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Abstract 

In this paper, we examine the possible presence of anti-commons dynamics in biotechnology. 
Patent-paper pairs - i.e. scientific publications from which the contents (methodology, 
findings, discovery) is part of a patent application - have been detected by relying on text 
mining algorithms. Starting from a dataset consisting of 1,025,005 scientific publications and 
119,016 EPO and USPTO patent documents, a total of 584 patent-paper pairs have been 
identified. In terms of scientific citations, publications with a patent counterpart receive 
considerable more publication from other publication than publications without a patent 
counterpart. This is not the case for the technological impact of patent-paper pairs; forward 
patent citation rates do not differ significantly between patents with or without a scientific 
counterpart. As such our findings do not provide evidence for the presence of anti-commons 
effects stemming from the introduction of IP within scientific activities in the field of 
biotechnology.   
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Introduction: Entrepreneurial Universities 
Collaboration between science and industry, and the phenomenon of ‘enterprising 

universities’, have been studied extensively over the last few decades. This growing interest 

is connected to the increasing acknowledgement of the fundamental role of knowledge and 

innovation in stimulating technological performance, international competitiveness and 

economic growth. Researchers in the domain of innovation (including Freeman, 1987 and 

1994; Lundvall, 1992; Nelson, 1993; Nelson and Rosenberg, 1993; Mansfield and Lee, 1996; 

Mansfield, 1995; Mowery and Nelson, 1999; Dosi, 2000) stress the role of science and the 

importance of interaction between a variety of institutional actors underlying the innovative 

capacity and consequent economic performance of an economical system. This more 

encompassing view on innovation dynamics has resulted in a growing popularity of the 

‘innovation system’ concept which gained acceptance by scholars and policy makers alike as 

a guiding framework to understand innovation dynamics on an aggregated level (OECD, 

1999; European Innovation Scoreboard, 2002).  

In these models, knowledge generating institutions such as universities, research laboratories, 

industrial research centres and more recently government institutions are acknowledged – 

besides firms and entrepreneurs - as important players in developing and stimulating the 

innovative capacity of a particular region or country. Likewise, the Triple Helix model, which 

emerged in the second half of the 1990s (Leydesdorff and Etzkowitz, 1996 and 1998; 

Etzkowitz and Leydesdorff, 1997),  emphasizes both the complementary roles of firms, 

knowledge creation institutes - including universities - and governmental agencies, as well as 

the importance of constructive interactions among them.  

There are multiple reasons why universities are relevant actors within innovation systems and 

can contribute to the national innovative capacity. First, research institutions produce 

information and ideas upon which the development of new products, processes and services 

can build. Secondly, research institutions can work on certain research agendas for a longer 

period of time, which can lead to the creation of new scientific insights. The latter can over 

time lead to economic applications. Notice in this respect that universities are well placed to 

address market failures that occur in the field of innovation (Arrow, 1962; Freeman, 1994; 

Baumol, 2002). Such market failures arise especially in relation to basic research, 
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characterized not only by high levels of uncertainty both in terms of technical and 

commercial success, but also spanning long time frames to bear fruit (often decades). In 

addition, the nature of the outcomes of innovative activity - i.e. knowledge or information - 

complicates investment decisions even further (Foray, 2004). All these phenomena pose 

specific challenges for private investors, who tend to refrain from becoming involved in basic 

research activities. In order to avoid a loss of social welfare – due to non-investment 

behaviour of private firms – most national innovation systems nowadays invest considerably 

in basic research performed at universities and public research institutes. 

