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Abstract:

In a sticky-price model with labor market search and habit persistence, Walsh (2005) shows that
inertia in the interest rate policy helps to reconcile the inflation and output persistence with
empirical observations for the US economy. We show that this finding is sensitive with regard to
the introduction of capital formation. While we are able to replicate the findings for the inflation
inertia in a model with capital adjustment costs and variable capacity utilization, the output
response to an interest shock is found to be too large and no longer hump-shaped in this case. In
addition we find that the response of output to a technology shock can only be reconciled with
empirical findings if either the adjustment of the utilization rate is very costly or there is only a
modest amount of nominal rigidity in the economy.



1 Introduction

There is ample evidence from structural vector autoregressions using different identification

schemes and data sets that a sudden increase of the short term nominal interest rate

produces a persistent and hump-shaped response of output and inflation.1 In recent studies,

labor market imperfections have been introduced into monetary business cycle models in

order to replicate these findings. Christiano et al. (2005) model nominal rigidities in

the form of both price and wage staggering in order to explain the observed inertia in

inflation after a monetary expansion. Walsh (2005), Trigari (2006, 2009), and Christoffel

et al. (2009) consider search and matching frictions in the labor market. Walsh (2005) finds

that the inertia of the interest rate policy itself is an important contributing factor for the

explanation of the inflation and output inertia. Trigari (2006, 2009) considers the effects

of the wage bargaining process on the variation of both inflation and real wages following

a monetary shock, while Christoffel et al. (2009) study the sensitivity of her results with

regard to the introduction of wage rigidity, on-the-job search, and endogenous separation.

In addition to Walsh (2005), the latter two studies also allow for the variation of labor at

both the intensive and the extensive margin. 2

In this paper, we consider the sensitivity of these recent studies with respect to the intro-

duction of capital. Our economy is based upon the model of Walsh (2005) in which we

introduce capital as a second production factor besides labor. The reasoning why capital

may introduce a different dynamic response of inflation and output to a monetary shock is

as follows: In the model of Walsh (2005) the marginal costs of price setters equal the rela-

tive price of intermediate goods in terms of the final good. Intermediate good firms adjust

their nominal price immediately while wholesale firms respond only sluggishly to a demand

or supply shock. Thus, marginal costs of price setters decrease in response to a negative

demand shock. The size of this shock depends on the response of the household sector to

an increase of the nominal interest rate. Without capital and with habit persistence in

consumption this effect is small. However, if capital allows for intertemporal substitution,

overall demand can decrease significantly. Obviously, the adjustment of capital as a second

1See, among others, Sims (1992), Leeper et al. (1996), and Christiano et al. (1999, 2005).
2Subsequently, the labor market search model has also been prominently applied to the analysis of

the Ramsey policy as, e.g., in Faia (2008), or the study of the business-cycle dynamics of wages as in

Rotemberg (2006).
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factor of production also affects the dynamics of output.

As one of our main results, our model with capital is able to generate inflation dynamics

following an interest rate shock that is in accordance with empirical observations. There-

fore, we are able to confirm this finding of Walsh (2005) who considers a model without

capital. Similar to Christiano et al. (2005), we also find that the introduction of variable

capital utilization is an important factor for the modelling of the inertia in the inflation

dynamics. In this case, rather the capacity than the investment demand increases after

a fall in the interest rate so that the real interest rate displays a smaller variation. In

the model with capital, however, an unexpected rise in the nominal interest rate does not

trigger a hump-shaped response of output, quite contrary to the model without capital.

The main reason why the model of Christiano et al. (2005) is able to generate a more

persistent and hump-shaped response of output than our model is the introduction of real

wage rigidity in their model. In their Fig. 4, Christiano et al. (2005) show that, in the case

of flexible rather than sticky wages, the impulse response of output also peaks in the first

period following the monetary shock. With sticky wages, however, marginal costs do not

surge in the period after the shock and output does not return quickly to its steady state

value. In a standard labor market model with search frictions, however, the real wage plays

no allocational role but splits the rents associated with a successful match between the firm

and the worker. It requires additional assumptions, as in Trigari (2006) and Christoffel et

al. (2009) where the firms decide about working hours after the wage bargain, to create

a channel from wages to marginal costs. In this setting sticky wages can generate a more

inertial response of inflation (Christoffel et al. (2009)).

In addition to the studies, we also analyze the effects of a technology shock on the output-

inflation dynamics. Most studies including Walsh (2005), Christiano et al. (2005), or

Trigari (2006, 2009) neglect this question. We consider it an interesting problem because

a researcher is ultimately aiming for a monetary general equilibrium model that is able

to match the empirical responses to various kinds of supply, demand, and policy shocks

simultaneously. As one prominent example, consider the analysis of optimal monetary

policy and to what extent the monetary authority should respond to a productivity shock.

Here, too, we find that while the inflation dynamics is insensitive to the assumption of

fixed capital services the output dynamics is not. In line with empirical evidence, we get a

protracted hump-shaped decline of the rate of inflation in response to a productivity shock
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in our model with capital accumulation and a variable utilization rate of capital. However,

this model also implies a significant immediate decrease of output that is not observed in

estimated impulse response functions. We can reconcile the model with empirical evidence

if we either assume that it is very costly to adjust the utilization rate of capital or that the

degree of nominal rigidity in our model economy is small.

The remainder of the paper is structured as follows. Sections 2 introduces the model.

In Section 3, we describe the calibration and computation of the model. Sections 4-6

present our results. In Section 4 we study the second moments of the model. In Sections

5 and 6, we analyze the impulse responses of the model following an interest rate and

a technology shock, respectively, and compare them to empirical estimates. Section 7

concludes. Technical Appendices A-D document details of our computation and estimation

procedures.

2 The model economy

In this section, we describe our model that is based upon Walsh (2005). Three different

sectors are depicted: firms, households, and the monetary authority.

2.1 Firms

2.1.1 Retail sector

A final goods or retail sector buys differentiated goods Yjt distributed over the unit interval,

j ∈ [0, 1], from wholesale firms and assembles the final output Yt according to

Yt =

(∫ 1

0

Y
θ−1

θ

jt dj

) θ
θ−1

, θ > 1. (1)

Profit maximization of retail firms,

max
{Yjt}1

j=0

Yt −
∫ 1

0

PjtYjtdj,

implies the demand function

Yjt =

(
Pjt

Pt

)−θ

Yt, (2)
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where Pjt is the nominal price of good j ∈ [0, 1] and Pt is the price level. The zero profit

condition for the retail sector implies that Pt is given by

Pt =

(∫ 1

0

P 1−θ
jt dj

)1/(1−θ)

. (3)

2.1.2 Wholesale sector

Firms in the wholesale sector3 purchase intermediate goods yjt, j ∈ [0, 1] from the produc-

tion sector that is described below. The profit of a wholesaler in terms of the final output

is given by

(
Pjt

Pt
− gt

)
Yjt, (4)

where

gt =
PW

t

Pt

(5)

is the price of the output of the production sector PW
t in terms of the final good. From

the perspective of the wholesale sector gt are the real marginal costs faced by any firm in

this sector.

Prices are set according to the mechanism spelled out in Calvo (1983). In each period

(1 − ω) of the wholesale firms are allowed to set their relative price Pjt/Pt optimally.

Walsh (2005) follows Christiano et al. (2005) and assumes that prices must be set before

the monetary shock is observed. The remaining fraction of the wholesale firms, indexed by

N , adjusts their price according to a rule of thumb: They increase their price according to

the inflation factor (one plus the rate of inflation) of the previous period πt−1:

PNt = πt−1PNt−1, πt :=
Pt

Pt−1
. (6)

3The model of Walsh (2005) does not need a wholesale sector. In this model the household consumes a

basket of differentiated products and since consumption is the single use of output the demand functions

derive from the household’s optimization problem. In our model, output is used for both consumption and

investment. Therefore, we must first aggregate the differentiated products into a single good Y . Otherwise,

we could have assumed similar baskets for consumption and investment, which is the less usual way to

tackle this problem.
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This price setting behavior implies the following log-linear Phillips curve equation:

π̂t =
1

1 + β
π̂t−1 +

β

1 + β
Et−1π̂t+1 + ΓEt−1ĝt (7)

with Γ = (1−ω)(1−βω)
(1+β)ω

, Etxt+1 expectations of xt+1 based on information available up to

period t, and where a hat over a variable denotes its percentage deviation from its steady-

state value. β denotes the discount factor of the household that will be introduced below.

We also consider the effect of a monetary policy shock, if the firms which are allowed to set

their price optimally do so after they have observed the shock. This implies the following

Phillips curve:

π̂t =
1

1 + β
π̂t−1 +

β

1 + β
Etπ̂t+1 + Γĝt. (8)

Note, finally, that in the steady state of the deterministic counterpart of the model, gt =

PW
t /Pt is constant and equals g = (θ − 1)/θ < 1.

2.1.3 Intermediate goods sector

Employment relationships consist of a worker and a firm. At the beginning of each period

there are Nt employed workers and, thus, Nt worker-firm pairs indexed by i. For reasons

outside of the model, the fraction of ρx of those pairs separate. The remaining pairs

observe the current state of the environment and decide whether or not to continue their

relationship. Those that do not separate produce output. Finally, at the end of the period

vacancies posted by firms are filled with job applicants via a matching technology described

below. Figure 1 depicts the timing of events in this model.

Figure 1: Timing of Events within a Period

- Time

Exogenous

separation

?

Shocks are

realized

?

Endogenous

separation

?

Output is

produced

?

Matching

?

t t + 1

Output produced by a worker-firm pair i is given by

yit = Ztaitk
α
it, α ∈ (0, 1). (9)
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kit are capital services, Zt is a random productivity disturbance that is common to all

firms, and ait is a random productivity disturbance that is specific to relationship i ∈ [0, 1],

respectively. The worker and the firm observe both shocks and choose kit to maximize their

joint payoff:

max
kit

gtZtaitk
α
it − rtkit − l,

where l denotes the consumption value of the disutility of work. Firm i pays the real rental

rate rt on its capital services kit. Profit maximization implies

k(ait) =

(
αgtZtait

rt

)1/(1−α)

. (10)

Job creation. The decision to severe the relationship depends on the outside options of

the worker and the firm and on the present value of continuing the relationship into the

next period vit. Note that except for the realization of ait all employment relationships face

the same conditions. Thus, if ait is distributed identically and independently over time, vit

must be equal for all worker-firm pairs and we can drop the index i from this variable and

all others as well. In equilibrium, the present value of the firm’s outside opportunities is

zero, and the value of the worker’s outside opportunities equals the present value of being

unemployed wu
t . The surplus of an employment relationship thus can be written as

st = gtZtatk(at)
α − rtk(at) − l + vt − wu

t . (11)

The firm and the worker will terminate their relationship if ait < at, where at is determined

as solution to

gtZtatk(at)
α − rtk(at) − l + vt − wu

t = 0. (12)

Note that due to (10) and (12) the surplus of an employment relationship can also be

written as

st = (1 − α)

(
α

rt

)α/(1−α)

(gtZt)
1/(1−α)

[
a

1/(1−α)
t − a

1/(1−α)
t

]
. (13)

Given the job destruction margin at the endogenous job destruction rate ρn
t is obtained

from

ρn
t =

∫ at

0

f(a)da = F (at), (14)
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where f(a) and F (a) denote the probability density function and the distribution function

of ait, respectively. Since new matches from period t will not produce before period t+ 1

the mass of workers that are unemployed during period t equals

Ut = 1 −Nt
stock of unemployed

+ ρxNt
exogenous separations

+ (1 − ρx)ρn
t Nt

endogenous separations

,

= 1 − (1 − ρx)(1 − ρn
t )Nt.

