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1 Introduction

Many economic time series are characterized by an autocorrelation structure which makes
it difficult to classify the series as being either stationary I(0) or non-stationary I(1). A
primary example for such a series are inflation rates. Conventional wisdom then suggests
to employ unit root tests in order to base the econometric analysis either on the level of
such a series or on the first difference. Clearly, the decision whether the series is treated
as being I(0) or I(1) has important implications for the subsequent modeling, hypothesis
testing, forecasting and the like. Besides the observation that many economic time series
are strongly dependent over time, there is the stylized fact that for the same series typically
GARCH effects with highly persistent volatility are found. Moreover, economic theory
often suggests that the level and the second conditional moment of these series should be
interrelated. For example, Cukierman and Meltzer (1986) and Holland (1995) argue that
inflation uncertainty has either a positive or a negative effect on the level of inflation,
while Friedman (1977) and Ball (1992) rationalize an effect of the level of inflation on
its second conditional moment. Against this theoretical background the phenomena of
persistence in the level and in the conditional variance are usually analyzed and treated
independently. For example, standard unit root tests are based either on the assumption
that the variance of the series is constant or that some type of heteroscedasticity is at
place, but ignore the possibility that the volatility has a direct effect on the level.

In this paper we consider an AR(1)-GARCH(1,1)-in-mean-level process, i.e. a model in
which the conditional variance affects the level of the dependent variable and vice versa.
This model has been introduced by Engle et al. (1987) and applied in, e.g., Grier and
Perry (2000). We provide a new interpretation of the model’s properties by arguing that
it has an observationally equivalent representation as an ARMA(2,1) process. The highest
autoregressive root of the AR part will, under reasonable assumptions, be close to and
statistically indistinguishably from one. This means that in empirical applications the
process will appear to be an ARIMA(1,1,1). Most importantly, the largest root of the AR
part is closely linked to the persistence of the conditional variance of the process. Using
a Monte Carlo study, we show that in the presence of volatility spillovers conventional
unit root tests fail to reject the null that the underlying process is I(1). In the presence of
volatility spillovers, the persistence of the conditional variance is transmitted to the level
of the process and procedures which do not distinguish between the different degrees of
persistence in the two moments tend to overestimate the persistence either in the mean
or variance. We illustrate this important point by deriving the autocorrelation function,
the impulse response function and the optimal predictor for the level process.

An empirical application to U.S. inflation data shows that the model accurately ex-
plains the changes in inflation persistence in the mid-1980’s and the accompanying de-
crease in volatility which is commonly referred to as the “Great Moderation”. Our main
result is the observation that the persistence in the level and the conditional variance of
inflation are directly linked and a meaningful analysis has to take into account both prop-
erties jointly. Our findings concur with Stock and Watson (2007) who suggest that the
U.S. rate of price inflation can reasonably well be approximated by an IMA(1,1) process
with a change in both the MA(1) parameter and the variance of the error term in the
mid-1980’s. However, we show that the increase in the MA(1) parameter and the decrease
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in the error variance are ultimately linked and driven by the same sources: a decrease in
inflation persistence and a change in the sign of the effect from inflation uncertainty on
the level of inflation. Both can be attributed to a change in U.S. monetary policy in the
post 1984 era and is line with the predictions made in Clarida and Waldman (2007).

The outline of the paper is as follows. Section 2 presents the model and its properties,
including the autocorrelation structure, measures of persistence and optimal predictors.
In Section 3 the model is applied to U.S. inflation data. Finally, Section 4 concludes. All
proofs are deferred to the appendix.

2 The Model

The AR(1)-GARCH(1,1)-in-mean-level model is given by

(1− φL)yt = ϕ+ ϑh
δ
2
t + εt, (1)

with
εt = eth

1
2
t ,

where δ > 0, {et} is a sequence of independent, identically distributed random variables
with zero mean and unit variance and ht is the conditional variance of yt. The power

transformed conditional variance, h
δ
2
t , is positive with probability one and is a measurable

function of Ft−1, which in turn is the sigma-algebra generated by {yt−1, yt−2, . . .}. We
assume that ht is specified as an APARCH(1, 1)-level (L) process:

(1− βL)h
δ
2
t = ω + αf(εt−1) + γyt−1, (2)

with
f(εt−1) = f(εt) = [|εt| − ςεt]

δ,

where |ς| < 1. By including lagged yt in the conditional variance equation and h
δ
2
t in

the mean equation, we allow for simultaneous feedback between the two variables. The
following conditions are necessary and sufficient for ht > 0, for all t: ω > 0, α, β, γ ≥ 0

and yt ≥ 0 for all t. Hereafter, we will denote E(h
δr
2

t ) = µr. Notice that when δ 6= 0.5, 1, 2
then both µ2/δ and µ1+1/δ are fractional moments and have to be calculated numerically.
In addition, µ1 and µ2 are given below (see proposition 2 below and equation (21) in the
Appendix).

