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Abstract

This paper considers a state space model with integrated latent variables. The
model provides an effective framework to specify, test and extract common
stochastic trends for a set of integrated time series. The model can be readily
estimated by the standard Kalman filter, whose asymptotics are fully developed
in the paper. In particular, we establish the consistency and asymptotic mixed
normality of the maximum likelihood estimator, and therefore, validate the use
of conventional methods of inference for our model. Moreover, we construct a
trace statistic, which can be used to determine the number of common stochastic
trends in a system of integrated time series. It is shown that the limit distribu-
tion of the statistic is standard normal. The test is very simple to implement
in practical applications. Our simulation study shows that it behaves quite well
in finite samples. For an illustration, we apply our methodology to analyze
the common stochastic trend in various default-free interest rates with different
maturities.
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1. Introduction

The Kalman filter is the basic tool used in the standard state space models, which typically
deals with dynamic time series models that involve unobserved variables. The applications of
Kalman filter can be found in many fields including economics and finance. The asymptotic
behavior of maximum likelihood (ML) estimators based on the filter is well known under
regular conditions, i.e., linearity, Gaussianity, and stationarity. If linearity is violated, the
extended Kalman filter is a standard alternative. Moreover, it is well known that the
pseudo-ML estimation performs well when Gaussianity does not hold. To the best of our
knowledge, however, no research has been done to investigate the properties of the filter for
the case that stationarity is violated. Only very recently, Chang, Miller and Park (2007),
which will be referred to as CMP hereafter, pioneered in developing a rigorous asymptotic
theory for the state space models with one integrated latent variable.

Since CMP allows for only one integrated latent factor, it does not provide any test for
the number of distinct latent factors. This would certainly be an important limitation in
practical applications. In many empirical analysis, we see some strong evidence that the
common stochastic trends in systems consisting of multiple integrated time series cannot
be explained by a single factor. The presence of a single common stochastic trend would
imply the presence of as many cointegrating relations as only one net of the number of
integrated time series included in the system. This is highly unlikely, especially when the
underlying system is large and involves many integrated time series, as is often the case
in many practical applications. The reader is referred to, e.g., Kim and Nelson (1999) for
various models used in practice and previous empirical researches.

In this paper, we extend CMP to allow for multiple latent factors, and develop a test
which can be used to formally test for the number of latent factors. Our framework is
completely general, except that we require the latent common factors follow random walks
in a strict sense. Within this general framework, we show that the ML estimators of the
parameters in the model are consistent and asymptotically mixed normal. The standard
inference based on the ML procedure is therefore valid. The convergence rate for the ML
estimators is

√
n as in the standard model. However, we have a faster n rate of convergence

for the coefficient of latent common stochastic trends along the cointegration space. This
is in parallel to the convergence rates in other types of cointegrated models. We also show
that a test based on a trace statistic can be applied in our model to test for the number
of common stochastic trends, and that it has asymptotically normal distribution. The test
appears to be particularly useful for a large system of integrated time series, which shares
a relatively small number of common stochastic trends.

The state space modeling with latent integrated factors provides an alternative way of
analyzing cointegrated systems. It is in contrast with the cointegrating regressions con-
sidered by, for instance, Phillips (1991) and Park (1992), and also closely related to the
error correction formulation used in Johansen (1988, 1991) and Ahn and Reinsel (1990).
They all can be used in modeling a system of cointegrated processes which share common
stochastic trends. The state space model, however, is unique and distinguishes itself from
other competing models in that it may allow for the common stochastic trends to be mod-
eled as pure random walks. As we show in the paper, the state space model with common
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stochastic trends specified as pure random walks is not compatible with a finite order error
correction model (ECM) or vector autoregression (VAR). Therefore, the testing procedure
that are based on a finite order ECM or VAR is not applicable for the state space models
we consider in the paper.

The rest of the paper is organized as follows. In Section 2, we introduce our state space
model and outline the Kalman filtering technique used to estimate the model. Some prelim-
inary results are also included in this section. Section 3 and 4 present the main theoretical
findings. In Section 3, we establish the consistency and asymptotic mixed normality of the
ML estimators. Theories about the determination of number of common stochastic trends
are presented in Section 4. In particular, we introduce and analyze a trace statistic to test
for the number of common stochastic trends in Section 4. Section 5 presents some simulation
results for the finite sample performance of our estimators and test statistic. An empirical
illustration follows in Section 6. Here we use our methodology to investigate a system of
interest rates with different maturities. Section 7 concludes the paper. Mathematical proofs
are given in Appendix.

2. The Model and Preliminary Results

We consider the state space model given by

yt = A0xt + ut

xt = xt−1 + vt (1)

under the following assumptions:

SSM1: (yt) is a p-dimensional observable time series,

SSM2: (xt) is a q-dimensional vector of latent variable,

SSM3: A0 is a p× q matrix of unknown parameters of rank q, where q ≤ p,

SSM4: (ut) and (vt) are p- and q-dimensional independent, identically distributed
(iid) errors that are normal with mean zero and variance Λ0 and identity
matrix Iq, respectively, and independent of each other, and

SSM5: x0 is independent of (ut) and (vt), and assumed to be given.

Our model can be used to extract common stochastic trends in time series (yt). Notice that
latent variable (xt) is defined as a vector of random walks, our model provides a natural
way to decompose a cointegrated time series into a permanent and transitory components.

The parameter A0 and the latent common stochastic trends (xt) are not globally identi-
fied in our model. Obviously, the observable time series (yt) have the same likelihood under
joint transformation

A0 7→ A0H and xt 7→ H ′xt (2)

for any q-dimensional orthogonal matrix H. They are identified only up to the equivalence
class defined by the transformation in (2). However, both of A0 and (xt) are locally iden-
tified. Indeed, we may easily see that, for any q-dimensional orthogonal matrix H, A0H is
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not in the neighborhood of any p× q matrix A0 of rank q defined by the Euclidean or any
equivalent norm in the vector space of p× q matrices. Of course, (xt) is identified locally if
A0 is.

In the subsequent development of our theory, we will not impose any extra restrictions
to globally identify A0 and (xt). This does not seem to be necessary for most potentially
useful applications of our model, for which we would be primarily interested in finding out
the dimension of common stochastic trends and extracting random walks representing them.
All the results in the paper for A0 and (xt) should therefore be interpreted as applying to a
member of the equivalent class given by the transformation in (2). To ease the exposition
of the paper, we first assume that q, i.e., the dimension of (xt) and rank of A0, is known to
explain how to extract (xt) and to develop the asymptotic theory for the ML estimation of
A0. A test for q based on a trace statistic will then be introduced and discussed later.

Throughout the paper, we will mainly look at the simple model given by (1). This
is purely for expositional convenience. Our subsequent results extend trivially to a more
general class of state space models with measurement equation given by

yt = A0xt +
m∑

k=1

Πk4yt−k + ut, (3)

in place of the one in (1). The inclusion of the lagged differences of (yt) in (3) only intro-
duces more parameters associated with the observable stationary components of the model,
and would not affect our asymptotic theory in any important manner. In our subsequent
development of the theory, we will mention explicitly what modifications are needed to ac-
commodate the general model in (3). In all cases, the necessary modifications are obvious
and straightforward.

The model defined in (1) can be estimated by the usual Kalman filter. Let Ft be the
σ-field generated by y1, . . . , yt, and for zt = xt or yt, we denote by zt|s the conditional
expectation of zt given Fs and by Ωt|s and Σt|s the conditional variances of xt and yt given
Fs, respectively. The Kalman filter consists of the prediction and updating steps. For the
prediction step, we utilize the relationships

xt|t−1 = xt−1|t−1,

yt|t−1 = Axt|t−1,

and

Ωt|t−1 = Ωt−1|t−1 + Iq,

Σt|t−1 = AΩt|t−1A
′ + Λ.

On the other hand, the updating step relies on the relationships

xt|t = xt|t−1 + Ωt|t−1A
′Σ−1

t|t−1(yt − yt|t−1),

Ωt|t = Ωt|t−1 − Ωt|t−1A
′Σ−1

t|t−1AΩt|t−1.

The ML estimation method is used in estimating the unknown parameters.
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For many uses of Kalman filter, the primary goal is to calculate a forecast and also the
conditional variance of the observed time series (yt) as a function of previous observations.
However, in the case that the value of the unobserved variable is of interest for its own sake,
smoothing technique is often used, denoted xt|n = E(xt|Fn). The smoothed series (xt|n) is
estimated conditionally on all of the information in the sample - not just the information
up to time t. The following is the key equation for smoothing:

xt|n = xt|t + Ωt|tΩ
−1
t+1|t(xt+1|n − xt+1|t).

This procedure works recursively by starting from t = n − 1. Starting value xn|n together
with series (xt|t), (xt+1|t), (Ωt|t) and (Ωt+1|t) are achieved in the estimation procedure. The
reader is referred to Hamilton (1994) or Kim and Nelson (1999) for more details of this
technique. One thing is clear that smoothing is implemented after the model parameters
are estimated, therefore this procedure has no effect on the parameter estimates.

For any given values of A and Λ, there exist steady state values of Ωt|t−1 and Σt|t−1,
which we denote by Ω and Σ.

Lemma 2.1 The steady state values Ω and Σ exist and are given by

Ω =
1
2
(Iq + (Iq + 4(A′Λ−1A)−1)1/2),

Σ =
1
2
A(Iq + (Iq + 4(A′Λ−1A)−1)1/2)A′ + Λ

for p× q matrix A and p× p matrix Λ.

We will set
Ω0|0 = Ω− Iq (4)

for the rest of the paper, so that Ωt|t−1 takes its steady state value Ω for all t ≥ 1. Of
course, Σt|t−1 also becomes time invariant and takes its steady state value Σ under this
convention.5 The following lemma specifies (xt|t−1) more explicitly as a function of the
observed time series (yt) and the initial value x0. To simplify the exposition, we let y0 = 0.

Lemma 2.2 We have

xt|t−1 = (A′Λ−1A)−1A′Λ−1yt −
t−1∑

k=0

(Iq − Ω−1)k(A′Λ−1A)−1A′Λ−14yt−k + (Iq − Ω−1)t−1x0

for all t ≥ 2.

The result of Lemma 2.2 is given entirely by the prediction and updating steps of Kalman
filter. In particular, it holds even under misspecification of our model in (1).

5Though we do not show explicitly in the paper, (Ωt|t−1) always converges in our experiments to the
steady state value Ω as t increases, regardless of the starting values.
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It follows from Lemma 2.1 that Ω > Iq, and therefore, 0 < Ω−1 < Iq. As a consequence,
we have 0 < Iq − Ω−1 < Iq, and therefore, the magnitude of the term (Iq − Ω−1)t−1x0 is
geometrically declining as t → ∞. It implies that the effect of x0 on xt|t−1 dilutes out as
t →∞, as long as x0 is fixed and finite a.s. Therefore, we may set

x0 = 0 (5)

without affecting our asymptotic results.
Let Ω0 be the value of Ω defined with the true values A0 and Λ0 of A and Λ. If we

denote by x0
t|t−1 the value of xt|t−1 under model (1), we may deduce from Lemma 2.2 and

smoothing technique that

Proposition 2.3 We have

x0
t|t−1 = xt + Ω−1

0

t−1∑

k=1

(Iq − Ω−1
0 )k−1(A′0Λ

−1
0 A0)−1A′0Λ

−1
0 ut−k −

t−1∑

k=0

(Iq − Ω−1
0 )kvt−k

for all t ≥ 2, and

x0
t|n = x0

t|t +
n−t∑

k=1

(Iq − Ω−1
0 )k∆x0

t+k|t+k

for all t ≤ n− 1.

Proposition 2.3 implies in particular that

x0
t|t−1 − xt = Ω−1

0 at−1 − bt−1,

where

at−1 =
t−1∑

k=1

(Iq − Ω−1
0 )k−1(A′0Λ

−1
0 A0)−1A′0Λ

−1
0 ut−k and bt−1 =

t−1∑

k=0

(Iq − Ω−1
0 )kvt−k.

Under the assumption that (ut) and (vt) are iid random sequences, the time series (at) and
(bt) become the stationary first-order VAR processes given by

at = (Iq − Ω−1
0 )at−1 + (A′0Λ

−1
0 A0)−1A′0Λ

−1
0 ut,

bt = (Iq − Ω−1
0 )bt−1 + vt

respectively, since 0 < Iq − Ω−1
0 < Iq.

Clearly, every component of (x0
t|t−1) or (x0

t|n) is cointegrated with the corresponding
component of (xt) with unit cointegrating coefficient. The stochastic trends in (xt) may
therefore be identified and represented by those in (x0

t|t−1) or (x0
t|n). It seems worth noting

that the results in Proposition 2.3 do not rely on the iid assumption of (ut) and (vt). In
particular, our results here imply that we may extract the common stochastic trend in (yt)
using the predicting and smoothing steps of Kalman filter, as long as (ut) and (vt) are
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general stationary processes. Apparently, we need to know the true parameter values to
obtain (x0

t|t−1) or (x0
t|n). The true parameter values are typically unknown and have to be

estimated. In most practical applications, we should therefore use the parameter estimates
to compute (x0

t|t−1) or (x0
t|n). It is rather clear that the estimates of (x0

t|t−1) and (x0
t|n) based

on the estimated parameter values are close to (x0
t|t−1) and (x0

t|n), respectively, if we use the
consistent parameter estimates.

