
Effect of Temporal Aggregation
on Persistence and Integration

Uwe Hassler∗

Goethe University Frankfurt †

First version, July 24, 2009

Abstract

The impulse response function and related persistence measures
are discussed for fractionally integrated processes, where the order
of integration also covers the nonstationary case. Then we obtain a
general result that characterizes the effect of temporal aggregation
in the frequency domain (aliasing) for arbitrary stationary processes.
Temporal aggregation includes here cumulation of flow variables as
well as systematic skip sampling of stock variables. Next, the general
result is applied to fractionally integrated processes. In particular,
it is investigated whether typical assumptions made when analyzing
fractional integration statistically are closed with respect to aggrega-
tion. It turns out that they are closed with respect to cumulating
time series, but not with respect to skip sampling. Finally, we discuss
proposals repairing the shortcoming in case of lack of closedness.
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1 Introduction

The effect of temporal aggregation of economic time series has troubled

econometrician for decades. Early results for autoregressive moving-average

[ARMA] models were obtained by Brewer (1973) and Weiss (1984), and by

Geweke (1978) for stationary dynamic regression models. A treatment of

integrated (of order one) ARIMA models was provided by Wei (1981) and

Stram and Wei (1986), for skip sampling and cumulating, respectively. In

this paper we understand by temporal aggregation both, the systematic skip

sampling of stock variables as well as the cumulation of flow variables. In

particular, skip sampling can be embedded in the more general problem of

missing observations, see Palm and Nijman (1984) for an investigation of

dynamic regression models. In the frequency domain, skip sampling is typi-

cally accompanied by the so-called aliasing effect, which is well known under

discrete-time sampling from a continuous-time process, see e.g. Sims (1971)

and Hansen and Sargent (1983). Moreover, the aspect of temporal aggrega-

tion and forecasting has been addressed by Lütkepohl (1987). The potential

interaction of seasonal integration and integration at frequency zero due to

temporal aggregation was studied by Granger and Siklos (1995), see also

Pons (2006).

The present paper focusses on the effect of time aggregation on the per-

sistence in economic time series and in particular on the properties of a

fractionally integrated time series model. The effect of temporal cumulation

(on inflation persistence) has recently been addressed by Paya, Duarte and

Holden (2007), see also Christiano, Eichenbaum and Marshall (1991) for em-

pirical evidence in the context of the permanent income hypothesis. Cham-

bers (1998) and Hwang (2000) contribute to the theoretical understanding of

fractional integration under temporal aggregation; notice, however, the cor-
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rection in Souza (2005). We add three aspects to this literature: a discussion

of impulse response related persistence measures under fractional integra-

tion, a general characterization of time aggregation in the frequency domain,

and an investigation how assumptions of a fractionally integrated model are

affected under time aggregation.

In greater detail our contributions are the following. First, we discuss how

the order d of fractional integration can be used for measuring persistence

in economic time series. We spell out conditions under which the impulse

response function at lag j turns out to be approximately proportional to

jd−1, and this result continues to hold even in the nonstationary region as

long as d < 1 (Proposition 2.1). We discuss simple impulse response related

measures of persistence and show that they can be approximated in terms of

d alone, irrespective of eventual short memory parameters. Second, we study

the effect of temporal aggregation (cumulating flow variables or systematic

skip sampling stock variables) of an arbitrary stationary process in terms of

spectral densities. The effect of aggregation is investigated and discussed in

the frequency domain (Theorem 3.1 and Corollary 3.2). Third, the theorem

is applied to fractionally integrated processes. In particular, we investigate

whether typical assumptions on fractionally integrated processes, which are

made in the literature to obtain statistical properties, are closed with respect

to aggregation. In other words: If {yt} satisfies a set of assumptions A
(which are sufficient to prove properties of some estimator or test), does

the temporal aggregate fulfill A, too? If not, then we should be worried,

because in most cases we do not know the frequency of the “true” data

generating process (DGP), i.e. our observed data may well be aggregates. If

they do not satisfy A although the disaggregated unobserved process does,

then we lose grounds for reliable inference. It turns out that typical spectral

assumptions made in the semiparametric long memory literature are closed

with respect to cumulating the data. Fourth, it is established that certain

spectral assumptions are not closed with respect to skip sampling fractional

integration. Fifth, we have a simple repair proposal to this shortcoming by

3



linking the topic of skip sampling of long memory to the field of estimation of

long memory from perturbed processes (“long memory plus noise”). In fact,

skip sampling has in the frequency domain the same effect on long memory

as adding noise. Hence, conditions under which certain procedures remain

valid irrespective of skip sampling or not are available.

The rest of the paper is organized as follows. Section 2 discusses the

impulse response function and related persistence measures for fractional in-

tegration. The third section is dedicated to the general aggregation result in

the frequency domain. In Section 4, this result is applied to fractional inte-

gration, and the effects of temporal aggregation on integration are discussed

in some detail. The last section contains concluding remarks. All technical

proofs are relegated to the Appendix.

Finally a word on notation. For sequences aj and bj, let aj ∼ bj denote

aj/bj → 1 as j →∞, while for functions, a(x) ∼ b(x) is short for a(x)/b(x) →
1 as x → 0. Further, a(x) = O(xc) means that a(x) x−c is bounded as x → 0.

2 Persistence and fractional integration

2.1 Impulse response of fractionally integrated pro-
cesses

An essential ingredient to measure persistence of economic time series is the

so-called impulse response function. Assume that the process {yt}, t ∈ Z
with Z denoting the set of all integers, is covariance stationary and given by

yt =
∞∑

j=0

cjεt−j , c0 = 1 ,

∞∑
j=0

c2
j < ∞ . (1)

The series of past innovations {εt} driving {yt} is assumed to be white noise.