As such, knowledge institutions like universities can play a specific role related directly to 

the potential these institutions possess to avoid technological lock-in phenomena. In order to 

continuously stimulate economic growth within a particular region or nation, based on 

knowledge intensive entrepreneurship, its technology portfolio should strike a balance 

between routine technological activities on the one hand (these are focused on process and 

incremental development in the more mature phases of the technology life cycle) and non-

routine technological activities on the other hand (these are more focused on new technology 

platforms and fundamental developments). Local / regional knowledge centres, especially 

universities and research centres, can play a significant part in this respect. As they 

participate in high level scientific research, they contribute to the generation of new 

knowledge. Such research takes place in international research communities. The exploration 

of new fields of knowledge1 – that can often not yet be categorized as routine activities – and 

the continued diffusion of this knowledge among regional actors can be considered an 

essential task of knowledge centres and especially universities. This double dynamic allows 

knowledge centres to play a fundamental role in regional innovation networks. These 

institutions are best placed to offer support in regard to the dual challenge of local and global 

knowledge development (Debackere, 2000; Van Looy, Debackere and Andries, 2003; Lester 

and Piore, 2004; Debackere and Veugelers, 2005). If a particular region fails to include this 

dual task as a priority in their regional innovation policy, there is a long term risk of 

regression and growth stagnation due to the life cycle phenomenon. It is in this context that 
                                                 

1 Innovative economic activities imply a process of cross-fertilization in which different knowledge domains are 

involved. Knowledge centers with a large variety of disciplines consequently have greater potential for cross-

fertilization. By further developing this potential, they can greatly contribute to preventing the risks of 

technological mono-cultures.  
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the significance of knowledge centres should be seen: they also develop non-routine activities 

in research communities which participate in knowledge exchange on an international scale. 

As such, universities offer regions exploration possibilities that are essential for mid to long 

term innovation potential. Lester points in this respect to the importance for innovation of 

‘interpretative’, problem defining activities, besides analytical, problem solving ones. When 

enterprises focus on the latter, it is essential that sufficient attention is paid to creating an 

environment for exploration. In this sense, universities, as fora where new ideas can be 

explored and studied, are indispensable.  

These reflections also imply that universities are more effective in this respect as they are 

more active in scientific research. Recent research in the US as well as in Europe confirms 

this relation: an explicit research focus coincides with a larger number of enterprising 

activities (patents, spin-offs, contract research) (di Gregorio and Shane, 2003; O’Shea and 

Allen, 2006; Van Looy et al., 2005; Sapsalis et al., 2006).  

At the same time, contributing effectively to the innovative capacity of an innovation system 

requires a willingness of universities to become more ‘entrepreneurial’. The notion of 

‘entrepreneurial universities’ (Branscomb, Kodama and Florida, 1999; Etzkowitz, Webster 

and Healy, 1998) refers to the development of the following spectrum of activities: more 

intense commercialization of research results, patent and license activities, spin-off activities, 

collaboration projects with the industry, and greater involvement in economic and social 

development. As such, one observes a ‘second academic revolution’2 whereby education and 

research become complemented with service and valorisation activities aimed at transferring 

new scientific knowledge to economical activity realms.  

Indeed, nowadays an increasing activity of academic researchers in exploiting their 

discoveries can be observed (Henderson, Jaffe and Trajtenberg, 1998; Thursby and Thursby, 

2002; Meyer, Sinilainen and Utecht, 2003; Lissoni et al., 2008) and university patents 

become an important – and visible - method of technology transfer (Basberg, 1987; Schwartz, 

1988; Boitani and Ciciotti, 1990; Trajtenberg, 1990; Archibugi, 1992).  

Interaction and exchange between academia and industry can result in positive aspects, both 

for the business partner (e.g. Zucker and Darby, 2001; Hall, Link and Scott, 2001; Faems, 

                                                 

2 During the first academic revolution (19th century) research became a part of universities activity profile.  
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Van Looy and Debackere, 2005) and for the academic sector (e.g. realization of 

complementarities between applied and basic research – Azoulay, Ding and Stuart, 2009; 

Callaert et al., 2009; generation of new research ideas – Rosenberg, 1998; attracting 

additional resources for (basic) research - Agrawal and Henderson, 2002). Additional benefits 

– when introducing IP in scientific activities - can be found in the facilitation of the creation 

of a market for ideas and the ability of society to realize the commercial and social benefits of 

a given discovery (Kitch, 1977; Merges and Nelson, 1990; Gans and Stern, 2000; Arora, 

Fosfuri and Gambardella, 2004; Hellman, 2007; Murray and Scott, 2007). 