Once we obtain (x0
t|t−1), we may decompose time series (yt) into the permanent and

transitory (PT) components. If we denote them as (yP
t ) and (yT

t ), respectively, they are
given by

yP
t = A0x

0
t|t−1 and yT

t = yt −A0x
0
t|t−1. (6)

The permanent component (yP
t ) is I(1), whereas the transitory component (yT

t ) is I(0).
Note that the permanent component (yP

t ) is predictable, while the transitory component
(yT

t ) is a martingale difference sequence (mds) and unpredictable.
The Kalman filter has exactly the same prediction and updating steps for the measure-

ment equation (3), if we let

yt|t−1 = Axt|t−1 +
m∑

k=1

Πk4yt−k.

in place of yt|t−1 = Axt|t−1. Therefore, it is clear that Lemma 2.1 and Proposition 2.3 hold
for this general model without any modification. Moreover, Lemma 2.2 continues to be
valid if we only replace (yt) with (yt−

∑m
k=1 Πk4yt−k). The theory of Kalman filter for the

general model is thus followed immediately.

3. Asymptotics for Maximum Likelihood Estimation

In this section, we consider the maximum likelihood estimation of our model. In particular,
we establish the consistency and asymptotic Gaussianity of the maximum likelihood esti-
mator under normality. Because the integrated process is involved, the usual asymptotic
theory for ML estimation of state space models given by, for instance, Caines (1988), does
not apply. CMP develops a general asymptotic theory of ML estimation, which allows for
the presence of nonstationary time series. They obtain the asymptotics of ML estimators
of the parameters in their model, where the number of latent variable is restricted to one.
In this paper, we derive the asymptotic properties of the ML estimators of the parameters
in the state space model that has multiple stochastic latent variables. In developing our
asymptotic theory, we will frequently refer to the results obtained previously in CMP.

We let θ be a κ-dimensional parameter vector and define

εt = yt − yt|t−1

to be the prediction error with conditional mean zero and variance matrix Σ. Under nor-
mality, the log-likelihood function of y1, . . . , yn is given by

`n(θ) = −n

2
log detΣ− 1

2
tr Σ−1

n∑

t=1

εtε
′
t
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ignoring the unimportant constant term. Here, Σ and (εt) are in general given as functions
of θ. Let sn(θ) and Hn(θ) be the score vector and Hessian matrix, i.e.,

sn(θ) =
∂`n(θ)

∂θ
and Hn(θ) =

∂2`n(θ)
∂θ∂θ′

.

After applying some algegra, we may deduce that

sn(θ) = −n

2
∂(vec Σ)′

∂θ
vec (Σ−1) +

1
2

∂(vec Σ)′

∂θ
vec

(
Σ−1

n∑

t=1

εtε
′
tΣ
−1

)
−

n∑

t=1

∂ε′t
∂θ

Σ−1εt,

and

Hn(θ) =− n

2
[
Iκ ⊗ (vec Σ−1)′

] [
∂2

∂θ∂θ′
⊗ (vec Σ)

]

+
1
2

[
Iκ ⊗

(
vec Σ−1

(
n∑

t=1

εtε
′
t

)
Σ−1

)′][
∂2

∂θ∂θ′
⊗ (vec Σ)

]

+
n

2
∂(vec Σ)′

∂θ
(Σ−1 ⊗ Σ−1)

∂(vec Σ)
∂θ′

− 1
2

∂(vec Σ)′

∂θ

[
Σ−1 ⊗ Σ−1

(
n∑

t=1

εtε
′
t

)
Σ−1 + Σ−1

(
n∑

t=1

εtε
′
t

)
Σ−1 ⊗ Σ−1

]
∂(vec Σ)

∂θ′

−
n∑

t=1

∂ε′t
∂θ

Σ−1 ∂εt

∂θ′
−

n∑

t=1

(I ⊗ ε′tΣ
−1)

(
∂2

∂θ∂θ′
⊗ εt

)

+
∂(vec Σ)′

∂θ
(Σ−1 ⊗ Σ−1)

n∑

t=1

(
∂εt

∂θ′
⊗ εt

)
+

n∑

t=1

(
∂ε′t
∂θ

⊗ ε′t

)
(Σ−1 ⊗ Σ−1)

∂(vec Σ)
∂θ′

as given in CMP. Here and elsewhere in the paper, vec A denotes the column vector obtained
by stacking the rows of matrix A.

Denoted by θ̂n the maximum likelihood estimator of θ, the true value of which is set
as θ0. As in the standard stationary model, the asymptotics of θ̂n in our model can be
obtained from the first order Taylor expansion of the score vector, which is given by

sn(θ̂n) = sn(θ0) + Hn(θn)(θ̂n − θ0), (7)

where θn lies in the line segment connecting θ̂n and θ0. Assuming that θ̂n is an interior
solution, we have sn(θ̂n) = 0 immediately. Therefore, it is now clear from (7) that we may
write

ν ′nT−1(θ̂n − θ0) = −[ν−1
n T ′Hn(θn)Tν−1′

n ]−1[ν−1
n T ′sn(θ0)] (8)

for appropriately defined κ-dimensional square matrices νn and T , which are introduced
here respectively for the necessary normalization and rotation.

Upon appropriate choice of the normalization matrix sequence νn and rotation matrix
T , we will show that
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ML1: ν−1
n T ′sn(θ0) →d N as n →∞ for some N ,

ML2: −ν−1
n T ′Hn(θ0)Tν−1′

n →d M > 0 a.s. as n →∞ for some M , and

ML3: There exists a sequence of invertible normalization matrices µn such that
µnν−1

n → 0 a.s., and such that

sup
θ0∈Θ0

∥∥∥µ−1
n T ′ (Hn(θ)−Hn(θ0))Tµ−1′

n

∥∥∥ →p 0,

where Θn = {θ|‖µ′nT−1(θ − θ0)‖ ≤ 1} is a sequence of shrinking neighbor-
hoods of θ0.

As shown by Park and Phillips (2001) in their study of the nonlinear regression with
integrated time series, conditions ML1-ML3 above are sufficient to derive the asymptotics for
θ̂n. In fact, under conditions ML1-ML3, we may deduce from (8) and continuous mapping
theorem that

ν ′nT−1(θ̂n − θ0) = −[ν−1
n T ′Hn(θ0)Tν−1′

n ]−1[ν−1
n T ′sn(θ0)] + op(1) →d M−1N (9)

as n →∞. In particular, ML3 ensures that sn(θ̂n) = 0 with probability approaching to one
and

ν−1
n T ′ (Hn(θn)−Hn(θ0))Tν−1′

n →p 0 (10)

as n →∞. This was shown by Wooldridge (1994) for the asymptotic analysis of extremum
estimators in models including nonstationary time series.

To obtain the limit distribution of sn(θ0), we first let ε0
t , (∂/∂θ′)ε0

t and (∂/∂θ′)vecΣ0 be
defined respectively as εt, (∂/∂θ′)εt and (∂/∂θ′)vecΣ evaluated at the true parameter value
θ0 of θ. Then we have

sn(θ0) =
1
2

∂(vec Σ0)′

∂θ
(Σ−1

0 ⊗ Σ−1
0 )vec

[
n∑

t=1

(ε0
t ε

0′
t − Σ0)

]
−

n∑

t=1

∂ε0′
t

∂θ
Σ−1

0 ε0
t .

As shown in CMP,

1√
n

n∑

t=1

(ε0
t ε

0′
t − Σ0) →d N (0, (I + K)(Σ0 ⊗ Σ0)) (11)

as n →∞, where K is the commutation matrix, and

n∑

t=1

(ε0
t ε

0′
t − Σ0) and

n∑

t=1

∂ε0′
t

∂θ
Σ−1

0 ε0
t are asymptotically independent. (12)

Note in particular that

ε0
t = yt − y0

t|t−1 = A0(xt − x0
t|t−1) + ut,

and as a consequence (ε0
t ,Ft) is a martingale difference sequence and ((∂/∂θ′)ε0

t ) is a pre-
dictable sequence with respect to the filtration (Ft).
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If our model were stationary, the limit distribution would therefore be easily derivable
from (11), (12) and

1√
n

n∑

t=1

∂ε0′
t

∂θ
Σ−1

0 ε0
t →d N

(
0, plim

n→∞
1
n

n∑

t=1

∂ε0′
t

∂θ
Σ−1

0

∂ε0
t

∂θ′

)
, (13)

which can be readily obtained by employing the standard martingale CLT. Of course,
asymptotics in (13) does not hold for our nonstationary model with integrated latent vari-
ables. As we will show below in Lemma 3.1, the multivariate process ((∂/∂θ′)ε0

t ) is given by
a mixture of stationary and nonstationary processes. Our subsequent asymptotic analysis
will therefore be focused on solving the complexity caused by this mixture of stationarity
and nonstationarity.

Now we look at our model more specifically. The parameter θ for our model is given by

θ = ((vecA)′, v(Λ)′)′, (14)

with the true value θ0 = ((vecA0)′, v(Λ0)′)′. Here and elsewhere in the paper, v(A) de-
notes the subvector of vecA with all subdiagonal elements of A eliminated. Therefore,
v(A) vectorizes only the nonredundant elements of A. We may relate vec(A) and v(A) by
Dv(A) = vecA, where D is the duplication matrix. See, e.g., Magnus and Neudecker (1988,
pp.48-49). The dimension of θ is given by κ = pq + p(p + 1)/2, since in particular there are
only p(p + 1)/2 number of nonredundant elements in Λ.

For our model (1), we may easily deduce from Lemma 2.2 and Proposition 2.3 that

Lemma 3.1 We have

∂ε0′
t

∂vecA
= − (

Ip − Λ−1
0 A0(A′0Λ

−1
0 A0)−1A′0

)⊗ xt + at(u, v) and
∂ε0′

t

∂vecΛ
= bt(u, v),

where at(u, v) and bt(u, v) are stationary linear processes driven by (ut) and (vt).

According to Lemma 3.1,

∂ε0′
t

∂θ
=

(
∂ε0

t

∂(vecA)′
,

∂ε0
t

∂v(Λ)′

)′

is a matrix time series consisting of a mixture of integrated and stationary processes since
at(u, v) and bt(u, v) are stationary linear processes driven by (ut) and (vt). Notice that

P = Ip − Λ−1
0 A0(A′0Λ

−1
0 A0)−1A′0 (15)

is a (p − q)-dimensional (non-orthogonal) projection on the space orthogonal to A0 along
Λ−1

0 A0. Naturally, we have A′0P = 0. Consequently, A0 ⊗ Iq annihilates the common
stochastic trends in (∂ε0′

t /∂vecA), and therefore ((A0⊗ Iq)′(∂ε0′
t /∂vecA)) becomes station-

ary. Unlike (∂ε0′
t /∂vecA), it is rather clear from Lemma 3.1 that (∂ε0′

t /∂vecΛ) is entirely
stationary.
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In order to effectively deal with the singularity of the matrix P in (15), we follow CMP
and introduce the necessary rotation. Let B0 be an p × (p − q) matrix satisfying the
conditions

B′
0Λ

−1
0 A0 = 0 and B′

0Λ
−1
0 B0 = Ip−q. (16)

Note that if rank(A0) = q = p, such a B0 does not exist. In the following discussion we will
focus on the case where q < p. It is easy to deduce that

P = Ip − Λ−1
0 A0(A′0Λ

−1
0 A0)−1A′0 = Λ−1

0 B0B
′
0, (17)

since P is a projection matrix such that A′0P = PΛ−1
0 A0 = 0.

Now the κ-dimensional rotation matrix T is defined as

T = (TN , TS), (18)

where TN and TS are matrices of dimensions κ × κ1 and κ × κ2 with κ1 = (p − q)q and
κ2 = q2 + p(p + 1)/2, which are given by

TN =
(

B0 ⊗ Iq

0

)
and TS =

(
A0(A′0Λ

−1
0 A0)−1/2 ⊗ Iq 0

0 Ip(p+1)/2

)

respectively. It follows immediately from Lemma 3.1, (16) and (17) that

T ′N
∂ε0′

t

∂θ
=

(
B′

0 ⊗ Iq

) (
∂ε0′

t

∂vecA

)
= −B′

0 ⊗ xt + cN
t (u, v) (19)

and

T ′S
∂ε0′

t

∂θ
=




[
(A′0Λ

−1
0 A0)−1/2A′0 ⊗ Iq

] ∂ε0′
t

∂vecA
∂ε0′

t

∂v(Λ)


 = cS

t (u, v) (20)

for some stationary linear processes cN
t (u, v) and cS

t (u, v) driven by (ut) and (vt). Moreover,
we can easily get the inverse of the rotation matrix T as

T−1 =




B′
0Λ

−1
0 ⊗ Iq 0

(A′0Λ
−1
0 A0)−1/2A′0Λ

−1
0 ⊗ Iq 0

0 Ip(p+1)/2


 (21)

from our definition of T given above in (18).
Before deriving the main asymptotic results for the ML estimator θ̂n of θ, we need

to establish two lemmas, which will be presented subsequently. They are straightforward
extensions of Lemmas 3.3 and 3.4 in CMP.
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Lemma 3.2 If we let

(Un(r), Vn(r),Wn(r)) =


 1√

n

[nr]∑

t=1

Σ−1
0 ε0

t ,
1√
n

[nr]∑

t=1

∆T ′N
∂ε0′

t

∂θ
,

1√
n

[nr]∑

t=1

T ′S
∂ε0′

t

∂θ
Σ−1

0 ε0
t




for r ∈ [0, 1], then it follows that

(Un(r), Vn(r),Wn(r)) →d (U, V, W )

as n → ∞, where U , V , and W are (possibly degenerate) Brownian motions such that V
and W are independent of U , and such that

∫ 1
0 V (r)Σ−1

0 V (r)′dr is of full rank a.s.

We may readily establish from Lemma 3.2 the joint asymptotics of

1
n

T ′N
n∑

t=1

∂ε0′
t

∂θ
Σ−1

0 ε0
t →d

∫ 1

0
V (r)dU(r), (22)

and
1√
n

T ′S
n∑

t=1

∂ε0′
t

∂θ
Σ−1

0 ε0
t →d W, (23)

where we denote W (1) simply as W . This convention will be made for the rest of the paper.
Because of the independence of V and U , the limiting distribution in (22) is mixed normal.
On the other hand, the independence of W and U renders the two limit distributions in
(22) and (23) to be independent. Clearly, we have W =d N(0, var(W )), where

var(W ) = plim
n→∞

T ′S

(
1
n

n∑

t=1

∂ε0′
t

∂θ
Σ−1

0

∂ε0
t

∂θ′

)
TS .