If a unit shock occurred j periods ago, then the impulse response (IR) func-

tion cj measures its influence on the present value of yt:

IRj =
∂ yt

∂ εt−j

= cj .
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If the impulse responses cj are absolutely summable, then

CIR :=
∞∑

j=0

cj

as the cumulated impulse response function is a classical measure of persis-

tence, see Campbell and Mankiw (1987). It is directly related to the limiting

version of the variance ratio by Cochrane (1988, eq. (10)), which is propor-

tional to CIR2.

In this section we consider {yt} given by filtering a stationary process

{et}. More precisely, {et} is integrated of order 0, I(0), in that it is stationary

with CIR 6= 0, and a purely stochastic process with absolutely summable

Wold coefficients ρj. In particular, the summability condition is made more

precise in the following assumption, that is satisfied e.g. by all stationary

and invertible autoregressive moving-average (ARMA) processes.

Assumption 1 Let {et}, t ∈ Z, be a linear process,

et =
∞∑

j=0

ρj εt−j ,

where {εt} is white noise with mean 0 and variance σ2, ρ0 = 1, and

ρ(1) =
∞∑

j=0

ρj 6= 0.

The process is assumed to be s-summable in that

∞∑
j=0

js|ρj| < ∞ ,

for some s > 1.

In particular, we study fractionally integrated processes {yt} constructed

from the filter

(1− L)−d =
∞∑

j=0

ψj,dL
j
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where L is the usual lag operator, and

ψj,d =
Γ(j + d)

Γ(j + 1) Γ(d)
=

j − 1 + d

j
ψj−1,d , j ≥ 1 , ψ0,d = 1 , (2)

such that

ψj,d ∼ jd−1

Γ(d)
, j →∞ , d 6= 0,−1,−2, . . . . (3)

Here, Γ(x) denotes the Gamma function with Γ(1) = Γ(2) = 1, Γ(x + 1) =

xΓ(x), which is not defined for x = 0,−1, . . ., but Γ(0)/Γ(0) = 1. For d < 0.5,

ψ2
j,d is summable, and

yt = (1− L)−d et =
∞∑

j=0

ψj,d et−j

=
∞∑

j=0

cj,dεt−j , for − 1 < d < 0.5 , (4)

defines a stationary and invertible1 process, where the impulse response func-

tion is given by convolution,

cj,d =

j∑

k=0

ρk ψj−k,d , (5)

cf. see Granger and Joyeux (1980) or Hosking (1981). There seems to be

a common understanding that cj,d is dominated by ψj,d and inherits a be-

haviour like in (3), such that cj,d ∼ γjd−1 for some constant γ, see Baillie and

Kapetanios (2008) for a recent example of such a view. Of course this holds

only true if the sequence ρk is well-behaved. Proposition 2.1 below states a

sufficient condition on the s-summability in Assumption 1. Poskitt (2007,

eq. (5)) states cj,d ∼ γjd−1 for d < 0.5 without detailed proof. He assumes

absolute summability for the short memory component, which corresponds

1Expanding the fractional differences (1 − L)d =
∑∞

j=0 πjL
j with πj = j−1−d

j πj−1,
the process is invertible as long as it has an AR(∞) representation. For d > −0.5,
π2

j is summable. Assuming ARFIMA processes (where {et} is ARMA), invertibility is
guaranteed, see Hosking (1981). The range of invertibility has recently been extended for
the ARFIMA case to d > −1 by Bondon and Palma (2007), see also Odaki (1993).

6



to s = 0 in Assumption 1. Our proof will require a stronger assumption with

s = 2 (1 − d): The larger d, the more dominant is the decay rate from (3),

and the less restrictive is the required summability condition on {et} from

Assumption 1. Moreover, we will extend our result to d ≥ 0.5.

We want to measure persistence also for nonstationary processes. To that

end we define the I(δ) proceess {zt} as

zt =





t∑
i=1

yi , t = 1, . . . , T if 0.5 ≤ δ < 1.5

yt , t = 0,±1,±2, . . . if δ = d < 0.5
, (6)

with yt = (1 − L)−det given in (4). The process {zt} is hence stationary for

δ = d < 0.5, and it consists of a cumulation of stationary I(d) differences

with d = δ − 1 for 0.5 ≤ δ < 1.5. Such a process is sometimes called

fractionally integrated of “type I”, see Marinucci and Robinson (1999) and

Robinson (2005). In the nonstationary case, the impulse responses are given

as

IRj =
∂zt

∂εt−j

=

j∑

k=0

ck,δ−1 , j = 0, 1, . . . , t− 1 , (7)

with ck,δ−1 given in (5). The approximate behaviour of the impulse response

function is given as γj in Proposition 2.1.

Proposition 2.1 Let {zt} from (6) be integrated of order δ, δ ≤ 1, δ 6=
0,−1, . . ., and {et} is from Assumption 1 with

s =

{
2− 2 δ if δ < 0.5

2− 2 (δ − 1) if 0.5 ≤ δ
.

It then holds (with ρ(1) from Assumption 1)

IRj ∼ γj := γ jδ−1 , γ :=
ρ(1)

Γ(δ)
,

as j → ∞, where IRj is from (5) or (7), depending on whether {zt} is
stationary or not.
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Proof See Appendix.

Remark A The parameter values δ ∈ {0,−1, . . .} deserve special care. They

have been excluded since Γ(0) = Γ(−1) = . . . = ∞, and γ is not well defined,

see also (3). The case δ = 0 means cj,0 = ρj in (4) with ρj from Assumption

1 being absolutely summable. Therefore δ → 0 cannot mean that IRj = cj,0

is proportional to 1/j asymptotically. Nevertheless, those integer cases can

be embedded as limiting cases with the convention Γ(x) ∼ x−1 as x → 0.

Hence, for δ → 0 we find γ → 0, simply meaning that the hyperbolical decay

law jδ−1 does not hold for δ = 0, and similarly for all other negative integers.