At the same time some concerns arise due to the increasing commercialization of scientific 

activities undertaken by universities. First, too much emphasis on (market) exploitation might 

negatively impact the quantity and quality of scientific research. While a complete crowding 

out of scientific activities by commercialization endeavours is considered as highly unlikely 

(Merton, 1968; Scotchmer, 2004; Thursby, Thursby and Gupta-Mukherjee, 2007), some 

scholars however do signal a (moderate) negative impact on the quality of research 

(Henderson, Jaffe and Trajtenberg, 1996; Trajtenberg, Henderson and Jaffe, 1997; Czarnitzki, 

Glänzel, and Hussinger, 2009). At the same time, a majority of reported empirical findings 

report a positive relationship between patenting and publication outcomes of academic 

researchers (Fabrizio and DiMinin, 2008; Van Looy et al., 2006, Breschi, Lissoni and 

Montobbio, 2007; Czarnitzki, Glänzel and Hussinger, 2007; Stephan et al., 2007). Patents as 

commercialized discoveries seem to be rather by-products of scientific work than substitutes 

(Murray, 2006).  

While most empirical evidence – on the level of individual scientists – reports a positive 

relationship between patenting activities and publication outcomes (quantity as well as 

quality), the expansion of IPR might still result in ‘privatizing’ the scientific commons and 

potentially limiting scientific progress (Argyres and Liebeskind, 1998; David, 2000; 

Krimsky, 2004). This fear is nicely expressed by the metaphor of the “Tragedy the anti-

commons”, introduced by Heller (Heller, 1998) as opposed to the “Tragedy of the commons” 

of Hardin (Hardin, 1968). Heller states that the presence of too many owners with blocking 

power can lead to the underutilization of scarce resources, or, translated to the world of IPR, 

more intellectual property rights may lead paradoxically to fewer useful products (too many 

owners hold rights in previous discoveries creating obstacles for future research). Although 

this phenomenon is induced by high transaction costs and can be transitional (market players 
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have to learn to deal with each other or changing market circumstances), patent anti-

commons could prove more intractable in biomedical research than in other settings because 

of the importance of patents for the biotechnology industries, the lack of substitutes for 

certain biomedical discoveries (rivals may not be able to invent around) and the heterogeneity 

of interests and resources among public and private patent owners (Heller and Eisenberg, 

1998).  

To the extent such anti-commons effect exists, one can however wonder whether IPR and the 

exploitation of scientific research in se is the problem, or the enforcement in specific 

circumstances and the behaviour of licensors (Walsh, Arora and Cohen, 2003; Murray, 2006). 

A recent policy forum article by Van Overwalle (2010) further illustrates how this “anti-

commons effect” can indeed be dealt with through the design of appropriate exemption or 

exclusion policies coupled to the design of patent pools.  

Although anecdotal evidence exists of problematic use of IPR on scientific findings (e.g. the 

‘OncoMouse’ or ‘Havard mouse’ of Leder and Stewart; patents on human genes associated 

with breast and ovarian cancer owned by Myriad Genetics), large scale evidence of the 

presence of an anti-commons effect in biotechnology patenting is rare. One notable exception 

is the study of Murray and Stern (2007) suggesting a modest anti-commons effect based on a 

decline in citation rate – after granting of the patent - by 10 to 20% for a set of 169 patent-

paper pairs published in Nature Biotech between 1997 and 1999, although these authors also 

clearly point to the interpretation limits inherent to their study. 