Moreover, if we define

Zn =
1
2
T ′S

∂(vecΣ0)′

∂θ
(Σ−1

0 ⊗ Σ−1
0 )vec

[
1√
n

n∑

t=1

(ε0
t ε

0′
t − Σ0)

]
,

then it follows that Zn → Z, where Z =d N(0, var(Z)) with

var(Z) =
1
2
T ′S

[
∂(vecΣ0)′

∂θ
(Σ−1

0 ⊗ Σ−1
0 )

∂(vecΣ0)
∂θ′

]
TS .

As noted earlier, Z is also independent of U , V and W introduced in Lemma 3.2.
Now we are ready to derive the limit distribution for the ML estimator θ̂n of θ0 defined

in (14). They are given by (9) with the rotation matrix T in (18) and the sequence of
normalization matrix

νn = diag (nIκ1 ,
√

nIκ2),

as we state below as a theorem.
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Theorem 3.3 All three conditions in ML1-ML3 are satisfied for our model. In particular,
ML1 and ML2 hold, respectively, with

N =
( − ∫ 1

0 V (r)dU(r)
Z −W

)

and

M =
( ∫ 1

0 V (r)Σ−1
0 V (r)′dr 0
0 var(W ) + var(Z)

)

in notations introduced before.

Theorem 3.3 is completely analogous to Theorem 3.5 in CMP. In particular, Theorem
3.3 shows that the results in Theorem 3.5 of CMP extends well to the multi-dimensional
case, though the proof is much more involved to deal with the multi-dimensionality of the
common stochastic trend.

As in CMP, we let

Q = −
(∫ 1

0
V (r)Σ−1

0 V (r)′
)−1 ∫ 1

0
V (r)dU(r)

and (
R
S

)
= −[var(W ) + var(Z)]−1(W − Z), (24)

where R and S are κ2-, and p(p + 1)/2-dimensional, respectively. Note that Q has a mixed
normal distribution, whereas R and S are jointly normal and independent of Q. Now we
may easily deduce from Theorem 3.3 that

√
n

(
v(Λ̂n)− v(Λ0)

)
→d S,

and

n
(
B′

0Λ
−1
0 ⊗ Iq

)
vecÂn →d Q (25)

√
n

(
(A′0Λ

−1
0 A0)−1/2A′0Λ

−1
0 ⊗ Iq

)
(vecÂn − vecA0) →d R, (26)

similarly as in CMP. In particular, it follows immediately from (25) and (26) that

√
n(vecÂn − vecA0) →d

(
A0(A′0Λ

−1
0 A0)−1/2 ⊗ Iq

)
R,

which has a degenerate normal distribution, if q < p.
From Theorem 3.3 and the subsequent remarks, we know that the ML estimators Ân

and Λ̂n converge at the standard rate
√

n, and have normal limit distributions. However, in
the case where q < p the limit distribution of Ân is degenerate. In the direction of B′

0Λ
−1
0 , it

has a rate of convergence n and a mixed normal limit distribution. The normal and mixed
normal asymptotic distributions of ML estimators validate the conventional inference for
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hypothesis testing in such state space models where multiple integrated latent variables are
included.

As discussed in CMP, the asymptotic results for the ML estimator for our model also
hold, at least qualitatively, for more general models, such as the type of the models including
lagged terms in measurement equations. Even for the case where time series consists not
only stochastic integrated trends, but deterministic linear time trend, after some proper
rotation of the time series, see, e.g., Park (1992), our asymptotic theories are applicable
for the rotated time series. The rotation simply separates out the component dominated
by a deterministic linear time trend and the component represented as a purely stochastic
integrated process.

4. Determination of Number of Common Trends

In the asymptotic analysis of the ML estimator for our model defined in (1), we assume
that the number of common stochastic trends in (yt) is known to be q. This of course is
equivalent to assuming that the number of cointegrating relationships in the p-dimensional
time series (yt) is known to be p − q. From our analysis in the previous section, we may
indeed readily deduce that

B′
0Λ

−1
0 yt = B′

0Λ
−1
0 ut and var(B′

0Λ
−1
0 ut) = Ip−q.

It is therefore clearly seen that Λ−1
0 B0 is the matrix of p − q cointegrating vectors, which

yield cointegrating errors with identity covariance matrix. However, the number of com-
mon stochastic trends or the cointegrating relationships is typically unknown in empirical
studies. In this section, we will develop a test based on a trace statistic for testing the
number of common stochastic trends, and explain how we may use the test to determine
the dimensionality of the latent integrated processes in our model.

Needless to say, testing for the number of common stochastic trends is equivalent to
testing for the number of cointegrating relationships. Therefore, at least conceptually, we
may use the existing test such as Johansen (1998, 1991) to determine p − q or q, i.e., the
number of cointegrating vectors or the number of common stochastic trends. However,
using the methods based on a finite order VAR or ECM as Johansen’s approach has two
important shortcomings in our context. First, as we will show subsequently, our model
cannot be represented as any finite order vector autoregression or error correction model.
Any finite order VAR or ECM is therefore inconsistent with our model. Second, our model
is potentially more useful for a large system of time series which share a few common
stochastic trends. For such systems, VAR or ECM formulations often become too flexible,
allowing too many parameters. In particular, it is impossible to use long VAR’s or ECM’s,
trying to fit an infinite order VAR or ECM.

Proposition 4.1 We have

4yt = −B0(Λ−1
0 B0)′yt−1 −

t−1∑

k=1

Ck4yt−k + ε0
t , (27)
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where Ck = A0(Iq − Ω−1
0 )k(A0Λ−1

0 A0)−1A′0Λ
−1
0 .

Proposition 4.1 makes clear the difference between our model and the conventional
ECM. From (27), we may immediately see that (yt) is generated as VAR(∞), which in
particular implies that the our model is not representable as a finite-order VAR. Moreover,
we have rank deficiencies in the short-run coefficients (Ck), as well as in error correction term
B0(Λ−1

0 B0)′. Note that (Ck) are of rank q and (Λ−1
0 B0)′Ck = 0 for all k = 1, 2, . . .. In the

conventional ECM, there is no such rank restriction imposed on the short-run coefficients.
As a consequence, Johansen’s approach, based on finite order ECM’s, is not applicable
in our model. This is also true for the general measurement equation (3). Indeed, it is
easy to see that Proposition 4.1 continues to hold in this case only with (yt) replaced by
(yt −

∑m
k=1 Πk4yt−k). Clearly, in order to test the number of common stochastic trends in

our framework, a new testing method is needed.
Now we consider the null hypothesis

H0 : rankA0 = q,

which will be tested against
H1 : rankA0 > q.

To determine the number of common trends, we test H0 sequentially starting from q = 1. If
H0 is not rejected for q = 1, then we conclude that there exists a single common trend. If,
on the other hand, H0 is rejected in favor of q > 1, then we test for the null hypothesis with
q = 2. We may continue this procedure until H0 is not rejected. The number of common
trends is then determined as the value of q, for which H0 is not rejected for the first time.

Our procedure here is in contrast with that of Johansen, which tests for the number
of cointegrating relationships in a reversed order. In his approach, the null hypothesis
of no cointegration (i.e., p = q) is first tested against one cointegrating relationship (i.e.,
q = p− 1), which will then be tested again two cointegrating relationships (i.e., q = p− 2)
if the null hypothesis of no cointegration is rejected in favor of the alternative hypothesis.
To determine the number of cointegrating relationships, we must continue the test until the
null hypothesis is not rejected. This is the same as our procedure. In our framework, which
seems more useful to analyze relatively large dimensional systems sharing a few common
stochastic trends, we believe that our approach is more desirable. As q gets large, the
estimation of our model becomes computationally quite burdensome.

The test will be based on the statistic defined as

τn = (1/ω̂n)
√

n

[
tr B̂′

nΛ̂−1
n

(
1
n

n∑

t=1

yty
′
t

)
Λ̂−1

n B̂n − (p− q)

]
(28)

with

ω̂2
n = 2(p− q)− (vec Ip−q)(B̂′

nΛ̂−1
n ⊗ B̂′

nΛ̂−1
n ) ˆavar(Λ̂n)(Λ̂−1

n B̂n ⊗ Λ̂−1
n B̂n)(vec Ip−q),

where ˆavar(Λ̂n) is a consistent estimate of the asymptotic variance of Λ̂n.
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Under the null hypothesis H0, we have

B̂′
nΛ̂−1

n

(
1
n

n∑

t=1

yty
′
t

)
Λ̂−1

n B̂n ≈ B̂′
nΛ̂−1

n

(
1
n

n∑

t=1

utu
′
t

)
Λ̂−1

n B̂n

≈ B0Λ−1
0 Λ0Λ−1

0 B0 = Ip−q,

due in particular to the fact that B′
0Λ

−1
0 A0 = 0. On the other hand, we have under the

alternative hypothesis H1

B̂′
nΛ̂−1

n

(
1
n

n∑

t=1

yty
′
t

)
Λ̂−1

n B̂n ≈ nB̂′
nΛ̂−1

n A0

(
1
n2

n∑

t=1

xtx
′
t

)
A′0Λ̂

−1
n B̂n →p ∞,

since B̂′
nΛ̂−1

n A0 does not vanish as n gets large. Therefore, consistent is the test which
rejects the null hypothesis H0 in favor of the alternative hypothesis H1 when the value of
the statistic τn is large.

The following theorem establishes the limit null distribution of τn.

Theorem 4.2 Under the null hypothesis, we have

τn →d N(0, 1)

as n →∞.

As shown in Theorem 4.2, the limit distribution of τn is standard normal. It does not
include any nuisance parameters. Therefore, the implementation of the test is truly simple.

For the test statistic τn, we may use any consistent estimate of the asymptotic variance
of Λ̂n. The most natural choice would be to use the negative hessian matrix. To be more
precise, we define

T̂ ′SHn(θ̂n)T̂S

n
= H̄S =

(
H̄11 H̄12

H̄21 H̄22

)
,

where T̂S is the matrix defined similarly as TS with A0 replaced by Ân and the partition of
H̄S is made conformably with T̂S . Then a consistent estimate of the asymptotic variance
of v(Λ̂n) is given by

−H̄−1
22·1 = −(H̄22 − H̄21H̄

−1
11 H̄12)−1.

The corresponding asymptotic variance of Λ̂n is given by

−DH̄−1
22·1D

′,

where D is the duplication matrix.
A similar approach is possible when the measurement equation is given more generally

as in (3). In this case, we may simply modify the test statistic τn by replacing (yt) with

yt −
m∑

k=1

Π̂k4yt−k,
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where (Π̂k) is the ML estimate of (Πk) for k = 1, . . . ,m. This is shown in the proof
of Theorem 4.2. Moreover, it is clear that (Π̂k) is asymptotically independent of (Λ̂n).
Therefore, we may just ignore the blocks of the hessian matrix corresponding to (Π̂k) and
proceed as above, when we compute the consistent estimate of the asymptotic variance of
vec Λ̂n.

5. Simulations
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Figure 1: Densities of MLE and t-ratios, n=500

In this section, we perform a set of simulations to investigate the finite sample properties
of the ML estimates. We look at a specific model of 3 observable time series with 2 common
stochastic trends. In order to satisfy Assumption SSM4, the error terms (ut) and (vt) are
generated as follows:

ut =




ε1t

ε2t + ε3t

ε2t


 and vt =

(
ε4t

ε5t

)
,

where (ε1t) − (ε5t) are independent and randomly drawn from N(0, 1). The independence
between (ut) and (vt) therefore follows and the covariance matrix of (vt) is an identity
matrix. Λ0, the covariance matrix of (ut), can be easily derived as well. We present Λ0 and
the arbitrarily selected true value of A0 as follows:

A0 =




1 2
2 0
3 2


 and Λ0 =




1 0 0
0 2 2
0 2 4


 .



17

The initial value of the state variable x0 is set to be 0. In this way, Assumption SSM5 is also
satisfied and Theorem 3.3 is readily applicable to this model. According to the theorem,
the ML estimators Â and Λ̂ converge to Gaussian distributions at the standard rate

√
n.

However, the asymptotic distribution of Â is degenerated normal. Â converges to a mixed
normal distribution at a faster rate n in the direction of B′

0Λ
−1
0 , the cointegrating space of

observable time series. However, in the directions orthogonal to the cointegrating space, it
converges at standard

√
n rate and has an asymptotically normal distribution.

In the simulation, the samples of size 500 are drawn 2000 times to estimate the ML
estimators. The t-statistics based on these estimators are also derived. In estimating
Λ0, we estimate the cholesky triangle of Λ0 instead. In that way, we only estimate the
nonredundant parameters and also ensure the estimated covariance matrix to be positive
definite. To choose the matrix B0 in the rotation matrix, we first regress a randomly picked
3 dimensional vector on Λ−1

0 A0, and then normalize the residual, such that the normalized
residual e satisfies the condition e′Λ−1

0 e = 1. We take e as our B0. It is clear that B0

satisfies the constraints specified in (16). The simulation results are summarized in Figure
1. The distributions of the ML estimators are centered with their true values.