The interpretation of the other parameter values is straightforward. For

δ = 1, past shocks have a permanent effect that does not die out, while for

0.5 ≤ δ < 1 we observe nonstationarity with transitory shocks2, γj → 0

as j → ∞. Finally for 0 < δ < 0.5 the impulse responses die out fast

enough to be square-summable resulting in a stationary process, but still

they vanish so slowly that γj is not summable. This case has been called

long memory. Denote the autocovariance function as γ(h) = E(yt yt+h), h =

0, 1, . . .. From Palma (2007, Theorem 3.1) we learn that Proposition 2.1

implies a hyperbolical decay with some constant c,

γ(h) ∼ c h2δ−1 as h →∞ . (8)

Consequently, γ(h) is not summable if δ > 0, which defines long memory.

For δ < 0 the process is stationary with short memory.

Note that it holds for the fractionally integrated process

CIR ≈
J∑

j=0

cj,d →
{

0 , d < 0
∞ , d > 0

, J →∞ .

Consequently, Hauser, Pötscher and Reschenhofer (1999) criticized CIR or

related measures in the presence of fractional integration as being meaning-

less. Instead, we suggest the parameter d itself to measures the degree of

2Such a feature is sometimes called “mean-reversion” although Phillips and Xiao (1999)
argue that this is a misnomer given the nonstationarity of the process.

8



persistence. Proposition 2.1 reconfirms the interpretation of the order of in-

tegration as memory parameter that characterizes the degree of persistence

in the stationary as well as in the nonstationary case up to δ ≤ 1. More

colourful measures of persistence in terms of δ will be discussed next, build-

ing on the fact that the proxy γj to the impulse response function condenses

all parameters of the short memory component {et} in the multiplicative

constant γ. Hence, we find approximate measures depending on the order

of integration δ alone. This has the advantage that it is sufficient to em-

ploy some semiparametric estimation of the order of integration to perform

a persistence analysis.

2.2 Measuring persistence

We continue to consider a potentially nonstationary I(δ) process {zt} like

in Proposition 2.1. Since, the cumulated impulse response function is not

meaningful for δ 6= 0, we suggest as a related measure a half-life indicator. It

simply counts how many periods it takes for a unit shock to be reduced by

50% in absolute value. We define more generally the half-life indicator HLj

counting the number of periods h during which the effect of a unit shock

after j periods displays at least half of the absolute value |IRj| for another

h periods. Given IRj, we hence search h such that

|IRj+h| ≥ |IRj|
2

and |IRj+h+1| < |IRj|
2

or

HLj := max
h∈{0,1,...}

{
h : |IRj+h| ≥ |IRj|

2

}
.

The approximate version thereof becomes in light of Proposition 2.1

hlj := max
h∈{0,1,...}

{
h : |γj+h| ≥ |γj|

2

}
.

It is elementary to verify

hlj =
⌊
j
(
2

1
1−δ − 1

)⌋
, δ < 1 , (9)
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where bxc denotes the integer part of x. For δ > 0 it holds

2
1

1−δ − 1 > 1 .

Consequently, hlj is at least j in case of long memory. This means: if a unit

shock has reduced to e.g. 1/2 after j periods, γj = 1/2, then it takes at least

another j periods to halve it again. Generally, the larger δ > 0, the longer it

takes to reduce from |γj| to |γj|/2. Finally, we learn from (9) that hlj does

not converge with j. This becomes clear when rewriting the definition,

hlj = max
h∈{0,1,...}

{
h :

(
1 +

h

j

)1−δ

≤ 2

}
,

such that h may grow with j. We conclude that the half-life indicator from

(9) is only meaningful for a sufficiently large but finite j.

We close this section with some numerical demonstration. In Figure 1

through 3 we compare the exact impulse response function IRj with the

approximation γj from Proposition 2.1 for weak long memory (d = 0.2),

strong long memory (d = 0.45), and a nonstationary process (d = 0.8) . We

consider ARFI(1,d) processes where et = ρet−1 + εt and observe a very good

approximation for j ≥ 10 as long as the autoregressive parameter is moderate

(not larger than 0.5 in absolute value). Hence we believe that hlj is a useful

approximation to the true half-life. For a real life numerical example we refer

to the investigation of US inflation data by Kumar and Okimoto (2007). With

monthly observations they estimate from 1960 until 1982 d̂ ≈ 0.5, while the

sample after 1982 until 2003 yields only roughly d̂ ≈ 0.25. We computed

corresponding half-life values after one year (j = 12), and also included the

case d = 0.75:

d 0.25 0.5 0.75
hl12 18 36 180

We observe that at the border of (non)stationarity (d = 0.5), it takes 3

years to halve the effect of a shock after one year. An increase from d = 0.25
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Figure 1: Impulse response function for (1− L)dyt = εt

to d = 0.5 doubles the half-life (after one year) from 18 months to 3 years,

which nicely illustrates the effect of the “great moderation”. If inflation was

nonstationary with d = 0.75, then it would take 15 years to reduce the effect

of a shock after one year by 50%.

3 Aggregation in the frequency domain

3.1 Notation and assumptions

Let yt, t = 1, 2, . . . , T , denote some series that is aggregated over p periods.

For simplicity we assume T = pN for some integer N , and the aggregate is
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Figure 2: Impulse response function for (1− ρL)(1− L)dyt = εt

constructed for the new time scale τ = 1, . . . , N . In case of stock variables,

aggregation or systematic sampling means skip sampling where only every

p’th data point is observed,

ẏτ := ypτ , τ = 1, 2, . . . , (10)

where for the rest of the paper p ≥ 2 is a finite integer. Flow variables are

aggregated by cumulating p neighbouring observations that do not overlap

to determine the total flow over p sub-periods,

ỹτ := ypτ + ypτ−1 + . . . + yp(τ−1)+1 (11)

= Sp(L) ypτ , τ = 1, 2, . . . ,
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Figure 3: Impulse response function for (1− ρL)(1− L)dyt = εt

where

Sp(L) := 1 + L + · · ·+ Lp−1

is the moving average filter of order p. The link between the two aggregates

is given by a moving average of order p where observations overlap,

yma
t := Sp(L) yt , (12)

because ỹτ is obtained from skip sampling the moving average, which amounts

to

ẏma
τ = Sp(L) ypτ = ỹτ , τ = 1, 2, . . . .

