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Abstract 
Using new data on citations to university patents and scientific publications, and measures of 
distance based on Google maps, we study how geography affects university knowledge 
diffusion. We show that knowledge flows from patents are localized in two respects: they 
decline sharply with distance up to about 100 miles, and they are strongly constrained by 
state borders, controlling for distance. While distance also constrains knowledge spillovers 
from publications, the state border does not. We investigate how the strength of the state 
border effect varies with university and state characteristics. It is larger for patents from 
public, as compared to private, universities and this is partly explained by the local 
development policies of universities. The border effect is larger in states with stronger non-
compete laws that affect intra-state labor mobility, and those with greater reliance on in-state 
educated scientists and engineers. We confirm the impact of non-compete statutes by 
studying a policy reform in Michigan that introduced such restrictions. 
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1. Introduction

Innovation and knowledge spillovers are the key to economic growth, and universities play a central

role. In the U.S., academic institutions spent $48 billion on R&D, accounting for 56 percent of ba-

sic research and 33 percent of total research in the U.S. (National Science Board, 2008). Academic

research increases productivity growth in the economy and stimulates greater private sector R&D

through spillovers, and through licensing university innovations to private �rms for commercializa-

tion.1 Academic research output takes two main forms: scienti�c publications and, increasingly

since the 1980 Bayh-Dole Act, patents. Promoting university innovation and its di¤usion, especially

through science-based research clusters, is a major policy objective in industrialized countries. This

policy focus is based in part on the assumption that knowledge spillovers are geographically localized

and best exploited by agglomerating high technology activity.2 Thus it is important to understand

how geography, and the characteristics and policies of universities and states, constrain knowledge

di¤usion.3

This paper focuses on how state borders, and distance, in�uence the di¤usion of knowledge from

private and public American universities, and explores why the state may be a relevant geographical

unit when analyzing knowledge �ows. Whereas country borders typically demarcate zones with

di¤erent cultures, languages, and political institutions, American states are not likely to vary much

on these dimensions. Thus it is not immediately clear why state borders would matter in this

context. Moreover, the di¢ culty of disentangling state border e¤ects from pure distance e¤ects

makes it di¢ cult to isolate and interpret whatever e¤ects appear to be associated with state borders.

Nonetheless, because state borders are not strongly associated with di¤erent linguistic, culture, or

political institutions, they provide a clean framework for investigating how local policy, both at the

state and university levels, in�uences knowledge di¤usion.

1There is substantial evidence of R&D spillovers (e.g., Ja¤e, 1989; Ja¤e and Trajtenberg, 2002; Adams, 1990).
Research spillovers tend to be geographically localized, as might be expected if direct knowledge transfers are important
(Ja¤e, Trajtenberg and Henderson, 1993; Audretsch and Stephan, 1996). There is also a growing empirical literature
on university patenting and technology transfer policies (e.g.,Henderson, Ja¤e and Trajtenberg, 1998; Lach and
Schankerman, 2008; Belenzon and Schankerman, 2009), and university research productivity (Adams and Griliches,
1998).

2For a review of economic studies of links between universities, entrepreneurship, and regional development, see
Astebro and Bazzazian (2010).

3Knowledge di¤usion can be �disembodied� (e.g. reading patents or publications) or transmitted through more
direct interaction, such as collaborative research and consulting activity. Both forms of transmission may be con-
strained by geographic distance, and facilitated by improvements in information and communication technologies and
other channels (Agrawal and Goldfarb, 2008; Adams, 2002). Some of our results point to an important role for labor
mobility and policies that in�uence it.
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We focus on two channels through which state borders can a¤ect knowledge di¤usion: local

information and commercialization of university inventions. The �rst channel is important when

dealing with tacit knowledge that is di¢ cult to codify and transfer by simply reading patent doc-

uments or academic publications. This means that inventors located closer to the cited university

have a greater potential for learning than those located further away. In such cases, the border

e¤ect should be stronger in states where inventors are more likely to remain in the state when they

move jobs, and when inventors working in a state are more likely to have been educated in that

state. State policies can in�uence the prevalence of such local information �e.g., by discouraging

inter-state mobility of inventors by strongly enforcing �non-compete�labor laws, or by more e¤ec-

tively retaining locally educated scientists and engineers. The second channel involves university

and state characteristics and policies that promote the local commercial development of university

research output. This is more likely to occur in states with a dense and vibrant community of

scientists and engineers, who can potentially build on and cite university patents and publications.

In addition, the state border is likely to be more important for public universities which are more

exposed than private ones to a variety of constraints and in�uences by state government. One

manifestation of this relationship is the greater importance that public universities typically attach

to promoting local and regional development through their technology licensing policies (Belenzon

and Schankerman, 2009).

To study these questions, we use two complementary measures of knowledge spillovers. The

�rst is citations to university-owned patents. Citations have been widely used in the literature to

trace spillovers from corporate R&D (Ja¤e and Trajtenberg, 2002). However, citations to university

patents are an imperfect measure of the reliance of corporate research on university knowledge. The

reason is that many of the scienti�c contributions made by university faculty never �nd their way

into patents.4 The most important complementary measure of knowledge spillovers is the extent

to which corporate patents cite university scienti�c publications. One might expect the geographic

pattern of di¤usion for �open science� knowledge in publications to di¤er from the �proprietary�

knowledge embedded in university patents. In addition, if the information in scienti�c publications

is more �general�, and thus multi-use in character, we would expect it to exhibit less sensitivity to

distance and state borders, especially if the border e¤ect is driven in part by technology licensing

4Only about one third of inventions disclosed by faculty to university technology transfer o¢ ces end up as patent
applications (Lach and Schankerman, 2008). In addition, there are purely scienti�c discoveries by faculty that are not
embodied in inventions with commercial applications, but which may contribute to subsequent corporate innovation.
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and other university or state policy.

There is a substantial literature on the localization of knowledge spillovers using patent cita-

tions.5 The basic idea is that a citation indicates that the later invention in some way builds on the

earlier one, and that some knowledge transfer has occurred. The seminal paper in this area is Ja¤e,

Trajtenberg, and Henderson (1993). They compare the average distance of patents that cite another

patent and a random control group of patents that do not cite (the control patent is drawn from

the same technology �eld and patent cohort as the cited patent). They show that �rms located in

the same city as the inventor are much more likely than others to bene�t from knowledge spillovers

from that innovation. This approach has been used and re�ned by later studies.6 Geography is

typically summarized as a set of broad areas �identifying only whether inventors are in same city,

state, or country. These studies do not use a measure of geographic distance, so they are not able

to explore in more detail how distance a¤ects citation rates �e.g., whether the e¤ects of distance

on spillovers dissipate after some point. We address this gap by using the actual distance between

the locations of patent assignees (measured by Google Maps).

We adopt a similar econometric approach to study how geography shapes university knowledge

spillovers, and how this impact varies with state and university characteristics and policies. We dis-

tinguish between two dimensions of localization: the relationship between spillovers and geographic

distance, and the impact of state borders, controlling for distance. Using new data on citations

to university patents and scienti�c publications, and measures of distance based on Google Maps,

we show that spillovers are highly localized. Citations to both university patents and publications

decline sharply with distance up to about 150 miles, but are essentially constant beyond that. This

level of �threshold distance��corresponding as it does to an extended commuting distance �strongly

5Of course, not all university knowledge di¤usion represents spillovers in the economic sense. The bene�ts are
partially internalized when university inventors collaborate with private �rms in the commercialization of their in-
ventions (e.g. through consulting or participation in start-up companies). This is the argument that Zucker, Darby,
and Brewer (1998), and Zucker, Darby, and Armstrong (1998) make with respect to the development of the U.S.
biotechnology sector. However, it is unlikely that the social returns to knowledge di¤used through university patents
and scienti�c publications are fully internalized by the inventors. See also Audretsch and Stephan (1996).

6Leading examples of papers that document the state-(or other sub-national or national) border e¤ect include
Thompson (2006), Alcacer and Gittleman (2006), and Peri (2005). The �rst two papers uses the control group
approach but exploit the distinction between citations by the patentee and those added by the patent examiner
to help identify localized spillover e¤ects. Peri (2005) uses the citation function approach developed by Ja¤e and
Trajtenberg (1998), which requires explicit functional form assumption on the probability to cite. The border e¤ects�
found by these studies are di¢ cult to interpret, however. Thompson does not include a distance measure, which
confounds the e¤ects of distance and borders. Peri includes only a linear distance measure, and thus potentially
confounds the border e¤ect with nonlinear distance e¤ects. In a more recent (unpublished) paper, Singh, Marx, and
Flemming (2010) document a persistent state border e¤ect while controlling for re�ned distance measures.
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suggests that direct personal interaction plays an important role in knowledge �ows. Controlling

for distance, we �nd strong evidence of a state border e¤ect for citations to university patents. In-

ventors located in the same state as the cited university are substantially more likely to cite one of

the university�s patents than an inventor located outside the state. In sharp contrast, we �nd that

state borders have essentially no impact on citations by patents to university scienti�c publications

(except for very low quality publications).

The state border e¤ect is much stronger for citations to patents from public, as compared with

private, universities. A substantial part, but not all, of this ownership e¤ect is associated with the

local development focus of the university technology transfer activity. This �nding has a potentially

important policy implication. Belenzon and Schankerman (2009) show that there is a cost to

pursuing local development in this way �universities with strong local focus earn substantially less

licensing income from their inventions. But there may be o¤setting bene�ts, most importantly in the

form of greater localization of knowledge spillovers. This issue is key to understanding whether it

makes economic sense for universities (or state governments) to promote local development through

local licensing. Our �nding that strong local development objectives are associated with greater

localization of knowledge �ows shows that there is a genuine tradeo¤ which policymakers need to

bear in mind.

However, the impact of the state border on patent citations is very heterogeneous across states.

We show that the variations in the border e¤ect are generally consistent with the local information

and commercialization hypotheses. First, the border e¤ect is larger in states that do not have, or do

not strongly enforce, �non-compete�labor laws. These statutes restrict employees from moving jobs

to a competing (typically, same industry) �rm within the same state for some period of time. By so

doing, they should reduce within-state knowledge spillovers and thus weaken the state border e¤ect

on citation behavior.7 We con�rm the impact of non-compete statutes by studying a policy reform

in Michigan that introduced such restrictions. This reform was �rst studied by Marx et. al. (2007,

2010), who show that non-complete laws do, in fact, increase out-migration for job movers. Our

�nding reinforces those studies by showing that non-compete statutes a¤ect not only labor mobility

directly, but also the knowledge di¤usion that labor mobility generates. This �nding is consistent

with earlier work by Almeida and Kogut (1999), who document the link between patent citations

7The impact of non-compete statutes on growth is theoretically ambiguous. They intensify local knowledge
spillovers by allowing intra-state job hopping, but reduce the incentives of employers and employees to invest in
job-speci�c human capital. For discussion see Fallick, Fleishman, and Rebitzer (2006).
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and labor mobility. The second prediction that is supported by the evidence is that intrastate

citation is stronger in states with greater density of scientists and engineers, and a higher fraction

of inventors who were educated at in-state universities.

Finally, we investigate how localization of knowledge di¤usion varies across technology areas.

The importance of tacit knowledge and the associated channels of information transmission may

di¤er. In �elds where information is less codi�ed and thus harder to transmit, direct social relation-

ships �e.g.. collaboration, seminars and so on�are likely to play a larger role, making knowledge

spillovers more sensitive to geographic distance. We �nd that localization occurs mostly in biotech-

nology, pharmaceuticals, and chemicals, and much less so in electronics, information technology,

and telecommunications. These di¤erences imply that some of the variation we observe in the

strength of the border e¤ect across states may be attributable to di¤erences in their technology

specialization.