The finite sample behavior of the ML estimators are as expected. The distributions
of Â and Λ̂ are symmetric and well centered as predicted by their asymptotic theories.
The left bottom of 1 presents the distributions of rotated Â. The solid curves represent
the distributions of Â on the direction of B′

0Λ
−1
0 and the rest of the curves represent the

distributions of Â on the directions orthogonal to B′
0Λ

−1
0 . As expected, the solid curves

are steeper since the rotated Â converges at a faster rate on the directions defined by the
cointegrating space. Distributions of t-ratios are presented at the right bottom of 1. In total
13 curves are involved, 12 are the t-ratios of the ML estimators of the unknown parameters
and one represents standard normal distribution. The thirteen curves seem to be very much
overlapped, which is consistent with the asymptotic theory.

6. An Empirical Illustration

The topic of determining the relationship among the yields on default-free securities that
differ only in their terms to maturity has long been a topic of concern for economists.
Most researches are conducted in the framework of structural models. Structural models
focus on explaining and testing the term premium. Depending on the assumption of the
driving diffusion processes, structural models can be divided into one-factor and multi-
factor models. One-factor models, like one-factor time-homogeneous models of Vasicek,
Cox-Ingersoll-Ross, Dothan, and the Exponential Vasicek model, model the instantaneous
spot interest rate via one driving diffusion process. Multi-factor models, such as the two-
factor model in Hall and White (1994), assume that interest rates are affected by multiple
correlated diffusion processes. According to Jamshidian and Zhu (1997), multi-factor models
can explain much more variations in historical yield curves than one-factor models do.
However, how many factors should be included to increase the explanatory power of models
without causing the over-fitting problem is not clear. This problem becomes even less clear
when we consider a group of interest rates altogether in one model. We expect some trends
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are common to different interest rates since under default-free assumption, the purchase
of a long-term asset is equivalent to that of a sequence of short-term assets. Therefore,
the number of trends must be much smaller than the number of the interest rates under
consideration. In this section, we focus on testing and extracting the common unobservable
stochastic trends of 9 default-free interest rates. Our analysis is based on the state space
model described in Section 2.

The interest rates used here are Secondary Market Rate for Treasury Bills with ma-
turities 3 and 6 months and Treasury Constant Maturity Rate of Treasury Bonds with
maturities 1, 2, 3, 5, 7, 10, 30 years. The data is obtained from Federal Reserve Bank at St.
Louis, and the selection of data is based on availability. The data is monthly and ranging
from February 1st, 1977 to February 1st, 2002.
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Figure 2: Default-Free Interest Rates with Different Maturities

A salient feature of interest rates is strong persistence. The persistence can be easily
seen from Figure 2. Although strong persistence does not necessarily imply a presence of
unit root, it is true that in many empirical studies, unit root tests fail to reject the null
hypothesis that interest rates have a unit root. For example Nelson and Plosser (1982)
investigate a set of macroeconomic variables by using Dickey-Fuller type tests that are
developed in Dickey and Fuller (1979, 1981), and conclude that many macroeconomic time
series, including bond yield, are better characterized as having a random walk component
than as stationary with drift or trend stationary. In this paper, we revisit this problem by
conducting the augmented Dickey Fuller test on the 9 interest rate series. The number of
lags in the autoregression function is selected by Akaike Information Criteria and Bayesian
Information Criteria. The autoregression has a constant term but not a time trend since
no economic theory suggests that nominal interest rates should exhibit a deterministic time
trend and if an interest were to be described by a stationary process, surely it would have
a positive mean. The augmented Dickey Fuller tests on the nine interest rates fail to
reject unit root hypotheses at 95% significance level. This gives us a reason to believe that
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interest rates are driven by some nonstationary stochastic processes. The details of the
testing results are available upon request.

We use the model defined in (1) to extract the common trends of the 9 interest rates.
Based on the asymptotic analysis in the previous sections, the model can be estimated by
the ordinary Kalman filter and the ML estimates of model parameters are consistent and
asymptotically Gaussian. Moreover, if the number of trends is known, the extracted trends
only differ from the true trends by a stationary component. We apply the sequential test
introduced in Section 4 in testing the number of common trends.

H0 : k = q

H1 : k > q

where q < 9 is the number of trends under the null.
The test statistic is given in (28). Before calculating the test statistic under the null

hypothesis, we first need to estimate the model with the number of trends assumed in the
null. We shall always start from q = 1 and stop when we fail to reject the null. The
likelihood function is formalized in the standard way as for general stationary state space
models. The initial covariance matrix of the state variable is set to be Ω − Iq, where Ω is
the steady state value derived in Lemma 2.1:

Ω =
1
2
(Iq + (Iq + 4(A′Λ−1A)−1)1/2).

The selection of the initial value of the state variable is not clear. Although it should not
matter asymptotically as discussed in Lemma 2.2, it might still play a role in finite sample
estimation. Kim and Nelson (1999) suggest dropping some of the initial observations when
evaluating the likelihood function. This approach causes information loss as we can see.
Another approach is to treat x0|0 as another model parameter and estimate. This approach
is applaudable when the number of trends is not big, i.e. the dimension of x0|0 is low. In
this application, we use the second approach. In estimating the covariance matrix of the
error term in the measurement equation, in order to ensure that the estimated covariance
matrix is positive definite and to estimate only non-redundant parameters we estimate its
Cholesky decomposition instead.

We report the model estimators for q = 1 in Table 1. In order to get B̂n in the trace
statistic, we first regress a randomly generated 9× 8 matrix on Λ̂−1Â, and then normalize
the obtained error term so that for the normalized error e, e′Λ̂−1e = 1. It is clear that the
normalized error satisfies the conditions in (16) and therefore can be used as B̂n. The trace
statistic and its variance are now ready to be calculated. In our case,

τn = −1.7019× 10−4.

According to the test statistic, we fail to reject the null hypothesis of q = 1, i.e., the interest
rates under consideration are driven by a single stochastic process.

To verify the test result, we also estimate the model under the assumption of q = 2, and
extract the corresponding common trends. The maximum likelihood estimates for q = 2
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Figure 3: Extracted Common Trends

are provided in Table 2, and we present the extracted trends from the two models in Figure
3. The common trend extracted from the one-trend is displayed in 3 (a) and the trends
extracted from the two-trend model is displayed in 3 (b). From Figure 3 (b), we can see
that the two trends extracted with the two-trend model are almost identical to each other
in terms of variations over time. Moreover, they are similar to the trend extracted by the
one-trend model. This finding also implies that one trend is probably enough in describing
the long-term behavior of the default-free interest rates.

We can also consider this problem by studying the estimated errors in the measurement
equation. As discussed earlier, the model (1) provides a natural way for decomposing a
nonstationary time series into permanent and transitory components, which can be written
as:

iPt = Âxt|t−1

iTt = it − Âxt|t−1,

where iPt and iTt represent permanent and transitory components of interest rate it, respec-
tively. The transitory component is also called the prediction error. If xt catches all the
trends indeed, the transitory component should be stationary, since the extracted trends
xt|t−1 and real trends xt only differ by a stationary component according to Proposition
2.3. On the other hand, if the number of underlying trends were bigger than what assumed
in the model, at least some series in the transitory component would show nonstationarity.
This implication gives us another way to verify the test result by testing the stationarity
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Figure 4: Permanent and Transitory Components from Models with q = 1, 2

of the transitory components. As a comparison, we present the permanent and transitory
components from the one-trend model and the two-trend model in Figure 4. The transitory
components from both models look quite stationary although they still show some persis-
tence. The persistence in the transitory components is expectable since the true trends xt

differ from the extracted trends xt|t−1 by a summation of two AR(1) processesas indicated
in Proposition 2.3. We conduct the ADF tests with no drift and no time trend on the two
transitory components, and we are able to reject at 95% level the unit root hypothesis on
both series. However, as we can anticipate, the two-trend model catches more variations of
the interest rates and the corresponding transitory component shows much less persistence
than that from the one-trend model.

Based on the testing result, one common trend is sufficient in describing the long-term
behavior of the interest rates with different maturities. Figure 5 shows the relationship
between the extracted common trend and each interest rate. For a better comparison,
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Figure 5: The Extracted Common Trend and Interest Rates

we rescale the trend by multiplying an array of constants so that both series start at the
same value. The rescaling should not matter since the variation not the magnitude of the
common trend is important. Actually, in model (1), we normalize the trend by assuming
the covariance matrix of the innovation being an identity matrix. From Figure 5, we can
see that the behavior of the common trend is very close to that of 30 year treasury bond.
It tells us that the return on the long-term bonds are mostly determined by the trend
which is generated by persistent shocks. Shocks with transitory effects have very limited
effect on long-term assets. On the other hand, we can see that the short-term treasury
bills vary more around the common trend, although they do not go far from it. It implies
that short-term assets are affected by both the long-term trend and the transitory shocks.
These findings are consistent with our intuition. Currently, the Federal Reserve Banks are
trying to influence the rate of return on assets with long maturities by controlling short-
term interest rates. The long-term interest rates are more important in the sense that most
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consumers and firms are borrowing and lending based on relatively long term rates. Figure
5 tells us that in order to effectively offset undesirable changes in long-term interest rates,
government should respond with policies that have persistent effect instead of transitory
effect. Policies, such as tax policy, that produce persistent shifts in interest rates are most
likely to be more effective than monetary policies which are believed to have temporary
effects.

7. Conclusion

In this paper, we consider a state-space model with multiple integrated latent factors. The
model provides a new framework, within which we may effectively specify and analyze com-
mon stochastic trends in a cointegrated system as latent factors. The standard Kalman filter
is used to estimate the model and to extract the common stochastic trends. We establish
the consistency and asymptotic normality of the ML estimates of the model parameters,
and therefore validate the conventional method of inference based on ML estimators for
this class of models. In particular, the ML estimator for the factor loading coefficient has
a mixed rate of convergence. It converges at n rate in the direction of cointegration, while
the overall convergence rate is

√
n as in the standard stationary model. Its asymptotic

distribution is therefore degenerate if normalized with the conventional
√

n rate.
In order to determine the number of common stochastic trends, or equivalently the

number of cointegrating relationships, we derive a new test. The existing methods relying
on the ECM such as Johansen’s test are not applicable to our model, since it cannot be
represented as a finite order VAR. Our test is based on a trace statistic. The trace statistic
is shown to be normal distributed, and therefore, it is very simple to implement in practical
applications. Moreover, the statistic diverges whenever the model has more number of
common stochastic trends than is assumed. If applied sequentially, we may find the number
of stochastic trends in the model. Our method is particularly appropriate to deal with a
large dimensional system sharing a few common stochastic trends. The simulation reported
in the paper shows that the new test performs reasonably well in finite samples. For the
empirical illustration, we analyze the system of interest rates with different maturities, and
obtain a strong evidence that they share a single common stochastic trend.
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Appendix A: Mathematical Proofs

Proof of Lemma 2.1 According to the prediction and updating steps, we have

Ωt+1|t − Iq = Ωt|t−1 − Ωt|t−1A
′(AΩt|t−1A

′ + Λ)−1AΩt|t−1. (29)

In order to show that the steady state value of Ω uniquely exists, we consider the matrix
equation given by

X − Iq = X −XA′(AXA′ + Λ)−1AX. (30)

Here the unknown matrix X is a q × q positive definite matrix. We need to check if there
exists one and only one positive definite matrix X satisfying the matrix equation.

From function (30), we have

XA′(AXA′ + Λ)−1AX = Iq. (31)

Moreover, using the standard rules for matrix algebra, we may easily deduce that

(AXA′ + Λ)−1 = Λ−1 − Λ−1AX(X + XA′Λ−1AX)−1XA′Λ−1

= Λ−1 − Λ−1A(Iq + XA′Λ−1A)−1XA′Λ−1, (32)

and therefore,

XA′(AXA′ + Λ)−1AX

= XA′Λ−1AX −XA′Λ−1A(Iq + XA′Λ−1A)−1XA′Λ−1AX

= XA′Λ−1AX − (Iq + XA′Λ−1A)(Iq + XA′Λ−1A)−1XA′Λ−1AX

+ (Iq + XA′Λ−1A)−1XA′Λ−1AX

= (Iq + XA′Λ−1A)−1XA′Λ−1AX. (33)
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Consequently, we have

(Iq + XA′Λ−1A)−1XA′Λ−1AX = Iq,

i.e.,
X(A′Λ−1A)X = Iq + XA′Λ−1A, (34)

due to (31) and (33).
Now it easy to check that

X1 =
1
2
(A′Λ−1A)−1

(
(A′Λ−1A) +

[
(A′Λ−1A)2 + 4(A′Λ−1A)

]1/2
)

=
1
2

(
Iq +

[
Iq + 4(A′Λ−1A)−1

]1/2
)

X2 =
1
2

(
Iq −

[
Iq + 4(A′Λ−1A)−1

]1/2
)

are the two solutions for X in matrix equation (34). Because X2 is negative definite, it does
not satisfy the properties of X. Therefore, X1 which is positive definite is the only solution
for our problem, i.e, the steady state value of Ω uniquely exists. The steady state value for
Σ follows immediately with Σ = AΩA′ + Λ. ¤

Proof of Lemma 2.2 From the prediction and updating steps of the Kalman filter, we
have

xt+1|t = xt|t−1 + ΩA′Σ−1(yt − yt|t−1)

= xt|t−1 + ΩA′Σ−1(yt −Axt|t−1)