Sometimes stock variables are aggregated by averaging over p non-overlapping

observations, such that p sub-periods are replaced by the mean of the past p
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values; obviously this is directly connected to cumulation from (11):

yτ :=
ỹτ

p
, τ = 1, 2, . . . . (13)

The main result on the effect of temporal aggregation in the frequency

domain holds for any stationary process {yt} with autocovariances γ(h) =

E(ytyt+h) and spectral density f . For simplicity we assume E(yt) = 0. The

link between the time domain (autocovariances) and the spectral density

f(λ) in the frequency domain is given by Fourier transformation for |λ| ≤ π:

f(λ) =
1

2π

∞∑

h=−∞
γ(h) exp(−i λ h) , i2 = −1 ,

γ(h) =

∫ π

−π

f(λ) exp(i λ h)dλ .

Since f is an even and 2π-periodic function, the definition of the spectral

density can be extended to the whole real range, and we can focus on the

interval [0, π] in the following assumption.

Assumption 2 The process {yt} is covariance stationary with autocovari-
ances γ(h) and a spectral density f(λ) on Π, where Π = [0, π] if f is well
defined on the whole interval, or Π = [0, π] \ {λ0} if f has a pole at some
frequency λ0 ∈ [0, π].

We only require that f is integrable over [0, π], although it does not have

to exist everywhere. In particular, a pole at λ0 = 0 might come from frac-

tional integration with long memory (d > 0). For the fractionally integrated

process {yt} from (6) we know

f(λ) = |1− eiλ|−2dfe(λ) = 4−d

(
sin

λ

2

)−2d

fe(λ)

with fe denoting the spectral density of {et} from Assumption 1. Note that

Assumption 1 implies 0 < fe(0) < ∞. Equivalently (because |1 − eiλ|−2d =

λ−2d(1+ o(1)) fractional integration is characterized through the assumption

f(λ) = λ−2dfe(λ) , d < 0.5 . (14)
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Similarly, we might allow for k poles (having e.g. so-called k-factor Gegen-

bauer processes in mind, see Woodward, Cheng and Gray, 1998).

Under the stronger assumption that the spectral density is “well behaved”

on (0, π], we will be able to establish how the properties of f are inherited

by the spectral densities of the aggregates at frequency zero, see Corollary

3.2 below. This stronger assumption reads as follows.

Assumption 3 The process {yt} from Assumption 2 has a spectral density
f(λ) on Π, which at frequencies 2π j/p, j = 1, . . . , (p−1), is bounded, bounded
away from zero and continuously differentiable with derivative f ′.

3.2 Results and discussion

Let the spectral densities of the aggregates {ẏτ} from (10) and {ỹτ} from

(11) be denoted as ḟ(λ) and f̃(λ), respectively.

Theorem 3.1 Under Assumption 2 is holds for the spectral densities of the
aggregates of {yt}:
a) in case of skip sampling

ḟ(λ) =
1

p

p−1∑
j=0

f

(
λ + 2 π j

p

)
, λ ∈ Π ;

b) in case of cumulating

f̃(λ) =
1

p

p−1∑
j=0

f

(
λ + 2 π j

p

)
φj(λ) , λ ∈ Π ,

where

φj(λ) =
sin2

(
λ
2

+ π j
)

sin2
(

λ
2
+π j

p

) , λ > 0 ,

φ0 (λ) ∼ p2 ,

φj (λ) ∼ λ2

4 sin2
(

π j
p

) , j = 1, . . . , p− 1 ,
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as λ → 0. Further, φj is continuously differentiable with (λ → 0)

φ′j (λ) = O(λ) , j = 0, . . . , p− 1 .

Proof See Appendix.

Remark B The summation over the frequencies λ+2πj
p

, j = 0, 1, . . . , p − 1,

in Theorem 3.1a) corresponds to the well known aliasing effect that occurs

when observing a continuous time process at discrete points in time, see e.g.

Hansen and Sargent (1983), or the discussions in Bloomfield (1976, p.205)

and Priestley (1981, p.224, p.506). The intuition behind aliasing as found

in Theorem 3.1a) runs as follows: Cycles with a length ` or frequency λ

in the original data become cycles of length `/p or frequency p λ upon skip

sampling. Hence, the frequencies λ+2πj
p

in time scale t become λ + 2πj in the

aggregate time τ . Due to periodicity, the frequencies λ+2πj
p

hence all show

up at frequency λ after skip sampling. The cumulated aggregate is subject

to aliasing, too (Theorem 3.1b)), simply because {ỹτ} is constructed from

a moving average through skip sampling. In this case, however, aliasing is

superimposed by the factors φj due to the moving average filter.

3.3 Implications at frequency zero

If the impulse responses cj of {yt} from (1) are absolutely summable, then

f(0) =
1

2π

( ∞∑
j=0

cj

)2

=
1

2π
CIR2 .

Therefore, the spectral density at frequency zero is directly linked to classical

persistence measures as the cumulated impulse response function. Moreover,

the spectral density of a fractionally integrated processes of order d is domi-

nated by d in a neighbourhood of zero, see (14). Therefore, it is of particular

interest how spectral properties of {yt} at frequency zero carry over to the

aggregates.
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Corollary 3.2 If Assumption 2 is replaced by Assumption 3 in Theorem 3.1,
then

ḟ(λ) ∼ 1

p
f

(
λ

p

)
+

1

p

p−1∑
j=1

f

(
2πj

p

)
,

and

f̃(λ) = p f

(
λ

p

)
+ O(λ2) ,

f̃ ′ (λ) = f ′
(

λ

p

)
+ O(λ) ,

as λ → 0.