The APARCH(1,1)-L formulation in equation (2) can readily be interpreted as an
ARMA(1,1)-L process for the conditional variance:

(1− cL)h
δ
2
t = ω + αvt−1 + γyt−1, (3)

where c = ακ(1) + β, with κ(r) = E{[f(et)]
r}, and vt = f(εt) − κ(1)h

δ
2
t is an uncorrelated

term with expected value 0 and E(v2
t ) = σ2

v = µ2κ̃ with κ̃ = [κ(2) − (κ(1))2]. Notice also
that E(ε2

t ) = σ2
ε = µ2/δE(e2t ) and E(εtvt) = σεv = µ1+1/δκ with κ = E[etf(et)]. In other

words, the covariance matrix of the two ‘shocks’ εt,vt is given by

Σ =

[
σ2

ε σεv

σεv σ2
v

]
=

[
µ2/δE(e2t ) µ1+1/δκ
µ1+1/δκ µ2κ̃

]
. (4)
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Remark 1 Consider the case where et is standard normal. Then E(e2t ) = 1, and k(r), κ
are given by

κ(r) =
1√
π

[(1− ς)rδ + (1 + ς)rδ]2( rδ
2
−1)Γ(

rδ + 1

2
),

κ = ((1− ς)δ − (1 + ς)δ)2(δ/2)Γ(
δ

2
+ 1).

If in addition δ = 2, γ = 0 and ς = 0 then Σ reduces to

Σ =

[
µ1 0
0 2µ2

]
,

where µ2 is given by equation (23) in the Appendix.

Note, that the parameter c measures the memory or persistence in the conditional
variance. The extreme case in which c = 1 is well known as the integrated GARCH
model (see Engle and Bollerslev, 1986).

The APARCH(1,1) specification can be expressed as an ARMA(2,1) process. In the
model given by expressions (1)-(2), although the conditional variance follows a APARCH(1,1)
formulation, due to the simultaneous feedback, it has a univariate ARMA(2,1) represen-
tation.

Proposition 1 The univariate ARMA(2,1) representation of the process yt and the power

transformed conditional variance h
δ
2
t are given by

(1− a1L− a2L
2)yt = ϕ∗ + (1− cL)εt + ϑαvt−1, (5)

(1− a1L− a2L
2)h

δ
2
t = ω∗ + γεt−1 + (1− φL)αvt−1, (6)

where a1 = φ+ c+ ϑγ, a2 = −φc, ϕ∗ = ϕ(1− c) + ϑω and ω∗ = ω(1− φ) + ϕγ.

Equation (5) shows that the process yt is driven by two shocks, namely shocks to the
mean εt and shocks to the conditional variance vt. The two shocks will be uncorrelated if
ς = 0. Equation (5) can be rewritten as

(1− a1L− a2L
2)yt = ϕ∗ + (1− θL)ηt

where ηt is an uncorrelated error process with mean zero and variance σ2
η. The parameters

θand σ2
η can expressed as

σ2
η =

σ1

−θ
,

θ =
−σ0 ±

√
σ2

0 − 4σ2
1

2σ1

,

where σ0 = (1 + c2)σ2
ε + (ϑα)2σ2

v − 2ϑασεv, and σ1 = −cσ2
ε + ϑασεv. Notica that (i) θ is

real if and only if σ2
0 > 4σ2

1, and (ii) when σ1 ≶ 0, that is ϑασεv ≶ cσ2
ε , then 0 ≶ θ.
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Assumption A1 (Stationarity) The inverse roots λ1 and λ2 of (1 − a1L − a2L
2) lie

inside the unit circle. Moreover, assume that λ1 6= λ2.

Assumption (A1) implies that the ARMA(2,1) process given by equation (5) is covari-
ance stationary. Note that it also implies that a1 + a2 < 1.

Remark 2 For illustrative purposes consider the case that ϑγ = 0. In this situation, the
inverse roots are given by λ1 = φ and λ2 = c. In many empirical applications c is found
to be close to and statistically indistinguishably from one (see, e.g., Engle and Bollerslev,
1986). Hence, this example suggests that the model given by equations (1)-(2) leads to
observations yt which empirically may be easily confused with a process that is integrated
of order one, in particular the ARIMA(1,1,1) given by:

(1− φL)(1− L)yt = ϕ∗ + (1− θL)ηt

Proposition 2 When Assumption (A1) holds the unconditional expectation of h
δ
2
t exists

if ω∗ > 0, and it is given by

µ1 =
ω∗

1− a1 − a2

. (7)

Note that the existence of µ1 guarantees that of µ2/δ only if δ ≥ 1. Similarly the
existence of the second moment µ2 (see below) guarantees that of µ1+1/δ only if δ ≥ 1.

Proposition 3 Let Assumption (A1) hold. Then, equations (5) and (6) admit the Wold
representation

yt = y∗ + ψyε(L)εt + ψyv(L)vt, (8)

h
δ
2
t = µ1 + ψhε(L)εt + ψhv(L)vt, (9)

where y∗ = ϕ∗/(1− a1 − a2), and ψij(L) =
∑∞

k=0 ψ
(k)
ij L

k, i = y, h; j = ε, v and

ψ(0)
yε = 1, ψ(k)

yε =

[
λk

1(λ1 − c)

λ1 − λ2

+
λk

2(λ2 − c)

λ2 − λ1

]
, k ≥ 1,

ψ(0)
yv = 0, ψ(k)

yv = ϑα

(
λk

1

λ1 − λ2

+
λk

2

λ2 − λ1

)
, k ≥ 1,

ψ
(0)
hε = 0, ψ

(k)
hε = γ

(
λk

1

λ1 − λ2

+
λk

2

λ2 − λ1

)
, k ≥ 1,

ψ
(0)
hv = 0, ψ

(1)
hv = α, ψ

(k)
hv = α

[
λk−1

1 (λ1 − φ)

λ1 − λ2

+
λk−1

2 (λ2 − φ)

λ2 − λ1

]
, k ≥ 2.