= (Iq − ΩA′Σ−1A)xt|t−1 + ΩA′Σ−1yt

= (Iq − ΩA′Σ−1A)xt|t−1 + ΩA′Σ−1yt (35)

with the steady state values Ω and Σ. However, it follows from (29) that

ΩA′Σ−1AΩ = Iq,

i.e.,
ΩA′Σ−1A = Ω−1. (36)

We may also deduce from (32) that

Σ−1 = (AΩA′ + Λ)−1 = Λ−1 − Λ−1A(Iq + ΩA′Λ−1A)−1ΩA′Λ−1, (37)

which yields

ΩA′Σ−1A = ΩA′Λ−1A− ΩA′Λ−1A(Iq + ΩA′Λ−1A)−1ΩA′Λ−1A

= ΩA′Λ−1A
[
Iq − (Iq + ΩA′Λ−1A)−1ΩA′Λ−1A

]
. (38)
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Therefore, it follows from (36) and (38) that

Iq − (Iq + ΩA′Λ−1A)−1ΩA′Λ−1A = (ΩA′Λ−1A)−1Ω−1. (39)

Furthermore, we have

Σ−1A = Λ−1A− Λ−1A(Iq + ΩA′Λ−1A)−1ΩA′Λ−1A

= Λ−1A
[
Iq − (Iq + ΩA′Λ−1A)−1ΩA′Λ−1A

]

= Λ−1A
(
ΩA′Λ−1A

)−1 Ω−1

and
ΩA′Σ−1 = Ω

[
Λ−1A(ΩA′Λ−1A)−1Ω−1

]′ = Ω−1(A′Λ−1A)−1A′Λ−1, (40)

due to (37) and (39).
Now we have from (35), (36) and (40) that

xt+1|t = (Iq − Ω−1)xt|t−1 + Ω−1(A′Λ−1A)−1A′Λ−1yt,

and consequently,

xt|t−1 =
t−1∑

k=1

(Iq − Ω−1)k−1Ω−1(A′Λ−1A)−1A′Λ−1yt−k + (Iq − Ω−1)t−1x1|0. (41)

Moreover,

t−1∑

k=1

(Iq − Ω−1)k−1Ω−1(A′Λ−1A)−1A′Λ−1yt−k

=
t−1∑

k=1

(Iq − Ω−1)k−1
[
Iq − (Iq − Ω−1)

]
(A′Λ−1A)−1A′Λ−1yt−k

= (A′Λ−1A)−1A′Λ−1yt −
t−2∑

k=0

(Iq − Ω−1)k(A′Λ−1A)−1A′Λ−14yt−k

− (Iq − Ω−1)t−1(A′Λ−1A)−1A′Λ−1y1

= (A′Λ−1A)−1A′Λ−1yt −
t−1∑

k=0

(Iq − Ω−1)k(A′Λ−1A)−1A′Λ−14yt−k. (42)

The stated result now follows directly from (41) and (42). Note that x1|0 = x0|0 = x0 and
y0 = 0. The proof is therefore complete. ¤

Proof of Proposition 2.3 For the proof of Proposition 2.3, the readers are referred to
the proof of Proposition 2.4 in CMP for the details. In order to fit our model, we only need
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to replace ω0 with Ω0 and 1/ω0 with Ω−1
0 . Now let us look at the proof of Proposition 2.3.

It follows from Lemma 2.2 that

x0
t|t−1 =(A′0Λ

−1
0 A0)−1A′0Λ

−1
0 (A0xt + ut)

−
t−1∑

k=0

(Iq − Ω−1
0 )k(A′0Λ

−1
0 A0)−1A′0Λ

−1
0 (A0vt−k + (ut−k − ut−k−1))

=xt + (A′0Λ
−1
0 A0)−1A′0Λ

−1
0 ut −

t−1∑

k=0

(Iq − Ω−1
0 )k(A′0Λ

−1
0 A0)−1A′0Λ

−1
0 (ut−k − ut−k−1)

−
t−1∑

k=0

(Iq − Ω−1
0 )kvt−k. (43)

However, we may easily deduce that

t−1∑

k=0

(Iq − Ω−1
0 )k(A′0Λ

−1
0 A0)−1A′0Λ

−1
0 (ut−k − ut−k−1)

= (A′0Λ
−1
0 A0)−1A′0Λ

−1
0 ut − Ω−1

0

t−1∑

k=1

(Iq − Ω−1
0 )k(A′0Λ

−1
0 A0)−1A′0Λ

−1
0 ut−k. (44)

The stated result now follows immediately from (43) and (44). ¤

Proof of Lemma 3.1 In the proof, we use the generic notation (wt) to signify any
stationary linear process driven by (ut) and (vt). In particular, the definition of (wt) is
different from line to line. It follows from Lemma 2.2 that

xt|t−1 = (A′Λ−1A)−1A′Λ−1yt + wt, (45)

under our convention here. We define the commutation matrix Kab by

KabvecA = vecA′ (46)

for a×b matrix A. Note that we define vec to be the operator stacking rows, not the columns,
of a matrix. Therefore, if we let vec be the operator stacking columns of a matrix, and let
Kab be the commutation matrix such that Kab vecA = vecA′, then we have Kab = Kba.
The readers are referred to Magnus and Neudecker (1988) for more on the commutation
matrix.

Since
εt = yt − yt|t−1 = yt −Axt|t−1

and
vec Axt|t−1 = (Ip ⊗ x′t|t−1)vecA,

we may easily deduce that

∂εt

∂(vecA)′
= −A

∂xt|t−1

∂(vecA)′
− Ip ⊗ x′t|t−1. (47)
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Moreover, it follows that
∂εt

∂(vecΛ)′
= −A

∂xt|t−1

∂(vecΛ)′
. (48)

The partial derivatives of εt with respect to vecA and vecΛ may therefore be easily obtained
from (47) and (48), once we find the partial derivatives of xt|t−1 with respect to vecA and
vecΛ in (45).

Firstly, in order to get the partial derivative of xt|t−1 with respect to A, we assume Λ
to be fixed. Then it follows from (45) that

dxt|t−1 =− (A′Λ−1A)−1(dA′Λ−1A + A′Λ−1dA)(A′Λ−1A)−1A′Λ−1yt

+ (A′Λ−1A)−1dA′Λ−1yt + wt

=− (A′Λ−1A)−1dA′(Λ−1A(A′Λ−1A)−1A′Λ−1yt)

− ((A′Λ−1A)−1A′Λ−1)dA((A′Λ−1A)−1A′Λ−1yt)

+ (A′Λ−1A)−1dA′(Λ−1yt) + wt,

and that

dxt|t−1 =− [
(A′Λ−1A)−1 ⊗ y′tΛ

−1A(A′Λ−1A)−1A′Λ−1
]
dvecA′

− [
(A′Λ−1A)−1A′Λ−1 ⊗ y′tΛ

−1A(A′Λ−1A)−1
]
dvecA

+
[
(A′Λ−1A)−1 ⊗ y′tΛ

−1
]
dvecA′ + wt

=− [
(A′Λ−1A)−1 ⊗ y′tΛ

−1A(A′Λ−1A)−1A′Λ−1
]
KpqdvecA

− [
(A′Λ−1A)−1A′Λ−1 ⊗ y′tΛ

−1A(A′Λ−1A)−1
]
dvecA

+
[
(A′Λ−1A)−1 ⊗ y′tΛ

−1
]
KpqdvecA + wt.

Consequently, we have

∂xt|t−1

∂(vecA)′
=− [

(A′Λ−1A)−1 ⊗ y′tΛ
−1A(A′Λ−1A)−1A′Λ−1

]
Kpq

− (A′Λ−1A)−1A′Λ−1 ⊗ y′tΛ
−1A(A′Λ−1A)−1

+
[
(A′Λ−1A)−1 ⊗ y′tΛ

−1
]
Kpq + wt

=− y′tΛ
−1A(A′Λ−1A)−1A′Λ−1 ⊗ (A′Λ−1A)−1

− (A′Λ−1A)−1A′Λ−1 ⊗ y′tΛ
−1A(A′Λ−1A)−1

+ y′tΛ
−1 ⊗ (A′Λ−1A)−1 + wt (49)

Now we may easily deduce from (49) that

∂x0′
t|t−1

∂vecA
=− (Λ−1

0 A0xt + wt)⊗ (A′0Λ
−1
0 A0)−1 − Λ−1

0 A0(A′0Λ
−1
0 A0)−1 ⊗ (xt + wt)

+ (Λ−1
0 A0xt + wt)⊗ (A′0Λ

−1
0 A0)−1

=− Λ−1
0 A0(A′0Λ

−1
0 A0)−1 ⊗ xt + wt, (50)
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and subsequently from (47) that

∂ε0′
t

∂vecA
= −

∂x0′
t|t−1

∂vecA
A′0 − Ip ⊗ x0

t|t−1

= Λ−1
0 A0(A′0Λ

−1
0 A0)−1A′0 ⊗ xt − Ip ⊗ x0

t|t−1

= − [
Ip − Λ−1

0 A0(A′0Λ
−1
0 A0)−1A′0

]⊗ xt + wt,

as was to be shown.
Secondly, we consider the partial derivative of xt|t−1 with respect to vecΛ. Assuming A

is fixed, we have

dxt|t−1 =− (A′Λ−1A)−1A′(−Λ−1dΛΛ−1)A(A′Λ−1A)−1A′Λ−1yt

+ (A′Λ−1A)−1A′(−Λ−1dΛΛ−1)yt + wt

=
[
(A′Λ−1A)−1A′Λ−1

]
dΛ

[
Λ−1A(A′Λ−1A)−1A′Λ−1yt

]

− [
(A′Λ−1A)−1A′Λ−1

]
dΛ(Λ−1yt) + wt

and

dxt|t−1 =
[
(A′Λ−1A)−1A′Λ−1 ⊗ y′tΛ

−1A(A′Λ−1A)−1A′Λ−1
]
dvecΛ

− [
(A′Λ−1A)−1A′Λ−1 ⊗ y′tΛ

−1
]
dvecΛ + wt.

Consequently, we have

∂xt|t−1

∂(vecΛ)′
=(A′Λ−1A)−1A′Λ−1 ⊗ y′tΛ

−1A(A′Λ−1A)−1A′Λ−1

− (A′Λ−1A)−1A′Λ−1 ⊗ y′tΛ
−1 + wt

=(A′Λ−1A)−1A′Λ−1 ⊗ y′tΛ
−1

[
A(A′Λ−1A)−1A′Λ−1 − Ip

]
+ wt,

from which we have
∂x0′

t|t−1

∂vecΛ
= wt

due to (48). The proof is therefore complete. ¤

Proof of Lemma 3.2 It follows immediately from (19) that

Vn(r) = −B′
0 ⊗

1√
n

[nr]∑

t=1

vt + op(1).

Moreover, due to (20), T ′s(∂ε0′
t /∂θ) is a stationary linear process and Ft−1-measurable. Con-

sequently, Wn is a partial sum process of the martingale difference sequence T ′S(∂ε0′
t /∂θ)Σ−1

0 ε0
t .

The stated results can therefore be readily deduced from the invariance principle for the
martingale difference sequence. ¤
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Proof of Theorem 3.3 The proof will be done in three steps, each of which will establish
ML1, ML2 and ML3. As in CMP, we use the following notational convention in the proof:

(a) (wt) denotes a linear process driven by (us)t
s=1 and (vs)t

s=1 that has geometrically
decaying coefficients, and

(b) (w̄t) is such a process that is Ft-measurable.

The notation (wt) and (w̄t) are generic and signify any processes satisfying the conditions
specified above. In general, (wt) and (w̄t) appearing in different lines represent different
processes.

First Step ML1 holds with N given in the theorem, as shown in the proof of Theorem
3.5 of CMP. In particular, we have

1
n

T ′Nsn(θ0) =
1

2
√

n
T ′N

∂(vec Σ0)′

∂θ

(
Σ−1

0 ⊗ Σ−1
0

)
vec

[
1√
n

n∑

t=1

(
ε0
t ε

0′
t − Σ0

)
]

− 1
n

n∑

t=1

T ′N
∂ε0′

t

∂θ
Σ−1

0 ε0
t

=− 1
n

n∑

t=1

T ′N
∂ε0′

t

∂θ
Σ−1

0 ε0
t + Op(n−1/2)

→d −
∫ 1

0
V (r) dU(r)

and

1√
n

T ′Ssn(θ0) =
1
2
T ′S

∂(vec Σ0)′

∂θ

(
Σ−1

0 ⊗ Σ−1
0

)
vec

[
1√
n

n∑

t=1

(
ε0
t ε

0′
t − Σ0

)
]

− 1√
n

n∑

t=1

T ′S
∂ε0′

t

∂θ
Σ−1

0 ε0
t

→dZ −W

as n →∞. ¤

Second Step Now we establish ML2. It is shown in CMP that

1
n2

T ′NHn(θ0)TN →d −
∫ 1

0
V (r)Σ−1

0 V (r)′dr

as n →∞, and that
1

n3/2
T ′NHn(θ0)TS = Op(n−1/2)
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for large n, which are in particular due to

n∑

t=1

(I ⊗ ε0′
t Σ−1

0 )
(

∂2

∂θ∂θ′
⊗ ε0

t

)
= Op(n)

∂(vec Σ0)′

∂θ
(Σ−1

0 ⊗ Σ−1
0 )

n∑

t=1

(
∂ε0

t

∂θ′
⊗ ε0

t

)
= Op(n)

n∑

t=1

(
∂ε0′

t

∂θ
⊗ ε0′

t

)
(Σ−1

0 ⊗ Σ−1
0 )

∂(vec Σ0)
∂θ′

= Op(n)

for large n.
In order to establish ML2, we only need to show

1
n

T ′SHn(θ0)TS →p −[var(W ) + var(Z)]. (51)

Notice that
1
n

T ′SHn(θ0)TS = An + Bn + Cn + (Dn + D′
n) + op(1),

where

An = −1
2
T ′S

[
∂(vec Σ0)′

∂θ
(Σ−1

0 ⊗ Σ−1
0 )

∂(vec Σ0)
∂θ′

]
TS + op(1)

Bn = − 1
n

n∑

t=1

T ′S

(
∂ε0′

t

∂θ
Σ−1

0

∂ε0
t

∂θ′

)
TS

Cn = − 1
n

n∑

t=1

T ′S

[
(I ⊗ ε0′

t Σ−1
0 )

(
∂2

∂θ∂θ′
⊗ ε0

t

)]
TS

Dn = T ′S

[
∂(vec Σ0)′

∂θ
(Σ−1

0 ⊗ Σ−1
0 )

1
n

n∑

t=1

(
∂ε0

t

∂θ′
⊗ ε0

t

)]
TS .