(15)

Matching technology. At the end of period t unemployed workers are matched to

vacancies. Therefore, at the beginning of period t + 1 the mass of employed workers is

determined by

Nt+1 = (1 − ρx)(1 − ρn
t )Nt +m(Ut, Vt), (16)

where m(Ut, Vt) is the number of aggregate matches. The matching function is assumed

to be Cobb-Douglas:

m(Ut, Vt) = ψUχ
t V

1−χ
t , χ ∈ (0, 1). (17)

The probability that a firm offering a job in period t will find a worker is given by

κf
t =

m(Ut, Vt)

Vt

= ψ

(
Vt

Ut

)−χ

. (18)

Similarly, the probability that the unemployed worker is finding a job is given by

κw
t = ψ

(
Vt

Ut

)1−χ

. (19)

Job creation. We assume that the firm obtains the share 1−η ∈ (0, 1) from an employ-

ment relationship that produces in period t. The probability that a worker-firm pair which

is matched in period t will produce in period t+1 is (1−ρx)(1−ρn
t+1). The expected value

of this match in period t+ 1 equals
∫ ∞

at+1

st+1
f(a)

1 − ρn
t+1

da,

where f(a)/(1 − ρn
t+1) is the conditional density of the event a|a ≥ at+1. We assume free

entry of firms and a cost of γ for offering a job. Thus, the number of vacancies is determined

by the condition

γ = βEt
λt+1

λt

{
(1 − η)κf

t (1 − ρx)

∫ ∞

at+1

st+1f(a)da

}
, (20)
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where β(λt+1/λt) is the stochastic discount factor and λt the marginal utility of consump-

tion that we will introduce in a moment. Equation (20) establishes that the outside value

of a firm equals zero.

The present value of unemployment. In period t an unemployed worker faces the

probability κw
t in (19) to find a job. The probability that he will not loose this job in the

next period is (1− ρx)(1− ρn
t+1). Since the worker always receives the value of his outside

option, the present value of being unemployed is determined by

wu
t = b+ βEt

λt+1

λt

{
ηκw

t (1 − ρx)

∫ ∞

at+1

st+1f(a)da+ wu
t+1

}
, (21)

where b is the worker’s valuation of leisure time in units of consumption goods.

The present value of a continuing employment relationship. A worker-firm pair

that produces in the next period receives the expected value of its surplus. Since the worker

always receives the value of its outside option wu
t+1 and since the value of the firm’s outside

option equals zero, the present discounted value of a match that continues to produce in

t+ 1 is given by

vt = βEt
λt+1

λt

{
(1 − ρx)

∫ ∞

at+1

st+1f(a)da+ wu
t+1

}
. (22)

Note that equations (22) and (21) imply

qt = βEt
λt+1

λt

{
(1 − ρx)(1 − ηκw

t )

∫ ∞

at+1

st+1f(a)da,

}
, (23)

where

qt = vt − wu
t + b.

Division of (23) by equation (20) yields

qt =
γ(1 − ηκw

t )

(1 − η)κf
t

. (24)
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Job creation and destruction. Let ρt = ρx +(1−ρx)ρn
t denote the share of workers Nt

that loose their job for either exogenous or endogenous reasons. Den Haan et al. (2000),

p. 490 assume that firms which have been separated from their workers endogenously do

not post vacancies in the current period. Accordingly, κf
t ρ

x is the fraction of jobs lost at

the beginning of the period which are successfully advertised and filled at the end of the

period. The rate of job destruction (as a percentage of employment Nt), thus, equals

jdrt = ρt − κf
t ρ

x = (1 − ρx)ρn
t + ρx(1 − κf

t ). (25)

The job creation rate jcrt – as defined by den Haan et al. (2000), p. 490 – is the mass

of all firms that have no workers at the beginning of the period but find workers in the

matching phase as a percentage of the mass of employed workers Nt:

jcrt =
κf

t (Vt − ρxNt)

Nt
. (26)

2.2 Households

Employed and unemployed workers pool their income so that we can ignore distributional

issues. Employed workers supply one unit of labor inelastically with disutility cll while

unemployed workers enjoy leisure at utility value cbb, where both l and b are measured

in units of the consumption good so that the constants 1/cl > 0 and 1/cb > 0 transform

the utility value of leisure and home work to consumption units. As in Walsh (2005), we

introduce habit formation in the utility function. In addition, the household obtains utility

from real money Mt/Pt. The households current-period utility function is given by:4

u(Ct, Ct−1, ζt,Mt/Pt) :=
(Ct − hCt−1)

1−σ − 1

1 − σ
+ (1 − ζt)cbb− ζtcll + φ(Mt/Pt),

h ∈ [0, 1), cb, cl > 0, ζt =





1 if employed,

0 if unemployed.

(27)

4Our specification departs from Walsh’s utility function given in his equation (1). He uses

C̃t := Ct + (1 − ζt)b − ζtl

as argument of u. However, his Matlab program takes Ct as argument of u. We consider the consequences

of using C̃t instead of Ct in Appendix A.
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According to this specification the household’s marginal utility of consumption also depends

upon his level of consumption in the previous period. In particular, the marginal utility of

consumption is higher if Ct is closer to Ct−1.

The household sector receives wage and profit income from employment relationships that

are not severed at the beginning of period t given by

Inct = (1 − ρx)(1 − ρn
t )Nt

∫ ∞

at

[
gtZtatk(at)

α − rtk(at)
] f(at)

1 − ρn
t

dat. (28)

In addition, the household receives profits Ωt from the wholesale sector and transfers Tt

from the monetary authority.5

The household holds beginning-of-period nominal money Mt and bonds Bt, as well as the

real physical capital stock K̄t. Bonds are issued by other households and pay a nominal

rate of interest it. The nominal interest rate factor is denoted by Rt := 1 + it. Following

Christiano et al. (2005), capital services Kt are related to the physical stock of capital K̄t

by Kt = utK̄t, where ut denotes the utilization rate of capital.6 The household’s budget

constraint is given by:

Bt+1 +Mt+1

Pt
≤ Inct + Ωt + rtutK̄t + Tt +Rt

Bt

Pt
+
Mt

Pt
− γVt − Ct − It − ι(ut)K̄t, (29)

where It and ι(ut) denotes investment and the costs of setting the utilization rate to ut,

respectively. In the non-stochastic steady state, ū = 1 and ι(ū) = 0.

The stock of capital evolves according to

K̄t+1 = Φ

(
It
K̄t

)
K̄t + (1 − δ)K̄t. (30)

We assume that the concave function Φ(·) does not change the non-stochastic steady state

of the model. Thus, I = δK implying Φ(δ) = δ and Φ′(δ) = 1. The absolute value of the

elasticity of Φ′ with respect to its argument I/K is given by the parameter σΦ.

Households maximize

Et

∞∑

s=0

βsu

(
Ct+s, Ct+s−1,

Mt+s

Pt+s

)

5As in the case of capital income we should have included −l in the definition of the income flow from

active worker-firm pairs and added (1 − Ut)l as compensation to workers on the right-hand-side of the

budget constraint of the representative household. Since both terms cancel, we decided to suppress l both

in the definition of Inct in (28) and in the budget constraint (29), given below.
6To keep the model simple, we assume that the household rather than the firm chooses ut.
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with regard to Mt+1, Bt+1, K̄t+1, Ct, It, and ut subject to (29) and (30). The first-order

conditions of the household are given by:

λt = (Ct − hCt−1)
−σ − βhEt(Ct+1 − hCt)

−σ, (31a)

ι′(ut) = rt, (31b)

λt = βEtλt+1
Rt+1

πt+1

, (31c)

λt = βEt

{
φ′(Mt+1/Pt+1) + λt+1

πt+1

}
, (31d)

ξt =
1

Φ′(It/K̄t)
, (31e)

ξt = βEt
λt+1

λt

[
rt+1ut+1 − ι(ut+1) −

It+1

K̄t+1

+ ξt+1

(
1 − δ + Φ(It+1/K̄t+1)

)]
. (31f)

Equations (31a) and (31b) are the optimal conditions for the current-period consumption

level Ct and utilization rate ut, respectively. Condition (31c) ensures that bonds have

the same expected rate of return as capital. Note, that Bt ≡ 0 in equilibrium, since we

are aggregating the holdings of bonds over the members of the representative household.

Equation (31d) induces a money demand function. Since the central bank will pursue an

interest rate policy, we can disregard this equation. In (31e), the variable ξt is Tobin’s q

and gives the number of units of output which must be forgone to increase the stock of

capital by one unit (this equals Θt/λt, where Θt is the Lagrange multiplier of the constraint

(30) in the household’s optimization problem).

2.3 Monetary authority

The central bank targets the nominal interest rate and supplies the amount of money

necessary to achieve its target rate. We use the following rule:

Rt+1 = π̄(1−ρR)(1−φπ)β−(1−ρR)RρR

t π
φπ(1−ρR)
t eφt , φt ∼ N(0, σφ). (32)

It is well-known that the exponent of the inflation factor φπ is crucial for the existence of a

determinate transition path to the equilibrium. In our benchmark calibration the critical

root passes one from below if φπ exceeds one (see Figure 9 in Appendix B). The value of

φπ = 1.1 that we take from Walsh (2005) and use in all our numerical experiments always
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ensures determinacy. In the non-stochastic stationary equilibrium of the model the Euler

equation (31c) implies π = βR and the Taylor rule delivers π = π̄.7

Given the monetary policy, the nominal quantity of money adjusts so that the money

market is in equilibrium. Seignorage Tt is transferred to the households:

Tt =
Mt+1 −Mt

Pt
. (33)

2.4 Equilibrium

In equilibrium

Kt = utK̄t

and the aggregate amount of capital services, Kt, is given by the sum of the individual

capital services

Kt = (1 − ρx)(1 − ρn
t )Nt

∫ ∞

at

k(at)
f(at)

1 − ρn
t

dat,

implying

Kt = (1 − ρx)NtH(at)

(
αgtZt

rt

)1/(1−α)

, H(at) :=

∫ ∞

at

a
1/(1−α)
t f(at)dat. (34)

Aggregating yit in (9) over all productive worker-firm pairs using this definition of capital

yields the aggregate production function

Yt = Zt

[
(1 − ρx)NtH(at)

]1−α

Kα
t . (35)

Firms redistribute all profits to the households, and the monetary authority transfers the

seignorage. In equilibrium and using the definition of income from (28), the resource

constraint of the economy is given by

Yt = Ct + It + γVt + ι(ut)K̄t. (36)

7The policy rule of Walsh (2005) in his equation (18) is only consistent with zero inflation, π̄ = 1 so we

decided to use the more general equation (32). However, as the log-linear equations in Appendix B show

none of the coefficients depends upon the value of π̄ and the derivation of the Phillips curve goes through

with any value of π̄ as shown in Maußner (2007). Therefore, we do not need to fix the value of π̄ in our

simulations.
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3 Calibration and computation

If not mentioned otherwise, the choice of the functional forms and the parameterization

follows Walsh (2005). We will refer to this case as our benchmark. In Sections 4 and 5,

we also analyze cases where the parameters, for which we do not have robust empirical

evidence, are chosen in order to optimize the statistical properties of the model. Further-

more, Appendix A covers – among other issues – minor differences between Walsh’s and

our numerical implementation.

3.1 Functional form assumptions

We assume that the firm-specific productivity shock a is log-normally distributed with

mean zero and standard deviation σa = 0.13:

f(a) =
1

aσa

√
2π
e−0.5(ln a/σa)2 .