Remark 3 If σεv = 0 then ψ
(k)
yε and ψ

(k)
yv are the ‘impulse response functions’ of a one

unit mean shock εt or variance shock vt to the process yt. The expression for ψ
(k)
yv shows

that a positive shock to the conditional variance can either imply a positive or a negative
cumulative response, depending on the sign of ϑ. To the contrary, a positive shock to the
mean always implies a positive cumulative response. We now consider the situation where
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ϑγ = 0 and, hence, λ1 = φ and λ2 = c. For this specific example, the above formulas
reduce to:

ψ(k)
yε = φk

ψ(k)
yv = ϑα

(
φk − ck

φ− c

)
for k ≥ 1. This nicely illustrates that the speed with which a mean or conditional variance
shock decays to zero can be different provided that φ < c. The case where σεv 6= 0 will be
treated in Section 2.2.

In the following subsections we will discuss the covariance structure and the optimal
predictors of yt and ht.

2.1 Covariance structure

In order to simplify the description of our analysis we will introduce the following notation:

λ =
1

(1− λ1λ2)(λ1 − λ2)
,

λ(k) = λ

[
λ1+k

1

1− λ2
1

− λ1+k
2

1− λ2
2

]
,

λ(k)
g =

 λ
[

λ1(1+g2−2gλ1)

1−λ2
1

− λ2(1+g2−2gλ2)

1−λ2
2

]
if k = 0,

λ
[

λk
1(λ1−g)(1−λ1g)

1−λ2
1

− λk
2(λ2−g)(1−λ2g)

1−λ2
2

]
if k ≥ 1

, g = φ, c.

Note that λ(0) = (1+λ1λ2)

(1−λ1λ2)(1−λ2
1)(1−λ2

2)
and λ(1) = (λ1+λ2)

(1−λ2
1)(1−λ2

2)
.

Further, for k ≥ 0 and g = φ, c, we define

λ̃(k)
g = λ

[
λ1+k

1 (λ1 − g)

1− λ2
1

− λ1+k
2 (λ2 − g)

1− λ2
2

]
,

λ
(k)

g = λ

[
λ1+k

1 (1− gλ1)

1− λ2
1

− λ1+k
2 (1− gλ2)

1− λ2
2

]
.

Interestingly, if λ1 = φ and λ2 = c, then the above expressions reduce to

λ(k)
g =

(φc/g)k

1− (φc/g)2
, λ̃(k)

g =
(φc/g)1+k

[1− (φc/g)2](1− φc)
, λ

(k)

g =
1

g − φc
g

[
g1+k

1− φc
−

(φc
g
)1+k

1− (φc
g
)2

]
.

Proposition 4 Assume that Σ exists. That is 0 < Σ < ∞.1 Then the autocovariances
of yt, Covk(yt), k ∈ N, are given by

V(yt) = σ2
ελ

(0)
c + σ2

v(ϑα)2λ(0) + 2σεvϑαλ̃
(0)
c , (10)

Covk(yt) = σ2
ελ

(k)
c + σ2

v(ϑα)2λ(k) + σεvϑα(λ̃(k)
c + λ

(k−1)

c ), k ≥ 1. (11)

where all the λ’s have been defined above.

1Matrix inequality sign Σ < ∞ represents element-by-element inequality.

6



Lemma 1 Let λ1 = φ and λ2 = c. In this case we have

V(yt) =
1

1− φ2

{
σ2

ε +
ϑα

1− φc

[
σ2

vϑα(1 + φc)

1− c2
+ 2σεvφ

]}
,

Covk(yt) =
σ2

εφ
k

1− φ2
+ σ2

v(ϑα)2λ(k) +
σεvϑα

(φ− c)(1− φc)

[
φk(1 + φ2 − 2φc)

1− φ2
− ck

]
, k ≥ 1.

Obviously when ϑ = 0, Covk(yt) = σ2
εφk

1−φ2 , k ≥ 0, which are the autocovariances of an

AR(1)-GARCH(1, 1) process.
For the specific case that δ = 2, γ = 0 and ς = 0 we will now graphically illustrate the

behavior of the autocorrelation function given by ρk(yt) = Covk(yt)/V(yt) for k = 1, 2, . . ..
Figures 1, 3 and 5 show the autocorrelations of yt for α = 0.1, β ∈ {0.8, 0.85, 0.9},
ϑ ∈ {0, 0.5, 1, 2} and φ ∈ {0.1, 0.5, 0.9}. Figure 1 clearly shows that even for a very low
value of φ the autocorrelation function of yt can appear quite persistent if the conditional
variance process is sufficiently persistent, i.e. c = α + β is close to one, and there is an
in-mean effect, i.e. ϑ 6= 0. The cases φ = 0.5 and φ = 0.9 in Figures 3/5 illustrate that for
most of the combinations of β and ϑ(6= 0) the almost linearly decaying autocorrelations
would suggest that yt is integrated of order one.