As shown in CMP,

An = −var(Z) + op(1)
Bn = −var(W ) + op(1)

Dn = Op(n−1/2)

for large n. Therefore, it suffices to show that

Cn =
(

Cn(A,A) Cn(A, Λ)
Cn(Λ, A) Cn(Λ,Λ)

)
= Op(n−1/2) (52)

to deduce (51). Note that we have from (49)

Iq ⊗ xt|t−1 + (A′ ⊗ Iq)
∂x′t|t−1

∂vecA
= wt−1, (53)
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which will be used below in the proof of (52).
First, we prove

Cn(A,A) = Op(n−1/2). (54)

It follows from (47) that

vec
∂ε′t

∂vecA
= −vec(Ip ⊗ xt|t−1)− vec

∂x′t|t−1

∂vecA
A′,

and since
vec(Ip ⊗ xt|t−1) = (Ip ⊗Kpq)[(vecIp)⊗ xt|t−1]

and

vec
∂x′t|t−1

∂vecA
A′ = (Ipq ⊗A)vec

∂x′t|t−1

∂vecA

=

(
∂x′t|t−1

∂vecA
⊗ Ip

)
vecA′ =

(
∂x′t|t−1

∂vecA
⊗ Ip

)
KpqvecA,

we have

∂

∂(vecA)′
vec

∂ε′t
∂vecA

= −(Ip ⊗Kpq)
[
(vecIp)⊗

∂xt|t−1

∂(vecA)′

]

−
(

∂x′t|t−1

∂vecA
⊗ Ip

)
Kpq − (Ipq ⊗A)

∂

∂(vecA)′
vec

∂x′t|t−1

∂vecA
. (55)

In what follows, we will use (55) to show

(A′0 ⊗ Iq)
(
Ipq ⊗ ε0′

t Σ−1
0

)(
∂

∂(vecA)′
vec

∂ε0′
t

∂vecA

)
(A0 ⊗ Iq) = wt−1ε

0
t , (56)

from which (54) follows immediately.
For the first term in (55), we have

(A′0 ⊗ Iq)
(
Ipq ⊗ ε0′

t Σ−1
0

)
(Ip ⊗Kpq)

[
(vecIp)⊗

∂x0
t|t−1

∂(vecA)′

]
(A0 ⊗ Iq)

=
(
A′0 ⊗ Iq ⊗ ε0′

t Σ−1
0

)
(Ip ⊗Kpq)

[
(vecIp)⊗

∂x0
t|t−1

∂(vecA)′

]
(A0 ⊗ Iq)

= A′0 ⊗
(
Iq ⊗ ε0′

t Σ−1
0

)
Kpq

[
(vecIp)⊗

∂x0
t|t−1

∂(vecA)′

]
(A0 ⊗ Iq)

=
(
A′0 ⊗ ε0′

t Σ−1
0 ⊗ Iq

)
[
(vecIp)⊗

∂x0
t|t−1

∂(vecA)′
(A0 ⊗ Iq)

]

= A′0Σ
−1
0 ε0

t ⊗
[

∂x0
t|t−1

∂(vecA)′
(A0 ⊗ Iq)

]

= A′0Σ
−1
0 ε0

t ⊗ Iq ⊗ x′t + wt−1ε
0
t . (57)
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For the second term in (55), we may deduce that

(A′0 ⊗ Iq)
(
Ipq ⊗ ε0′

t Σ−1
0

)
(

∂x0′
t|t−1

∂vecA
⊗ Iq

)
Kpq(A0 ⊗ Iq)

=
(
A′0 ⊗ Iq ⊗ ε0′

t Σ−1
0

)
(

∂x0′
t|t−1

∂vecA
⊗ Iq

)
(Iq ⊗A0)Kqq

=
(
A′0 ⊗ Iq ⊗ ε0′

t Σ−1
0

)
(

∂x0′
t|t−1

∂vecA
⊗A0

)
Kqq

=

[
(A′0 ⊗ Iq)

∂x0′
t|t−1

∂vecA
⊗ ε0′

t Σ−1
0 A0

]
Kqq

= ε0′
t Σ−1

0 A0 ⊗
[
(A′0 ⊗ Iq)

∂x0′
t|t−1

∂vecA

]

= ε0′
t Σ−1

0 A0 ⊗ Iq ⊗ xt + wt−1ε
0
t , (58)

similarly as for the first term in (55).
The third term in (55) are written as

(A′0 ⊗ Iq)
(
Ipq ⊗ ε0′

t Σ−1
0

)
(Ipq ⊗A0)

(
∂

∂(vecA)′
vec

∂x0′
t|t−1

∂vecA

)
(A0 ⊗ Iq)

=
(
A′0 ⊗ Iq ⊗ ε0′

t Σ−1
0

)
(Ipq ⊗A0)

(
∂

∂(vecA)′
vec

∂x0′
t|t−1

∂vecA

)
(A0 ⊗ Iq)

=
(
A′0 ⊗ Iq ⊗ ε0′

t Σ−1
0 A0

)
(

∂

∂(vecA)′
vec

∂x0′
t|t−1

∂vecA

)
(A0 ⊗ Iq), (59)

and analyzed using the identity introduced in (53). It follows from (53) that

(Iq ⊗Kqq)

[
(vecIq)⊗

∂x0
t|t−1

∂(vecA)′

]
+ (A′ ⊗ Iq ⊗ Iq)

(
∂

∂(vecA)′
vec

∂x0′
t|t−1

∂vecA

)

+

(
Iq ⊗ Iq ⊗

∂x0
t|t−1

∂(vecA)′

)
(Iq ⊗Kpq ⊗ Iq)[Kpq ⊗ (vecIq)] = wt−1, (60)

since
vec(Iq ⊗ xt|t−1) = (Iq ⊗Kqq)

[
(vecIq)⊗ xt|t−1

]

and

vec(A′ ⊗ Iq)
∂x′t|t−1

∂vecA
= (A′ ⊗ Iq ⊗ Iq)vec

∂x′t|t−1

∂vecA

=
(

Iq ⊗ Iq ⊗
∂xt|t−1

∂(vecA)′

)
vec(A′ ⊗ Iq)
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with

vec(A′ ⊗ Iq) = (Iq ⊗Kpq ⊗ Iq)[(vecA′)⊗ (vecIq)]
= (Iq ⊗Kpq ⊗ Iq)[(KpqvecA)⊗ (vecIq)].

See, e.g., Magnus and Neudecker (1988) for the rules in matrix algebra used here.
Now we pre- and post-multiply all three terms in (60) by

Iq ⊗ Iq ⊗ ε0′
t Σ−1

0 A0 and A0 ⊗ Iq.

The first term in (60) becomes

(Iq ⊗ Iq ⊗ ε0′
t Σ−1

0 A0)(Iq ⊗Kqq)

[
(vecIq)⊗

∂x0
t|t−1

∂(vecA)′

]
(A0 ⊗ Iq)

=
(
Iq ⊗ ε0′

t Σ−1
0 A0 ⊗ Iq

)
[
(vecIq)⊗

(
∂x0

t|t−1

∂(vecA)′
(A0 ⊗ Iq)

)]

= A′0Σ
−1
0 ε0

t ⊗ Iq ⊗ x′t + wt−1ε
0
t . (61)

On the other hand, the third term in (60) reduces to

(Iq ⊗ Iq ⊗ ε0′
t Σ−1

0 A0)

(
Iq ⊗ Iq ⊗

∂x0
t|t−1

∂(vecA)′

)
(Iq ⊗Kpq ⊗ Iq)[Kpq ⊗ (vecIq)](A0 ⊗ Iq)

=
[
Iq ⊗ Iq ⊗ ε0′

t Σ−1
0 A0

(
A′0Λ

−1
0 A0

)−1
A′0Λ

−1
0 ⊗ x′t

]
(Iq ⊗Kpq ⊗ Iq)[Kpq(A0 ⊗ Iq)⊗ (vecIq)]

+ wt−1ε
0
t

=
[
Iq ⊗ ε0′

t Σ−1
0 A0

(
A′0Λ

−1
0 A0

)−1
A′0Λ

−1
0 ⊗ Iq ⊗ x′t

]
(Iq ⊗Kpq ⊗ Iq)[Kpq(A0 ⊗ Iq)⊗ (vecIq)]

+ wt−1ε
0
t

=
[
ε0′
t Σ−1

0 A0

(
A′0Λ

−1
0 A0

)−1
A′0Λ

−1
0 ⊗ Iq

]
(A0 ⊗ Iq)⊗ xt + wt−1εt

= ε0′
t Σ−1

0 A0 ⊗ Iq ⊗ xt + wt−1ε
0
t . (62)

Therefore, it follows from (60), (61) and (62) that

(A′0 ⊗ Iq ⊗ ε0′
t Σ−1

0 A0)

(
∂

∂(vecA)′
vec

∂x0′
t|t−1

∂vecA

)
(A0 ⊗ Iq)

= A′0Σ
−1
0 ε0

t ⊗ Iq ⊗ x′t + ε0′
t Σ−1

0 A0 ⊗ Iq ⊗ xt + wt−1ε
0
t , (63)

which establishes the required result for the third term of (55), as shown in (59). Conse-
quently, we may deduce (56) from (57), (58) and (63).

Second, we prove that
Cn(A, Λ) = Op(n−1/2). (64)
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As we have shown earlier, we have

vec
∂ε′t

∂vecA
= −(Ip ⊗Kpq)[(vecIp)⊗ xt|t−1]− (Ipq ⊗A)vec

∂x′t|t−1

∂vecA
,

and it follows that

∂

∂(vecΛ)′
vec

∂ε′t
∂vecA

= −(Ip ⊗Kpq)
[
(vecIp)⊗

∂xt|t−1

∂(Λ)′

]
− (Ipq ⊗A)

∂

∂(vecΛ)′
vec

∂x′t|t−1

∂vecA
. (65)

In what follows, it will be shown that

(A′0 ⊗ Iq)
(
Ipq ⊗ ε0′

t Σ−1
0

) [
∂

∂(vecΛ)′
vec

∂ε0′
t

∂vecA

]
λ = wt−1ε

0
t (66)

for any p2-dimensional vector λ. Clearly, (64) can be deduced immediately from (66).
For the first term in (65), we have

(A′0 ⊗ Iq)
(
Ipq ⊗ ε0′

t Σ−1
0

)
(Ip ⊗Kpq)

[
(vecIp)⊗

∂x0
t|t−1

∂(vecΛ)′

]
λ

=
(
A′0 ⊗ Iq ⊗ ε0′

t Σ−1
0

)
(Ip ⊗Kpq)

[
(vecIp)⊗

∂x0
t|t−1

∂(vecΛ)′

]
λ

=
(
A′0 ⊗ ε0′

t Σ−1
0 ⊗ Iq

)
(Ip ⊗Kpq)

[
(vecIp)⊗

∂x0
t|t−1

∂(vecΛ)′

]
λ

= A′0Σ
−1
0 ε0

t ⊗
[

∂x0
t|t−1

∂(vecΛ)′
λ

]
= wt−1ε

0
t . (67)

The proof for (66) will be finished, if we show that the second term in (65) also yields

(A′0 ⊗ Iq)
(
Ipq ⊗ ε0′

t Σ−1
0

)
(Ipq ⊗A)

∂

∂(vecΛ)′
vec

∂x0′
t|t−1

∂vecA
λ

=
(
A′0 ⊗ Iq ⊗ ε0′

t Σ−1
0

)
(Ipq ⊗A)

∂

∂(vecΛ)′
vec

∂x0′
t|t−1

∂vecA
λ

=
(
A′0 ⊗ Iq ⊗ ε0′

t Σ−1
0 A0

) ∂

∂(vecΛ)′
vec

∂x0′
t|t−1

∂vecA
λ = wt−1ε

0
t , (68)

similarly as the first term in (65).
To establish (68), we use the identity in (53). We may write it as

(Iq ⊗Kqq)[(vecIq)⊗ xt|t−1] + (A′ ⊗ Iq ⊗ Iq)vec
∂x′t|t−1

∂vecA
= wt−1,
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from which it follows that

(Iq ⊗Kqq)
[
(vecIq)⊗

∂xt|t−1

∂(vecΛ)′

]
+ (A′ ⊗ Iq ⊗ Iq)

∂

∂(vecΛ)′
vec

∂x′t|t−1

∂vecA
= wt−1. (69)

Now we may evaluate (69) at the true values of parameters A and Λ, and pre- and post-
multiply both sides by

Iq ⊗ Iq ⊗ ε0′
t Σ−1

0 A0 and λ

respectively, to get

A′0Σ
−1
0 ε0

t ⊗
∂x0

t|t−1

∂(vecΛ)′
λ +

(
A′0 ⊗ Iq ⊗ ε0′

t Σ−1
0 A0

) ∂

∂(vecΛ)′
vec

∂x0′
t|t−1

∂vecA
λ = wt−1ε

0
t . (70)

Note that

(Iq ⊗ Iq ⊗ ε0′
t Σ−1

0 A0)(Iq ⊗Kqq)
[
(vecIq)⊗

∂xt|t−1

∂(vecΛ)′

]
λ

=
(
Iq ⊗ ε0′

t Σ−1
0 A0 ⊗ Iq

) [
(vecIq)⊗

∂xt|t−1

∂(vecΛ)′

]
= A′0Σ

−1
0 ε0

t ⊗
[

∂xt|t−1

∂(vecΛ)′
λ

]
.