The rest of the paper is organized as follows. Section 2 presents the data. In Section 3 we

describe the econometric speci�cation. The results are reported and discussed in Section 4 reports

the results. Section 5 summarizes the key �ndings and some directions for further research.

2. Data

For this paper we constructed several new, large-scale data sets that allow us to look at localization

of knowledge �ows in novel and more detailed ways. These are described brie�y below. Details are

provided in the Data Appendix.

2.1. Patent Citations to University Patents

The sample covers 184 research-oriented (Carnegie I) universities in the United States, which account

for the vast bulk of academic R&D in the United States. We follow the conventional approach of

using patent citations to trace knowledge spillovers. In order to identify the population of university

patents, we matched the names of the assignees of U.S. patents to universities, using a wide range

of possible appellations for the university (e.g. the names of the technology licensing o¢ ce, the

university, and relevant abbreviations). This allows us to identify all patents applied for by each

university in the sample, and then to identify the set of all U.S. patents that subsequently cite

these university patents. The standard data source for U.S. patents is the 2002 version of the

NBER patents and citations data archive. We updated the patent data to 2007 by extracting all

information, including inventor address and citations, for all patents granted between 2002 and
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2007 directly from the USPTO website.8 Updating the patent data improves our ability to study

patterns of knowledge spillovers for relatively new technology areas, such as Information Technology

and Biotechnology.

We construct a control group to compare to this set of citing patents. Self-citations and citations

by foreign patents are excluded from this analysis. For each citation to a university patent, we

randomly draw another (non-citing) patent in the same three-digit U.S. patent class and patent

grant year. Thompson and Fox-Keene (2005) argue that �ndings of localized knowledge spillovers

using patent citations may be sensitive to the technology classi�cation � speci�cally, that more

detailed disaggregation is essential �so as a further step we also collected the more detailed, six-

digit assignment using the International Patent Classi�cation for each patent.9 The �nal data set

includes 26,914 university patents granted during the period 1976-2006. These patents receive a

total of 383,096 citations during the sample period 1976-2007. With a matched (non-citing, control)

patent for each of these, the �nal data set has 258,966 observations.

2.2. Geographical distance of spillovers

To examine the relationship between distance and knowledge spillovers, we constructed a novel data

set on the distance between the cited university and all of the �rms that cite its patents over the

period 1976-2007. The distance is measured on the basis of the address of the inventor on the citing

patent and the address of the university whose patent is cited (i.e. where the patent assignee is the

university). To do this, we developed new data extraction software that uses Google Map as the

source of information for the geographical (driving) distance in miles between each university and

the citing inventor�s location. In cases where there are multiple (domestic) inventors on the citing

patent, we take the average geographic distance between the addresses of the various inventors and

the university whose patent is cited. The econometric results are robust to using the alternative

approach of taking the minimum distance when there were multiple inventors.

2.3. Patent Citations to University Scienti�c Publications

We constructed a new data base on citations by corporate-assigned patents to scienti�c publications

by university faculty. For each patent granted in the period 1975-2007, we extract the citations it

makes to non-patent literature directly from the patent document as it appears in the U.S. Patent

8http://patft.uspto.gov/netahtml/PTO/srchnum.htm
9For this purpose we adopt the IPC because concerns have been raised about the accuracy of the more detailed

U.S. patent sub-classes.
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O¢ ce. We then identify the author(s) and her a¢ liation from the citation text and determine

the name of the cited university. In cases where the citation has incomplete information about the

authors or a¢ liations, we use the Web of Science data base to track the name of the publication and

determine the university to which it belongs. The output of this procedure is a comprehensive data

set that maps the link between corporate innovation and university scienti�c discoveries. We then

use Google Map to calculate the distance between the location of the citing inventors and the cited

university, similar to the patent citations data. Finally, we construct a control group of patents �for

each patent citing an academic publication from one of the universities in our sample, we randomly

draw another patent with the same technology (patent) sub-class and cohort that does not cite

the university�s publications. In total, 365,205 patents in the complete sample make at least one

citation to academic publications. Of these citations, 35,043 involve (matched) publications from

our sample of universities. With a matched (non-citing, control) patent for each of these, the �nal

data set for publication citations has 70,086 observations.

2.4. University characteristics and local development objectives

For each university in the sample, we have information about whether the university is public

or private, and about the extent to which its technology licensing activity is aimed at promoting

local development. The latter information is based on a survey of university technology licensing

o¢ ces (TLO�s) developed by Lach and Schankerman (2008).10 Among other things, this survey

(conducted in 2001) asks about the importance the TLO attaches to promoting �local and regional

development�(i.e., a preference for licensing to local �rms), using a four point Likert scale �very

important, moderately important, relatively unimportant, or unimportant. We de�ne a dummy

variable that is set equal to one if the university TLO a answers �relatively important� or �very

important�; the reference category corresponds to the other two categories. This survey covers only

75 universities (the patents and publications data cover 184), but these universities account for about

68 percent of the total number of patent citations in the overall sample. Of these 75 universities, 57

rank local development objectives as either relatively or very important. Not surprisingly, public

universities typically rank local development highly, though there are both public institutions that

do not and private ones that do (Belenzon and Schankerman, 2009). Therefore, in examining the

10The survey of TLO directors was developed in late 2001. It was sent to about 200 U.S. and Canadian research
universities that belong to the Association of University Technology Managers, with 102 responses. After matching
to other data for the empirical analysis, the �nal sample consists of 84 universities. In this analysis we exclude the
nine Canadian universities because we only use patent citations by U.S.-based inventors. For more details, see Lach
and Schankerman (2008) and Belenzon and Schankerman (2009).
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impact of this policy variable, it will be important to control for university ownership status in the

regressions.

In addition to these data sets, we use a set of state-level control variables in some of the regres-

sions. The variables will be introduced later when we use them.

3. Econometric speci�cation

We follow the empirical methodology of Ja¤e, Trajtenberg and Henderson (1993), comparing the

characteristics of corporate patents that cite university patents and a control group that does

not. The control group is constructed as follows: for each citation received by a university patent

(excluding self-citations), we randomly select another patent that does not cite but which is in the

same cohort (patent grant year) and four-digit patent class. Essentially the methodology involves

comparing the geographic distance, and other patent characteristics, between the citing patents and

the control group. Speci�cally, we estimate Probit regressions of the probability of citation against

a set of control variables. Since the control group is matched on the patent application date and

technology �eld, the methodology automatically controls for these factors in the regressions.

The general empirical speci�cation is

Pr ob(Ci(u;s);j(s0) = 1) = F (�
0Dij + �

0Xij + Dws + �ZuDws + �WsDws + �u + "ij)

where Ci(u;s);j(s0) is a citation by patent j (located in state s0) to a patent (or academic publication)

i from university u (located in state s), and F denotes the cumulative normal distribution. The

control variables (discussed more fully below) include measures of geographic distance between the

citing and cited patent, Dij ; a set of other controls Xij , a within-state dummy (border e¤ect), Dws,

interactions between university and state level variables with the within-state dummy, ZuDws and

WsDws, and a set of university �xed e¤ects, �u: We compute standard errors clustered at the level

of the cited patent, which allows the disturbance "ij to be correlated across citing patents for the

same cited patent.

The identi�cation assumption in this analysis is that the key observed characteristics of interest

�geographic distance of the citing patent, university and state level characteristics, and university

local development focus �are exogenous factors, unrelated to the disturbance "ij in the citation

equation. The main concern that might arise here is unobserved quality of a patent, which might

a¤ect both the probability that it is cited and (possibly) the distance of the citing patent. But here

one would expect that higher (unobserved) quality would be positively correlated with the distance
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of citing patents (i.e., weak patents tend to be cited more locally). Such correlation would induce

a positive bias in our coe¢ cient on distance, and thus cause us to understate localization e¤ects,

that is, to understate the negative impact of distance on citation behavior.

One important issue to bear in mind is the endogeneity of location. We treat distance between

the citing �rm (inventor) and the cited university as exogenous. We �nd that citation dissipates

with distance. One interpretation of this result is that inventors learn less the further they are from

the cited patent. But it could also be a re�ection of an endogenous spatial distribution of inventors,

driven by an attempt to exploit knowledge spillovers. The extreme version of this is what we might

call �pure assortative matching�� inventors learn only from their own types (e.g. those in their

speci�c technology area), and distance does not a¤ect this learning per se. One way to distinguish

between these interpretations is to use more disaggregated controls for technology �elds (as we do

in this paper), but one can not entirely rule out endogenous location as part of the explanation. In

an important sense, however, this is not so much an identi�cation issue as an interpretational one.

Nonetheless, our paper can rule out the null hypothesis that the state border e¤ect is solely driven

by endogeneity because we show that it varies systematically across university and state policy and

characteristics. If the state border e¤ect were driven only be �assortative matching�by technology

specialization, or the desire of inventors to locate closer to higher quality universities, it would

be hard to explain why this e¤ect is weaker for private than for public universities (conditional

on patent quality) and for universities that are located in states that more strongly enforce �non-

compete�labor laws.

Turning to the control variables, we measure the distance between the inventor(s) of the citing

patent and the university whose patent is cited in two ways. The �rst is a simply to use the driving

mileage in logs. The logarithmic speci�cation seems preferable on a priori grounds to the simple

linear version in Peri (2005) (the marginal impact of distance is not likely to be constant), even this is

restrictive because there could be highly nonlinear impacts of distance, e.g. after some level, distance

may not matter at all. The way distance a¤ects knowledge di¤usion depends on how information

spreads. If knowledge is primarily transferred through personal contact in research collaborations,

participation of university inventors in the development of licensed technologies (including start-

ups) and so on, then we might expect di¤usion to be highly localized and distance not to matter

after some point. But if information is spread more though information technology, or inventor

participation in scienti�c conferences, the e¤ects of distance should be less local. Therefore, we

adopt a second, more �exible speci�cation that allows for nonlinear e¤ects of distance. To do that,
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we use a set of seven dummy variables for intervals of distance (in miles): 25-50, 50-100, 100-150,

150-250, 250-500, 500-1000 and greater than 1000; the reference category is 0-25 miles (which might

be interpreted as a metropolitan e¤ect).

Of course, the probability a university patent is cited might be expected to depend on a variety

of characteristics of the university (e.g. the quality and visibility of its faculty, its general com-

mercial orientation, and the high-technology density and specialization of the university location),

and its policies in promoting dissemination through technology transfer and academic interaction

(conference attendance, consulting activities and so on). To capture these factors, we introduce a

complete set of university �xed e¤ects for the cited patent.11

To allow for the state border to a¤ect the citation probability, we de�ne a �within-state�dummy

variable that is set equal to one if the inventor of the citing patent is located in the same state as the

university whose patent is cited (zero otherwise)12 Since we are controlling separately for distance

with a very �exible non-linear speci�cation, this within-state dummy will identify whether there is a

pure �border e¤ect�. We investigate whether there is a signi�cant border e¤ect on citation behavior,

and whether the strength of this impact is related to university and state government policies.