The second order partial autocorrelation of yt, ρ
∗
2(yt), is given by

ρ∗2(yt) =
ρ2(yt)− ρ2

1(yt)

1− ρ2
1(yt)

,

where ρk(yt)is the kth order autocorrelation of yt.
In order to obtain some further insights into the persistence properties of yt, we gen-

erated series yt, t = 1, . . . , T , with T = 500 or T = 1000 according to our AR(1)-
GARCH(1,1)-in-mean model. For simplicity, we set δ = 2, γ = 0 and ς = 0, i.e. we
consider a model with no level effect and no asymmetries. The innovation et was chosen
to be standard normal. We then applied the standard Dickey-Fuller, the Phillips-Perron
and the KPSS test to the yt series. Figures 7 and 8 show the fraction of cases in which the
null hypothesis of each test is not rejected. The results are based on 1000 Monte-Carlo
replications. The acceptance rate of all three tests clearly depends on the absolute value
of the in-mean term ϑ. Both unit root tests tend to accept the null hypothesis of yt being
I(1) with |ϑ| increasing. The results clearly suggest that unit root tests will have low
power against alternatives which allow for in-mean effects in combination with persistent
conditional variances. Similarly, the KPSS does no longer accept the null hypothesis of yt

being I(0) with |ϑ| increasing. That is, the size of the KPSS test is considerably distorted
in the presence of in-mean effects in combination with persistent conditional variances.

In summary, our results on the covariance structure of yt suggest that a process with
persistent conditional variance and in-mean effect may easily be confused with a process
that is integrated of order one in the level.

2.2 Measures of Persistence

The above considerations suggest that conventional measures of persistence might result
in misleading conclusions regarding the persistence of the process yt. The most often
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applied measures are (a) the largest autoregressive root (LAR), which we denote by λ∗ =
max(λ1, λ2) and (b) the sum of the coefficients (SUM) in the autoregressive progress, that
is a1 + a2 (see, e.g., Pivetta and Reis, 2007).2 Obviously, both measures would ignore
the presence of the in-mean effect and, hence, ‘overestimate’ the persistence in the mean
which is partly induced by the persistence in the conditional variance.

We follow Fiorentini and Sentana (1999) who argue that any reasonable measure
of persistence of shocks must be based on the impulse response function (IRF). In the
following we will derive the IRF for the general case where εt and vt are correlated.

Let yt = Ψ(L)εt denote the Wold representation of the vector process yt = (yt, ht)
′,

where Ψ(L) = [ψij(L)]i=y,h;j=ε,v, and εt = (εt, vt)
′ with covariance matrix Σ (see equation

(4)).

Next denote P∞(yt|εt) =
∑∞

k=0

(
ψ

(k)
yε

)2

, P∞(yt|vt) =
∑∞

k=0

(
ψ

(k)
yv

)2

and P∞(yt|
√
εtvt) =∑∞

k=0 ψ
(k)
yε ψ

(k)
yv . Define the lower triangular matrix Σ̃ with diagonal elements σ̃ε = σε,

σ̃v = σv

√
1− ρεv, and off diagonal elemen

√
σ̃εv = σvρεv such that Σ̃Σ̃′ = Σ. That is,

σ2
ε = σ̃2

ε , σ
2
v = σ̃2

v + σ̃εv, j = ε, v, and σεv = σ̃ε

√
σ̃εv. Then, the infinite moving average

representation of yt in terms of the standardized orthogonal innovations ε̃t = Σ̃−1εt is
yt = Ψ̃(L)ε̃t where Ψ̃(L) = Ψ(L)Σ̃ and the covariance matrix of ε̃t is the identity matrix
(see Fiorentini and Sentana, 1999).

We can then define the persistence of a shock to ε̃t = eσvεt−
√eσεvvteσεeσv−eσεv

and ṽt = eσεvt−
√eσεvεteσεeσv−eσεv

on the yt variable as

P∞(yt|ε̃t) =
∑∞

k=0

(
ψ̃(k)

yε

)2

= σ̃2
εP∞(yt|εt) + σ̃εvP∞(yt|vt) + 2σ̃ε

√
σ̃εvP∞(yt|

√
εtvt),

(12)

P∞(yt|ṽt) =
∑∞

k=0

(
ψ̃(k)

yv

)2

= σ̃2
vP∞(yt|vt)

(13)

The algebra of this measure is simple and its interpretation straightforward since

P∞(yt|ε̃t) = V(yt)− P∞(yt|ṽt),

that is, the part of the variance of yt due to ε̃t.