Thus,

z :=
ln a

σa

has a standard normal distribution, and we get z from the inverse of the cumulative

distribution function of the standard normal distribution at the steady state value of ρn.

Given a = eσaz=0.7892 in steady state, we compute

H(a) :=

∫ ∞

a

a1/(1−α)f(a)da

using Simpson’s method.

According to our specification of the functions Φ and ι the dynamics of the model only

depends on the elasticities σΦ and σι of the functions Φ′ and ι′ with respect to their

arguments, respectively.

3.2 Parameterization

We analyze the sensitivity of our model with respect to the introduction of capital adjust-

ment costs and variable capital utilization. Therefore, our main interest is the sensitivity
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of the model with regard to the choice of the parameters σΦ and σι. In addition, we study

the model’s behavior depending on the parameter values for the price rigidity ω and the

habit parameter h. Periods correspond to quarters.

Preferences. Following Walsh (2005), we set the discount factor β = 0.989, the in-

tertemporal elasticity of substitution 1/σ = 0.5, and the habit parameter h = 0.78. The

parameter values are summarized in Table 1.

Table 1:

Benchmark calibration

Preferences β=0.989 σ=2 h=0.78

Labor Market ρx=0.068 ρn=0.0343 κf=0.7 κw=0.6

η=0.5 χ=0.4

Production α=0.36 δ=0.025 σa=0.13 σΦ=0.5

σι=0.01 θ=11.0 ρz=0.95 σǫ=0.01

Price adjustment ω=0.85

Monetary policy ρR=0.9 φπ=1.1 σπ=0.002

Matching and the labor market. Den Haan et al. (2000) bear on evidence provided

by Hall (1995) and Davis et al. (1996) to determine the steady state separation rates ρx

and ρn. They employ a total separation rate ρ = 1 − (1 − ρx)(1 − ρn) equal to 0.1 and an

exogenous separation rate ρx = 0.068. The endogenous separation rate therefore amounts

to ρn = 0.0343. Walsh (2005) adopts this choice. In the matching function, he sets χ

equal to 0.4 in accordance with empirical estimates by Blanchard and Diamond (1989).

Furthermore, he chooses the steady state values of the matching probabilities as κf = 0.7

and κw=0.6, and assumes (as in den Haan et al. (2000)) that workers and firms split the

surplus evenly implying η = 0.5.

Production and capital adjustment. In addition to Walsh (2005), we introduce cap-

ital into production. The capital elasticity of output is set equal to α = 0.36. Capital

depreciates at the rate δ = 0.025. Following Christiano et al. (2005), we set σι = 0.01, but
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we will also consider the case of a constant utilization rate with ut ≡ 1.0. As empirical

estimates of the adjustment-cost elasticity vary considerably, we consider a wide range

of values for σΦ ∈ {1/15, 0.5, 1.3}. In our benchmark case, we choose σΦ = 0.5. In our

sensitivity analysis, we apply σΦ = 1/15 (in accordance with Baxter and Crucini (1993))

and estimate σΦ = 1.3 in Section 4.

The log of the aggregate technology shock follows an AR(1) process, logZt = ρz logZt−1+ǫt,

with autoregressive parameter ρz = 0.95 and standard deviation σǫ = 0.01 as in Walsh

(2005). In the wholesale sector, the demand elasticity is equal to θ = 11 implying an

average mark-up equal to 10%.

Price rigidity. We set the probability ω that a firm is not allowed to change its price

optimally in a given period equal to 0.85. Walsh (2005) uses the same value that implies

the average time between price adjustment of 6.5 quarters. Alternatively, we will also

consider a more frequent price adjustment ω = 0.5 in our sensitivity analysis.

Monetary policy. The parameters of the monetary policy rules applied by Walsh (2005)

reflect a high degree of inertia in the interest rate, ρR = 0.9, and a long-run response of the

interest rate to the inflation rate by 1.10 implying φπ = 1.10. The monetary policy shock

displays a standard deviation σφ = 0.002.

3.3 Computation

We use a log-linear approximation of the model around the steady state of its determin-

istic version in order to compute the dynamics. The derivation of the steady state and

the log-linearized version of the model are provided in Appendix B. For the numerical

solution, we use the techniques proposed by King and Watson (2002). It relies upon the

Schur factorization of the matrix that is describing the autoregressive part of the dynamic

system.8

8See Section 2.3 in Heer and Maußner (2009) for a detailed description.
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4 Summary statistics

In the next three sections, we present our results on the dynamics of output and inflation in

the labor market search model with capital. We begin with the description of the summary

statistics from simulations of the model.

Table 2 presents the standard deviations of a few key variables relative to the standard

deviation of output shown in the first row below the table head. Column I displays the

empirical values taken from Table 2 of Walsh (2005). They are based on HP-filtered US

data from 1959.i through 1995.iv.9

Table 2:

Standard deviations

Variable Standard deviations of key variables: σx/σY

US data I II III IV V

Output σY =1.60 σY =1.25 σY =0.89 σY =1.24 σY =4.21 σY =2.11

Employment 0.62 0.90 1.69 0.92 0.53 0.51

Job creation rate 2.89 7.84 17.13 7.99 4.61 3.63

Job destruction rate 4.26 13.69 34.56 14.06 8.85 3.94

Inflation 0.35 0.47 0.77 0.48 0.11 1.04

Notes:

Standard deviations as averages from 300 simulations. The length of the time series in each simu-

lation is 300. All simulated data are HP-filtered with weight λ = 1, 600. The same set of random

numbers was employed to compute the moments in columns I-V.

I: Walsh’s model (our solution, see Appendix A).

II: Our model with fixed capital and fixed utilization rate: σΦ = σι = 10, 000.

III: II but with α = 0.01.

IV: Benchmark calibration.

V: Our model with parameters from Table 3.

The numbers in columns I-V are averages from 300 simulations. The simulated time series

are of length 300 and HP-filtered with weight λ = 1, 600. The results from Walsh’s original

model are shown in column I.10 The model underpredicts the standard deviation of US

9See Cooley and Quadrini (1999), Table 4, for the source of Walsh’s data.
10We explain in Appendix A why the numbers differ from those in Walsh’s Table 2.

16



output and it implies rates of job creation and job destruction that are much larger than

those found in US labor market data. The match between the actual relative standard

deviation of inflation and the one predicted by the model is much closer.

Column II displays the results from our model for the case of a constant rate of capital

utilization and a constant stock of capital.11 We find a smaller variance of output and a

higher variance of employment than the original model. This reflects the smaller elasticity

of output with respect to employment (1 − α versus 1): Setting α to a very small value

provides the results displayed in column III, which are very close to those of column I.

Column IV presents summary statistics from our benchmark calibration, where both the

rate of investment and the rate of capacity utilization are flexible. It is immediately obvious

from the high standard deviation of output of 4.21 that the introduction of capital leads

to a further deterioration of the model’s fit.

The last column of Table 2 reports the results of a simulation where we have chosen the

parameters of the model for which direct evidence is hard to come by so that the sum

of squared differences between the empirical moments and those implied by the model

is minimized. These parameters are the habit parameter h, the share of firms that are

not allowed to post their optimal price ω, the elasticities σΦ and σι which determine the

flexibility of capital, the standard deviation of the idiosyncratic productivity shock σa,

and the share of workers in the surplus of a successful match η. We placed a coarse grid

over the six dimensional cube within which the respective tuple of parameters must lie

and chose the minimizer from this set. Table 3 presents the outcome from this exercise.

The model that best fits the output, labor market, and inflation statistics is a model

without nominal rigidities (prices are not preset and ω = 0.01), without a consumption

habit h = 0.01, a constant rate of capital utilization (σι = 3000), and flexible capital

adjustment σΦ = 1.3. But note, in as much as we get the labor market statistics closer

to their empirical counterparts the volatility of employment decreases and the volatility of

inflation becomes much larger than observed empirically.

11Technically, we implement these assumptions by setting both the elasticity of the function Φ(It/Kt)

and the elasticity of the function ι(ut) at prohibitively high values.
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Table 3:

Estimated parameters from the optimal adjustment of second moments

Preferences h=0.01

Labor market η=0.67

Production σΦ=1.3 σι=3,000

σa=0.063

Price adjustment ω=0.01

5 Interest rate shock

In this section we consider the impulse responses of our model with respect to an interest

rate shock. Before we report and discuss the results of our benchmark calibration, we

consider the case of a fixed capital stock. Here we mainly replicate the findings of Walsh

(2005) (his Figure 1). Nevertheless we undertake this endeavor, since our solution differs

from Walsh’s one in several details as explained in Appendix A. In Sections 5.2-5.4, we

study how sensitive Walsh’s results are to the introduction of capital. In Section 5.5, we

consider the case when the model parameters are chosen optimally in order to approximate

the impulse responses from our empirical vector autoregressive model.

5.1 Fixed capital

Figure 2 plots the impulse responses of the model’s variables following an unexpected rise

of the interest rate by one standard deviation (equal to 0.2 percentage points) in quarter

t = 2. They rest on Walsh’s parameter choice, in particular, we employ {ω, ρR, h} =

{0.85, 0.9, 0.78}, and assume prohibitively high costs of both capacity utilization (σι =

10, 000) and capital stock adjustment (σΦ = 10, 000).12 Therefore, capital input remains

constant.

Following an increase of the nominal interest rate by 0.2 percentage points, output falls

by 0.2% and displays a hump-shaped response, while inflation inertia is pronounced and

12Our impulse response functions are smaller by the factor 5 as we consider a shock of one standard

deviation rather than one percentage point.
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inflation attains its minimum value at 0.12 percentage points below its steady state value

after six quarters.

Figure 2: Effects of a negative interest rate shock, preset prices, constant capital

In the presence of sticky prices, a rise in the nominal interest rate Rt+1 on bonds results

in a rise of the real interest rate on bonds, Rt+1/πt+1. As a consequence, households want

to shift consumption into the future so that demand and, hence, output declines. Since

intermediate sector prices are flexible while wholesale prices are sticky, the relative price

of the intermediate sector output gt deteriorates (see the line labeled PW/P in Figure

2) raising the job destruction margin. The rate of job destruction jumps upward (see

the upper right panel of Figure 2) and since firms post less vacancies the rate of job

creation temporarily falls. The economy recovers only slowly from this shock: the habit

in consumption prevents a fast increase in demand, and the high degree of inertia in the
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Taylor rule (32) entails high interest rates for several future quarters. As a consequence,

the response of output is hump-shaped and peaks after four quarters.13

In the following, we depart from this model and study the sensitivity of these results with

regard to the introduction of capital. In addition, we will consider the role of sticky prices,

preset prices, and the inertia of the central bank policy.

5.2 Variable investment and capacity utilization

Figure 3: Effects of a negative interest rate shock on output

In Figure 3, we graph the effects of variable capital on the dynamics of output. If not

noted otherwise, the graphs rest on the parameter settings presented in Table 1. The solid

line displays the response of output to an interest rate shock in period t = 2, if capital and

its utilization rate remain constant (σΦ = 10, 000 and σι = 10, 000). The solid line with

13If we set ρR equal to zero, the maximum absolute response of output already takes place in the first

period of the shock.
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dots shows the response for our benchmark settings of σΦ = 0.5 and σι = 0.01. Notice that

if we introduce very elastic capital adjustment costs (σΦ = 0.067) together with a fixed

utilization rate (σι = 10, 000), investment demand falls significantly in response to a rise in

the interest rate of only 0.2 percentage points. In this case, we observe an output response

that is much larger than observed empirically. According to our estimates reported in

Appendix D, the maximum response of output due to a one-percent shock in the federal

funds rate equation implies a maximum decline of output in the seventh quarter after the

shock of about 0.36 percentage points. The model predicts that after a 0.02 percentage

point increase of the nominal interest rate output falls with a maximum deviation of 4.3

percentage points occurring in the first quarter (see the line with short dashes in Figure

3).14 It requires an elasticity of σΦ = 1.3, which is much larger than the values considered

so far in business cycle models,15 to bring the impulse response of output close to the

response of the Walsh (2005) model (compare the dashed line with the solid line in Figure

3). If capacity utilization is also variable (σι = 0.01), capital services are reduced by a

fall in the utilization rate ut rather than by a decrease of the capital stock Kt. This again

makes output more responsive to an interest rate shock, albeit to a much lesser extent than

in the case of a small σΦ. Notice, however, that the response of output is not hump-shaped

(the line with closely spaced dots in Figure 3). The maximum impact of the interest rate

shock on output occurs in the first period. Finally, less rigid prices (ω = 0.5) slightly

dampen the negative effect of interest rates shock (see the line with dots and dashes).