Proof Obvious from Theorem 3.1 and therefore omitted.

Remark C If f(0) = 0, then ḟ(0) > 0 under the assumptions of Corol-

lary 3.2. Hence, fractional integration of order d < 0 is not closed in the

frequency domain with respect to skip sampling, see (14), which corrects

differing claims made in Chamber (1998) and Hwang (2000). This has been

observed already by Souza (2005): Only if d ≥ 0, the skip sampled aggregate

inherits the spectral properties of the original series at frequency zero. It is

a remarkable result, since fractional processes are known to be self-similar

in that stretching the time scale leaves distributional properties unchanged

upon rescaling the process, see e.g. Mandelbrot and van Ness (1968). In fact,

it holds in the time domain with (8)

E(ẏτ ẏτ+h) = γ(p h) ∼ c(ph)2d−1 , h →∞.

Hence, the hyperbolic decay of the autocovariance is inherited by the skip

sampled process irrespective of the sign of d, while the power law in (14) is

lost for d < 0.

Cumulating has a different effect according to Corollary 3.2. We learn

that persistence measures related to the spectral density at frequency zero
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are inflated by p in case of temporal aggregation of flow variables, while the

slope properties are preserved at the origin.

It is interesting to study a related result for the overlapping moving av-

erage from (12). Its spectral density fma is given in (21) in the Appendix,

from where we learn

fma(λ) ∼ f(λ) p2 as λ → 0 .

Consequently, persistence measured at frequency zero is increased by p2

through averaging. This effect may easily occur in practice when usual dif-

ferences 1 − L of seasonal data are replaced by annual differences 1 − Lp.

Assume as true DGP the integrated process zt = z0 +
∑t

i=1 yi with p obser-

vations per year, where {yt} is stationary. Annual differencing results in a

moving average of the stationary series,

(1− Lp)zt = Sp(L)(1− L)zt = Sp(L)yt = yma
t .

For a time domain discussion of spurious persistence in such surroundings

with an application to seasonal inflation data, see Hassler and Demetrescu

(2005).

Finally, let f stand for the spectral density of {yτ} from (13), where

obviously f = f̃/p2. With Corollary 3.2 one obtains immediately

f(λ) =
1

p
f

(
λ

p

)
+ O(λ2) ,

as λ → 0. Hence, persistence measures related to frequency zero are reduced

by computing non-overlapping averages.

3.4 Nonstationary integration

Similarly as in (6) we want again to allow for nonstationarity where the high

frequency variable {zt} is I(d + 1):

zt = z0 +
t∑

i=1

yi , t = 1, 2, . . . , T , (15)
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with {yt} satisfying the previous assumptions, or (1 − L) zt = yt. Following

Velasco (1999a), one may define a pseudo spectral density of the I(d + 1)

process as

fz(λ) = |1− eiλ|−2fy(λ) , λ > 0 ,

where fy(λ) belongs to {yt}. This is just another way of stating that the

spectral density of ∆zt (with ∆ = 1− L) is fy:

f∆z(λ) = fy(λ) , λ ∈ Π .

Now, what is the effect of aggregating {zt}, where {żτ} and {z̃τ} are con-

structed as in (10) and (11), respectively? This is most easily answered in

terms of differences. To this end, we define the lag operator L that operates

on the aggregate time scale τ , such that L = Lp with L operating on t (see

e.g. Wei (1990, Ch.16)). Results for (1 − L) żτ and (1 − L) z̃τ are readily

available. For the skip sampled aggregate (τ = 1, 2, . . .)

(1− L)żτ = Sp(L) ẏτ = ẏma
τ = ỹτ , (16)

and similarly for flow variables:

(1− L)z̃τ = Sp(L) ỹτ = Sp(L) yma
pτ = ỹma

τ .

Hence, differencing and temporal aggregation are not interchangeable. In-

stead, differencing the aggregates results in moving averaging differences,

which holds true because

(1− L) = (1− Lp) = Sp(L) (1− L) .

4 Aggregation of fractional integration

In this section we apply the previous results to fractionally integrated models

characterized by (14). The case of discrete-time sampling from a continuous-

time long memory process has been covered by Chambers (1996). The effect

of temporal cumulation with p getting large was treated in Man and Tiao

(2006).
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4.1 Assumptions

Chambers (1998) and Souza (2005) assume (4) as data generating process.

If we assume an ARFIMA model ({et} in (4) is ARMA), and if we know p,

then it is straightforward from Theorem 3.1 to write down and maximize the

approximate likelihood function of the aggregate in the frequency domain.

This would amount to a so-called Whittle estimation. We claim that this

approach is not practical in many situations, since we do not know the ”true“

frequency, at which the data are generated, hence we do not know p. E.g.

with monthly observations, p could be 4 (four weeks) or p could be 21 (like

21 week days). Not knowing the ”true“ frequency of the DGP and hence not

knowing p, we are particularly interested in semiparametric methods, relying

on spectral assumptions at frequency zero. At the same time knowledge

about d alone suffices to compute rcj and hlj discussed in Section 2.

Papers on semiparametric inference of long memory typically assume that

the observed process has a spectral density like in (14) where the short mem-

ory component fe is characterized by assumptions A as weak as possible. We

consider typical spectral assumptions next.

Assumption 4 Let A be a set of assumptions for f(λ) = λ−2dfe(λ), d < 0.5,
including

(A0) fe is bounded and bounded away from zero at frequency zero;

(A1) fe has a finite first derivative f ′e in a neighboorhood (0, δ) of zero and

f ′e(λ) = O(λ−1) , λ → 0 ;

(A2) fe has a finite first derivative f ′e at zero.