Finally, we include a complete set of dummy variables for bilateral e¤ects between pairs of the

�ve leading high-tech clusters in the U.S.: Austin, Boston, Raleigh-Durham, San Diego, and Silicon

Valley. We allow for the ordering of the location of the cited and citing inventor to matter (e.g. the

San Diego-Boston link may di¤er from Boston-San Diego). This gives a total of 20 dummy variables

for the high-tech city pairs. These controls are introduced to account for the possibility of higher

citation rates between high-technology clusters, independent of distance.13

4. Non-parametric Evidence

Table 1 presents descriptive statistics on the locational characteristics of citations to university

patents (Panel A) and scienti�c publications (Panel B). The mean share of citations that are from

the same state as the inventor is 12 percent but it varies widely across patents (from 0 to 100

11This additive speci�cation will not pick up characteristics of universities that a¤ect the geographic pro�le of
citations (i.e., the way they depend on distance). In the empirical analysis we will allow for the ownership type and
other characteristics of the university and state to interact with geographic distance and/or the state border e¤ect.
12 If there are multiple inventors, the state dummy is set equal to one if any of the inventors on the citing patent is

located in the same state as the cited university patent.
13Almeida and Kogut (1999) show that localization e¤ects are stronger in certain high-technology regions in the

U.S. than other regions. This is not surprising, given the agglomeration of technologically related activity in those
areas. In our analysis, we control for university �xed e¤ects, which should pick up much of this e¤ect. Our dyad
dummies for high-tech cluster pairs should pick up links between clusters with similar technological focus.
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percent). The average distance between citing and cited patent is 1,218 miles (not reported), but

citations are geographically concentrated �overall, 13 percent of all citations originate within 150

miles, and 28 percent within 500 miles, from the cited university patent.14 At the same time, 56

percent of citations originate at a distance exceeding 1,000 miles from the cited university. The

locational pattern for citations to publications is very similar. However, nothing can be concluded

about the localization of knowledge di¤usion from these facts alone. For that, we need to compare

the geography of citing and a control group of non-citing patents. We do this non-parametrically

in the next table, and econometrically in Section 4.

Insert Table 1 here

In Table 2 we present a non-parametric comparison of citing and control group patents (Panel A)

and scienti�c publications (Panel B). In column (2) of Panel A, we compare the average di¤erence

between the distance of patents that cite and those that do not (control group), broken down by

university ownership type and patent quality. Several conclusions are worth noting. First, in the

overall sample citing patents are systematically closer to the cited university than the control group

�the di¤erence is -6.9 percent �and we easily reject they hypothesis that there is no di¤erence.

Distance does constrain university knowledge di¤usion. Second, the degree of localization is more

than twice as large for public institutions than for private ones �the di¤erences are �9.3 and -4.3

percent, respectively. Third, the degree of localization is much more pronounced for the lowest

quartile of patent quality, both for public and private institutions. For the upper quartile, there

is much less localization and, for private universities, there is actually no statistically signi�cant

localization.

Column (3) presents the comparisons between citing and control group patents on the fraction

of citations originating from within-state inventors, another measure of localization. The pattern is

broadly similar to those in column (1). First, inventors that cite university patents are signi�cantly

more likely to be located in the same state. We decisively reject the null hypothesis that there is no

di¤erence between citing and non-citing patents. Second, the �within-state citation bias�is stronger

for public universities than for private ones. Finally, the within-state bias is more pronounced for

14The number of universities with citations represented in a given bracket, and the share from private universities,
are shown in the second and last columns, respectively. We have a fairly even representation of private universities
across the distance brackets.
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the lowest quartile of patents �the di¤erence with the upper quartile is especially large for public

universities.

Overall, the pattern for publications is very similar to patents, so we will not go through it in

detail. The similarity is noteworthy, and perhaps a little surprising, because publications corre-

spond to an open science regime, where dissemination is encouraged by the norms of the profession

and the academic reward structure. In contrast, patents are proprietary knowledge apart from the

information disclosure mandated in the patent document. The fact that the two knowledge regimes

exhibit similar characteristics suggests that there are common, geographically mediated determi-

nants of information dissemination. We return to this point in Section 4, where we discuss the more

detailed econometric results.

Insert Table 2 here

Figure 1 provides additional evidence on the relationship between citations, distance and state

borders. In this graph we measure the e¤ect of state borders on citation, holding constant the

distance between the citing and cited patents. The graph depicts the extent to which the e¤ects

of distance and state border die out as we extend the distance. The light colored bars show the

di¤erence between the average citation probability for an inventor in the speci�ed distance interval

and those at greater distances (the 95 percent con�dence interval is given at the top of each bar).

These bars show clearly the very signi�cant localization of university knowledge spillovers. For

example, the �rst �distance bar�shows that the probability that an inventor within 25 miles cites

the university patent is 34 percentage points greater than for inventors located beyond 25 miles.

Since the probability of citation is 50 percent by the construction of the control group, this e¤ect

is huge �equivalent to a 65 percent decline in the mean citation probability. We observe a further

steep decline in citation probability as we move from 25-50 to 50-100 miles �there is still a small,

but statistically signi�cant, distance e¤ect at 50-100 miles, equivalent to a 10 percent higher citation

probability (relative to the mean) than at greater distances. But after that, it appears that distance

exerts no further e¤ect.15

The dark colored bars depict the di¤erence between the citation probability for inventors located

within the same state as the university and those outside the state, for each distance interval. These
15The last two bars suggest that the citation probability appears to rise slightly with distance at distances beyond

500 miles. This is an artifact of the higher citation probabilities between high-technology clusters which at greater
distances in the U.S. (e.g. Boston, Silicon Valley, San Diego, Raleigh-Durham and Austin). When we control for
cluster pairs and other factors in the econometrics, this anomaly disappears.
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bars highlight the distinction between the impacts of distance and state borders on citations. While

we found that e¤ects of distance die out after 100 miles, we see that the border e¤ect persists over

much longer distances (the maximum within-state distance is 707 miles, in California). This �nding

is interesting because it is consistent with the hypothesis that the border e¤ect is determined (at

least in part) by university and/or state policies, whose e¤ects we would not expect it to disappear

with distance.

Insert Figure 1 here

5. Estimation results

5.1. State-border e¤ect

Table 3 presents the baseline regressions relating patent citation to distance and state borders. In

all regressions, we include university �xed e¤ects, dummy variables for pairs of �ve high-technology

clusters, and a dummy variable for whether the citing and cited patents are in the same 6-digit IPC

patent class.16 The reported coe¢ cients are the estimated marginal e¤ects from Probit regressions,

and standard errors are clustered at the level of the cited patent.

In column (1) we begin with the simplest speci�cation relating the citation probability to distance

measured in the log of miles between the citing and cited inventors. Distance has a statistically

signi�cant but small impact in dampening citations. A ten percent increase in distance �which

corresponds to 120 miles, evaluated at the sample mean �is associated with a 0.43 percentage point

increase in the probability of citation. This is equivalent to only a 1.9 percent increase relative to the

mean citation probability.17 It is also worth noting that the coe¢ cient on the technology matching

dummy is large and statistically signi�cant, con�rming that citation is more likely between patents

in the same technology area. Yet the fact that we �nd localization, even when we control for this

dummy at the disaggregated, 6-digit IPC level, suggests that localization is not just a re�ection of

16 Including university �xed e¤ects in the Probit regressions does not cause an incidental parameters problem because
the limiting dimension for consistency here is the number of patent citations, not the number of universities.
17Our estimate is larger than the one obtained by Peri (2005). He estimates that an increase in distance of 1000

Km (600 miles) is associated with a reduction in citations of about 3 percent, whereas our estimate (evaluated at the
sample means) implies a 9.5 percent decline. Part of this di¤erence disappears when we include a state border e¤ect
(column (3) in Table 2), but our �nding of greater localization may also be due to our focus on university patents.
Evidence in Adams (2002) suggests that university spillovers are more localized than corporate-generated spillovers,
but a full examination of this interesting question is left for future research.
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the spatial distribution of technological activity.18 This conclusion is robust across all speci�cations

we estimate.

In column (2) we replace the distance measure by a within-state dummy. The estimated para-

meter shows that citation is much more likely from inventors located within the same state �the

marginal e¤ect of being within-state is very large, 0.225, which is nearly half of the mean citation

probability. Column (3) reports results for the speci�cation that includes both the distance measure

and the within-state dummy. The results con�rm that both distance and the state border e¤ect

are statistically signi�cant, and that it is important to include both variables. Including distance

reduces the estimated e¤ect of the state border from by more than 50 percent, from 0.225 to 0.122.

At the same time, including the within-state dummy also reduces the estimated impact of distance

by half, from -0.043 to -0.024.

There is the further concern that part of the reason there appears to be a state border e¤ect

is that we have not allowed for non-linear distance e¤ects. To address this, in column (4) we

introduce a set of dummy variables for di¤erent distance intervals. We will refer to this as the

baseline speci�cation. Two key �ndings emerge. First, the estimated state border e¤ect is robust to

allowing for �exible distance speci�cation. The estimated marginal e¤ect of crossing the state border

is 0.089 �this represents about 20 percent of the mean citation probability, which is close to (and

not statistically di¤erent from) the estimate of 0.122 obtained with the more restrictive distance

speci�cation. This result con�rms that the border e¤ect is not simply a proxy for geographic

distance.

The second important result in column (4) is that geographic distance sharply constrains knowl-

edge spillovers �moving from 0-25 to 25-50 miles reduces the citation probability by 20.2 percentage

points, and moving out to 50-100 miles further reduces it by another 5.6 (=25.8-20.2) percentage

point. But after that, distance has no appreciable e¤ect on citation. We can test the hypothesis

that there is no incremental distance e¤ect beyond 100 miles by constraining the coe¢ cients on

those dummy variables to be the same as the coe¢ cient for the 50-100 mile dummy. We do not

reject this hypothesis if we exclude the last dummy, which captures mostly bi-coastal e¤ects �the

p-value of the test is 0.73. These econometric results con�rm what we saw in Figure 1.

One concern is that the pattern of knowledge di¤usion for patents that represent important

18 If localization is driven only be spatial agglomeration of technologically similar innovation, we would expect to �nd
no (or much weaker) localization when we control in a more re�ned way for matching on technology class. This concern
was originally raised by Thompson and Fox-Keene (2005) in the context of the classic paper by Ja¤e, Trajtenberg
and Henderson (1993).
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technological or economic advances may be very di¤erent than for marginal improvements. In par-

ticular, while unimportant patents are likely to be cited only by locals, we would expect important

ideas to di¤use more widely. To investigate this hypothesis, we use the total number of citations

that a patent receives over its lifetime as a proxy for its importance.19 We re-estimated the re-

gression for the lowest quality quartile of patents (column 5), and for the upper quartile (column

6). The results show clearly that knowledge di¤usion is more localized for low value patents. The

estimated coe¢ cients on the distance dummies show a sharper distance gradient for the lower quar-

tile. Moving from 0-25 to 25-50 miles reduces the citation probability by nearly twice as much for

lowest quartile than for upper quartile (-0.247 versus -0.130). But it also interesting that for both

categories of patents, the e¤ect of distance dies out relatively quickly � it is exhausted after 100

miles for the lower quartile of patents, and 150 miles for the upper quartile.

However, while knowledge di¤usion of low value patents drops o¤ more sharply with distance,

the state border e¤ect is weaker for low value patents (0.078 versus 0.118). If the state border e¤ect

is due, at least in part, to the local development policies of the university, as we show in the next

section, this evidence suggests that these policies target high valued innovations.

There is a concern that the results might be driven by a small number of leading universities

which dominate patenting activity. In order to address this issue, we drop the top �ve universities

in terms of their total number of patents, and re-estimate the baseline speci�cation in column (4).