Figure 4 plots the dynamics of inflation in response to a rise of the nominal interest rate

by one standard deviation. The picture is similar to the one of output in Figure 3. First

note, that in our model with flexible capital and flexible utilization of capital (σΦ = 0.5

and σι = 0, 01) the response of output (the solid line with dots) is relatively close to the

inflation response of the model with fixed capital and constant utilization rate (the solid

line). If capital adjustment is easy and the rate of utilization is fixed (σΦ = 0.067 and

σι = 10, 000) the rate of inflation drops and its deviation from the steady state attains a

maximum after three quarters (see the line with short dashes).16 With fixed capital and

14In Appendix D we compare the impulse response of our model for the benchmark calibration in Table

1 to empirical estimates and show that the model widely overpredicts not only the response of output but

also the response of consumption, investment, inflation, and capacity utilization.
15For instance, Correia et al. (1995) use σΦ = 1/30 and Baxter and Cruccni (1993) consider σΦ not

larger than 1 and use σΦ = 1/15 as a benchmark value.
16If prices were not preset, the biggest impact would be in the very first period following the shock.
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Figure 4: Effects of a negative interest rate shock on inflation

fixed utilization it takes four more quarters before inflation starts to revert to its long-run

equilibrium value. High costs of capital adjustment (σΦ = 1.3) shift the impulse response

(the dashed line in Figure 4) close to the case with fixed capital and fixed capital utilization

(the solid line). In the case of variable capacity utilization, investment demand changes

little and all the adjustment takes place by using the existing capital stock less intensively.

As a consequence, the change in marginal costs is smaller and smoother (see the dotted line

in Figure 4).17 If firms can adjust their prices on average every second quarter (ω = 0.5), a

sharp decline in price inflation (shown by the line with dots and dashes) takes the burden

of adjustment.

17This has been pointed out by Christiano et al. (2005) who write on p. 3 ”..variable capital utilization

helps dampen the large rise in the rental rate of capital that would otherwise occur. This in turn dampens

the rise in marginal costs and, hence, prices.”
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5.3 Preset prices and habit persistence

In this paragraph we study the sensitivity of our results by changing only one of the

parameters from our benchmark calibration with variable capacity utilization (σι = 0.01)

and capital adjustment costs (σΦ = 0.5) as presented in Table 1 at a time. To save space,

we do not present the respective graphs.18 The assumption that prices are set prior to the

observation of the interest rate shock is rather innocuous. If firms can adjust their price

after the realization of the shock so that the New-Keynesian Phillips curve is presented by

equation (8) rather than by (7) the impulse response of output does not differ noteworthy

from the benchmark case, whereas the effect on inflation is more immediate and more

pronounced in the first six quarters after the impact of the shock.

As can be expected, the effect on output is more pronounced if past consumption plays a

minor role in the household’s utility function. If we reduce h from our benchmark value

of 0.78 to 0.5, output drops on impact about 3.3 percent below its stationary value as

compared to 2.6 percent in the benchmark calibration. The persistence of the inflation

response, however, does not depend on the degree of habit persistence h. Even without

habit persistence, i.e. if we set h close to zero, inflation is still persistent, while the output

response is further increased.

5.4 Monetary policy

As his main result, Walsh (2005) shows that policy inertia is the most important factor in

accounting for the hump-shaped response of output and the persistent response of inflation.

As we already showed above, in the presence of capital, output does not display a hump-

shaped response any more. However, we are able to confirm his second result for the

economy with capital as soon as we assume capacity utilization to be variable. If the

autoregressive parameter of the Taylor rule with respect to the interest rate is reduced

from ρR = 0.9 to ρR = 0, the impulse response of inflation is flat (not illustrated).

18The interested reader can download our programs and validate the results. The link is

http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/pap/hm lms gauss.zip.
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5.5 Matching empirical impulse responses

As we have demonstrated in the previous sections, the properties of the model with capital

accumulation depart considerable from those of the model with fixed capital. So far we have

taken for granted that the latter model provides for a good approximation of the data. The

question that we will take up in this paragraph is how close can our model approximate

impulse responses from a structural vector autoregressive model if we select the critical

parameters h, ω, σΦ, and σι so as to minimize the distance between the impulse responses

to an interest rate shock implied by the model and those identified empirically. In Appendix

D we explain our estimation procedure. Our structural vector autoregressive model (VAR)

is similar to the model of Christiano et al. (2005). We exclude from their model the

variables about which our model remains silent (the real wage, labor productivity, the

growth rate of M2, real profits) and add to it the utilization rate of capital.

Table 4 displays the parameter values for which we obtain the best fit of the model. Both

ω and h are at the upper bound of the grid that we have placed over the four dimensional

set of possible values for the quadruple (ω, h, σΦ, σι). The high value selected for σι implies

an almost constant utilization rate of capital. The also sizeable value for σΦ implies a small

variance of investment.

Table 4:

Estimated parameters from optimal adjustment of impulse responses

Preferences h=0.99

Production σΦ=17.2 σι=60.2

Price adjustment ω=0.95

The impulse responses for this model (solid line) are compared with those estimated by the

VAR (broken line) in Figure 5. The dotted lines are error bounds computed from adding

(subtracting) twice the estimated standard deviation to the respective impulse response.

Even for the best choice of the free parameters the model does a bad job in mimicking the

estimated responses. The rate of capacity utilization and consumption are even outside

the estimated error bounds for the first several quarters following the arrival of the shock.
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Figure 5: Estimated and model implied impulse responses

6 Technology shock

In the previous section, we found that the model with variable capacity utilization helps to

explain the persistent response of inflation, even though it cannot account for the hump-

shaped response of output. In this section, we analyze if this model is also able to ex-

plain the output-inflation dynamics in response to a productivity shock. In comparing

the model’s predictions with the empirical facts we rely on well-known results from the

literature, which uses long-run restrictions to identify technology shocks.19 Note, however,

that Walsh’s (2005) model abstracts from stochastic growth so that its impulse responses

19See, among, others, Shapiro and Watson (1988), Gaĺı (1999), Francis and Ramey (2002), and Altig et

al. (2005).
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cannot be quantitatively compared to those estimated from a structural vector autoregres-

sive model that embeds long-run restrictions. We explain this in Appendix C where we

show how to reformulate the model to exhibit exogenous stochastic growth.

6.1 Fixed capital

Figure 6 shows the impulse responses of key variables to a one-time productivity shock in

period t = 2 of size σZ = 0.01 for the model with fixed capital services (i.e. σΦ = 10, 000

and σι = 10, 000). All other parameters are calibrated as in Table 1, and prices are preset.

Figure 6: Effects of a technology shock

The responses of output and employment are consistent with the evidence provided by

Gaĺı (1999) and Francis and Ramey (2002) who show that a supply shock (the dotted
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line in Figure 6) raises output but depresses employment in the first few quarters.20 To

understand the mechanism behind this result in our model consider again the relative

price of intermediate goods gt (the line PW/P in the lower right panel of Figure 6). On

impact, the increased productivity entails a lower nominal price of intermediate goods.

Since wholesale prices are fixed in the impact period, the relative price of intermediate

products falls and counteracts the outward shift of the production function. Thus, the job

destruction margin increases and more employment relationships separate endogenously.

As soon as prices adjust (see the spikes in the job creation and job destruction rates, and

the relative price of intermediate products, PW/P in Figure 6) the positive effect of the

technology shock begins to predominate. Note also that there is a protracted hump-shaped

decline of the inflation rate, which is in accordance with the persistent negative impact on

inflation found empirically by Gaĺı (1999).

6.2 Variable investment and capacity utilization

As in the case of an interest rate shock the dynamics of output and employment is sensitive

with regard to the assumption of fixed capital services. Figures 7 and 8 display the impulse

responses of output and employment for different values of the key parameters.

In the case of the benchmark calibration the drop in the relative price of intermediate goods

triggers a strong reaction in both the rate of capacity utilization and the endogenous rate

of job separations that caused output to decline. A key variable for the size of layoffs is the

elasticity of the cumulative distribution F (a) with respect to a which depends in turn on

the standard deviation of the log-normal distribution of f(a). For instance, if we reduce

σa from the benchmark value of 0.13 to σa = 0.065 the decline in output is cut in half. For

the given value of σa = 0.13 we must increase the costs of capacity utilization to a value

of σι = 15 to prevent the decline in output. In addition, we find that consumption habit

h has a less important effect on output and employment. A smaller habit in consumption

mitigates the negative effect (see the dotted line in Figure 7), yet even if we set h close to

zero, output drops in the first period of the shock (not shown in the figure). The role of

20The empirical evidence on the effects of technology shocks on employment depends crucially on the

question whether hours per worker are stationary or not. In the latter case Christiano et al. (2003, 2004)

demonstrate that hours increase after a technology shock.

27



Figure 7: Effects of a technology shock on output

the degree of price flexibility is exemplified by the impulse response with the long dashes

in Figure 7. If prices can be changed every second quarter and are set after the technology

shock has been observed, the response of output will be strongly positive and hump-shaped,

though.

Figure 8 corroborates the finding that the negative effects on output originate in the

flexible use of capital services. With fixed capital, employment alone bears the burden of

adjustment. The more flexible capital services are, the smaller is the fall of employment

(compare the solid line with the dashed line and the line with dots and dashes in Figure 8).

However, it requires a substantial amount of price flexibility for employment to increase

immediately after a technology shock (see the line with long dashes in Figure 8). Using

the parameter values from Table 1 together with ω = 0.5 – so that firms can adjust their

prices on average every second quarter – we also need to assume that the firms which are

receiving the signal to change their price can do so immediately after the realization of the

technology shock.
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Figure 8: Effects of a technology shock on employment

In summary, a sharp decrease of output in response to a technology shock is at odds with

the empirical findings provided by Gaĺı (1999) and Francis and Ramey (2002). In the

present model this puzzle can only be resolved if either the marginal cost function ι′(ut) is

very elastic or the degree of price rigidity is only modest.

7 Conclusion

In this paper we have studied the inflation and output dynamics in the labor market

search model with capital. In the presence of capital adjustment costs, variable capacity

utilization helps to reconcile the model’s inflation response to a rise in the nominal interest

rate with the one that is observed empirically. However, in this case, the magnitude of

the output response is much stronger than observed in the US economy and, in particular,

the output response is no longer hump-shaped. Therefore, we conclude that the output-

inflation dynamics of the labor market search model in response to an interest-rate shock is
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sensitive with regard to the introduction of capital. This conclusion also applies to the case

when we consider the consequences of a technology shock. Contrary to empirical findings,

an unexpected productivity increase causes an initial decline in output if capital services

are sufficiently flexible and prices are rigid.

