the Lagrange

multiplier is also constant over time. Substituting a constant value for the Lagrange multiplier in (102)

and (103), the two conditions can be simultaneously satis�ed only if

� = �(1� �)"�n
�n

(x� x�) (104)

The hybrid Phillips curve (54) implies an upward-sloping relation

x =
(1� �)(1� ")

�n
� (105)

between long-run in�ation and long-run output gap. Combining (104) with (105) yields the optimal

long-run in�ation target

� =
(1� �)"�n�n

�2n + (1� ")(1� �)2"�n
x� (106)

which is (c).
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