These top universities, in descending order, are MIT, University of California at Berkeley, Stanford,

California Institute of Technology, and the University of Wisconsin, and together they account for

nearly a quarter of the citations in our sample. Nonetheless, when we drop these universities, the

parameter estimates (reported in column 7) are very similar to those using the entire sample. This

con�rms that our key �ndings about the pattern of localization are robust, and are not driven by

these top performers.

Finally, we also checked whether the geographic pro�le of knowledge spillovers changed over

time. To do this, we re-estimate the baseline speci�cation in column (4) for two sub-periods: 1976-

19There is a large empirical literature showing that such citation measures are correlated with measures of economic
value (for extensive discussion, see Ja¤e and Trajtenberg, 2002). We observe patents granted up to 2006 and citations
through the year 2007, so there is an issue of truncation for the more recent patents. However, since we study the
relationship between citation and distance, and not the number of citations per se, truncation would only cause a
problem to the extent that the timing of citations is correlated with distance (e.g. earlier citations to a patent are
from less distant inventors). Since that is possible, we checked robustness of results by re-estimating the speci�cation
in column (4) in Table 3, using only patents granted before 2000. The results are very similar to those in the table.
For example, the coe¢ cient on the within-state dummy is 0.096, which is nearly identical to the one from the full
sample in column (4).
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1993 and 1994-2006 (1993 is the median year for patent citations). The breakdown by period is

based on the date of the cited patent, i.e. the �vintage�of the technology, not the date at which the

citation occurs. The results (not reported, for brevity) are broadly similar for the two sub-periods

�speci�cally, we �nd no evidence that the degree of localization declined. In fact, the coe¢ cients

on the distance dummies shows somewhat stronger localization for the later period, but in both

periods the distance gradient is essentially �at after 100 miles and the estimated state border e¤ect

is similar.

Insert Table 3 here

5.2. Public versus private universities and the border e¤ect

In this section we examine the di¤erences in knowledge di¤usion from public and private universities.

We begin by estimating the baseline speci�cation separately for each ownership type, allowing for

all coe¢ cients to di¤er. Table 4 presents the results. A comparison of columns (1) and (2) shows

that there is signi�cantly stronger localization of knowledge spillovers for public universities. This

takes two forms. First, patent citations drop o¤ more sharply with distance for public universities.

For example, moving from 0-25 to 25-50 miles reduces the citation probability by 26.5 percentage

points for public institutions, and moving out to 50-100 miles further reduces it by another 3.2

percentage points (= 29.7-26.5). For private universities, the corresponding (incremental) declines

are 17.0 and 8.4 percentage points, respectively. Yet for both types of universities, we observe that

distance has no appreciable e¤ect on citation beyond 100 miles.

The second important di¤erence is that the state border much more strongly constrains knowl-

edge di¤usion for public universities � the estimates are 0.065 for public and 0.100 for private

institutions. In column (3) we pool the two types of universities but continue to allow the distance

gradient and state border e¤ect to di¤er. This speci�cation yields similar results �i.e constraining

the other coe¢ cients to be the same for public and private universities does not change our main

conclusion that spillovers are more distance sensitive and more constrained by state borders for

public universities. In this constrained version, the gap between the state border e¤ect for public

and private universities is even larger �0.132 and 0.032, respectively.

In our sample, private universities tend to have somewhat higher quality patents as measured

by the total number of subsequent citations received. The median number of patent citations is 37

(a median of 22) for public, and 48 (a median of 28) for private institutions. But the di¤erence in
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the border e¤ect is not due to these di¤erences in patent quality. To check this, we re-estimated

the speci�cation in column (3) separately for patents in the bottom and upper quartiles of the

distribution of total citations received, our measure of patent quality. The results are presented in

columns (4) and (5). For the lower quartile, the estimate of the border e¤ect for public universities

is 0.133 and essentially zero for private ones. For the upper quartile, the estimates are 0.157 and

0.096, respectively.

The evidence shows clearly that state borders are more important for public universities.20

Does this re�ect something intrinsic to ownership, or is it associated with university policy that

is correlated with ownership? To examine this key question, in column (5) we add a control for

the importance the university technology licensing o¢ ce attaches to promoting local and regional

development (interacted with the within-state dummy). This variable is only available for a subset

of the universities (but they account for the majority of the sample patents), so the sample size drops

by about a third. The results con�rm that university policy matters for knowledge di¤usion. The

state border e¤ect is more important when universities have strong local development objectives,

and the size of the e¤ect is large and statistically signi�cant. For example, the point estimates imply

that for a public university with strong local development objectives, the state border e¤ect is 0.159.

For a public university that places little weight on this objective, the border e¤ect is reduced by

about a quarter, to 0.128. For private universities, the corresponding state border e¤ects are 0.097

and 0.066.

Nevertheless, while university policy makes a real di¤erence to the degree of within-state knowl-

edge spillovers, it only accounts for only about a third of the marginal e¤ect of private ownership.

To see this, note that the estimated coe¢ cient on the private ownership (interaction) dummy in

column (3) is -0.103, as compared to the point estimate of 0.031 on the dummy for strong local de-

velopment objectives in column (7). It remains an important task for future research to understand

more fully how private ownership a¤ects university knowledge di¤usion through other channels.

Insert Table 4 here

20 In addition to the public-private distinction, we also examined whether the state border e¤ect was di¤erent for
land-grant universities. These are (mostly public) universities established by the federal government in the 19th
century to promote research and technology di¤usion. The coe¢ cient on the interaction between land grant status
and the within-state dummy was not statistically signi�cant.
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5.3. State characteristics, policy and the border e¤ect

In the previous section we found that the size of the state border e¤ect on patent citation di¤ers

between public and private universities, and is in�uenced by university technology transfer policy.

In this section we examine the extent to which the border e¤ect varies across states, and how state

characteristics and policy a¤ect it. Questions of interest include: Does the border matter less for

knowledge di¤usion in geographically larger states, like California and Texas? Does the intensity

of high technology activity in the state a¤ect the importance of the border? Do policies that a¤ect

intrastate mobility of scientists and engineers play a role?

We begin with the most �exible speci�cation, allowing each state to have a di¤erent border

e¤ect.21 Column (1) in Table 5 reports the results. The �rst thing to notice is that allowing for this

general speci�cation of the border e¤ect does not materially a¤ect our earlier results on the impact

of distance. The citation probability declines sharply, and the e¤ect of distance is exhausted after

100 miles. We �nd substantial variation in the estimated state border e¤ects (not reported, for

brevity), and decisively reject the null hypothesis that they are the same across states. The mean

border e¤ect is 0.218, but it ranges from a low of 0.024 to 0.472 (the standard deviation across

states is 0.120).

Given the size of this variation, we want to understand the factors that determine when state

borders are important for knowledge di¤usion. We examine two main sets of factors: 1) factors that

a¤ect the in-state commercialization of university inventions, and 2) factors that in�uence the �ow

of local information. We explain these factors and their testable implications below.

Commercialization hypothesis: We expect that the state border e¤ect will be stronger when

the potential for in-state commercialization of university inventions is larger. This is more likely

in states with a higher density of scientists and engineers who can potentially cite the university

patent. However, controlling for the average density in the state, we expect the border e¤ect to be

smaller in states where the high-tech activity is concentrated at the location of the cited university,

since this implies there are fewer potential citing inventors near the state border. To test these

hypotheses, we use two variables interacted with the within-state dummy. The �rst is the number

of scientists and engineers (S&E) per capita in the state (in 1995). The second is the Milken Institute

�TechPole�index of high-tech density in the city where the university is located (Devol and Wong,

1999). The index is a composite of the share of national high-tech real output and the concentration

21University �xed e¤ects are also used in this regression, except in cases where there is only one university in a
state.
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of high-tech industries for each U.S. metropolitan area. In the patent citation equation, we expect a

positive coe¢ cient on the interaction with S&E density and a negative coe¢ cient on the interaction

with TechPole.

Local information hypothesis: The state border e¤ect is simply the within-state citation bias

controlling for distance. We expect this to be larger the more information that inventors have about

the patents generated by the universities in the state. If information �ows are in fact localized, the

border e¤ect should be stronger in states where 1) inventors are more likely to remain in the state

when they move jobs (�in-state mobility�), and 2) inventors working in a state are more likely to

have been educated (at the graduate level) in that state �local education�).22

To examine the in-state mobility hypothesis, one would like information on the probability that

job movers among S&E remain within the same state. To our knowledge, no such information

is available. Instead, we build on the recent literature on the economic impact of non-compete

labor laws. These statutes restrict employees from taking jobs, for some period, with competing

(same industry) companies within some geographic boundaries, typically the state. Exploiting the

fact that the scope, and enforcement, of non-compete statutes vary across states, recent studies

have shown that non-complete laws are associated with less intrastate job mobility, among other

economic impacts (Marx et. al. 2007; 2010). We use the �non-competition enforceability index�for

each state constructed by Garmais (2009).23

To test the local education hypothesis, we need a measure of the fraction of S&E working in

a state who were educated in that state. Unfortunately there is no information we are aware of

that link the location of high-tech employees and their graduate education. The only available

source is a single cross-sectional survey on new Ph.D graduates in the hard sciences conducted by

the National Science Foundation (for details, see Sumell, Stephan and Adams, 2008). We use the

percentage of new Ph.D. hires in a state who received their degree from universities in their state

of employment (which we call S&E In�ow).24 The samples in this survey are relatively small, and

the variable is certainly measured with substantial error. The resulting attenuation bias will cause

22Of course, scientists who migrate out of state may maintain enduring professional links with local colleagues, and
thus ongoing familiarity with and citation of, their research. In an interesting paper, Agrawal, Cockburn and McHale
(2006) present evidence using patent citations that support this argument.
23This index is based on a count of twelve di¤erent dimensions of the scope and enforcement of these statutes (thus

can range from zero to twelve). In the sample it from a low of zero (no enforcement) in California to a high of nine
in Florida. We also tried the simple binary classi�cation used by Marx et. al. (2007, 2010), but the empirical results
were much weaker with this measure.
24The fraction of new hires educated in-state varies widely, from a low of 42.6 percent in Utah and Iowa to 91.7 in

the District of Columbia and 81.5 percent in New Jersey.
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us to underestimate the true impact of local education on the border e¤ect. In addition to these

variables, we include controls for the geographic size of the state and the level of economic activity

(gross state product per capita).

The results are presented in column (1) in Table 5, and they are generally consistent with the

hypotheses about the role of local information and commercialization (high-tech density).25 Turning

�rst to the commercialization hypotheses, we �nd that the density of educated inventors (scientists

and engineers) in the state has a large impact on the state border e¤ect. Evaluated at sample

means, the point estimate of 0.110 implies that a one standard deviation increase in density raises

the state border e¤ect by 0.155, which is about 72 percent of the mean value of the individual state

border e¤ects (not reported in the table). Moreover, controlling for this density, we �nd that the

state border e¤ect is smaller when there is greater concentration of high-tech activity (TechPole)

at the university location. A one standard deviation increase in TechPole (corresponding to a move

from Phoenix to Boston) reduces the estimated border e¤ect by 0.026, which is about 12 percent

of the average border e¤ect.

Turning to the role of local information, the results show that stronger enforcement of non-

compete statutes is associated with less within-state knowledge spillovers, and the e¤ect is large.