Comparing our results with those from the studies of Christiano et al. (2005) and Christoffel

et al. (2009), we think that the introduction of wage setting into our model will be a

promising direction for future research. In the model of Christiano et al. (2005), there is no

search unemployment. Wage rigidity is modeled as in Erceg et al. (2000) such that workers

can reset their prices optimally as in the Calvo price-setting model. Therefore, some

business-cycle observations from the labor market such as more variation of employment

at the extensive rather than the intensive margin cannot be replicated. In Christoffel et

al. (2009) this shortcoming is overcome by the introduction of matching frictions and wage

bargaining. In their model wages play an allocational role since firms decide about working

hours after the wage rate is agreed upon. Wage rigidity arises in this context if not all wage

contracts are renegotiated in each period. It dampens the effects of monetary policy on the

time path of marginal costs. However, capital is missing as an input factor into production.

In conclusion, incorporating the wage bargaining into the present model should allow for a

more encompassing and robust study of both business cycle features from the labor market

and the dynamics of inflation and output.
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8 Appendix A: The model of Walsh

In this appendix we present the model of Walsh (2005), derive its stationary solution and
log-linear approximation which underlies our solution and simulation, and compare our
Gauss program to Walsh’s Matlab code.

Equilibrium Conditions. The model of Walsh (2005) departs from our model with
respect to the production function of the intermediate goods sector presented in equation
(9). In his model, labor is the single factor of production. Since each firm i is matched
with one worker output is given by

yit = aitZt. (A.1)

Aggregating over all active firms i yields the aggregate production function

Yt = (1 − ρx)ZtNtG(at), G(at) :=

∫ ∞

at

af(a)da. (A.2)

The job destruction margin at is determined by

l + b = qt + gtZtat, qt := vt − wu
t + b, (A.3)

which derives from equation (12), if we neglect capital and use (A.1) instead of (9). The
surplus of an operating firm can thus be written as

st = gtZt(at − at). (A.4)

This allows us to simplify equation (23) to

qt = βEt

{
λt+1

λt
(1 − ρx)(1 − ηκw

t )gt+1Zt+1

[
G(at+1) − (1 − ρn

t+1)at+1

]}
. (A.5)

The resource constraint (36) simplifies to

Yt = Ct + γVt. (A.6)

The 10 static equilibrium conditions of the model, thus, consist of (14), (A.3), (A.1), (24),
(18), (19), (15), (A.6), (25), and (26). The six dynamic conditions are (31a), (31c), (16),
(A.5), the interest rate rule (32) and the condition for the optimal price of firms that are
allowed to adjust their prices. Since our solution relies on log-linear policy rules, we do not
present this latter equation, but only its log-linear approximation (8).

For convenience, we summarize all equilibrium conditions of the model:

ρn
t = F (at), F (at) :=

∫ at

0

f(a)da, (A.7a)
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l + b = qt + gtZtat, (A.7b)

Yt = (1 − ρx)ZtNtG(at), (A.7c)

qt =
γ(1 − ηκw

t )

(1 − η)κf
t

, (A.7d)

κf
t = ψ(Vt/Ut)

−χ, (A.7e)

κw
t = ψ(Vt/Ut)

1−χ, (A.7f)

Ut = 1 − (1 − ρx)(1 − ρn
t )Nt, (A.7g)

Yt = Ct + γVt, (A.7h)

jdrt = ρt − κf
t ρ

x = (1 − ρx)ρn
t + ρx(1 − κf

t ), (A.7i)

jcrt =
κf

t (Vt − ρxNt)

Nt
, (A.7j)

λt = β(Ct − hCt−1)
−σ − βEt(Ct+1 − hCt)

−σ, (A.7k)

λt = βEt

{
λt+1Rt+1

πt+1

}
, (A.7l)

qt = βEt

{
λt+1

λt
(1 − ρx)(1 − ηκw

t )gt+1Zt+1

(
G(at+1) − (1 − ρn

t+1)at+1

)}
, (A.7m)

Nt+1 = (1 − ρx)(1 − ρn
t )Nt + κw

t Ut, (A.7n)

Rt+1 = π̄(1−ρR)(1−φπ)β−(1−ρR)RρR

t π
φπ(1−ρR)
t eφt . (A.7o)

The steady state. Consider the model without a technology and an interest rate shock
so that Zt = 1 and φt = 0 for all t. The steady state of this deterministic model can be
derived from (A.7) by dropping all time indices and by solving the ensuing equations for
the variables of interest.

Given ρn and σa we can solve

ρn =

∫ a

0

f(a)da =

∫ a

0

1

aσa

√
2π
e−0.5(ln a/σa)2da,

for a as explained in the body of the paper. This allows us to compute

G(a) =

∫ ∞

a

af(a)da =

∫ ∞

a

1

σa

√
2π
e−0.5(ln a/σa)2da,

numerically.

In the steady state the relative price of the production sector equals g = (θ − 1)/θ. From
the steady state version of equation (A.7k) we are thus able to infer q:

q = β(1 − ρx)(1 − ηκw)
θ − 1

θ
(G(a) − (1 − ρn)a) . (A.8)
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In the steady state equations (A.7e) and (A.7f) imply

V

U
=
κw

κf
, (A.9)

and equation (A.7n) reduces to

U

N
=

1 − (1 − ρx)(1 − ρn)

κw
. (A.10)

Note that these equations imply that the steady state rate of job destruction equals the
steady state rate of job creation:

jcr = ρ− κfρx =
κfV

N
− ρxκf = jdr.

Given (A.9) and (A.10), we can solve equation (A.7g) for N :

N =

[
U

N
+ (1 − ρx)(1 − ρn)

]−1

. (A.11)

Thus, the steady state output is given by

Y = (1 − ρx)NG(a).

The solution for N allows us to determine U = (U/N)N and V = (V/U)U . Given q, we
infer γ from equation (A.7d):

γ =
q(1 − η)κf

1 − ηκw
. (A.12)

The budget constraint (A.7h), thus, implies

C = Y − γV.

The log-linearized system. The system of equations (A.7), log-linearized at the sta-
tionary solution, consists of two parts. The first part involves only period t dated variables,
whereas the second part determines the model’s dynamics.

ρ̂n
t − εF,aât = 0, (A.13a)

ât + ĝt = − q

ga
q̂t − Ẑt, (A.13b)

Ŷt − εG,aât = N̂t + Ẑt, (A.13c)

κ̂f
t +

ηκw

1 − ηκw
κ̂w

t = −q̂t, (A.13d)

κ̂f
t + χV̂t − χÛt = 0, (A.13e)
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κ̂w
t + (χ− 1)V̂t + (1 − χ)Ût = 0, (A.13f)

(U/N)Ût − (1 − ρx)ρnρ̂n
t = −(1 − ρx)(1 − ρn)N̂t, (A.13g)

Ŷt − (γV/Y )V̂t = (C/Y )Ĉt, (A.13h)

ĵdrt −
(1 − ρx)ρn

jdr
ρ̂n

t +
κfρx

jdr
κ̂f

t = 0, (A.13i)

ĵcrt − κ̂f
t − V

V − ρxN
V̂t = − V

V − ρxN
N̂t. (A.13j)

Log-linearizing equations (A.7k) through (A.7o) yields:

βhΓ1EtĈt+1 − (1 + βh2)Γ1Ĉt (A.14a)

+ hΓ1Ĉt−1 − λ̂t = 0,

Etλ̂t+1 + R̂t+1 − Etπ̂t+1 − λ̂t = 0, (A.14b)

Etλ̂t+1 − λ̂t − q̂t = −ĝt+1 − Ẑt+1 − Γ2Etât+1 − Γ3Etρ̂
n
t+1 (A.14c)

+
ηκw

1 − ηκw
κ̂w

t ,

N̂t+1 − (1 − ρx)(1 − ρn)N̂t = κw(U/N)Ût + κw(U/N)κ̂w
t (A.14d)

− (1 − ρx)ρnρ̂n
t ,

R̂t+1 − ρRR̂t − φπ(1 − ρR)π̂t = φt, (A.14e)

Γ1 :=
σ

(1 − βh)(1 − h)
, Γ2 := ∆ [G(a)εG,a − (1 − ρn)a] ,

Γ3 := ∆ρna, ∆ :=
[
G(a) − (1 − ρn)a

]−1

.

The last equation of the log-linear dynamical system is supplied by the Phillips curve. This
equation is given by (7) with the time index shifted one period into the future:

π̂t+1 −
1

1 + β
π̂t −

β

1 + β
Etπ̂t+2 = ΓEtĝt+1, (A.14f)

Γ =
(1 − ω)(1 − βω)

(1 + β)ω
.

The system of equations (A.13) and (A.14) can be put into the canonical form of Heer and
Maußner (2009):

Cuut = Cxλ

[
xt

λt

]
+ Czzt, (A.15a)

DxλEt

[
xt+1

λt+1

]
+ Fxλ

[
xt

λt

]
= DuEtut+1 + Fuut +DzEtzt+1 + Fzzt, (A.15b)

zt+1 = Πzt + ǫt+1. (A.15c)
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For this purpose we define the auxiliary variables

v̂1
t := π̂t+1,

v̂2
t := Ĉt−1,

and the vectors

ut :=
[
Ŷt, Ût, V̂t, κ̂

w
t , κ̂

f
t , ρ̂

n
t , ât, ĝt

]′
,

xt :=
[
N̂t, R̂t, π̂t, v̂

2
t

]′
,

λt :=
[
λ̂t, q̂t, v̂

1
t , Ĉt

]′
,

zt :=
[
Ẑt, φt

]′
.

Differences to Walsh’s program. According to our reading of Walsh’s Matlab code
there are five differences between his solution and our treatment of his model as explained
in the previous paragraphs.21

First, consider the idiosyncratic shock a (we drop the indices it for convenience) in the
production function (A.1). Following den Haan et al. (2000), we assume that a is log-
normally distributed with mean µa = 0 and standard deviation σa. Walsh (2005), p. 834,
assumes E(a) = 1. Since, for a log-normally distributed variable22

E(a) = eµa+0.5σ2
a

Walsh had to set µa = −0.5σ2
a. Yet, in his Matlab code he puts µa = −0.5σa. Note,

however, that this choice of µa has no impact on the elasticities εF,a and εG,a that appear
in the log-linear equations. In our program we use the analytical expressions to compute
both elasticities, which are given by

εF,a =
af(a)

F (a)
, (A.16a)

εG,a =
a2f(a)

G(a)
, (A.16b)

whereas Walsh computes the derivative of F (a) and G(a) from 100(F (1.01a) − 1) and
100(G(1.01a) − 1), respectively, i.e., he uses the slope of the secant to approximate the
derivative. Therefore, his elasticities differ from ours.23

Second, equations (A.9)-(A.11) show that the parameters ρx, ρn, κf , and κw imply unique
values for N , V , and U . Walsh (2005), Table 1, however, sets N = 0.94, which differs

21We would like to thank Carl Walsh for providing us with this MATLAB code.
22See, e.g., Sydsæter, Strøm, and Berck (1999), formula 32.13.
23We get εF,a = 17.04 and εG,a = −0.49. Walsh’s numbers are εF,a = 18.18 and εG,a = −0.50.
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slightly from the value N = 0.9375 implied by his choice of ρx = 0.068, ρn = 0.03433,
κf = 0.7, and κw = 0.6.

Third, instead of using the function G(a), Walsh’s log-linear model builds on the function

J(a) :=
G(a)

1 − ρn
=

G(a)

1 − F (a)
.