The proof for (64) is complete, since (68) can be deduced readily from from (70).
The proof for Cn(Λ,Λ) is straightforward, as in Chang el al. (2007). Therefore, we have

established (52), and the proof for the second step is complete. ¤

Third Step To establish ML3, as in CMP, we let

µn = ν1−δ
n

for some δ > 0 small, and let θ ∈ Θn be arbitrarily chosen. Since
(
B′

0Λ
−1
0 ⊗ Ik

)
(vecA− vecA0) = O(n−1+δ)(

(A′0Λ
−1
0 A0)−1/2A′0Λ

−1
0 ⊗ Ik

)
(vecA− vecA0) = O(n−1/2+δ)

vecΛ− vecΛ0 = O(n−1/2+δ),

we have

vecA = vecA0 + Op(n−1/2+δ) (71)

vecΛ = vecΛ0 + Op(n−1/2+δ). (72)
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We will show that

1
n2(1−δ)

T ′N

[
n∑

t=1

(
∂ε′t
∂θ

− ∂ε0′
t

∂θ

)
Σ−1

0

∂ε0
t

∂θ′

]
TN →p 0 (73)

1
n2(1−δ)

T ′N

[
n∑

t=1

(
∂ε′t
∂θ

− ∂ε0′
t

∂θ

)
Σ−1

0

(
∂εt

∂θ′
− ∂ε0

t

∂θ′

)]
TN →p 0 (74)

1
n1−δ

n∑

t=1

T ′S

[
(I ⊗ ε0′

t Σ−1
0 )

(
∂2

∂θ∂θ′
⊗ (εt − ε0

t )
)]

Ts →p 0 (75)

1
n1−δ

T ′S

[
∂(vec Σ0)′

∂θ
(Σ−1

0 ⊗ Σ−1
0 )

n∑

t=1

(
∂ε0

t

∂θ′
⊗ (εt − ε0

t )
)]

TS →p 0 (76)

and

1
n1−δ

T ′S

[
n∑

t=1

(
∂ε′t
∂θ

− ∂ε0′
t

∂θ

)
Σ−1

0

∂ε0
t

∂θ′

]
TS →p 0 (77)

T ′S

[
∂(vec Σ0)′

∂θ
(Σ−1

0 ⊗ Σ−1
0 )

1
n1−δ

n∑

t=1

((
∂εt

∂θ′
− ∂ε0

t

∂θ′

)
⊗ ε0

t

)]
TS →p 0 (78)

1
n1−δ

T ′S

[
n∑

t=1

(
∂ε′t
∂θ

− ∂ε0′
t

∂θ

)
Σ−1

0

(
∂εt

∂θ′
− ∂ε0

t

∂θ′

)]
TS →p 0 (79)

T ′S

[
∂(vec Σ0)′

∂θ
(Σ−1

0 ⊗ Σ−1
0 )

1
n1−δ

n∑

t=1

((
∂εt

∂θ′
− ∂ε0

t

∂θ′

)
⊗ (εt − ε0

t )
)]

TS →p 0 (80)

1
n1−δ

n∑

t=1

T ′S

[
(I ⊗ (ε′t − ε0′

t )Σ−1
0 )

(
∂2

∂θ∂θ′
⊗ ε0

t

)]
Ts →p 0 (81)

1
n1−δ

n∑

t=1

T ′S

[
(I ⊗ (ε′t − ε0′

t )Σ−1
0 )

(
∂2

∂θ∂θ′
⊗ (εt − ε0

t )
)]

TS →p 0 (82)

for all A and Λ satisfying (71) and (72). In what follows, we use the generic notation
∆(nκdt) to denote the terms which include nκ (or a lower order) times (dt), (dt) can be
stationary or nonstationary. Clearly, we have

εt − ε0
t ,

∂εt

∂θ′
− ∂ε0

t

∂θ′
,

∂2

∂θ∂θ′
⊗ (εt − ε0

t ) = ∆(n−1/2+δxt) + wt, (83)

since both A = A0 +O(n−1/2+δ) and Λ = Λ0 +O(n−1/2 +δ). The results in (73)-(76) follow
immediately from (83). In (76), note that

n∑

t=1

(
∂ε0

t

∂θ′
⊗ (εt − ε0

t )
)

TS =
n∑

t=1

(
∂ε0

t

∂θ′
TS ⊗ (εt − ε0

t )
)

and
∂ε0

t

∂θ′
TS = wt.
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The proof for (77)-(82) are more involved. In doing that, we need to show that

T ′s

(
∂ε′t
∂θ

− ∂ε0′
t

∂θ

)
= ∆(n−1/2+δwt) + ∆(n−1+2δdt) (84)

which is equivalent to show the following two equations:

(A′0 ⊗ Ik)

(
∂ε′t

∂vecA
− ∂ε0′

t

∂vecA

)
= ∆(n−1/2+δwt) + ∆(n−1+2δdt) (85)

∂ε′t
∂vecΛ

− ∂ε0′
t

∂vecΛ
= ∆(n−1/2+δwt) + ∆(n−1+2δdt) (86)

Since

vec

(
∂ε′t

∂vecΛ
− ∂ε0′

t

∂vecΛ

)
=

∂

∂(vecΛ)′
vec

∂ε0′
t

∂vecΛ
(vecΛ− vecΛ0)

+
∂

∂(vecA)′
vec

∂ε0′
t

∂vecΛ
(vecA− vecA0) + ∆(n−1+2δwt),

(86) follows immediately from Lemma 3.1. In order to show (85), it is useful to notice that
the left hand side of equation (85) is a matrix with elements

A′i0

(
∂εtj

∂Ak
− ∂ε0

tj

∂Ak

)
,

where Ai and Ak represent the ith and kth columns of A, respectively, and Ai0 is the true
value of Ai. εtj is the jth element of εt. Here i, k = 1, 2, . . . , q and j = 1, 2, . . . , p. We will
follow the same notations in the rest of the proof. It is rather clear that to show equation
(85) is equivalent to show:

A′i0

(
∂εtj

∂Ak
− ∂ε0

tj

∂Ak

)
= A′i0

(
∂ε0

tj

∂Ak∂A′1
(A1 −A10) + · · ·+ ∂ε0

tj

∂Ak∂A′q
(Aq −Aq0)

)

+A′i0
∂εtj

∂Ak∂vecΛ′
(vecΛ− vecΛ0) + ∆(n−1+2δdt)

= ∆(n−1/2+δwt) + ∆(n−1+2δdt). (87)

Since (A′0 ⊗ Iq)
∂ε0

t ′
∂vecA = wt, we have

A′i0
∂ε0

tj

∂Ak
= wt, (88)
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which implies

A′i0
∂ε0

tj

∂Ak∂A′l
= wt, for l 6= i (89)

A′i0
∂ε0

tj

∂Ak∂A′i
+

∂ε0
tj

∂A′k
= wt (90)

A′i0
∂ε0

tj

∂Ak∂vecΛ′
= wt. (91)

Because of (88) and (90), we have

A′i0
∂ε0

tj

∂Ak∂A′i
(Ai −Ai0) =

(
wt −

∂ε0
tj

∂A′k

)
(Ai −Ai0) = ∆(n1/2+δwt). (92)

Equation (87) follows immediately from (89), (91) and (92). Based on (83) and (84),
equations (77)-(80) follow. In (80), it is useful to note that

[(
∂εt

∂θ′
− ∂ε0

t

∂θ′

)
⊗ ε0

t

]
TS =

(
∂εt

∂θ′
− ∂ε0

t

∂θ′

)
TS ⊗ ε0

t

Moreover, equation (84) implies that
(

∂

∂θ∂θ′
⊗ ε0

t

)
Ts = wt,

which finishes the proofs of equations (81) and (82). ¤

Proof of Proposition 4.1 The stated result follows immediately from Lemma 2.2 and
equation (17). To see this, note that we have from Lemma 2.2

A0x
0
t|t−1 = A0(A′0Λ

−1
0 A0)−1A′0Λ

−1
0 yt −

t−1∑

k=0

A0(Iq − Ω−1
0 )k(A0Λ−1

0 A0)−1A′0Λ
−1
0 4yt−k

= A0(A′0Λ
−1
0 A0)−1A′0Λ

−1
0 yt−1 −

t−1∑

k=1

Ck4yt−k

under the convention x0 = 0. Moreover, it follows that

4yt = (A0x
0
t|t−1 − yt−1) + ε0

t

= −(Ip −A0(A′0Λ
−1
0 A0)−1A′0Λ

−1
0 )yt−1 −

t−1∑

k=1

Ck4yt−k + ε0
t

= −B0B
′
0Λ

−1
0 yt−1 −

t−1∑

k=1

Ck4yt−k + ε0
t ,

due to the definition of (ε0
t ) and B0. ¤
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Proof of Theorem 4.2 We let

Σ̃n =
1
n

n∑

t=1

ε0
t ε

0′
t

and

Gn = B̂′
nΛ̂−1

n

(
1
n

n∑

t=1

yty
′
t

)
Λ̂−1

n B̂n

throughout the proof. The proof will be done in three steps.

First Step First, we establish that

Gn = Ip−q + B′
0Λ

−1
0

[
(Σ̃n − Σ0)− (Λ̂n − Λ0)

]
Λ−1

0 B0 + op(n−1/2). (93)

To show this, note first that we have

Op(n−1) = (Ân −A0)′(Λ̂−1
n B̂n − Λ−1

0 B0)

= −A′0Λ̂
−1
n B̂n − Â′nΛ−1

0 B0

= −A′0Λ̂
−1
n B̂n + Op(n−1), (94)

since
ÂnΛ−1

n B̂n = A′0Λ
−1
0 B0 = 0

by the definition of B0 and B̂n, and

Ân = A0 + Op(n−1/2), B̂n = B0 + Op(n−1/2), Λ̂n = Λ0 + Op(n−1/2)

B′
0Λ

−1
0 Ân = Op(n−1),

as we have shown earlier.
Therefore, it follows from (94) that

A′0Λ̂
−1
n B̂n = Op(n−1), (95)

and consequently,

Gn = B̂′
nΛ̂−1

n Σ̃nΛ̂−1
n B̂n + Op(n−1)

= Ip−q + B̂′
nΛ̂−1

n

(
Σ̃n − Λ̂n

)
Λ̂−1

n B̂n + Op(n−1)

= Ip−q + B′
0Λ

−1
0

(
Σ̃n − Λ̂n

)
Λ̂−1

0 B0 + op(n−1/2), (96)

due in particular to (95). Finally, note that

B′
0Λ

−1
0 Σ0Λ−1

0 B0 = B′
0Λ

−1
0 Λ0Λ−1

0 B0 = Ip−q

from which we may readily deduce (93) from (96).
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Our result in (93) holds if Gn is defined as

Gn = B̂′
nΛ̂−1

n

[
1
n

n∑

t=1

(
yt −

m∑

k=1

Π̂k4yt−k

)(
yt −

m∑

k=1

Π̂k4yt−k

)′]
Λ̂−1

n B̂n

for more general model in (3), where (Π̂k) are the ML estimates of (Πk). In this case, we
have

yt −
m∑

k=1

Π̂k4yt−k = A0xt|t−1 + ε0
t −

m∑

k=1

(Π̂k −Πk)4yt−k.

Therefore, it is easy to see that (93) continues to hold, since

Π̂k = Πk + Op(n−1/2),
n∑

t=1

4yt−kε
0
t = Op(n1/2),

n∑

t=1

xt|t−14yt−k = Op(n)

for all k = 1, . . . , m.

Second Step Secondly, we show that

√
n

(
Σ̃n − Σ0

)
−√n

(
Λ̂n − Λ0

)
→d N(0, Ψ) (97)

with some Ψ > 0. For this, we let

1
n

T ′SHn(θ0)TS →p HS =
(

H11 H12

H21 H22

)
,

where the partition of matrix HS is made conformably with TS . Then we have

√
n

(
vec Λ̂n − vec Λ0

)
= D

√
n[v(Λ̂n)− v(Λ0)]

= −DH−1
22·1(−H21H

−1
11 , I)

(
T ′Ssn(θ0)√

n

)
+ op(1), (98)

where D is the duplication matrix, H22·1 = H22 −H21H
−1
11 H12, and

T ′Ssn(θ0)√
n

=
1
2
T ′S

∂(vecΣ0)′

∂θ
(Σ−1

0 ⊗ Σ−1
0 )

√
n

(
vec Σ̃− vec Σ0

)

− 1√
n

n∑

t=1

T ′S
∂ε0′

t

∂θ
Σ−1

0 ε0
t (99)

as we derived earlier.
Now it is clear that

√
n(Σ̃n − Σ0) and

√
n(Λ̂n − Λ0) are jointly normal asymptotically.