The estimated coe¢ cient of -0.014 implies that a one standard deviation increase in the enforcement

index reduces the state border e¤ect by 0.032. To put this another way, moving from a regime of

complete non-enforcement (California, index=0) to the maximum enforcement state in our sample

(Florida, index=9) reduces the border e¤ect by 0.126, which is 57 percent of the average border

e¤ect. In addition, the evidence provides mixed support for our hypothesis that the border e¤ect

is larger in states with a larger fraction of locally educated scientists and engineers. The point

estimate is negative, as predicted, but not statistically signi�cant. However, when we include the

control for the local focus of university technology transfer policy (column 2), the point estimate

is both larger and statistically signi�cant. While this suggests that retention of local university

graduates increases the localization of knowledge spillovers, more research with better measures is

needed to give a more conclusive answer.

In column (2) we add the control for local development objectives in the university technology

25As before, the standard errors are clustered at the patent level in these regressions. The state characteristics here
are interacted with the dummy variable for whether the citation is within-the same state as the cited patent, so this
regressor varies at the micro (citation) level. This makes it di¤erent from the case studied by Moulton (1990), where
a micro regression includes an aggregate regressor that has no variation over a subset of micro observations, and thus
requiring an adjustment to the standard errors.
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licensing policy. As we found in Table 4 (where we did not include state characteristics and policies),

university policy strongly a¤ects in-state knowledge di¤usion. The estimated coe¢ cient of 0.039

implies that the state border e¤ect is about 18 percent larger when universities have strong local

objectives. The other results are robust (the coe¢ cient on S&E density rises, but the di¤erence is

not statistically signi�cant). Finally, controlling for these other factors, we �nd that larger states

have smaller border e¤ects. A one standard deviation increase in size reduces the border e¤ect

by about a third, evaluated at sample means. In addition, the border is less important in higher

income states, but the e¤ect is not large (a standard deviation change moves the border e¤ect by 8

percent).

5.3.1. The Michigan �Natural Experiment�

In the previous section we exploited the cross-state variation in characteristics and policy to identify

the e¤ects of interest. There is, of course, always the concern that unobserved state characteris-

tics may be correlated with these variables, especially the enforcement of non-compete statutes.

Fortunately, we are able to examine the impact of non-compete statutes on the state border ef-

fect in another way, by exploiting a policy reform in Michigan. Prior to 1985 Michigan outlawed

non-compete agreements, but in 1985 it passed legislation that enforced them. In a series of recent

papers, Marx et. al. (2007, 2010) exploit this reform as a �natural experiment�and show that the

introduction of non-compete legislation induced out-migration from Michigan, and that this was

particularly strong for top-performing inventors. Building on their work, we use the Michigan re-

form to examine the e¤ect of this statute on intrastate knowledge di¤usion �i.e. on the importance

of the state border e¤ect on patent citation.

Speci�cally, we re-estimate the baseline speci�cation with a full set of within-state dummies,

allowing for a discontinuity in the border e¤ect in Michigan after the reform. We would not expect

an immediate impact of the reform, since labor mobility and new citing patents occur with some

lag. To capture this, we estimate four distinct Michigan border e¤ects: the pre-reform period (up

to and including 1985), 1986-89, 1990-95 and post-1995. The prediction is that the state border

e¤ect should decline after the reform. The results are presented in column (3) in Table 5, and they

con�rm this prediction. We observe a sharp, and statistically signi�cant, drop in the coe¢ cient after

1989, and essentially no change thereafter. 26 Moreover, the estimated size of this shift in the state

26This conclusion holds up for di¤erent variants where we modify the timing of the dummies. We also estimated a
speci�cation that allows for di¤erent e¤ects in each year during the period 1985-1990 and found similar (but noisier)
changes.
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border e¤ect is consistent with the change implied by the estimates obtained from columns (1) and

(2), where we identify the e¤ect from the cross-state variation. Using the estimated marginal e¤ect

of the enforcement index in column (1), and assuming that Michigan moved from zero enforcement

to the maximum level in the sample, we get an implied decline in the state border e¤ect of 0.126.

This is surprisingly close to the estimate using the natural experiment, which yields a decline of

0.121 (= 0.205 - 0.084).

As a further check, we conduct a set of �placebo�tests by examining whether there is a similar

e¤ect in other states that did not introduce any reform. Finding an e¤ect in those states would

suggest that the change is being driven by some unobserved common factor other than the reform.

We use three variants, based on di¤erent de�nitions of the placebo group of states. In column (4) we

choose two neighboring states, Illinois and Indiana, in order to control for similar industrial structure

(in particular, reliance on the automobile sector) and demand shocks. In column (5) we use the ten

states whose individual, estimated state border e¤ects were closest to the one for Michigan. Finally,

column (6) treats the placebo group as all states other than Michigan. In each case, the states in

the placebo group have their individual state border e¤ects plus a common incremental e¤ect for

the di¤erent subperiods. In all three experiments, we �nd the large decline in the estimated border

e¤ect for Michigan, but no statistically signi�cant drop for the placebo group of states. This gives

us con�dence that the Michigan reform did in fact have the impact we attribute to it.

Insert Table 5 here

5.4. Technology �elds

The analysis to this point was based on pooling data for di¤erent technology areas. It is important to

pin down whether our �ndings of localized knowledge spillovers is common to all �elds, or are driven

by only a few technology areas. Table 6 presents parameter estimates of the baseline speci�cation

for nine broad technology areas we constructed, based on the IPC patent class of the cited patent.

These areas are: Biotechnology, Pharmaceuticals, Chemicals, Medical Instruments, Engineering,

Electronics, Information Technology, and Telecommunications.27

We �nd substantial variation in the localization of knowledge di¤usion across �elds, both in terms

of the distance gradient and the state border e¤ect. While distance strongly mediates spillovers in all

technology areas, localization is considerably less sharp in Biotechnology, Information Technology

27The international patent classes that are included in each technology �eld are given in the appendix.
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and Telecommunications. The estimated coe¢ cients on the distance dummies, up to 150 miles,

are only about half as large for patents in these relatively younger �elds, as compared to the more

traditional areas. For example, citation declines by 15 percentage points (30 percent of the mean

citation probability) after 100 miles for the newer �elds, but by more than 25 percentage points for

the others. At the same, however, the distance e¤ects largely die out beyond 150 miles in all of the

technology areas.

The second important �nding is that the state border e¤ect is not present in all �elds. The

statistically, and economically, signi�cant state border e¤ects are in the biomedical-related �elds �

Biotechnology, Pharmaceuticals, Chemicals and Medical Instruments. It remains an open question

whether this �nding is due to technology specialization in universities or state policies to promote

local development of innovations from in-state universities. Either way, the technology �eld variation

we observe implies that some of the variation we observe across states in the strength of the border

e¤ect may be attributable to di¤erences in technology specialization.

Insert Table 6 here

5.5. Citations to university publications

Thus far we have traced knowledge spillovers by using citations to university patents. In this section

we present a similar analysis using citations to university scienti�c publications. We are particularly

interesting in knowing whether the geography of di¤usion di¤ers in �open science� (publication)

regime and proprietary (patent) knowledge regimes, as emphasized by Dasgupta and David (1994).

It is worth bearing in mind, however, that our analysis can only partially inform on this distinction

because we focus exclusively on citations to scienti�c publications by patents, not by other academic

publications.

Table 7 presents the regressions results for the baseline speci�cations used for patent citations.28

As with patents, we �nd that there is both negative distance e¤ect and a positive state border e¤ect

on citations to publications. This holds both with the simple (log) linear speci�cation of distance

(column 1), and when use a more �exible speci�cation for the distance e¤ects (column 2). The

estimated coe¢ cients on the distance dummies are very similar to those obtained for citations

to patents. The localization e¤ects are pronounced �moving from 0-25 to 25-50 miles reduces

the citation probability by -0.217, which is 40 percent of the mean citation rate. As with patent

28The technology match variable is omitted in these regressions as it does not apply to scienti�c publications.
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citations, the distance e¤ects die out after 150 miles (roughly the distance for channels of direct

contact), by which point the citation probability has dropped by -0.286, or nearly 60 percent of

the mean citation rate. This �nding is striking, as it shows that information �ows in �open science�

appear to be as constrained by distance as those from more proprietary knowledge in patents. It

seems that the proprietary regime is not the dominant factor constraining information �ows (though

it may, of course, limit the way in which such information can be used). More fundamental factors,

related to the channels of interaction and their relationship to distance, appear to be at work.

However, we �nd that knowledge spillovers from publication di¤er signi�cantly from patents

in the other dimension of localization � the role of the state border. In the pooled regression

including both public and private universities (column 2), the estimated border e¤ect for citations

to publications is 0.034, which is much smaller than the coe¢ cient of 0.089 for patents. This

di¤erence is even pronounced when we estimate the regression separately for public and private

universities (columns 3 and 4). We �nd no statistically signi�cant state border e¤ect for publications

from private universities, in sharp contrast to patents. Moreover, while the estimated impact is

statistically signi�cant for public universities, it is much smaller than its counterpart for patents

(0.040 for publications, compared to 0.100 for patents, based on column (2) in Table 4).

We also examine whether the pattern of di¤usion varies with the quality of scienti�c publications.

We measure quality by the total number of (journal) citations received by the scienti�c publication,

analogous to our measure for patents. Columns (5-7) present the parameter estimates for di¤erent

quartiles of publication quality. We �nd that the distance gradients are quite similar for low and

high quality publications, and they both have the characteristic that distance e¤ects are exhausted

after only 50 miles. The role of the state border, however, is very di¤erent for the proprietary

knowledge regime of patents and the open science regime of publications. There is a statistically

signi�cant border e¤ect only for low quality publications, and even here it is not large (the point

estimate of 0.074 represents about 15 percent of the mean citation rate). For the other three

quartiles the border e¤ect is essentially zero (in the table we aggregate the middle two quartiles,

but it holds for each separately too).29

Insert Table 7 here

29We also examined whether the geographic pro�le of knowledge spillovers changed over time. To do this, we
re-estimated the baseline speci�cation in column (2) for two sub-periods, 1976-1993 and 1994-2006, based on the date
of the cited publication. The results for the two sub-periods are broadly similar �there is no evidence of any decline
in localization for later scienti�c publications. This is consistent with our earlier �nding for citation to patents.
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6. Concluding Remarks

This study examines how geography, and university and state policies, a¤ect knowledge spillovers

from university innovation. We use patent citations both to university patents and scienti�c publi-

cations to trace these knowledge �ows. Our main empirical �ndings are as follows. First, university

knowledge spillovers are strongly localized. They are very sensitive to distance up to about 150

miles, and constant thereafter. Controlling for distance, we �nd strong evidence of a state border

e¤ect. Inventors located in the same state as the cited university are substantially more likely to

cite one of the university patents than an inventor located outside the state. In sharp contrast,

we �nd essentially no state border e¤ect for patent citations to university scienti�c publications

(except for the lowest quartile of quality). The distinction between the open science regime of sci-

enti�c publications and the proprietary regime of patents seems to be important in regard to the

geography of knowledge spillovers.

The state border e¤ect is in�uenced by the characteristics and policies of the university and

state. It is signi�cantly larger public universities, and in particular those (both public and private)

universities that pursue local and regional development in their technology licensing policies. The

magnitude of the state border e¤ect varies widely across states, and these variations are related

to the high-tech density and state policy toward non-compete laws that constrain intrastate labor

mobility. Finally, we show that there are di¤erences across technology areas in how distance and

state borders a¤ect knowledge di¤usion.

The important challenge for future research is to understand better the channels through which

distance and state borders mediate knowledge spillovers. Is the border e¤ect stronger for univer-

sities with greater technological specialization? What other aspects of state policy play a role �

e.g. policies related to oversight and funding of public universities, provision of incentives to local

companies using public university inventions, and so on? And, perhaps most importantly, what is

the ultimate impact of intrastate knowledge spillovers on growth in the state?