Proposition 5 If 0 < Σ <∞ then P∞(yt|ε̃t) and P∞(yt|ṽt) are given by equations (12)
and (13) respectively where

P∞(yt|εt) = 1 +
1

(λ1 − λ2)2

[
λ2

1(λ1 − c)2

1− λ2
1

+ (14)

λ2
2(λ2 − c)2

1− λ2
2

− 2λ1λ2(λ1 − c)(λ2 − c)

1− λ1λ2

]
,

P∞(yt|vt) =
(ϑα)2(1 + λ1λ2)

(1− λ2
1)(1− λ2

2)(1− λ1λ2)
, (15)

P∞(yt|
√
εtvt) =

ϑα[λ2 − c+ λ1(1− cλ2)]

(1− λ2
1)(1− λ2

2)(1− λ1λ2)
. (16)

2Note that if ϑγ > 0 then a1 + a2 = φ + c(1− φ) + ϑγ > φ + c(1− φ) > φ,c.
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Lemma 2 Interestingly, if λ1 = φ and λ2 = c, then

P∞(yt|εt) =
1

1− φ2
, P∞(yt|vt) =

(ϑα)2(1 + φc)

(1− φ2)(1− c2)(1− φc)
,

P∞(yt|
√
εtvt) =

ϑαφ

(1− φc)(1− φ2)
,

Obviously, in this case the expression for P∞(yt|εt) is the one for the AR(1) process
(see Fiorentini and Sentana, 1999). Further, notice that if ϑ = 0 then P∞(yt|vt) =
P∞(yt|

√
εtvt) = 0. Finally, if φ = 0 then

P∞(yt|εt) = 1, P∞(yt|vt) =
(ϑα)2

1− c2
, P∞(yt|

√
εtvt) = 0.

2.3 Optimal predictors

In this section we provide a formula for the n-step ahead predictor Et(yt+n) of yt given
the information available at time t.

Proposition 6 Under Assumption (A1) the n-step ahead predictor of yt+n is readily seen
to be

Et(yt+n) =
1

λ1 − λ2

{φ̃+ [(λn+1
1 − λn+1

2 )yt − (λn+1
1 λ2 − λn+1

2 λ1)yt−1] +

(λn
1 − λn

2 )(ϑαvt − cεt)},

where

φ̃ = ρ∗
λ1[1− λn

1 (1− λ2)] + λ2[1− λn
2 (1− λ1)]

(1− λ1)(1− λ2)
.

The associated forecast error is given by

yt+n − Et(yt+n) = ϑα
n−2∑
l=0

1

λ1 − λ2

[
λl+1

1 Ll − λl+1
2 Ll

]
vt+n−1 +

{
1 +

1

λ1 − λ2[
λ1(λ1 − c)

n−1∑
l=1

λl−1
1 Ll − λ2(λ2 − c)

n−1∑
l=1

λl−1
2 Ll

]}
εt+n.

If 0 < Σ <∞, then the variance of the forecast error is given by

V[yt+n − Et(yt+n)] = Pn(yt|εt)σ
2
ε + Pn(yt|vt)σ

2
v + 2Pn(yt|

√
εtvt)σεv =

σ̃2
εPn(yt|εt) + σ̃εvPn(yt|vt) + 2σ̃ε

√
σ̃εvPn(yt|

√
εtvt) +

σ̃εvPn(yt|εt) + σ̃2
vPn(yt|vt) + 2σ̃v

√
σ̃εvPn(yt|

√
εtvt)

= Pn(yt|ε̃t) + Pn(yt|ṽt),

9



where

Pn(yt|εt) = P∞(yt|εt)−
1

(λ1 − λ2)2

[
λ

2(n+1)
1 (λ1 − c)2

1− λ2
1

−

λ
2(n+1)
2 (λ2 − c)2

1− λ2
2

− 2(λ1λ2)
n+1(λ1 − c)(λ2 − c)

1− λ1λ2

]
,

Pn(yt|vt) = P∞(yt|vt)−
(ϑα)2

(λ1 − λ2)2

[
λ2n

1

1− λ2
1

− λ2n
2

1− λ2
2

− 2λn
1λ

n
2

1− λ1λ2

]
,

Pn(yt|
√
εtvt) = P∞(yt|

√
εtvt)−

ϑα

(λ1 − λ2)(1− λ1λ2)

[
λn+1

1 (λ1 − c)

1− λ2
1

− λn+1
2 (λ2 − c)

1− λ2
2

]
.

Obviously, for a covariance stationary processes limn→∞ Pn(yt|ε̃t) = P∞(yt|ε̃t) and
limn→∞ Pn(yt|ṽt) = P∞(yt|ṽt). Sometimes it is more interesting to look at the effect of
a shock on a variable n periods after its occurrence (see Fiorentini and Sentana, 1998,

and the references therein). For this purpose, Pn(yt|ε̃t) =
∑n

k=0

(
ψ̃

(yε)
k

)2

can be used

as a measure of the interim persistence of the shock εt. Unlike the P∞(yt|ε̃t), the n-
period measure Pn(yt|ε̃t) can be used and interpreted for nonstationary processes as well
(Fiorentini and Sentana, 1998).

3 Empirical Application

In this section we apply our model to U.S. inflation data. Seasonally adjusted monthly
consumer price index data was obtained from the Federal Reserve Bank of St. Louis for
the period 01/1947 - 12/2008. The CPI inflation rate was calculated as πt = 1200 ×
[ln(Pt)− ln(Pt−1)], where Pt denotes the price level in month t.

Table 1: Summary Statistics, CPI Inflation.