The first assumption (A0) that fe(0) is bounded and positive is min-

imal in order to identify d from (14). Next, some papers work under the

assumption that f ′e exists in a neighbourhood of zero but may diverge at ap-

propriate rate as getting close to zero, see Assumption (A1). Although put
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slightly differently such an assumption is found in Robinson (1995, Assump-

tion A2) and Shimotsu and Phillips (2005, Assumption 2) when establishing

consistency of the local Whittle (LW) estimator and the so-called exact LW

estimator, respectively3. Other papers assume a stronger degree of smooth-

ness of fe at frequency zero in that they demand the first derivative f ′e(0) to

be zero or at least to be finite4, which is our assumption (A2). Hurvich, Deo

and Brodsky (1998) for instance assume f ′e(0) = 0 when deriving the asymp-

totic mean squared error and limiting distribution of the log-periodogram

regression (LPR) by Geweke and Porter-Hudak (1983), while Andrews and

Guggenberger (2003) discuss properties of a bias-reduced version under a

smoothness assumption requiring f ′e(0) to exist, see also Guggenberger and

Sun (2006).

We wish to investigate which set of assumptions is closed in the following

sense.

Definition 1 A set of assumptions on {yt} is called closed with respect to
temporal aggregation (skip sampling, averaging or cumulating), if {ẏτ}, {yτ}
or {ỹτ}, respectively, satisfy the same set of assumptions for any finite posi-
tive integer p ≥ 2, too.

For practical purposes procedures with properties established under as-

sumptions that are closed with respect to aggregation are desirable, because

in many practical situations the frequency of the “true” DGP is not known.

Let us assume the high frequency process satisfies A justifying a semipara-

metric procedure, then the procedure cannot be safely applied to an aggre-

gate, unless A is closed with respect to temporal aggregation.

4.2 Results

In what follows we work under Assumption 3 that f is positive, finite and

differentiable at 2π/p , . . . , 2π(p−1)/p because aggregation amounts to sum-

3See also the assumption |f ′e(λ)| ≤ c λ−1 for λ > 0 in Moulines and Soulier (1999,
Assumption 2), and similar although slightly weaker in Soulier (2001, Assumption 1).

4Note that et from Assumption 1 satisfies (A2), since in et =
∑∞

j=0 ρjεt−j with abso-
lutely summable MA coefficients implies f ′e(0) = 0.
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ming over those frequencies, see Theorem 3.1. The usual long memory lit-

erature not addressing the aggregation issue does not need Assumption 3.

In case of flow variables with (14), Corollary 3.2 motivates the following

closedness properties.

Proposition 4.1 Let {yt} be a stationary process with spectral density as in
(14) with Assumption 3. It then holds with respect to cumulated sampling of
flow variables:

a) (A0) is closed if and only if d ≥ −1;

b) (A1) is closed if and only if d ≥ −1;

c) (A2) is closed if and only if d ≥ −0.5.

Proof See Appendix.

The proof relies on a decomposition of the spectral density into a part

due to integration and a short memory component ϕ̃,

f̃(λ) = λ−2dϕ̃(λ) .

The latter turns out to be so smooth at the origin that (A0) and (A1) or

even (A2) hold for ϕ̃ as long as they hold for fe; hence these conditions are

closed in the sense of Definition 1 with respect to aggregation of flow variables

wit d ≥ −0.5. In particular, Proposition 4.1a) confirms the finding by Souza

(2005) that the order of fractional integration is maintained under cumulated

aggregation of flow variables (as long as d ≥ −1). Similarly, assumptions

about the spectral slope behaviour are inherited by the aggregate from the

original series, so that usual semiparametric estimators like LPR or LW may

be safely applied. In fact, Ohanissian, Russell and Tsay (2008) proposed a

test on whether there is true long memory (i.e. fractional integration) or not,

that builds on the LPR. It compares differences of estimators obtained from

M different cumulated aggregates with p1 < · · · < pM of a series. Under the

null hypothesis the difference between the estimators from the aggregates
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will vanish. The proof in Ohanissian, Russell and Tsay (2008) heavily relies

on Soulier (2001), whose Assumption 1 (similar to our (A1)) is closed with

respect to cumulated sampling.

In case of averaging stock variables as defined in (13), the spectral density

becomes f = f̃/p2. Hence, the properties of f̃ that establish Proposition 4.1

carry over to f . The next corollary follows immediately without further

proof.

Corollary 4.2 Let {yt} be a stationary process with spectral density as in
(14) with Assumption 3. It then holds with respect to averaging of stock
variables as in (13):

a) (A0) is closed if and only if d ≥ −1;

b) (A1) is closed if and only if d ≥ −1;

c) (A2) is closed if and only if d ≥ −0.5.

The results for skip sampling very much differ from the previous ones. The

reason can be seen from Theorem 3.1a): The effect of the frequencies λ+2πj
p

on ḟ is not negligible in a vicinity of zero. The consequences on fractional

integration are given in the next proposition.

Proposition 4.3 Let {yt} be a stationary process with spectral density as in
(14) with Assumption 3 and (A0). In case of skip sampling it holds that

a) the spectral density is given as

ḟ(λ) = λ−2dϕ̇(λ)

ϕ̇(λ) ∼ γ0 + γ1λ
2d , (17)

as λ → 0 with γ0 = p2d−1 fe (0), 0 < γ1 < ∞;

b) (A0) is closed if and only if d ≥ 0;
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c) (A1) is closed if and only if d ≥ 0;

d) (A2) is not closed for all values of d.

Proof See Appendix.

Remark D Skip sampling preserves Assumption (A1) for d ≥ 0. However,

the short memory component ϕ̇ displays an unbounded derivative at the

origin for all d < 0.5 even if f ′e(0) is finite, and consequently (A2) is never

closed. Sufficient conditions for consistency or limiting normality of some

estimators mentioned before are hence violated under skip sampling. This

is a serious drawback at first glance. However, the behaviour of ϕ̇ at the

origin given in (17) is such that a repair proposal suggests itself, see the next

subsection.