In our study, we want to contribute to the research on an anti-commons effect in 

biotechnology by comparing citation patterns of patents and scientific publications for a large 

dataset containing all biotechnology patents (EPO and USPTO) and scientific publications 

(published in ISI Web of Science covered journals) from 1991 to 2008. First we investigate 

whether biotechnology publications for which a counterpart exists in the patent system (so 

called ‘patent-paper pairs’, scientific publications from which the contents - methodology, 

findings, discovery - is part of a patent application) are cited differently (more/less) within 

scientific journals, compared to similar biotechnology publications which are not related to a 

patent document.  Next, we engage in a similar analysis focusing this time on ‘technological’ 

citations: to what extent are patents closely related to scientific publications cited differently 

by other patents compared to biotechnology patents without scientific counterpart. The 

former will allow us to shed some light on the fear that exploitation of scientific findings is 
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hampering scientific development by pruning promising developments due to the 

introduction of (potentially blocking) patents. The latter will allow us to look at the 

technological impact of scientific developments that become translated into a patent. 

An important methodological aspect for this kind of studies relates to the identification of 

those patent-paper pairs, scientific publications for which a patent equivalent is present. To 

obtain a broad set of patent-paper pairs, we stepped down from a manually guided process of 

mapping patent and scientific publications and developed a new approach of automated, large 

scale, mapping of patents and scientific publications based on content similarity by relying on 

text mining algorithms. This approach allows large scale processing of patents and scientific 

publications to detect patent-paper pairs.  

Within the next pages, we first outline the selection of the data used for this analysis, 

followed by a description of the methodology adopted to assess the similarity between 

patents and scientific publications. This section is followed by reporting the findings, for 

scientific citations and patent citations respectively. We conclude with outlining the 

limitations of our work and suggest avenues for further research in this area.  

Data and methodology 

Field selection 

We focus on patents and scientific publications in the field of biotechnology because it is a 

field well known for the presence of science-technology linkages and because the large scale 

exploitation of biomedical research makes it more susceptible to an anti-commons effect 

(Heller and Eisenberg, 1998). 

Patents and publications are selected based on technological and scientific classification 

schemes respectively. Patent-paper pairs are identified by matching the content of patent and 

scientific publication’s title and abstract by using text mining algorithms. 

Selection of biotechnology patents 

On the patent side, the OECD definition of biotechnology is used to identify biotechnology 

patents (OECD, 2005), defining 30 International Patent Classification subclasses/groups 

related to biotechnology (see Appendix A for the list of IPC-subclasses/groups used for the 

selection). We use PATSTAT (EPO Worldwide Patent Statistical Database) to retrieve all 

EPO and USPTO granted patents with application and grant year between 1991 and 2008 
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according to the 30 defined IPC-subclasses/groups related to biotechnology. This led to a set 

of 27,241 EPO and 91,775 USPTO patents (PATSTAT edition October 2009). As text 

mining techniques are applied for the further identification of patent-paper pairs, only patents 

with titles and a minimum abstract length of 250 characters were withheld, resulting in a final 

patent data set of 7,254 EPO and 80,994 USPTO biotechnology patents (hence 88,248 patents 

in total). 

Selection of scientific publications 

On the publication side, we select biotechnology publications (articles, letters, notes, 

reviews)3 from the Thomson Reuters ISI Web Of Science database based on the Web of 

Science subject classification, for the same time period 1991-2008 (volume year). 243,361 

publications are revealed from subject category ‘Biotechnology and Applied Microbiology’. 