01/1947 - 12/1983 01/1984 - 12/2008
Standard deviation of πt 4.81 3.19

ACF PACF ACF PACF
of ∆πt at lag

1 -0.382 -0.382 -0.187 -0.187
2 -0.087 -0.273 -0.268 -0.314
3 0.020 -0.160 -0.006 -0.150
4 -0.052 -0.172 0.009 -0.135
5 0.018 -0.121 -0.115 -0.229

Table 2 presents the estimation results for the full sample and the two subsamples.
For the full sample, the AR(1)-AGARCH(1,1)-M implies a positive and significant in-
mean term, i.e. more inflation uncertainty leads to higher rates of inflation. The AR(1)

10



coefficient is 0.47 and, as expected, highly significant. The asymmetry term ς is found to
be negative and significant, suggesting that positive inflation shocks create more uncer-
tainty than negative ones of the same size. The parameter values for α and β are rather
typical for inflation data, and the persistence parameter λ2 = c = 0.96 implies strong
persistence in the conditional variance but still ensures the existence of the unconditional
second moment of yt. For the estimated ARMA(2,1) model the AR(1) coefficient is larger
than one and the AR(2) coefficient is negative. Both observations are in line with our
AR(1)-GARCH(1,1)-M specification. Also the two estimated roots λ1 and λ2 from the
ARMA(2,1) model are close to their counterparts from the AR(1)-GARCH(1,1)-M.

Table 2: Model Estimates.

01/1947 - 12/2008 01/1947 - 12/1984 01/1984 - 12/2008
AR(1)-GARCH(1,1)-M ARMA(2,1) AR(1)-GARCH(1,1)-M ARIMA(1,1,1) AR(1)-GARCH(1,1)-M ARIMA(1,1,1)

Mean Equation
const. 2.97

(0.20)
3.26
(0.72)

2.92
(0.42)

−0.01
(0.03)

3.25
(0.24)

−0.01
(0.003)

AR(1) 0.47
(0.04)

1.23
(0.10)

0.43
(0.07)

0.18
(0.10)

0.34
(0.07)

0.32
(0.08)

AR(2) −0.26
(0.09)

MA(1) −0.82
(0.07)

−0.80
(0.06)

−0.99
(0.01)

ϑ 0.05
(0.02)

0.11
(0.03)

−0.06
(0.03)

Variance Equation
ω 0.27

(0.14)
0.31
(0.14)

0.60
(0.30)

α 0.12
(0.05)

0.06
(0.04)

0.27
(0.10)

ς −0.17
(0.09)

−0.55
(0.32)

−0.15
(0.13)

β 0.84
(0.05)

0.88
(0.04)

0.67
(0.10)

AIC 5.014 5.251 5.245 5.415 4.630 4.328
SIC 5.058 5.276 5.311 5.442 4.717 4.370
λ1 0.47 0.96 0.44 1.00 0.34 1.00
λ2 0.96 0.27 0.96 0.18 0.95 0.32

Notes: The numbers in parenthesis are Bollerslev-Wooldrige robust standard errors.

The results from the first subsample are quite similar to the ones from the full sample.
However, we make two interesting observations. First, the in-mean term is considerable
larger and highly significant, implying that the effect of inflation uncertainty on the level
of inflation was stronger in the first subsample. The evidence is in line with . . . . Moreover,
the asymmetry term is more than three times bigger in the first subsample than in the
full sample.

To the contrary, our estimates for the second subsample suggest that the in-mean was
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negative from 1984 onwards, reflecting a change in monetary policy. The asymmetry term
is no longer significant. Most importantly, the value of β is by far smaller than in the
full sample or the first subsample. While in the first subsample the volatility at time t is
almost entirely determined by ht−1 and only to a small fraction by εt, ht−1 looses some of
its importance in the second subsample while εt gains importance.

Considering the corresponding ARIMA(1,1,1) models, the parameter estimates are
line with our AR(1)-GARCH(1,1)-M specification. Interestingly, the MA(1) coefficient is
in absolute value bigger in the second subsample, an observation also made in Stock and
Watson (2007).

4 Conclusions

We discuss the persistence properties of the AR(1)-GARCH(1,1)-in-mean-level model.
This model allows for an in-mean effect as well as a level effect. Both effects are in
line with economic theory which, e.g., suggests that inflation uncertainty should have an
effect on the level of inflation and vice versa. Our main result is that the commonly
observed persistence in the mean/conditional variance of many economic times series
may be a result of a transmission mechanism. If this mechanism is ignored, conventional
procedures for estimating the persistence in the mean/variance may lead to upward biased
estimates. In particular, unit root tests will falsely indicate a unit root and, hence,
suggest the modeling of the differenced series rather than the level series. Our primary
empirical example are inflation rates and we argue that the decrease in both U.S. inflation
persistence and inflation uncertainty from the mid 1980’s onwards can be well explained
by our specification.
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A Appendix

A.1 Correlation Structure of h
δ
2
t and Cross-correlations

Proposition 7 Suppose that Σ exists. Then the autocovariances of h
δ
2
t , Covk(h

δ
2
t ), k ∈ N,

are given by

V(h
δ
2
t ) = σ2

εγ
2λ(0) + σ2

vα
2λ

(0)
φ + 2σεvγαλ̃

(0)
φ , (17)

Covk(h
δ
2
t ) = σ2

εγ
2λ(k) + σ2

vα
2λ

(k)
φ + σεvγα(λ

(k)

φ + λ̃
(k−1)
φ ), k ≥ 1. (18)

Moreover, the autocovariances of f(εt) are given by

V[f(εt)] = V(h
δ
2
t ) + σ2

v ,

Covk[f(εt)] = Covk(h
δ
2
t ) + σ2

vψ
(hv)
k , k ≥ 1.