26



References

[1] Adams, James (1990), �Fundamental Stocks of Knowledge and Productivity Growth,�Journal

of Political Economy, 98(4), 673-702

[2] Adams, James (2002), �Comparative Localization of Academic and Industrial Spillovers,�Jour-

nal of Economic Geography, 2: 253-278

[3] Adams, James and Zvi Griliches (1998), �Research Productivity in a System of Universities,�

Annales D�Economie et de Statistique, No. 49/50.

[4] Agrawal, Ajay, Iain Cockburn and John McHale (2006), �Gone But Not Forgotten: Knowledge

Flows, Labor Mobility and Enduring Social Relationships,� Journal of Economic Geography,

6(5): 571-591

[5] Agrawal, Ajay and Avi Goldfarb (2008), �Restructuring Research: Communication Costs and

the Democratization of University Innovation,�American Economic Review 98(4): 1578-90

[6] Almeida, Paul and Bruce Kogut (1999), �Localization of Knowledge and the Mobility of Engi-

neers in Regional Networks,�Management Science, 45(7): 905-917

[7] Alcacer, Juan and Michelle Gittelman (2006), �Patent Citations as a Measure of Knowledge

Flows: The In�uence of Examiner Citations,�Review of Economics and Statistics, 88(4): 774-

779

[8] Astebro, Thomas and Navid Bazzazian (2010), �Universities, Entrepreneurship and Local Eco-

nomic Development,� in M. Fritsch, ed., Handbook of Research on Entrepreneurship and Re-

gional Development (Edward Elgar Publishing, forthcoming)

[9] Audretsch, David and Paula Stephan (1996), �Company-Scientist Locational Links: The Case

of Biotechnology,�American Economic Review, 86(3), 641-652.

[10] Belenzon, Sharon and Mark Schankerman (2009), �University Knowledge Transfer: Private

Ownership, Incentives and Local Development Objectives,� Journal of Law and Economics,

52(1): 111-144

27



[11] Dasgupta, Partha and Paul David (1994), �Toward a New Economics of Science,�Research

Policy, 23: 487-521

[12] Devol, Ross and Perry Wong (1999), America�s High-Tech Economy: Growth, Development

and Risks for Metropolitan Areas (Santa Monica: Milken Institute)

[13] Fallick, Bruce, Charles Fleishman and James Rebitzer (2006), �Job Hopping in Silicon Valley:

Some Evidence Concerning the Microfoundations of a High-Technology Cluster,�Review of

Economics and Statistics, 88: 472-481

[14] Garmaise, M. (2009), �The Ties That Truly Bind: Noncompetition Agreements, Executive

Compensation, and Firm Investment,�Journal of Law, Economics, and Organization

[15] Henderson, Rebecca, Adam Ja¤e and Manuel Trajtenberg (1998), �Universities as a Source of

Commercial Technology: A Detailed Analysis of University Patenting, 1965-1988,�Review of

Economics and Statistics, 119-127

[16] Ja¤e, Adam (1989), �Real E¤ects of Academic Research,�American Economic Review, 79(5),

957-970

[17] Ja¤e, Adam and Manuel Trajtenberg (1998), �International Knowledge Flows: Evidence from

Patent Citations,�Economics of Innovation and New Technology, 8: 105-136

[18] Ja¤e, Adam and Manuel Trajtenberg (2002), Patents, Citations and Innovations: A Window

on the Knowledge Economy (Cambridge, MA: MIT Press)

[19] Ja¤e, Adam, Manuel Trajtenberg and Rebecca Henderson (1993), �Geographic Knowledge

Spillovers as Evidenced by Patent Citations,�Quarterly Journal of Economics, 108(3):577-598

[20] Marx, Matt, Deborah Strumsky and Lee Fleming (2007), �Noncompetes and Inventor Mobility:

Specialists, Stars and the Michigan Experiment,�Harvard Business School paper

[21] Marx, Matt, Jasjit Singh and Lee Flemming (2010), �Regional Disadvantage? Non-Compete

Agreements and Brain Drain,�Harvard Business School paper

[22] Moulton, Brent (1990), �An Illustration of a Pitfall in Estimating the E¤ects of Aggregate

Variables on Micro Units,�Review of Economics and Statistics, 72(2): 334-338

28



[23] National Science Board (2008), Science and Engineering Indicators (Washington D.C.: Na-

tional Science Foundation)

[24] Peri, Giovanni (2005), �Determinants of Knowledge Flows and their E¤ect on Innovation,�

Review of Economics and Statistics, 87(2): 308-322

[25] Singh, Jasjit, Matt Marx and Lee Flemming (2010), �Patent Citations and the Geography of

Knowledge Spillovers: Disentanglig the Role of State Borders, Metropolitan Boundaries and

Distance,�Harvard Business School paper

[26] Sumell, Albert, Paula Stephan and James Adams (2008), �Capturing Knowledge: The Location

Decision of New Ph.D.s Working in Industry,� in Richard Freeman and Daniel Goro¤, eds.,

Science and Engineering Careers in the United States: An Analysis of Markets and Employment

(Chicago: University of Chicago Press, for the NBER): 257-87

[27] Thompson, Peter (2006), �Patent Citations and the Geography of Knowledge Spillovers: Ev-

idence from Inventor- and Examiner-Added Citations,�Review of Economics and Statistics,

88(2): 383-388

[28] Thompson, Peter and Melanie Fox-Keene (2005), �Patent Citations and the Geography of

Knowledge Spillovers: A Reassessment,�American Economic Review, 95: 450-460

[29] Zucker, Lynne, Michael Darby and Marilynn Brewer (1998), �Intellectual Human Capital and

the Birth of U.S. Biotechnology Enterprises,�American Economic Review, 88: 290-306

[30] Zucker, Lynne, Michael Darby and Je¤ Armstrong (1998), �Geographically Localized Knowl-

edge: Spillovers or Markets?�Economic Inquiry, 36: 65-86

29



A. Data Appendix

A.1. Matching patents to universities

Our patent sample includes 3,309,736 patents that were granted between 1975 and 2007. Patents
data are taken from the NBER patent �le for the period 1975-2002 (2,630,106 patents). We directly
extract from the USPTO website all granted patents for the period 2003-2007 (679,630 patents).
We exclude patents that do not include at least one domestic assignee, losing 1,508,612 patents.30

University patents can be assigned directly to the University, or to a¢ liate institutions. We manually
explore the websites of all universities in our sample to identify the di¤erent legal entities to which
the university patents can be assigned. For example, M. D. Anderson Cancer Center is an a¢ liate
of the University of Texas. The matching procedure consists of the following steps:

1. Standardizing names of patent university assignees. This involves erasing phrases which comes
before the name of the university, e.g. �The Boards of Regents of�, �Trustees of�, �A Governing
Body of the�, or after the name, e.g. �Research Foundation�. As an example, the name "The Board
of Trustees of The Stanford University - O¢ ce Of Technology" becomes "Stanford University".

2. Name matching: match the standard names of the patent applicants with our university
sample, including the a¢ liated assignees we have identi�ed for each university.

In total, we match 46,536 patents to 234 universities. The average number of patents per
university is 211 but this varies widely, from a low of one for Oklahoma State University (Tulsa)
to a high of 2,704 for MIT. The patents sample receives 408,155 citations. Of these citations, 19
percent do not include at least one American inventor and are thus excluded from the analysis.

A.1.1. Multiple assignments

Co-assignees In some cases, a patent has more than one assignee (72,714 patents in the
complete sample patents). In case of co-assignment, we make the following assumptions. If the
patent is assigned to two universities, then the patent is counted twice in our sample, once for each
university. If the patent is assigned to a university and a company, then it is included in our sample
as a university patent. Importantly, when selecting the random control sample, we ensure that the
citing patent does not below to the same university or companies that are listed as co-assignees
on the patent. Multiple assignments have important implications for the way we measure distance
between the citing inventor and cited university. In the case of multiple assignments, we assume a
citation from each assignee to the same university patent. We check the sensitivity of our results
to di¤erent ways of dealing with co-assignments. We compute distance as the average, median, and
maximum distance between the location of the citing inventors and cited universities. In all cases,
the results are not sensitive to the way we deal with co-assignments.

A.1.2. Multiple campuses and central assignments

Patents may be assigned to a university system, rather than to a speci�c campus (e.g. University
of California). In order to compute the correct distance between the inventor and the university, we

30The addresses of USPTO assignees may be ambiguous is certain cases; the address format limits either the US
state name or the non-US country at 2 letters, e.g. �Los Angeles, CA�and �Toronto, CA�. The ambiguity appears
also for DE (Delaware/Germany), IL (Illinois/Israel), AR (Arkansas/Argentina) and IN (Indianapolis/India). We
ensure we keep only US assignees by identifying the cities, and company pre�x (e.g. GMBH �rms are German and
not from Delaware).
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have to match the patent to the relevant campus. The matching procedure consists of the following
steps: 1. We generate a list of the di¤erent campuses of the samples universities (e.g., University of
Califronia-Berkeley, University of California-San Francisco etc.) where that information is available
from the university websites 2. In cases where the relevant city is stated in the assignee address
�eld rather than the city of the system�s main campus, the patent is reassigned to the campus in
that city. 3. The remaining �system�patents are matched by the addresses of their inventors: the
distance between each of the inventors which live in the local state to each of the university�s campus
is computed, and the closest university is a¢ liated to each inventor. In total, 12,116 patents were
adjusted using this procedure (details available on request).

A.2. Matching scienti�c publications to universities

Patent documents usually include citations to non-patent literature, such as scienti�c papers. In
total, 365,205 patents cite non-patent literature (the average number of non-patent references is
4.7). We develop specialized extraction software that scans patent documents and systematically
extracts the citations to non-patent literature section. We then match the articles to our university
sample. The matching procedure is quite complex because the name of the university where the
publication�s authors are employed is almost never listed. To assign universities to publications,
we use the Web of Science database by Thomson, which is the largest source of information on
scienti�c publications in �hard-science�journals (covers more than 20 million records). These data
include the publication title, authors, and university name (a¢ liation). We develop additional
specialized software that extracts this information from the Web of Science articles where at least
one of university in our sample appears in the a¢ liation �eld.

Having constructed this list of publications, we match the non-patent citations from the patents
documents to the list of university publications. Identifying the title, author, journal name, and
publication year out of the citation line is extremely di¢ cult, as there are many di¤erent formats.
We follow a similar procedure as we did for patent matching. However, here we apply more manual
checks and rely less on generalized, automated rules. The following examples illustrate the varying
formats of these citations:

1. Greenwalt et al., �Evaluation of fructose diphosphate in RBC preservation�, Transfusion 42:
384-5 (2002).

2. Quality of Service Protocols Use a Variety of Complementary Mechanisms to Enable Deter-
ministic End-to-End Data Delivery, QoS Protocols & Architectures, QoS Forum White Paper,
Stardust.com, Inc., pp. 1-25, Jul. 8, 1999.

3. Swan, �Properties of Direct AVO Hydrocarbon Indicators�, O¤set-Dependent Re�ectivity�
Theory and Practice of AVO Analysis (Castagna, J.P. & Backus, M.M., eds., Soc. Expl.
Geophys., 1993), pp. 78-92.

4. T.J. Kostas, M.S. Borella, I. Sidhu, G.M. Schuster, J. Mahler, J. Grabiec, �Real-time voice
overpacket-switched networks,�IEEE Network, vol. 12, No. 1, pp.1987, Jan./Feb. 1998.