Therefore, his analog to our equation (A.7c) reads

Yt = (1 − ρx)(1 − ρn
t )ZtNtJ(at). (A.17)

Forth, using J(at+1) in our equation (A.7m) yields:

qt = βEt

{
λt+1

λt
(1 − ρx)(1 − ρn

t+1)(1 − ηκw
t )gt+1Zt+1

[
J(at+1) − at+1

]}
,

= βEt

{
λt+1

λt

(1 − ρx)(1 − ρn
t+1)(1 − ηκw

t )
[
gt+1Zt+1J(at+1) + qt+1 − l − b

]}
, (A.18)

where the last line follows from at+1gt+1Zt+1 = l + b − qt+1 (see equation (A.3)). Walsh’s
Euler equation – derived from his equations (7) and (8) – differs from (A.18) slightly since
he defines qt = vt − wu

t whereas we used the definition given in (A.3) to eliminate b from
(A.5). Since Walsh (2005), footnote 11, sets b = 0, this difference disappears.

Log-linearizing equations (A.17) and (A.18) yields:

Ŷt − εJ,aât +
ρn

1 − ρn
ρ̂n

t = N̂t + Ẑt, (A.19)

Etλ̂t+1 − λ̂t + ξ1Etq̂t+1 − q̂t = −ξ2ĝt+1 − ξ2Ẑt+1 − ξ2εJ,aEtât+1 (A.20)

+
ρn

1 − ρn
Etρ̂

n
t+1 +

ηκw

1 − ηκw
κ̂w

t ,

ξ1 = β(1 − ρx)(1 − ρn)(1 − ηκw),

ξ2 = ξ1
gJ(a)

q
,

where the elasticity of the function J(a) is related to the elasticity of the function G(a)
according to

εJ,a = εG,a +
af(a)

1 − F (a)
. (A.21)

It is easy to show that this definition, the relation between ρ̂n
t and ât given in equation

(A.13a), and equation (A.13b) imply that equations (A.19) and (A.20) reduce to our equa-
tions (A.13c) and (A.14c), respectively. However, instead of using εJ,a in his Matlab code,
Walsh uses εG,a.
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Fifth, Walsh (2005) employs the Matlab code of Uhlig (1999) to compute the linear approx-
imations of the model’s solution and to obtain second moments. Uhlig uses a frequency
domain technique, whereas we rely on simulations of the model in oder to take care of the
small sample properties of both the actual time series and their artificial counterparts. To
obtain Walsh’s result of σY = 1.65 we had to use time series with 300 data points.

Table A.1 helps to trace the source of the differences between the results of Table 2 of
Walsh (2005) and our solution of Walsh’s model.24 The differences in the parameterization
(though inconsistent with respect to the choice of N) and the differences in the log-linear
structure induce only small differences. What makes Walsh’s model to perform rather well
vis-a-vis the empirical relative standard deviations is the fact that he employs the elasticity
of the function G(a) instead of the elasticity of J(a).

Table A.1:
Standard deviations from different versions of Gauss code

Variable Standard deviations: σx/σY

US data I II III IV V
Output σY =1.60 σY =1.25 σY =1.25 σY =1.25 σY =1.27 σY =1.65
Employment 0.62 0.90 0.89 0.89 0.89 0.69
Job creation rate 2.89 7.84 8.11 8.02 7.85 3.86
Job destruction rate 4.26 13.69 13.80 13.62 13.40 4.23
Inflation 0.35 0.47 0.47 0.47 0.47 0.42
Notes:

Standard deviations are averages from 300 simulations. The length of the time series
in each simulation is 300. All simulated data are HP-filtered with weight λ = 1, 600.
The same set of random numbers was employed to compute the figures in columns I-V.
I: our code with our parameterization.
II: our code but with Walsh’s choice of µa, N , εF,a and εG,a.
III: II and equation (A.13b) replaced by equation (A.19).
IV: III and equation (A.14c) replaced by equation (A.20).
V: IV but εJ,a replaced by εG,a, this is Walsh’s code.

The model with Walsh’s utility function. Assume that instead of C the argument
of the utility function u is given by

C̃h = Ch + (1 − ζ)b− ζl,

where ζ = 1 if household h ∈ [0, 1] is employed and ζ = 0 if the household is without a
job. Aggregating this equation over [0, 1] delivers

C̃t = Ct + bUt − l(1 − Ut), (A.22)

24You can download our code from
http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/pap/hm lms gauss.zip
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since all household choose the same level of consumption, irrespective of whether they
are employed or jobless. Walsh (2005) assumes b = 0 so that the steady state version of
equation (12) pins down

l = q + ga,

and

C̃ = C − (1 − U)l.

Equation (A.22) can be used to substitute for Ĉt in the log-linear equation (A.13h), yielding

Ŷt − (γV/Y )V̂t + (Ul/Y )Ût = (C̃/Y ) ˆ̃Ct.

Replacing Ĉi by ˆ̃Ci, i ∈ {t − 1, t, t + 1}, in the dynamic equation (A.14a) completes this
model. All other equations are not affected.

If we simulate this model using the same parameters that underlie the results displayed in
column I of Table A.1 we get a standard deviation of output of σY = 24.87, which indicates
that this version of the model behaves quite different from the versions that use the utility
function given in equation (27).

9 Appendix B: the log-linear model

In this appendix we derive the log-linear version of our model presented in the body of the
paper.

Equilibrium conditions. The equilibrium conditions of the model consist of two parts.
There are 13 contemporaneous equations: (14), (12), (34), (35), (24). (18), (19), (15),
(36), (31e), (31b), (25), and (26). We restate these for the readers’ convenience:

F (at) = ρn
t =

∫ at

0

f(a)da, (B.1a)

l + b = qt + (1 − α) (gtatZt)
1/(1−α)

(
α

rt

)α/(1−α)

, (B.1b)

utK̄t = (1 − ρx)NtH(at)

(
αgtZt

rt

)1/(1−α)

, (B.1c)

Yt = Zt

[
(1 − ρx)NtH(at)

]1−α (
utK̄t

)α
, (B.1d)

qt =
γ(1 − ηκw

t )

(1 − η)κf
t

, (B.1e)
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κf
t =

Mt

Vt
= ψ(Vt/Ut)

−χ, (B.1f)

κw
t =

Mt

Ut
= ψ(Vt/Ut)

1−χ, (B.1g)

Ut = 1 − (1 − ρx)(1 − ρn
t )Nt, (B.1h)

It = Yt − γVt − Ct − ι(ut)K̄t, (B.1i)

ξt =
1

Φ′(It/K̄t)
, (B.1j)

ι′(ut) = rt, (B.1k)

jdrt = ρt − κf
t ρ

x = (1 − ρx)ρn
t + ρx(1 − κf

t ), (B.1l)

jcrt =
κf

t (Vt − ρxNt)

Nt

. (B.1m)

Note, that we have substituted vt −wu
t = qt − b in (12) to obtain (B.1b) and utK̄t = Kt in

(34) to get (B.1c). The second part comprises the 7 dynamic equations (31a), (31c), (31f),
(30), (16), (23), and (32):

λt = (Ct − hCt−1)
−σ − βhEt(Ct+1 − hCt)

−σ, (B.2a)

λt = βEtλt+1
Rt+1

πt+1

, (B.2b)

ξt = βEt
λt+1

λt

{
rt+1ut+1 − ι(ut+1) −

It+1

K̄t+1

+ ξt+1

[
1 − δ + Φ(It+1/K̄t+1)

]}
, (B.2c)

K̄t+1 = Φ

(
It
K̄t

)
K̄t + (1 − δ)K̄t, (B.2d)

Nt+1 = (1 − ρx)(1 − ρn
t )Nt + ψUχ

t V
1−χ
t , (B.2e)

qt = βEt

{
λt+1

λt
(1 − ρx)(1 − ηκw

t )(1 − α)

(
α

rt+1

)α/(1−α)

(gt+1Zt+1)
1/(1−α) (B.2f)

×
[
H(at+1) − (1 − ρn

t+1)a
1/(1−α)
t+1

]}
,

Rt+1 = π̄(1−ρR)(1−φπ)β−(1−ρR)RρR

t π
φπ(1−ρR)
t eφt , φt ∼ N(0, σφ). (B.2g)

Note that equation (B.2f) derives from equations (23) and (13).

The steady state. Consider the model without a technology and an interest rate shock
so that Zt = 1 and φt = 0 for all t. The steady state of this deterministic model can
be derived from (B.1) and (B.2) by dropping all time indices and by solving the ensuing
equations for the variables of interest.
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Given ρn and σa we can solve

ρn =

∫ a

0

f(a)da =

∫ a

0

1

aσa

√
2π
e−0.5(ln a/σa)2da,

for a as explained in the body of the paper. This allows us to compute

H(a) =

∫ ∞

a

a1/(1−α) 1

aσa

√
2π
e−0.5(ln a/σa)2da,

numerically.

Our assumptions with respect to ι(u) and Φ(I/K̄) imply

ι(u = 1) = 0,

ι′(u = 1) = r,

Φ(I/K̄) = δ,

Φ′(I/K̄) = 1.

Equation (B.2c), thus, reduces to:

r =
1 − β(1 − δ)

β
.

Given the solution for r, we can use equation (B.2f) to obtain

q = β(1 − ρx)(1 − ηκw)(1 − α)
(α
r

)α/(1−α)

g1/(1−α)
(
H(a) − (1 − ρn)a1/(1−α)

)
,

where g = (θ − 1)/θ. Equation (B.1b) thus implies

b+ l = q + (1 − α) (ga)1/(1−α)
(α
r

)α/(1−α)

.

In the steady state equations (B.1f) and (B.1g) imply

V

U
=
κw

κf
.

Equations (B.2e) and (B.1g) yield

U

N
=

1 − (1 − ρx)(1 − ρn)

κw
.

Given this, we can solve equation (B.1h) for N :

N =

[
U

N
+ (1 − ρx)(1 − ρn)

]−1

.
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From this solution and the previous equations we obtain U = (U/N)N and V = (V/U)U .
Equation (B.1e) can be used to infer γ:

γ =
q(1 − η)κf

1 − ηκw
.

Since u = 1, we get

K̄ = (1 − ρx)NH(a)
(αg
r

)1/(1−α)

from equation (B.1c) so that we are able to solve for Y from (B.1d):

Y = ((1 − ρx)NH(a))1−α K̄α.

The budget constraint (B.1i), thus, implies

C = Y − δK̄ − γV.

The log-linearized system. The system of equations (B.1), log-linearized at the sta-
tionary solution, is:

ρ̂n
t − εF,aât = 0, (B.3a)

Γ1r̂t − Γ2ât = −q̂t + Γ2ĝt + Γ2Ẑt, (B.3b)

εH,aât −
1

1 − α
r̂t − ût = ˆ̄Kt − N̂t −

1

1 − α
ĝt −

1

1 − α
Ẑt, (B.3c)

(α− 1)εH,aât + Ŷt − αût = α ˆ̄Kt + (1 − α)N̂t + Ẑt, (B.3d)

κ̂f
t +

ηκw

1 − ηκw
κ̂w

t = −q̂t, (B.3e)

κ̂f
t + χV̂t − χÛt = 0, (B.3f)

κ̂w
t + (χ− 1)V̂t + (1 − χ)Ût = 0, (B.3g)

(U/N)Ût − (1 − ρx)ρnρ̂n
t = −(1 − ρx)(1 − ρn)N̂t, (B.3h)

Ît − (Y/I)Ŷt + (cV/I)V̂t + (r/δ)ût = −(C/I)Ĉt, (B.3i)

σΦÎt − ξ̂t = σΦ
ˆ̄Kt, (B.3j)

σιût − r̂t = 0, (B.3k)

ĵdrt −
(1 − ρx)ρn

jdr
ρ̂n

t +
κfρx

jdr
κ̂f

t = 0, (B.3l)

ĵcrt − κ̂f
t −

V

V − ρxN
V̂t = − V

V − ρxN
N̂t, (B.3m)

Γ1 =
α

1 − α

q − l − b

q
, Γ2 =

Γ1

α
,
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εF,a =
F ′(a)a

F (a)
, εH,a =

H ′(a)a

H(a)
,

σΦ := −φ
′′(δ)δ

φ′(δ)
, σι :=

ι′′(ū)ū

ι′(ū)
,

In (B.3i), we used the steady-state conditions ι(u = 1) = 0, ι′(ū) = r and K̄/I = 1/δ.