13



Lemma 3 When λ1 = φ and λ2 = c, we have

V(h
δ
2
t ) =

1

1− c2

{
σ2

vα
2 +

γ

1− φc

[
σ2

εγ(1 + φc)

1− φ2
+ 2σεvαc

]}
,

Covk(h
δ
2
t ) = σ2

εγ
2λ(k) +

σ2
vα

2ck

1− c2
+

σεvγα

(1− φc)(φ− c)

[
φ1+k +

ck(φ− 2c+ φc2)

1− c2

]
.

Further, if γ = 0, then the above expressions reduce to Covk(h
δ
2
t ) = σ2

vα2ck

1−c2
, k ≥ 0, which

are the autocovariances of the APARCH(1, 1) model.

Next, define

λ
(0)
cφ = λ

{
λ1[−c+ (1 + cφ)λ1 − φλ2

1]

(1− λ2
1)

− λ1[−c+ (1 + cφ)λ1 − φλ2
1]

(1− λ2
2)

}
,

λ
(1)
cφ = λ

{
λ2

1[−c+ (1 + cφ)λ−1
1 − φ]

(1− λ2
1)

− λ2
2[−c+ (1 + cφ)λ−1

2 − φ]

(1− λ2
2)

}
,

λ
(k)
cφ = λ

{
λ1+k

1 [−c+ (1 + cφ)λ−1
1 − φλ−2

1 ]

(1− λ2
1)

− λ1+k
2 [−c+ (1 + cφ)λ−1

2 − φλ−2
2 ]

(1− λ2
2)

}
, k ≥ 2.

Interestingly, if λ1 = φ and λ2 = c, then the above expressions reduce to

λ
(0)
cφ =

φ

1− φc
, λ

(1)
cφ =

1

1− φc
, λ

(k)
cφ =

ck

1− φc
.

Proposition 8 If 0 < Σ <∞ then the covariances between yt−k and ht, k ∈ N, are given
by

Cov(yt, h
δ
2
t ) = σ2

εγλ̃
(0)
c + σ2

vϑα
2λ

(0)

φ + σεvα(λ̃
(0)
cφ + γϑλ(0)), (19)

Cov(yt−k, h
δ
2
t ) = σ2

εγλ
(k−1)

c + σ2
vϑα

2λ̃
(k−1)
φ + σεvα(λ̃

(k)
cφ + γϑλ(k)), k ≥ 1. (20)

Lemma 4 Interestingly if λ1 = φ, λ2 = c then

Cov(yt, h
δ
2
t ) =

σ2
εφγ

(1− φc)(1− φ2)
+

σ2
vϑα

2

(1− φc)(1− c2)
+ σεvα

[
φ

1− φc
+ γϑλ(0)

]
,

Cov(yt−1, h
δ
2
t ) =

σ2
εγ

(1− φc)(1− φ2)
+

σ2
vϑα

2c

(1− cφ)(1− c2)
+ σεvα

[
1

1− φc
+ γϑλ(1)

]
.

Further, if γ = σεv = 0, then Cov(yt−k, h
δ
2
t ) = σ2

vϑα2ck

(1−cφ)(1−c2)
.

Next define

ζ1 = E(e2t )γ
2λ(0), ζ2 = κ̃α2λ

(0)
φ , ζ3 = 2kγαλ̃

(0)
φ , ζ = ζ1 + ζ2 + ζ3.
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Proposition 9 Let Assumption (A1) be satisfied and asssume δ > 1. If µ1+1/δ <∞ and
ζ2 < 1 then µ2 exists and it is given by

µ2 =
µ2

1 + µ2/δζ1 + µ1+ 1
δ
ζ3

1− ζ2
. (21)

Moreover, if δ = 1 and ζ < 1, then µ2 exists and it is given by

µ2 =
µ2

1

1− ζ
. (22)

Lemma 5 When γ = ς = 0 and et are normally distributed then equation (21) reduces
to

µ2 =
µ2

1(1− c2)

(1− 3α2 − β2 − 2αβ)
. (23)

A.2 Measures of persistence for h
δ
2
t

Denote P∞(h
δ
2
t |εt) =

∑∞
k=0

(
ψ

(k)
hε

)2

, P∞(h
δ
2
t |vt) =

∑∞
k=0

(
ψ

(k)
hv

)2

and P∞(h
δ
2
t |
√
εtvt) =∑∞

k=0 ψ
(k)
hε ψ

(k)
hv . We can then define the persistence of a shock to ε̃t and ṽt on the h

δ
2
t

variable as

P∞(h
δ
2
t |ε̃t) =

∑∞

k=0

(
ψ̃

(k)
hε

)2

= σ̃2
εP∞(h

δ
2
t |εt) + σ̃εvP∞(h

δ
2
t |vt) + 2σ̃ε

√
σ̃εvP∞(h

δ
2
t |
√
εtvt),

(24)

P∞(h
δ
2
t |ṽt) =

∑∞

k=0

(
ψ̃

(k)
hv

)2

= σ̃εvP∞(h
δ
2
t |εt) + σ̃2

vP∞(h
δ
2
t |vt) + 2σ̃v

√
σ̃εvP∞(h

δ
2
t |
√
εtvt).