5. A fast blind source separation for digital wireless applications Toriak, M.; Hansen, L.K.; Xu,
G.; Acoustics, Speech, and Signal Processing, 1998.
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Our matching algorithm tries to capture all the di¤erent variants in which citations may appear,
by e¤ectively running the matching procedure for a wide variety of possible formats. For example, we
�rst assume citations appear, as in the �rst example above. We run the whole matching procedure
according to this format, where the authors� names appear �rst, then the name of the article,
followed by the journal where it was published (and year of publication in brackets). We then keep
all unmatched citations, and repeat the matching by assuming all formats are as in the second
example. For the unmatched citations, we proceed to the format in the third example, and so forth.
The intensive manual checking is used to identify all possible formats in which citations can appear.
We manually go over close to 75 percent of all citations to ensure we cover all possible citation
structures.

The way authors� names are listed within di¤erent formats varies widely. The �rst example
shows that names can be listed by indicating the last name of the �rst author followed by �et al.�
The fourth example, however, shows a case where all authors are listed by indicating their last names
and their �rst initial. While the Web of Science database has less variation in the citation formats
(which makes matching easier), citations in the patent document do not follow speci�c rules. Thus,
when matching by authors�names we allow for a wide range of formats according to what we �nd
in our vast manual inspection. For quality assurance, we manually checked the matched sample by
comparing the full reference in the Web of Knowledge to the citation in the patent document. For
a small percentage of the matched sample, we also checked that the publication record appears in
the curriculum vitas of the authors, which were downloaded directly from their personal websites.

In total, we match 26,533 publications to our university sample.31 To compute the distance
between the citing inventor and cited university, we follow the same procedure as for patent citations.
However, there is an important di¤erence between matching citations to university patents and
scienti�c publications. While the assignment of university patents tends to be complex, especially
for public university that in some cases centrally assign patents, scienti�c publications do not have
the same problem, as authors�a¢ liation is indicated at the university and campus level.

A.3. Measuring geographic distance for citations

We develop specialized software that extracts driving distance information between city pairs di-
rectly from Google Maps (http://maps.google.com). We generate a list of all American cities and
states (excluding Hawaii) that appear on all USPTO patent documents before selecting the sample
of control patents. This list includes 33,127 citing inventor�s cities. We add to this list the location
of our sample of cited universities �205 cities. Our distance software computes the distance for all
city pairs.

A.4. De�nition of Patent Technology Fields (IPC codes)

Biotechnology: A01H C02F3/34 C07G11 C07G13 C07G15 C07K4 C07K14 C07K16 C07K17 C07K
19/00 C12M C12N C12P C12Q C12S G01N 27/327 G01N 33/53 G01N 33/54 G01N 33/55 G01N
33/57 G01N 33/68 G01N 33/74 G01N 33/76 G01N 33/78 G01N 33/88 G01N 33/92

Chemicals: C0 C1 B01 D01F A62D (excluding Biotechnology)
Pharmaceuticals: A61K, A61P

31Matches are dropped if one of inventors�names and one of the authors�names share the same family name, which
might indicate that the inventor of the patents cites his own publication. This procedure is deliberately conservative
in avoiding possible self-cites (which could give a false appearance of localized spillovers).
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Medical Equipment: A61B, A61C, A61D, A61F, A61G, A61H, A61J, A61L, A61M, A61N,
A01K, A01N

Engineering: A01B, A01C, B021 D21, B06B, B09, B21, B22, B23, B25, B29, B60, B62, B65,
B81, B82, D01D, D02, D03, D04, D05, D06M, D21, E21, F04, F25, G05G, G07

Electronics: H01L H03 G11C G06C G06D G06E G06F11 G06F15 G06F17 G06G H01(excluding
H01L) H02 H04 (excluding H04N H04L H04M) H05 B03C

Information Technology: G05B G05D G06F (excluding G06F17,G06F15,G06F11) G06J G06K
G06N G06T G11B

Telecommunications: H04L H04M H04N
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Notes: This figure presents the effect of distance and state-border on citations probability. For distance, each bracket compares the difference in the probability to cite 
between citing inventors that are located in that bracket, and all other inventors that are located at a greater distance from the University. For state-border, each bracket 
compares the difference in the probability to cite between inventors that are located in the University state, and inventors that are located in different states. The sample 
average probability of citations is 50 percent, by construction. 5 percent confidence intervals are reported for each distance bracket.

Figure 1. Distance, State Borders and Patent Citation Probability
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Share of 
citations

No. of 
universities

No. cited 
patents

No. citing 
patents

Share  
private 

universities
Share of 
citations

No. of 
universities

No. cited 
articles

No. citing 
patents

Share 
private 

universities

Dummy for within-state citation 0.12 183 14,180 41,057 0.49 0.13 165 5,806 8,411 0.46

Distance < 25 0.06 180 9,419 20,501 0.57 0.10 154 2,548 3,311 0.53

25 ≤ Distance < 50 0.03 131 4,075 8,390 0.48 0.03 82 720 960 0.45

50 ≤ Distance < 100 0.02 144 3,351 6,205 0.49 0.02 85 532 701 0.45

100 ≤ Distance < 150 0.02 147 3,281 5,604 0.56 0.02 88 448 528 0.47

150 ≤ Distance < 250 0.04 164 6,497 14,111 0.64 0.04 110 1,033 1,207 0.64

 250 ≤ Distance < 500 0.11 182 13,374 38,438 0.54 0.11 156 2,744 3,265 0.53

500 ≤ Distance <1000 0.19 184 17,323 61,696 0.37 0.16 170 4,075 4,541 0.36

1000 ≤ Distance < 1500 0.15 184 14,952 47,143 0.36 0.13 167 3,330 3,653 0.32

1500 ≤ Distance < 2500 0.21 184 17,441 66,972 0.35 0.20 171 4,838 5,673 0.33

Distance ≥ 2500 0.20 150 13,466 61,366 0.62 0.20 113 4,529 5,627 0.59

Panel B. Scientific PublicationsPanel A. Patents

Table 1. Descriptive Statistics on Geography of Citations to University Patents and Publications 

Notes:  Distance refers to the mileage between the location of the citing inventor and the cited university. The values include only actual citations (not control 
group patents).The within-state dummy is one if the citing inventor resides in the same state as the cited university. 



(1) (4)

Universities: # Pairs # Pairs

All 383,096 35,043

Private 176,292 15,645

Public 206,804 19,398

All 98,495 8,911

Private 39,016 3,431

Public 59,479 5,480

All 95,435 8,680

Private 50,459 3,984

Public 44,976 4,696 -5.4**

44.5**

40.8**

47.1**

46.5**

41.8**

49.1**

39.9**

35.3**

45.3**

-8.3**

-6.2**

-10.1**

-3.3**

-4.5**

-8.5**

-6.8*

-8.5

-3.4**

53.4**

48.5**

56.7**

62.5**

55.1**

68.1**

45.1**

46.3**

42.8**

-6.9**

-4.3**

-9.3**

-13.1**

-10.8**

-14.8**

-1.0*

-1.0

Table 2. Distance and State Borders, by University Type and Patent/Publication 
Quality

% Diff. in 
means 

Distance

% Diff. in 
means Within-

State

Notes: Panel A reports mean comparison tests between cited and control patents for distance from, and fraction 
that are in the same state as, the cited university. Panel B reports the corresponding figures for scientific 
publications.  * and ** denote statistical significance at the 5 and 1 percent levels, respectively. 

% Diff. in 
means Within-

State

Panel A: Patents Panel B: Scientific Publications

% Diff. in 
means 

Distance

Cites received ≤ 25th

Cites received ≥ 75th

(2) (3) (5) (6)



(1) (2) (3) (4) (5) (6) (7)

University cited patents: All All All All

Cites 
received  
≤25th

Cites 
received   

>75th

Exc. Top 
Patenting 

Universities

Dummy Intra-State Citation 0.207** 0.122** 0.089** 0.078** 0.118** 0.096**
(0.004) (0.007) (0.007) (0.011) (0.018) (0.009)

log(Distance), Miles -0.043** -0.024**
(0.001) (0.001)

Match on 6-digit IPC 0.307** 0.306** 0.306** 0.303** 0.323** 0.282** 0.301**
(0.003) (0.003) (0.003) (0.003) (0.004) (0.009) (0.004)

Dummy 25 ≤ Distance < 50 -0.202** -0.247** -0.130** -0.247**
(0.009) (0.013) (0.022) (0.011)

Dummy 50 ≤ Distance <100 -0.258** -0.326** -0.186** -0.300**
(0.009) (0.012) (0.026) (0.010)

Dummy 100 ≤ Distance <150 -0.284** -0.320** -0.259** -0.318**
(0.009) (0.013) (0.024) (0.010)

Dummy 150 ≤ Distance <250 -0.278** -0.329** -0.214** -0.315**
(0.008) (0.011) (0.023) (0.009)

Dummy 250 ≤ Distance <500 -0.282** -0.341** -0.215** -0.317**
(0.007) (0.010) (0.020) (0.009)

Dummy for 500 ≤ Distance <1000 -0.288** -0.360** -0.222** -0.330**
(0.008) (0.012) (0.022) (0.010)

Dummy 1000 ≤ Distance <1500 -0.282** -0.351** -0.197** -0.322**
(0.008) (0.012) (0.023) (0.010)

Dummy 1500 ≤ Distance < 2500 -0.277** -0.357** -0.190** -0.315**
(0.009) (0.012) (0.023) (0.010)

Dummy Distance ≥ 2500 -0.247** -0.332** -0.190** -0.285**
(0.009) (0.012) (0.023) (0.011)

University Fixed Effects Yes Yes Yes Yes Yes Yes Yes

High-tech Pair Dummies Yes Yes Yes Yes Yes Yes Yes

R2 0.055 0.055 0.057 0.061 0.078 0.051 0.062

Observations 383,096 383,096 383,096 383,096 98,495 95,435 283,476

Dependent variable: Citation Dummy (Marginal Effects)

Table 3. Baseline Specifications for Citations to Patents

Notes: This table reports the results of Probit regressions relating the probability of citing a university patent and the distance of 
citing inventor from the cited university. Standard errors (in brackets) are clustered by cited patent. * and ** denote statistical 
significance at the 5 and 1 percent levels, respectively. 