Log-linearizing equations (B.2) yields

βhΓ3EtĈt+1 − (1 + βh2)Γ3Ĉt (B.4a)

+ hΓ3Ĉt−1 − λ̂t = 0,

Etλ̂t+1 − λ̂t = −βrEtr̂t+1 − βEtξ̂t+1 + ξ̂t, (B.4b)

ˆ̄Kt+1 + (δ − 1) ˆ̄Kt = δÎt, (B.4c)

N̂t+1 − (1 − ρx)(1 − ρn)N̂t = κw(U/N)Ût + κw(U/N)κ̂w
t (B.4d)

− (1 − ρx)ρnρ̂n
t ,

Etλ̂t+1 +
1

1 − α
Etĝt+1 − λ̂t − q̂t =

α

1 − α
Etr̂t+1 − Γ4Etât+1 − Γ5Etρ̂

n
t+1 (B.4e)

+
ηκw

1 − ηκw
κ̂w

t − 1

1 − α
EtẐt+1,

Etλ̂t+1 + R̂t+1 − Etπ̂t+1 − λ̂t = 0, (B.4f)

R̂t+1 − ρRR̂t − φπ(1 − ρR)π̂t = φt, (B.4g)

Γ3 :=
σ

(1 − βh)(1 − h)
, Γ4 := ∆

[
H(a)εH,a −

1 − ρn

1 − α
a1/(1−α)

]
,

Γ5 := ∆ρna(1/(1−α), ∆ :=
[
H(a) − (1 − ρn)a1/(1−α)

]−1

.

The last equation of our log-linear dynamical system is supplied by the Phillips curve. If
prices are set before the interest rate shock is realized, this equation is given by (7) with
the time index shifted one period into the future:

π̂t+1 −
1

1 + β
π̂t −

β

1 + β
Etπ̂t+2 − Γ6Etĝt+1 = 0, (B.4h)

Γ6 =
(1 − ω)(1 − βω)

(1 + β)ω
.

If prices are set after the interest rate shock is observed, the final equation of our model is
given by (8):

π̂t −
1

1 + β
π̂t−1 −

β

1 + β
Etπ̂t+1 − Γ6ĝt = 0. (B.4i)
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The system of equations (B.3) and (B.4) can be put into the canonical (A.15). In the case
of predetermined prices we define the auxiliary variables

v̂1
t := π̂t+1,

v̂2
t := Ĉt−1

and the vectors

ut :=
[
Ŷt, Ût, V̂t, κ̂

w
t , κ̂

f
t , ρ̂

n
t , ât, r̂t, Ît, ξ̂t, ût, ĵdrt, ĵcrt

]
,

xt :=
[

ˆ̄Kt, N̂t, R̂t, π̂t, v̂
2
t

]
,

λt :=
[
λ̂t, q̂t, v̂

1
t , ĝt, Ĉt

]
,

zt :=
[
Ẑt, φt

]
.

If prices are set after the realization of the interest rate shock, we use

v̂1
t := π̂t−1,

v̂2
t := Ĉt−1

as auxiliary variables and set xt and λt to

xt :=
[

ˆ̄Kt, N̂t, R̂t, v̂
1
t , v̂

2
t

]
,

λt :=
[
λ̂t, q̂t, π̂t, ĝt, Ĉt

]
.

The solution of (A.15) consists in linear policy functions

ut = Luxxt + Luzzt,

λt = Lλxxt + Lλzzt,

xt+1 = Lxxxt + Lxzzt,

which can be used to compute impulse response functions and to simulate the model.25

Determinacy. The well known Taylor principle states that the feed-back parameter of
inflation in the interest rate rule, the parameter φπ in equation (32), must exceed one for
a determinate transition path to the stationary equilibrium to exist. Figure 9 displays the
behavior of the critical root if φπ varies in the interval [0.9, 1.1]. The other parameters of
the model are as presented in Table 1. The root crosses one from below at φπ = 1.

25You can download the Gauss code that implements the solution from
http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/pap/hm lms gauss.zip
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Figure 9: Determinacy

10 Appendix C: the model with technological growth

In this appendix we introduce exogenous economic growth into our model and explain the
way in which impulse responses to a technological shock have to be constructed.

Assumptions. We assume that the level of total factor productivity Zt grows at the
gross rate

zt :=
Zt

Zt−1

and that

ẑt = ln(zt/z) = ρz ẑt−1 + ǫt,
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where ǫt is iid with E(ǫt) = 0 and
√

var (ǫt) = σǫ.

To permit a balanced growth path, along which zt = z > 1 ∀t, we must modify several
equations and introduce new variables that are stationary on that path. As it will become
obvious in a moment, it is convenient to choose Z

1/(1−α)
t−1 as scaling factor (except for the

marginal utility of wealth) and define

X̃t =
Xt

Z
1/(1−α)
t−1

, X ∈ {Y,K,C, I, v, wu, q, s},

λ̃t = λtZ
σ/(1−α)
t−1 .

(C.1)

Consider, first, the surplus of an employment relationship (11). To prevent that the disu-
tility of working becomes asymptotically negligible we index l with the level of total factor
productivity. Using the solution for k(at) from (10), we write:

st = (1 − α) (gtZtat)
1/(1−α)

(
α

rt

)α/(1−α)

− lZ
1/(1−α)
t − wu

t + vt, (C.2)

so that (13) becomes

s̃t = (1 − α)

(
α

rt

)α/(1−α)

gtzt
1/(1−α)

[
a

1/(1−α)
t − a

1/(1−α)
t

]
. (C.3)

Replacing l with lZ
1/(1−α)
t and setting b = 0 transforms equation (B.1b) to:

l = q̃t + (1 − α) (gtat)
1/(1−α)

(
α

rt

)α/(1−α)

. (C.4)

Given the definition of λ̃t the stochastic discount factor in equations (23), (31c), and (31f)
changes to

βz
−σ/(1−α)
t

λ̃t+1

λ̃t

.

and the Euler equation for consumption (31a) becomes

λ̃t =
(
C̃t − hz

−1/(1−α)
t−1 C̃t−1

)−σ

− βhEt

(
z

1/(1−α)
t C̃t+1 − hC̃t

)−σ

. (C.5)

Second, we must also index the costs of posting a vacancy to the level of technological
progress. Therefore we assume

γZ
1/(1−α))
t = βEt

λt+1

λt

{
(1 − η)κf

t (1 − ρx)

∫

at+1

st+1f(a)da

}

so that this equation can be written in stationary variables as:

γ = βEtz
−σ/(1−α)
t

λ̃t+1

λ̃t

{
(1 − η)κf

t (1 − ρx)

∫

at+1

s̃t+1f(a)da

}
. (C.6)
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Equilibrium conditions. Using the definitions in (C.1) and the assumptions made so
far it is easy to see that the equilibrium conditions (B.1) and (B.2) change to:

F (at) = ρn
t =

∫ at

0

f(a)da, (C.7a)

l = q̃t + (1 − α) (gtat)
1/(1−α)

(
α

rt

)α/(1−α)

, (C.7b)

ut
˜̄Kt = (1 − ρx)NtH(at)

(
αgtzt

rt

)1/(1−α)

, (C.7c)

Ỹt = zt

[
(1 − ρx)NtH(at)

]1−α (
ut

˜̄Kt

)α

, (C.7d)

q̃t =
γ(1 − ηκw

t )

(1 − η)κf
t

, (C.7e)

κf
t =

Mt

Vt
= ψ(Vt/Ut)

−χ, (C.7f)

κw
t =

Mt

Ut
= ψ(Vt/Ut)

1−χ, (C.7g)

Ut = 1 − (1 − ρx)(1 − ρn
t )Nt, (C.7h)

Ĩt = Ỹt − γz
1/(1−α)
t Vt − C̃t − ι(ut)

˜̄Kt, (C.7i)

ξt =
1

Φ′
(
It/K̄t

) , (C.7j)

ι′(ut) = rt. (C.7k)

and:

λ̃t =
(
C̃t − hz

−1/(1−α)
t−1 C̃t−1

)−σ

− βhEt

(
z

1/(1−α)
t C̃t+1 − hC̃t

)−σ

, (C.8a)

1 = βEtz
−σ/(1−α)
t

λ̃t+1

λ̃t

Rt+1

πt+1
, (C.8b)

ξt = βEtz
−σ/(1−α)
t

λ̃t+1

λ̃t

{
rt+1ut+1 − ι(ut+1) −

Ĩt+1

˜̄Kt+1

(C.8c)

+ ξt+1

(
1 − δ + Φ

(
Ĩt+1/

˜̄Kt+1

) )}
,

z
1/(1−α)
t

˜̄Kt+1 = Φ
(
Ĩt/

˜̄Kt

)
˜̄Kt + (1 − δ) ˜̄Kt, (C.8d)

Nt+1 = (1 − ρx)(1 − ρn
t )Nt + ψUχ

t V
1−χ
t , (C.8e)

q̃t = βEtz
−σ/(1−α)
t

λ̃t+1

λ̃t

{
(1 − ρx)(1 − ηκw

t )(1 − α)

(
α

rt+1

)α/(1−α)

(C.8f)
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× (gt+1zt+1)
1/(1−α)

(
H(at+1) − (1 − ρn

t+1)a
1/(1−α)
t+1

)}
,

Rt+1 = π̄(1−ρR)(1−φπ)β−(1−ρR)RρR

t π
φπ(1−ρR)
t eφt , φt ∼ N(0, σφ). (C.8g)

The steady state. Consider the transition equation for capital (C.8e). A stationary

solution in a deterministic environment requires ˜̄Kt+1 = ˜̄Kt for all t. This implies

φ(Ĩ/ ˜̄K) = z1/(1−α) − 1 + δ

and

Ĩ
˜̄K

= z1/(1−α) − 1 + δ, (C.9)

where z denotes the constant average growth rate of technological progress. The Euler
equation for capital accumulation (C.8c) implies the stationary real rate of interest:

r = β−1zσ/(1−α) + δ − 1.

Given r we can solve the stationary version of equation (C.8f) for q̃:

q̃ = βz−σ/(1−α)(1 − ρx)(1 − κw)(1 − α)
(α
r

)α/(1−α)

(gz)1/(1−α)
(
H(a) − (1 − ρx)a1/(1−α)

)
.

Since the equations that determine N , U , V , and M have not changed, there is no need to
recompute the stationary values of these variables. The stationary stock of capital derives
from (C.7c) for u = 1:

˜̄K = (1 − ρx)NH(a)
(αgz

r

)1/(1−α)

.

Equation (C.9), thus, implies the solution for the scaled level of investment:

Ĩ =
(
z1/(1−α) − 1 + δ

) ˜̄K.