Remark E Proposition 4.3b) deserves separate consideration. With ϕ̇ being

of order λ2d, (A0) is not closed for negative d. For d < 0, we get ḟ(0) = γ1 >

0, and the aggregate ẏτ loses the spectral properties of yt ∼ I(d) with d < 0,

which confirms the point made by Souza (2005) and seen from Corollary 3.2

already, see Remark C. How relevant is this lack of closedness in the frequency

domain in practice? Assume that some variable zt is integrated of order δ

between 0.75 and 1, such that limiting normality of estimators from the LPR

or LW is no longer guaranteed, see Velasco (1999 a,b). Consequently, people

have worked with differences yt = zt−zt−1 in applied papers, where yt is I(d)

with d = δ− 1 < 0. What happens in case of skip sampling? In the unlucky

case where you skip sample the differences yt ∼ I(d) and try to estimate

d from ẏτ , any frequency-domain based estimate d̂ will tend towards zero

even asymptotically because ẏτ is I(0). While this seems worrisome at first

glance, we argue that this is an unlikely case in practice. More typically, one

aggregates the level, żτ . As we know from (16), the differences thereof behave

like ỹτ . Consequently, the order d + 1 of zt can be discovered consistently

from (1− Lp)żτ = ỹτ , see eq. (16).
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4.3 Perturbed fractional integration

Motivated by Remark D after Proposition 4.3, we now briefly review long

memory (0 < d) estimation under perturbed integration.

Let {xt} be fractionally integrated perturbed by some I(0) process {ut},

xt = yt + ut , (18)

where we assume that {ut} is independent of the unobservable process {yt}.
Given {yt} is fractionally integrated with (14) it holds in the frequency do-

main

fx(λ) = λ−2dfe(λ) + fu(λ) = λ−2dϕ(λ)

where the short memory component of the observable {xt} becomes

ϕ(λ) = fe(λ) + fu(λ) λ2d

∼ c0 + c1 λ2d , λ → 0 , (19)

with c0 = fe(0) and c1 = fu(0). For 0 < d, the perturbed process {xt} is

fractionally integrated of order d where the short memory component behaves

like in case of skip sampling, see (17). Therefore, methods taylored to the

estimation of d from {xt} in (18) are candidates for the estimation of d from

skip sampled series. For that reason, a short and informal review of some

related papers is provided.

Most papers dealing with perturbed fractional integration (also called

“long memory plus noise”) are related to the so-called long memory stochastic

volatility model (LMSV) introduced by Breidt, Crato and de Lima (1998)

or the FIEGARCH model by Bollerslev and Mikkelsen (1996), see also the

introductory section by Hurvich, Moulines and Soulier (2005). Such volatility

models assume for return processes {rt} that

log r2
t = µ + yt + εt , (20)

where the perturbation term {εt} is white noise. Deo and Hurvich (2001)

establish consistency and limiting normality of the LPR estimator within an
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LMSV framework. To hold true the number of included harmonic frequencies

(or bandwidth m) has to be bounded by T 4d/(4d+1), which is all the more

problematic the closer d is to zero. The same kind of bound is found by

Sun and Phillips (2003) for the more general model (18) under Gaussianity.

Further, Sun and Phillips (2003) propose a improved nonlinear version of the

LPR estimator that accounts explicitly for the effect of perturbation. Arteche

(2004) studied the model (18) without the assumption of Gaussianity and

found the LW estimator to be consistent and asymptotically normal with

the bandwidth obeying the same restriction as in Deo and Hurvich (2001).

Hurvich and Ray (2003) proposed a modification of the LS estimator adjusted

explicitly for the noise effect of model (20); further refinements are provided

by Hurvich, Moulines and Soulier (2005) in that correlation between yt and

εt is allowed for. Finally, it should be noted that the so-called broadband

log-periodogram regression by Moulines and Soulier (1999) remains valid for

a Gaussian LMSV model, see Iouditsky, Moulines and Soulier (2001).

5 Concluding remarks

Appendix

Proof of Proposition 2.1

The proof considers three cases separately.

1) The stationary case (δ = d < 0.5): The impulse response IRj from (5) is

split into two sums,

IRj = Σ1,j + Σ2,j

=
∑

k≤√j

ρk ψj−k,d +
∑

k>
√

j

ρkψj−k,d .
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For the second sum we obtain due to s-summability with s = 2− 2 d

j1−d |Σ2,j| ≤
∑

k>
√

j

k2−2 d|ρk ψj−k,d|

≤ sup{|ψj−k,d|}
∑

k>
√

j

k2−2 d|ρk| → 0 ,

because
∑

k≥0 k2−2 d|ρk| < ∞. For the first sum one gets with (3) because of

ψj,d ∼ ψj−k,d as k ≤ √
j:

j1−dΣ1,j =
∑

k≤√j

ρk j1−d ψj−k,d →
∞∑

k=0

ρk
1

Γ(d)
.

Hence

j1−dcj,d → ρ(1)

Γ(d)
as j →∞ ,

as required for the stationary case.

2) The nonstationary transitory case (0.5 ≤ δ < 1): Define d = δ − 1, and

note that
∞∑

k=0

ck,d =
∞∑

k=0

ρkz
k (1− z)|d|

∣∣∣∣∣
z=1

= 0 .

Therefore with IRj from (7),

IRj = −
∞∑

k=j+1

ck,d ∼ − ρ(1)

Γ(d)

∞∑

k=j+1

kd−1 ,

where the validity of the approximation has just been established under s =

2 − 2 d. Since kd−1 is monotonically decreasing, it is straightforward to see

that

j−d

∞∑

k=j+1

kd−1 → −1

d
, j →∞ .

This in turn establishes

j1−δIRj → ρ(1)

Γ(d)d
=

ρ(1)

Γ(δ)
,
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as required.

3) The I(1) case (δ = 1): With δ − 1 = 0 one obtains ψk,0 = 0 for k > 0,

and hence ck,0 = ρk, such that from (7)

IRj =

j∑

k=0

ρk → ρ(1)

Γ(1)
,

which completes the proof.