(25)

Proposition 10 Assume that Σ exists. Then P∞(h
δ
2
t |ε̃t) and P∞(h

δ
2
t |ṽt) are given by

equations (24) and (25) respectively, where

P∞(h
δ
2
t |εt) =

γ2(1 + λ1λ2)

(1− λ2
1)(1− λ2

2)(1− λ1λ2)
, (26)

P∞(h
δ
2
t |vt) = α2

{
1 +

1

(λ1 − λ2)2

[
λ2

1(λ1 − φ)2

(1− λ2
1)

+ (27)

λ2
2(λ2 − φ)2

(1− λ2
2)

− 2λ1λ2(λ1 − φ)(λ2 − φ)

(1− λ1λ2)

]}
,

P∞(h
δ
2
t |
√
εtvt) = γα[1 +

(λ1 − φ) + λ2(1− φλ1)

(1− λ2
1)(1− λ2

2)(1− λ1λ2)
].

Proof. The desired result is obtained straightforwardly from Proposition 3.
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Lemma 6 Interestingly if λ1 = φ and λ2 = c, then

P∞(ht|εt) =
γ2(1 + φc)

(1− φ2)(1− c2)(1− φc)
, P∞(ht|vt) =

α2

1− c2
,

P∞(ht|
√
εtvt) = γα[1 +

c

(1− φc)(1− c2)
].

Obviously, in this case the expression for P∞(ht|vt) is the one for the GARCH(1, 1) pro-
cess (see Fiorentini and Sentana, 1999). Further, notice that if γ = 0 P∞(ht|εt) =
P∞(ht|

√
εtvt) = 0.
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A.3 Proofs

Proof of Proposition 1. Multiplying equation (1) by (1−cL) and substituting (3) into
equation (1) gives (5). Similarly, multiplying equation (3) by (1 − φL) and substituting
(1) into equation (3) gives (6).
Proof of Proposition 2. Taking expectations from both sides of equation (6) yields
(7).
Proof of Proposition 3. On account of (5) and equation (A.1) in Karanasos (2007),
we obtain equations (8)-(9) by straightforward manipulation.
Proof of Proposition 4. The proof follows from the ARMA representation of yt in
equation (5) and Proposition 2 in Karanasos (2007).
Proof of Proposition 5. The desired result is obtained straightforwardly from Propo-
sition 3.
Proof of Proposition 6. The proof follows from the ARMA representation of yt in
equation (5) and equation (A.10) in Karanasos (2001).

Proof of Proposition 7. The proof follows from the ARMA representation of h
δ
2
t in

equation (6) and Proposition 2 in Karanasos (2007).
Proof of Proposition 8. The proof follows from the ARMA representations of yt and

h
δ
2
t in Lemma 1 and Proposition 3 in Karanasos (2007).

Proof of Proposition 9. From Proposition 7 and the fact that V(h
δ
2
t ) = µ2 − µ1

2,
σ2

ε = µ2/δE(e2t ), σ
2
v = µ2κ̃ and σεv = µ1+ 1

δ
k we obtain

µ2 = µ1
2 + µ2/δζ1 + µ2ζ2 + µ1+ 1

δ
ζ3.

Notice that if δ < 1, both 2/δ and 1+ 1
δ

are greater than 2. When δ ≥ 1 the desired result
is obtained straightforwardly from the above equation.
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A.4 Figures
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Figure 1: ACF of yt for φ = 0.1.

18



ϑ = 0 ϑ = 0.5 ϑ = 1 ϑ = 2

β = 0.8

0 2 4 6 8 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0 2 4 6 8 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0 2 4 6 8 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0 2 4 6 8 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
β = 0.85

0 2 4 6 8 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0 2 4 6 8 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0 2 4 6 8 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0 2 4 6 8 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

β = 0.9

0 2 4 6 8 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0 2 4 6 8 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0 2 4 6 8 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0 2 4 6 8 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Figure 2: PACF of yt for φ = 0.1.
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Figure 3: ACF of yt for φ = 0.5.
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Figure 4: PACF of yt for φ = 0.5.
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Figure 5: ACF of yt for φ = 0.9.
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Figure 6: PACF of yt for φ = 0.9.
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Figure 7: Left: Accepted Nullhypothesis of the DF, PP and KPSS tests (from the left to
the right) for φ = 0.1, 0.5, 0.9 (top down), black: β = 0.8, red: β = 0.85, green: β = 0.9,
T=500
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Figure 8: Left: Accepted Nullhypothesis of the DF, PP and KPSS tests (from the left to
the right) for φ = 0.1, 0.5, 0.9 (top down), black: β = 0.8, red: β = 0.85, green: β = 0.9,
T=1000
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