To find the asymptotic variance Ψ, we first note that

Ψ = avar(Σ̃n) + avar(Λ̂n)− acov(Σ̃n, Λ̂n)− acov(Λ̂n, Σ̃n). (100)
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We have

avar(Σ̃n) = (Ip2 + Kpp)(Σ0 ⊗ Σ0) (101)

avar(Λ̂n) = −DH−1
22·1D

′. (102)

Moreover, it follows from (99) that

acov

(
T ′Ssn(θ0)√

n
,
√

n(vec Σ̃n − vec Σ0)
)

=
1
2
T ′S

∂(vecΣ0)′

∂θ
(Σ−1

0 ⊗ Σ−1
0 ) avar

(√
n(vec Σ̃n − vec Σ0)

)

=
1
2
T ′S

∂(vecΣ0)′

∂θ
(Σ−1

0 ⊗ Σ−1
0 )(Ip2 + Kpp)(Σ0 ⊗ Σ0)

=
1
2
T ′S

∂v(Σ0)′

∂θ
D′(Σ−1

0 ⊗ Σ−1
0 )(Ip2 + Kpp)(Σ0 ⊗ Σ0)

= T ′S
∂v(Σ0)′

∂θ
D′

= T ′S
∂(vecΣ0)′

∂θ
,

and subsequently from (98) that

acov(Λ̂n, Σ̃n) = −DH−1
22·1(−H21H

−1
11 , I)T ′S

∂(vecΣ0)′

∂θ
. (103)

Note in particular that KD = D for any commutation and duplication matrices of con-
formable dimensions.

Now we calculate (∂/∂θ′)vec Σ to obtain the asymptotic covariance in (103) more ex-
plicitly. For this, we write

Σ = AΩA′ + Λ

with
Ω =

1
2

[
Iq +

(
Iq + 4(A′Λ−1A)−1

)1/2
]
.

First, with respect to A, we have

vec dΣ = vec(dAΩA′ + AdΩA′ + AΩdA′)
= (Ip ⊗AΩ)vec dA + (A⊗A)vec dΩ + (AΩ⊗ Ip)Kpqvec dA.

Moreover, we may easily deduce that

vec dΩ =
1
2

[(
Iq + 4(A′Λ−1A)−1

)−1/2 ⊗ Iq + Iq ⊗
(
Iq + 4(A′Λ−1A)−1

)−1/2
]

4vec d(A′Λ−1A)−1

and that

vec d(A′Λ−1A)−1 = −vec
[
(A′Λ−1A)−1d(A′Λ−1A)(A′Λ−1A)−1

]

= − [
(A′Λ−1A)−1 ⊗ (A′Λ−1A)−1

]
vec d(A′Λ−1A)

= − [
(A′Λ−1A)−1 ⊗ (A′Λ−1A)−1

] [
(Iq ⊗A′Λ−1)Kpq + (A′Λ−1 ⊗ Iq)

]
vec dA.
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Therefore, we have

vec dΩ =− 2
[(

Iq + 4(A′Λ−1A)−1
)−1/2 ⊗ Iq + Iq ⊗

(
Iq + 4(A′Λ−1A)−1

)−1/2
]

[
(A′Λ−1A)−1 ⊗ (A′Λ−1A)−1

] [
(Iq ⊗A′Λ−1)Kpq + (A′Λ−1 ⊗ Iq)

]
vec dA

and

vec dΣ =(Ip ⊗AΩ)vec dA + (AΩ⊗ Ip)Kpqvec dA

− 2(A⊗A)
[(

Iq + 4(A′Λ−1A)−1
)−1/2 ⊗ Iq + Iq ⊗

(
Iq + 4(A′Λ−1A)−1

)−1/2
]

[
(A′Λ−1A)−1 ⊗ (A′Λ−1A)−1

] [
(Iq ⊗A′Λ−1)Kpq + (A′Λ−1 ⊗ Iq)

]
vec dA.

Consequently,

∂vec Σ
∂(vec A)′

=(Ip2 + Kpp)(Ip ⊗AΩ)− 2(Ip2 + Kpp)(A⊗A)
[(

Iq + 4(A′Λ−1A)−1
)−1/2 ⊗ Iq

+ Iq ⊗
(
Iq + 4(A′Λ−1A)−1

)−1/2
] [

(A′Λ−1A)−1A′Λ−1 ⊗ (A′Λ−1A)−1
]

(104)

as we may readily deduce.
Next, with respect to Λ, we have

vec dΣ = (A⊗A)vec dΩ + vec Λ.

Moreover, similarly as above, we have

vec dΩ =
1
2

[(
Iq + 4(A′Λ−1A)−1

)−1/2 ⊗ Iq + Iq ⊗
(
Iq + 4(A′Λ−1A)−1

)−1/2
]

4vec d(A′Λ−1A)−1

and that

vec d(A′Λ−1A)−1 = −vec
[
(A′Λ−1A)−1d(A′Λ−1A)(A′Λ−1A)−1

]

= − [
(A′Λ−1A)−1 ⊗ (A′Λ−1A)−1

]
vec d(A′Λ−1A)

=
[
(A′Λ−1A)−1A′Λ−1 ⊗ (A′Λ−1A)−1A′Λ−1

]
vec Λ.

Therefore, it follows that

vec dΣ =2(A⊗A)
[(

Iq + 4(A′Λ−1A)−1
)−1/2 ⊗ Iq + Iq ⊗

(
Iq + 4(A′Λ−1A)−1

)−1/2
]

[
(A′Λ−1A)−1A′Λ−1 ⊗ (A′Λ−1A)−1A′Λ−1

]
vec Λ + vec Λ.

Consequently, we have

∂vec Σ
∂(vec Λ)′

=2(A⊗A)
[(

Iq + 4(A′Λ−1A)−1
)−1/2 ⊗ Iq + Iq ⊗

(
Iq + 4(A′Λ−1A)−1

)−1/2
]

[
(A′Λ−1A)−1A′Λ−1 ⊗ (A′Λ−1A)−1A′Λ−1

]
+ Ip2 . (105)

Due to (104) and (105), the asymptotic covariance in (103) can now be expressed solely in
terms of model parameters.
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Third Step It follows immediately from (93) and (97) that
√

n(Gn − Ip−q) →d N
(
0, (B′

0Λ
−1
0 ⊗B′

0Λ
−1
0 )Ψ(Λ−1

0 B0 ⊗ Λ−1
0 B0)

)

as n →∞. Therefore, we may easily deduce that
√

n tr (Gn − Ip−q) →d N(0, ω2) (106)

with
ω2 = (vec Ip−q)′(B′

0Λ
−1
0 ⊗B′

0Λ
−1
0 )Ψ(Λ−1

0 B0 ⊗ Λ−1
0 B0)(vec Ip−q),

since in particular
tr (Gn − Ip−q) = (vec Ip−q)′vec (Gn − Ip−q).

The proof is now complete if we show that

ω2 = 2(p− q)− (vec Ip−q)′(B′
0Λ

−1
0 ⊗B′

0Λ
−1
0 )avar(Λ̂n)(Λ−1

0 B0 ⊗ Λ−1
0 B0)(vec Ip−q), (107)

due to (106). Note that ω̂2
n →p ω2.

First, we note that

(vecIp−q)′(B′
0Λ

−1
0 ⊗B′

0Λ
−1
0 )avar(Σ̃n)(Λ−1

0 B0 ⊗ Λ−1
0 B0)(vecIp−q)

= 2(vecIp−q)′(B′
0Λ

−1
0 Σ0Λ−1

0 B0 ⊗B′
0Λ

−1
0 Σ0Λ−1

0 B0)(vecIp−q)

= 2(vecIp−q)′(B′
0Λ

−1
0 B0 ⊗B′

0Λ
−1
0 B0)(vecIp−q)

= 2(p− q), (108)

due to (101) and
Σ0Λ−1

0 B0 = B0 and B′
0Λ

−1
0 B0 = Ip−q

by the definition of B0.
Second, it follows from (104) and (105) that

(B′
0Λ

−1
0 ⊗B′

0Λ
−1
0 )

∂vec Σ0

∂(vec A)′
= 0

(B′
0Λ

−1
0 ⊗B′

0Λ
−1
0 )

∂vec Σ0

∂v(Λ)′
= (B′

0Λ
−1
0 ⊗B′

0Λ
−1
0 )D.

As a result, we may deduce from (102) and (103) that

(vecIp−q)′(B′
0Λ

−1
0 ⊗B′

0Λ
−1
0 )acov(Λ̂n, Σ̃n)(Λ−1

0 B0 ⊗ Λ−1
0 B0)(vecIp−q)

= (vecIp−q)′(B′
0Λ

−1
0 ⊗B′

0Λ
−1
0 )acov(Σ̃n, Λ̂n)(Λ−1

0 B0 ⊗ Λ−1
0 B0)(vecIp−q)

= (vecIp−q)′(B′
0Λ

−1
0 ⊗B′

0Λ
−1
0 )avar(Λ̂n)(Λ−1

0 B0 ⊗ Λ−1
0 B0)(vecIp−q). (109)

Consequently, (107) follows immediately from (100), (108) and (109). ¤
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Appendix B: Tables

Table 1: Parameter Estimates from One-Trend Model

Parameter Estimates Parameter Estimates Parameter Estimates
a1 0.4243 (0.0053) π22 -0.2114 (0.0105) π47 -0.1287 (0.0471)

a2 0.4310(0.0047) π23 -0.3800 (0.0222) *π48 -0.0751 (0.0506)

a3 0.4677 (0.0044) π24 -0.4257 (0.0353) *π49 0.0160 (0.0610)

a4 0.4872 (0.0022) π25 -0.4141 (0.0419) π55 -0.0603 (0.0050)

a5 0.4945 (0.0007) π26 -0.3634 (0.0484) π56 -0.0523 (0.0176)

a6 0.5065 (0.0008) π27 -0.3308 (0.0521) *π57 -0.0325 (0.0222)

a7 0.5155 (0.0010) π28 -0.3010 (0.0547) *π58 -0.0327 (0.0296)

a8 0.5192 (0.0018) π29 -0.2204 (0.0590) *π59 0.0032 (0.0400)

a9 0.5251 (0.0033) π33 0.1580 (0.0076) π66 -0.0654 (0.0134)

π11 -1.6620 (0.2065) π34 0.2292 (0.0191) *π67 -0.0386 (0.0237)

π21 -1.5518 (0.2059) π35 0.2617 (0.0268) *π68 -0.0410 (0.0373)

π31 -1.5583 (0.2211) π36 0.2679 (0.0359) *π69 0.0330 (0.0517)

π41 -1.1825 (0.2085) π37 0.2396 (0.0412) π77 0.0470 (0.0114)

π51 -0.9529 (0.1988) π38 0.2345 (0.0450) *π78 0.0372 (0.0247)

π61 -0.6567 (0.1857) π39 0.1476 (0.0523) *π79 -0.0192 (0.0454)

π71 -0.4834 (0.1787) π44 -0.1425 (0.0161) π88 -0.0632 (0.0103)

π81 -0.3598 (0.1728) π45 -0.1695 (0.0266) *π89 -0.0334 (0.0556)

*π91 -0.1055 (0.1591) π46 -0.1391 (0.0388) *π99 0.0001 (0.0723)

1 Parameters with * are not significant at the level of α = 0.05
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Table 2: Parameter Estimates from Two-Trend Model

Parameter Estimates Parameter Estimates Parameter Estimates
a11 0.3543 (0.0174) π41 0.4762 (0.1610) π44 0.1416 (0.0356)

a21 0.3387 (0.0179) π51 0.5683 (0.1816) π54 0.2523 (0.0501)

a31 0.3575 (0.0195) π61 0.6479 (0.2011) π64 0.4294 (0.0551)

a41 0.2820 (0.0172) π71 0.6717 (0.2079) π74 0.4829 (0.0583)

a51 0.2350 (0.0132) π81 0.6971 (0.2127) π84 0.5668 (0.0421)

a61 0.1714 (0.0052) π91 0.6591 (0.2038) π94 0.5777 (0.0281)

a71 0.1278 (0.0094) *π22 -0.0042 (0.0313) π55 0.0562 (0.0102)

a81 0.1011 (0.0123) π32 0.0917 (0.0548) *π65 0.0258 (0.0346)

a91 0.0259 (0.0123) π42 0.3313 (0.0688) *π75 0.0221 (0.0403)

a12 0.5087 (0.0046) π52 0.4233 (0.0746) *π85 0.0128 (0.0566)

a22 0.5147 (0.0044) π62 0.4712 (0.0811) *π95 0.0060 (0.0692)

a32 0.5570 (0.0045) π72 0.4932 (0.0839) *π66 -0.0274 (0.0282)

a42 0.5715 (0.0027) π82 0.4770 (0.0885) *π76 -0.0495 (0.0436)

a52 0.5751 (0.0016) π92 0.4016 (0.0918) *π86 -0.0016 (0.0672)

a62 0.5823 (0.0007) π33 0.1420 (0.0189) *π96 0.0289 (0.0762)

a72 0.5886 (0.0013) π43 0.2235 (0.0616) π77 0.0060 (0.0077)

a82 0.5902 (0.0019) π53 0.3018 (0.0787) π87 0.0959 (0.0243)

a92 0.5905 (0.0033) π63 0.4178 (0.0916) π97 0.0945 (0.0454)

π11 -0.2337 (0.0843) π73 0.4463 (0.0977) *π88 -0.0044 (0.0480)

∗π21 0.0183 (0.0948) π83 0.5105 (0.0991) *π98 -0.0073 (0.0819)

π31 0.2583 (0.1234) π93 0.5535 (0.0914) π99 0.0340 (0.0052)

1 Parameters with * are not significant at the level of α = 0.05