Proof of Theorem 3.1

a) The proof of the first result is similar to the one in Bloomfield (1976,

p.205) for the time continuous case. By symmetry and periodicity we have

γ(h) = 2

∫ π

0

f(λ) cos(λh)dλ =

∫ 2π

0

f(λ) cos(λh)dλ .

Let γ̇(h) denote the autocovariances of ẏτ . Hence, ḟ(λ) can be discovered

from γ̇(h) =
∫ 2π

0
ḟ(λ) cos(λh)dλ. Elementary considerations yield

γ̇(h) = γ(p h) =

∫ 2π

0

f(λ) cos(λ p h)dλ

=

p−1∑
j=0

∫ 2π(j+1)
p

2πj
p

f(λ) cos(λ p h)dλ

=

p−1∑
j=0

∫ 2π

0

1

p
f

(
ω + 2 π j

p

)
cos(ω h + 2 π j h)dω

=

∫ 2π

0

{
p−1∑
j=0

1

p
f

(
ω + 2 π j

p

)}
cos(ω h)dω .

Hence, ḟ in braces has the required shape.

b) Since ỹτ is obtained from skip sampling an overlapping moving average,

we study the effect of a moving average filter first. We express the moving

average in terms of filter polynomials in the lag operator L:

yma
t = Sp(L) yt =

1− Lp

1− L
yt .
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The corresponding spectral density is given as (see e.g. Priestley, 1981, p.268)

fma(λ) =
∣∣Sp

(
eiλ

)∣∣2 f(λ) =
|1− eipλ|2
|1− eiλ|2 f(λ)

=

{
f(λ)

sin2( p λ
2

)

sin2(λ
2
)

, λ ∈ Π \ {0}
f(λ) p2 , λ → 0

. (21)

The spectral density f̃ is now obtained by applying a) to the moving average

spectral density:

f̃(λ) =
1

p

p−1∑
j=0

fma

(
λ + 2 π j

p

)
.

One may now verify that the φj coincide with the so-called Fejer kernel Fp

of order p,

φj(λ) = pFp

(
λ + 2πj

p

)
, (22)

where Fp is constructed from the Dirichlet kernel Dn of order n as follows

(see e.g. Priestley, 1981, p.400)

Dn(x) =
n∑

k=−n

cos(k x)

=
sin ((n + 0.5) x)

sin(x/2)
, x 6= 2mπ ,

Fp(x) =
1

p

p−1∑
n=0

Dn(x) (23)

=
1

p

(
sin

(
p x
2

)

sin
(

x
2

)
)2

, x 6= 2mπ . (24)

Properties of Fp will establish the remaining results. Using

sin

(
λ

2
+ π j

)
∼ λ

2
cos(π j) , λ → 0 , (25)
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for j = 0, 1, . . . , p− 1 it follows

Fp

(
λ

p

)
∼ p ,

Fp

(
λ + 2πj

p

)
∼ λ2

4 p sin2
(

π j
p

) , j = 1, . . . , p− 1 . (26)

From (23) it is obvious that Fp is everywhere continuously differentiable, and

F ′
p (λ/p) = O(λ). Elementary manipulations of (24) establish

F ′
p

(
λ + 2πj

p

)
= O(λ) , j = 1, . . . , p− 1 . (27)

Hence the proof is complete.

Proof of Proposition 4.1

Theorem 3.1b) provides under (14)

f̃(λ) = λ−2dp2d−1fe

(
λ

p

)
φ0(λ) + R(λ)

where with (22)

R(λ) =

p−1∑
j=1

f

(
λ + 2πj

p

)
Fp

(
λ + 2πj

p

)
.

Under Assumption 3 we obtain for R(λ) and its derivative from (26) and

(27)

R(λ) = O(λ2) , R′(λ) = O(λ) , λ → 0 .

Consequently, the spectral density can be decomposed into a part due to

integration and a short memory component ϕ̃, f̃(λ) = λ−2dϕ̃(λ). The latter

is given by

ϕ̃(λ) = p2d−1fe

(
λ

p

)
φ0(λ) + λ2dR(λ) . (28)
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With the derivative R′ it further holds under Assumption 3

ϕ̃′(λ) = p2d−1f ′e

(
λ

p

)
φ0(λ)

p
+ O(λ) + O(λ2d+1) .

If (A0) holds for fe, than ϕ̃ from (28) is finite if and only if d ≥ −1, which

hence proves a). The results b) and c) are verified analogously by studying

the behaviour of ϕ̃′ given f ′e satisfies (A1) or (A2), respectively.

Proof of Proposition 4.3

a) Theorem 3.1 yields

ḟ(λ) =
1

p

[[
λ

p

]−2d

fe

(
λ

p

)
+

p−1∑
j=1

f

(
λ + 2 π j

p

) ]
, (29)

such that

ϕ̇(λ) = p2d−1fe

(
λ

p

)
+

λ2d

p

p−1∑
j=1

f

(
λ + 2 π j

p

)
. (30)

Hence, γ1 becomes

0 < γ1 = p−1

p−1∑
j=1

f

(
2 π j

p

)
< ∞ ,

and the definition of γ0 is obvious. The statement follows from (30) under

Assumption 3.

b) Under Assumption (A0) it follows with Assumption 3 from (17) that

ϕ̇(0) is finite if and only if d ≥ 0; which proves the result.

c) The derivative of ϕ̇ is

ϕ̇′(λ) = p2d−2f ′e

(
λ

p

)
+ 2d γ1λ

2d−1 + O(λ2d) . (31)

Given the derivative of f ′e satisfies Assumption (A1) one obtains:

ϕ̇′(λ) = O(λ−1) + O(λ2d−1) + O(λ2d) = O(λmin(−1,2d−1)) ;

which proves the result.

d) For f ′e satisfying Assumption (A2) we obtain directly from (31) that

ϕ̇′(λ) diverges since d < 0.5. This completes the proof.
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