Output follows from equation (C.7d)

Ỹ = z [(1 − ρx)NH(a)]1−α ˜̄Kα,

and consumption from the economy’s resource constraint (C.7i):

C̃ = Ỹ − γz1/(1−α)V − Ĩ .
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The log-linearized system. The system of equations (C.7), log-linearized at the sta-
tionary solution, is:

ρ̂n
t − εF,aât = 0, (C.10a)

Γ1r̂t − Γ2ât = −ˆ̃qt + Γ2ĝt, (C.10b)

εH,aât −
1

1 − α
r̂t − ût =

ˆ̄̃
Kt − N̂t −

1

1 − α
ĝt −

1

1 − α
ẑt, (C.10c)

(α− 1)εH,aât + ˆ̃Yt − αût = α
ˆ̄̃
Kt + (1 − α)N̂t + ẑt, (C.10d)

κ̂f
t +

ηκw

1 − ηκw
κ̂w

t = −q̂t, (C.10e)

κ̂f
t + χV̂t − χÛt = 0, (C.10f)

κ̂w
t + (χ− 1)V̂t + (1 − χ)Ût = 0, (C.10g)

(U/N)Ût − (1 − ρx)ρnρ̂n
t = −(1 − ρx)(1 − ρn)N̂t, (C.10h)

ˆ̃It −
Ỹ

Ĩ

ˆ̃Yt + cz1/(1−α)V

Ĩ
V̂t + r( ˜̄K/Ĩ)ût = −C̃

Ĩ

ˆ̃Ct −
γz1/(1−α)

1 − α

V

Ĩ
ẑt, (C.10i)

σΦ
ˆ̃It − ξ̂t = σΦ

ˆ̄̃
Kt, (C.10j)

σιût − r̂t = 0, (C.10k)

Γ1 =
α

1 − α

q̃ − l

q̃
, Γ2 =

Γ1

α
,

εF,a =
F ′(a)a

F (a)
, εH,a =

H ′(a)a

H(a)
,

σΦ := −φ
′′(δ)δ

φ′(δ)
, σι :=

ι′′(ū)ū

ι′(ū)
.

Log-linearizing equations (C.8) yields

βhz−σ/(1−α)Γ3Et
ˆ̃Ct+1 (C.11a)

−
(
1 + βh2z−(1+σ)/(1−α)

)
Γ3

ˆ̃Ct

+ hz−1/(1−α)Γ3
ˆ̃Ct−1 − ˆ̃

λt =
hz−1/(1−α)

1 − α
Γ3ẑt−1 −

βhz−σ/(1−α)

1 − α
Γ3ẑt,

Et
ˆ̃λt+1 − ˆ̃λt = −βrz−σ/(1−α)Etr̂t+1 (C.11b)

− βz−σ/(1−α)Etξ̂t+1 + ξ̂t +
σ

1 − α
ẑt,

z1/(1−α) ˆ̄̃
Kt+1 + (δ − 1)

ˆ̄̃
Kt =

Ĩ
˜̄K

ˆ̃It, (C.11c)

N̂t+1 − (1 − ρx)(1 − ρn)N̂t = κw(U/N)Ût + κw(U/N)κ̂w
t (C.11d)

− (1 − ρx)ρnρ̂n
t ,
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Et
ˆ̃
λt+1 +

1

1 − α
Etĝt+1 − ˆ̃

λt − ˆ̃qt =
α

1 − α
Etr̂t+1 − Γ4Etât+1 (C.11e)

− Γ5Etρ̂
n
t+1 +

ηκw

1 − ηκw
κ̂w

t

− 1

1 − α
Etẑt+1 +

σ

1 − α
ẑt,

Et
ˆ̃
λt+1 + R̂t+1 − Etπ̂t+1 − ˆ̃

λt =
σ

1 − α
ẑt, (C.11f)

R̂t+1 − ρRR̂t − φπ(1 − ρR)π̂t = φt, (C.11g)

π̂t+1 −
1

1 + β
π̂t −

β

1 + β
Etπ̂t+2 − ΓEtĝt+1 = 0, (C.11h)

Γ =
(1 − ω)(1 − βω)

(1 + β)ω
,

Γ3 :=
σ

(1 − βhz−σ/(1−α))(1 − hz−1/(1−α))
,Γ4 := ∆

[
H(a)εH,a −

1 − ρn

1 − α
a1/(1−α)

]
,

Γ5 := ∆ρna1/(1−α), ∆ :=
[
H(a) − (1 − ρn)a1/(1−α)

]−1

.

To map this system into the canonical form (A.15) we define the auxiliary variables

v̂1
t := π̂t+1,

v̂2
t := ˆ̃Ct−1,

v̂3
t := ẑt−1

and the vectors

ut :=
[
ˆ̃Yt, Ût, V̂t, κ̂

w
t , κ̂

f
t , ρ̂

n
t , ât, r̂t,

ˆ̃It, ξ̂t, ût

]
,

xt :=

[
ˆ̄̃
Kt, N̂t, R̂t, π̂t, v̂

2
t , v̂

3
t

]
,

λt :=
[
ˆ̃λt, ˆ̃qt, v̂

1
t , ĝt,

ˆ̃Ct

]
,

zt := [ẑt, φt] .

In the case when prices are set after the monetary shock has been observed, i.e., with the
Phillips curve (8) instead of equation (C.11e), we use

v̂1
t := π̂t−1,

v̂2
t := ˆ̃Ct−1,

v̂3
t := ẑt−1

as auxiliary variables and set xt and λt to

xt :=

[
ˆ̃̄
Kt, N̂t, R̂t, v̂

1
t , v̂

2
t , v̂

3
t

]
,

λt :=
[
ˆ̃
λt, ˆ̃qt, π̂t, ĝt,

ˆ̃Ct

]
.
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Impulse response functions. In the model with a growing level of total factor produc-
tivity we define impulse responses as the time path of a variable Xt after a one-time shock
relative to the time path of this variable in the absence of a shock X∗

t .26 Let

Z∗
t = ztZ0

denote the time t value of the level of technical progress if there has been no shocks to
the growth rate of Zt between time t = 0 and t. Furthermore, as before, let X̃ denote the
steady state value of X̃t := Xt/Z

1/(1−α)
t−1 . Then, the path of Xt without a shock is given by

X∗
t = (Z∗

t−1)
1/(1−α)X̃,

and

xt :=
Xt

X∗
t

=
Z

1/(1−α)
t−1 X̃t

(Z∗
t−1)

1/(1−α)X̃

is the path of Xt relative to the unshocked path X∗
t . Since

Zt−1 = zt−1zt−2 . . . z1Z0 = Πt−1
j=1zt−jZ0

and

Z∗
t−1 = zt−1Z0 = Πt−1

j=1zZ0,

the percentage deviation of Xt from X∗
t is approximately equal to

ln(xt) = ln(Xt/X
∗
t ) = (1 − α)

t−1∑

j=1

ln(Zt−j/Z
∗
t−1) + ln(X̃t/X̃),

= (1 − α)
t−1∑

j=1

ẑt−j + ˆ̃Xt.

Calibration and response to a technology shock. We employ the estimates by Altig
et al. (2005) to calibrate the technology shock in this model. The long-run growth factor is
set to z = 1.0045, the autocorrelation parameter to ρz = 0.90, and the standard deviation
of the innovations to σǫ = 0.0007. All other parameters are set to their benchmark values
given in Table 1.

Figure 10 shows that the adverse reaction of output to a positive technology shock is also
present in the extended model.27

26See the technical appendix to Altig et al. (2005), p.53f, available on the web from
http://faculty.wcas.northwestern.edu/~lchrist/research/ACEL/acelweb.htm.

27You can download the Gauss program that computes these responses from
http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/pap/hm lms gauss.zip
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Figure 10: Impulse respones to a productivty shock in the model with stochastic growth

11 Appendix D: estimation of parameters

In this appendix we explain and document the estimation of those parameters of the model
for which no direct evidence is available. These parameters are the habit parameter h, the
degree of price rigidity ω, the elasticity of the function Φ, σΦ, which determines the size of
the adjustment costs of capital, and the elasticity of the function ι, σι, which affects the
costs of adjusting the rate of capital utilization. Our approach parallels Christiano et al.
(2005). First, we identify the response of key variables to an adverse interest rate shock
from an estimated vector autoregressive (VAR) model. Second, we determine the free
parameters so that the weighted squared distance between the impulse responses from the
model and the estimated VAR is minimized. We use the inverse of the estimated variance
of the VAR impulse responses as weights.28

28You can download the Gauss programs that estimate the impulse responses and estimate the model’s
parameters from http://www.wiwi.uni-augsburg.de/vwl/maussner/lehrstuhl/pap/hm lms gauss.zip
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Identification of impulse responses. Consider the following structural vector autore-
gressive model in the k = 6-dimensional vector of variables yt

A0yt = c +

p∑

i=1

Aiyt−i + ǫt. (D.1)

The vector of innovations is identically and independently distributed with E(ǫ) = 0k

and E(ǫtǫt
′) = Ik, and A0 is a lower triangular square matrix. The variables in yt are

(in this order) output, the rate of capacity utilization, consumption, the rate of inflation,
investment, and the federal funds rate. In our model the nominal interest rate at time
t is a predetermined variable. Thus, a shock ǫ6t in the interest rate equation has no
current effect on the other variables. This is the same identification strategy as pursued
by Christiano et al. (2005). Except for the utilization rate (which we take from the data
set from Altig et al. (2005)) we use the data from Christiano et al. (2005). These are
quarterly data from 1964.ii through 1995.ii.29 Output is measured by the log of real GDP.
Real consumption, real investment, and the rate of capacity utilization are also in logs.
Inflation is the difference of the logged price level and the nominal interest rate is the
annualized federal funds rate divided by 100.

The model that we estimate is

yt = B0 +
4∑

i=1

Biyt−i + ut, B0 = A−1
0 , Bi = A−1

0 Ai,ut = A−1
0 ǫt,

so that A−1
0 equals the Cholesky factor C of the covariance matrix of ut. The eigenvalues of

the characteristic equation are all smaller than one in absolute value so that the estimated
VAR is stable. The responses of the variables in yt to a one-time, one-unit shock ǫnt = 0.01
are obtained from

ȳ1 = Ĉe6, e6 = [0, 0, 0, 0, 0, 0.01]′,

ȳ2 = B̂1ȳ1,

ȳ3 = B̂1ȳ2 + B̂2ȳ1,

... =
...,

ȳt =
4∑

i=1

B̂iȳt−i, t = 5, 6, . . . ,

where a hat denotes estimated parameters and where ȳt = yt − y∗, i.e., the deviation of y

from its long-run value y∗ = c/(I −
∑4

i=1Bi).

We compute error bounds for the impulse responses from ± 2 times the estimated standard
errors obtained from a bootstrap procedure: we sample new shocks from the estimated

29We are grateful to the authors for sharing their data with us.
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errors ût and employ the estimated model to compute new artificial observations from
which we obtain new estimates and new impulse responses. We use 1,000 replications.

As it turned out, the estimated impulse responses are insensitive to the ordering of the
variables in positions 2-5 in the vector yt.

Figure D.1 presents the estimated impulse responses, the error bounds, and the impulse
response of our model to an interest rate shock. The parameters are those given in Table
1.

Figure D.1: Estimated and Model Implied Impulse Responses

Parameter choice. Let θ = [ω, h, σΦ, σι]
′ denote the collection of the parameters that

we want to fit to the data. For each collection we solve our model and compute the impulse
responses of output, the rate of capacity utilization, consumption, inflation, and investment
for n periods after an interest rate shock in period t = 1 and store the results in the 5n
vector Ψ(θ). In the vector x we store our estimates of the impulse responses, and the
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5n× 5n diagonal matrix Ω̂ is filled with the corresponding estimated variances. We place
a grid over the four-dimensional parameter space and seek the collection θ that provides
the minimal value of

[
Ψ(θ) − x

]′
Ω̂

[
Ψ(θ) − x

]
. (D.2)

The result of this procedure is presented in Table 3.
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