(1) (2) (3) (4) (5) (6) (7)

University cited patents: Private Public All

Cites 
received  
≤25th

Cites 
received  

>75th

Exc. Top 
Patenting 

Universities All

Dummy Intra-State Citation 0.065** 0.100** 0.135** 0.133** 0.157** 0.128*** 0.128**
(0.010) (0.011) (0.009) (0.013) (0.023) (0.010) (0.012)

Dummy Intra-State Citation × Dummy 
Private

-0.103**    
(0.010)

-0.137**    
(0.014)

-0.061**    
(0.025)

-0.102***   
(0.012)

-0.062**    
(0.013)

Dummy Intra-State Citation × Dummy 
for High Local Objectives

0.031**     
(0.011)

Match on 6-digit IPC 0.290** 0.313** 0.303** 0.323** 0.282** 0.301*** 0.300**
(0.005) (0.004) (0.003) (0.004) (0.009) (0.004) (0.004)

Dummy 25 ≤ Distance < 50 -0.170** -0.265** -0.234** -0.294** -0.140** -0.246** -0.211**
(0.011) (0.012) (0.012) (0.016) (0.033) (0.016) (0.014)

Dummy 50 ≤ Distance < 100 -0.254** -0.297** -0.263** -0.334** -0.185** -0.278** -0.258**
(0.013) (0.012) (0.013) (0.015) (0.038) (0.014) (0.015)

Dummy 100 ≤ Distance < 150 -0.258** -0.340** -0.304** -0.337** -0.315** -0.327** -0.311**
(0.013) (0.011) (0.012) (0.016) (0.030) (0.012) (0.015)

Dummy 150 ≤ Distance < 250 -0.261** -0.321** -0.277** -0.339** -0.198** -0.304** -0.263**
(0.011) (0.011) (0.011) (0.013) (0.037) (0.011) (0.014)

Dummy 250 ≤ Distance < 500 -0.249** -0.345** -0.300** -0.356** -0.231** -0.328** -0.284**
(0.010) (0.010) (0.009) (0.012) (0.025) (0.010) (0.010)

Dummy 500 ≤ Distance < 1000 -0.267** -0.348** -0.289** -0.373** -0.191** -0.323** -0.268**
(0.011) (0.012) (0.009) (0.012) (0.026) (0.011) (0.011)

Dummy 1000 ≤ Distance < 1500 -0.252** -0.345** -0.287** -0.367** -0.156** -0.322** -0.266**
(0.011) (0.012) (0.009) (0.012) (0.028) (0.011) (0.011)

Dummy 1500 ≤ Distance < 2500 -0.250** -0.343** -0.281** -0.368** -0.163** -0.313** -0.261**
(0.012) (0.013) (0.010) (0.013) (0.027) (0.011) (0.012)

Dummy Distance ≥ 2500 -0.212** -0.324** -0.260** -0.343** -0.138** -0.299** -0.247**
(0.012) (0.013) (0.009) (0.012) (0.025) (0.011) (0.011)

Interactions between Distance 
Dummies and Dummy for Private No No Yes Yes Yes Yes Yes

University Fixed Effects Yes Yes Yes Yes Yes Yes Yes

High-tech Pair Dummies Yes Yes Yes Yes Yes Yes Yes

R2 0.057 0.067 0.062 0.079 0.052 0.063 0.060

Observations 176,292 206,801 383,096 98,483 95,414 283,476 259,902

Dependent variable: Citation Dummy (Marginal Effects)

Table 4.  Public and Private Ownership and the State Border Effect

Notes:  Local Objectives measures the weight the university attaches to local/regional development objectives in its licensing 
activity. Standard errors (in brackets) are clustered by cited patent. * and ** denote statistical significance at the 5 and 1 percent 
levels, respectively. 



(1) (2) (3) (4) (5) (6)

Controls are 
bordering 

states

Controls have 
similar border 

effect
All non-

Michigan states

Dummy Intra-State Citation 0.528** 0.518**
(0.028) (0.044)

Dummy Intra-State Citation × 
Dummy Private

-0.046**      
(0.012)

-0.049**      
(0.016)

Dummy Intra-State Citation × 
Dummy for High Local Objectives

0.039**       
(0.015)

Dummy Intra-State Citation × 
Techpole

-0.005**      
(0.001)

-0.006**      
(0.001)

Dummy Intra-State Citation ×          
S&E Density

0.110*        
(0.058)

0.247**       
(0.076)

Dummy Intra-State Citation × 
Index of Non-Compete Laws

-0.014**      
(0.004)

-0.016**      
(0.005)

Dummy Intra-State Citation × S&E 
Inflow

-0.001        
(0.001)

-0.003**      
(0.001)

GSP/Capita
-0.022**      

(0.003)
-0.016**      

(0.005)

State Size
-0.024**      

(0.004)
-0.013        
(0.008)

Dummy for Michigan × :

Dummy for Pre-1985 0.205 0.233 0.239 0.232
(0.147) (0.141) (0.141) (0.141)

Dummy for 1986-1989 0.328** 0.341 0.312** 0.341**
(0.098) (0.093) (0.105) (0.093)

Dummy for 1990-1995 0.084* 0.113** 0.076 0.113**
(0.043) (0.042) (0.045) (0.042)

Dummy for Post-1995 0.067** 0.097** 0.030 0.097**
(0.021) (0.021) (0.023) (0.021)

Dummy for Control States × :

Dummy for Pre-1985 0.165* -0.008 0.095**
(0.078) (0.030) (0.030)

Dummy for 1986-1989 0.173 0.046* 0.131**
(0.099) (0.021) (0.025)

Dummy for 1990-1995 0.201** 0.038* 0.133**
(0.053) (0.016) (0.021)

Dummy for Post-1995 0.240** 0.068** 0.148**
(0.039) (0.013) (0.020)

R2 0.063 0.061 0.062 0.062 0.062 0.062

Observations 383,096 259,902 383,096 383,096 383,096 383,096

Dependent variable: Citation Dummy (Marginal Effects)

Table 5. Determinants of the State Border Effect

Notes: This table reports the results of Probit regressions of the determinants of the state border effect for citations to university 
patents. TechPole is a measure of high-tech density constructed by the Milken Institute (Devol and Wong, 1999). All columns 
include a complete set of distance dummies, and a dummy for same IPC. The control states in column 4 are IN and IL. The 
control states in column 5 are NY, PA, MA, CA, NJ, MI, WA, MD, MS, and CT. Standard errors (in brackets) are clustered by cited 
patent. * and ** denote statistical significance at the 5 and 1 percent levels, respectively. 

State effects Michigan "experiment"



(1) (2) (3) (4) (5) (6) (7) (8)

Technology area: Biotechnology Chemicals Pharma
Medical 

Equipment Engineering Electronics
Information 
Technology

Telecommuni-
cations

Dummy for Intra-State Citation 0.168** 0.151** 0.125** 0.101** 0.059** 0.015 0.029 0.037
(0.024) (0.022) (0.022) (0.021) (0.016) (0.020) (0.036) (0.046)

Matched on six-digit IPC 0.346** 0.278** 0.345** 0.288** 0.370** 0.265** 0.203** 0.255**
(0.011) (0.009) (0.009) (0.008) (0.007) (0.008) (0.012) (0.017)

Dummy 25 ≤ Distance < 50 -0.115** -0.289** -0.223** -0.166** -0.187** -0.204** -0.130** -0.108*
(0.031) (0.021) (0.024) (0.026) (0.020) (0.024) (0.049) (0.049)

Dummy 50 ≤ Distance < 100 -0.145** -0.312** -0.302** -0.228** -0.263** -0.273** -0.165** -0.123
(0.046) (0.023) (0.026) (0.025) (0.020) (0.026) (0.045) (0.087)

Dummy 100 ≤ Distance < 150 -0.187** -0.334** -0.320** -0.246** -0.282** -0.330** -0.137** -0.156**
(0.035) (0.022) (0.026) (0.027) (0.021) (0.022) (0.061) (0.068)

Dummy 150 ≤ Distance < 250 -0.210** -0.332** -0.307** -0.239** -0.301** -0.287** -0.125** 0.008
(0.029) (0.020) (0.024) (0.024) (0.017) (0.023) (0.052) (0.060)

Dummy 250 ≤ Distance < 500 -0.181** -0.333** -0.309** -0.242** -0.284** -0.311** -0.158** -0.121**
(0.029) (0.020) (0.023) (0.023) (0.016) (0.019) (0.039) (0.046)

Dummy 500 ≤ Distance < 1000 -0.181** -0.362** -0.323** -0.229** -0.298** -0.322** -0.170** -0.109
(0.031) (0.022) (0.025) (0.025) (0.018) (0.022) (0.043) (0.060)

Dummy 1000 ≤ Distance < 1500 -0.164** -0.339** -0.268** -0.222** -0.294** -0.334** -0.192** -0.083
(0.034) (0.022) (0.027) (0.025) (0.019) (0.021) (0.042) (0.063)

Dummy 1500 ≤ Distance < 2500 -0.174** -0.324** -0.268** -0.202** -0.293** -0.341** -0.166** -0.122*
(0.032) (0.023) (0.030) (0.026) (0.020) (0.022) (0.045) (0.061)

Dummy Distance ≥ 2500 -0.154** -0.290** -0.234** -0.185** -0.273** -0.304** -0.131** -0.064
(0.033) (0.025) (0.030) (0.027) (0.020) (0.024) (0.044) (0.063)

R2 0.079 0.074 0.078 0.059 0.078 0.051 0.026 0.036

Observations 25,804 45,778 35,257 70,427 62,851 43,065 16,118 8,076

Table 6. The Effects of Distance and State Border on Patent Citations, by Technology Area

Dependent variable: Citation Dummy (Marginal Effects)

Notes:  This table reports the results of Probit regressions relating the probability of citing a university patent and the distance of the citing inventor from the cited university. All 
regressions include a complete set of university dummies and high-tech pair dummies. Standard errors (in brackets) are clustered by cited patent. * and ** denote statistical 
significance at the 5 and 1 percent levels, respectively.



(1) (2) (3) (4) (5) (6) (7)

University cited publications: All All Private Public

Cites 
received  
≤25th

Cites 
received  
25th-75th

Cites 
received  

>75th

Dummy Intra-state citation 0.048** 0.034** 0.021 0.040* 0.074** 0.033 0.004
(0.012) (0.013) (0.018) (0.018) (0.026) (0.017) (0.027)

log(Distance), Miles -0.036**
(0.002)

Dummy 25 ≤ Distance < 50 -0.217** -0.166** -0.302** -0.202** -0.240** -0.193**
(0.015) (0.021) (0.018) (0.030) (0.020) (0.032)

Dummy 50 ≤ Distance < 100 -0.247** -0.195** -0.331** -0.253** -0.275** -0.194**
(0.017) (0.025) (0.021) (0.031) (0.021) (0.048)

Dummy 100 ≤ Distance < 150 -0.286** -0.258** -0.346** -0.261** -0.316** -0.252**
(0.016) (0.024) (0.019) (0.036) (0.020) (0.034)

Dummy 150 ≤ Distance < 250 -0.277** -0.225** -0.356** -0.250** -0.293** -0.274**
(0.014) (0.020) (0.017) (0.031) (0.019) (0.028)

Dummy 250 ≤ Distance < 500 -0.299** -0.242** -0.385** -0.273** -0.320** -0.287**
(0.012) (0.018) (0.014) (0.028) (0.016) (0.026)

Dummy 500 ≤ Distance < 1000 -0.313** -0.261** -0.399** -0.271** -0.340** -0.300**
(0.014) (0.020) (0.018) (0.031) (0.018) (0.029)

Dummy 1000 ≤ Distance < 1500 -0.307** -0.270** -0.385** -0.284** -0.326** -0.294**
(0.014) (0.020) (0.018) (0.030) (0.019) (0.028)

Dummy 1500 ≤ Distance < 2500 -0.314** -0.257** -0.406** -0.276** -0.341** -0.299**
(0.014) (0.021) (0.019) (0.032) (0.019) (0.031)

Dummy Distance ≥ 2500 -0.279** -0.215** -0.381** -0.231** -0.308** -0.269**
(0.015) (0.021) (0.018) (0.032) (0.020) (0.031)

University Fixed Effects Yes Yes Yes Yes Yes Yes Yes

High-tech Pair Dummies Yes Yes Yes Yes Yes Yes Yes

R2 0.014 0.018 0.015 0.023 0.018 0.021 0.014

Observations 70,086 70,086 31,290 38,784 17,822 34,904 17,360

Dependent variable: Citation Dummy (Marginal Effects)

Table 7. Baseline Specifications for Scientific Publications

Notes: This table reports the results of Probit regressions relating probability of citing a university scientific publication and 
the distance of the citing inventor from the cited university. Standard errors (in brackets) are clustered by cited publication. * 
and ** denote statistical significance at the 5 and 1 percent levels, respectively. 
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