However, to ensure that all potentially related scientific publications are present in the data 

set, we extend this ‘core’ publication set with publications from nine related subject 

categories: ‘Biochemical Research Methods’; ‘Biochemistry & Molecular Biology’; 

‘Biophysics’; ‘Plant sciences’; ‘Cell Biology’; ‘Developmental Biology’; ‘Food sciences & 

Technology’; ’Genetics & Heredity’ and ‘Microbiology Materials’4. This results in more than 

1.75 million additional publications for the period 1991-2008 - a considerable computational 

challenge for the text mining method to identify patent-paper pairs. To lower the number of 

publications for ease of calculations without losing too much relevant documents, we only 

retain those publications from this extended set that are citing or are cited by at least one 

publication from our core set, sizing down the extended publication set to 683,674 

publications. Finally we also add all multidisciplinary publications from ‘Nature’, ‘Science’ 

and ‘Proceedings of the National Academy of Sciences of the United States of America’, 

resulting in 97,970 additional publications. Again we only retain publication documents with 

titles and a minimum abstract length of 250 characters, resulting in a final publication set of 

948,432 biotechnology related publications. 

                                                 

3 Articles are by far the biggest category  (90% articles compared to 1.5% letters, 2% notes and 6.5% reviews) 

4 The authors want to thank Wolfgang Glänzel for his kind help in the development of a search strategy for 

biotechnology publications. 
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Text mining oriented identification of patent-paper pairs 

The identification of patent-paper pairs is based on the content similarity of titles and 

abstracts of patents and publications, derived by text mining algorithms (Latent Semantic 

Analysis - Landauer et al., 2007). For all patents, the similarity with all publications is 

derived based on content similarity metrics. Patent-paper combinations with similarity scores 

beyond validated thresholds are retained as patent-paper pairs under the condition that at least 

one of the patent inventors is listed as publication author. 

In practice, first all titles and abstracts of all biotechnology patents and scientific publications 

where indexed5. During indexing, a limited number of stop words (123) were removed, 

stemming was applied (Porter stemmer) and all terms only occurring once in the corpus were 

removed. Next, a vector space model (Salton, Wong and Yang, 1975) was created based on 

the full text index6. This vector space consists of a document by term matrix, whereby rows 

are defined by all included documents and columns consists of all (stemmed) terms identified 

within the set of documents. Overall, the matrix used in this analysis consists of 1,066,632 

rows (documents) and 301,697 columns (terms). Within a next step, multiple similarity 

metrics were derived, based on different variants of weighting (e.g. TF-IDF), different levels 

of data (or dimensionality) reduction (SVD) and finally similarity measure (for more details 

on those options, see Magerman et al., 2009). For this study, three different options have been 

pursued: a binary weighting scheme, a scheme based on Inverted Document Frequencies and 

a scheme based on the combination of Term Frequencies and Inverted Document 

Frequencies. In terms of data or dimensionality reduction, 9 variants based on Singular Value 

Decomposition were used – ranging from 5 to 1,000 dimensions to retain. For the similarity 

measure, a classic cosine measure was used as well as a simple count based on the number of 

                                                 

5 Apache-Lucene™, an open source text search engine library, was used for the indexing 

(http://lucene.apache.org/java/docs/index.html)  

6 MatWorks Matlab™, a commercial packet for technical computing, was used for the construction of the vector 

space and further data handling and similarity calculation (http://www.mathworks.com/products/matlab/). The 

authors want to thank Frizo Janssens who was so kind to share his propriety Matlab code for the import of the 

full text index into a document-by-term matrix. 
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common terms. The combination of these options resulted in a set of 43 measures7, which 

have been used to calculate the similarity between all documents within the dataset (patents 

and publications). 

A thorough manual validation of 300 cases was set up to select the metric best suited for the 

identification of patent-paper pairs. This validation effort revealed that dimensionality 

reduction as advocated by methods like Latent Semantic Analysis underperforms compared 

to a normal cosine measure on the full data, and measures based on a mere count of the 

number of common terms yields the best and most robust results in terms of identifying 

patent-paper pairs without missing relevant pairs.  

Two metrics were combined for the classification of patent-paper combinations. The number 

of common terms, divided by the minimum of the number of terms of the patent document on 

the one hand and of the publication document on the other hand, is used for a first selection 

of patent-paper combinations with significant content similarity (CommonTermsMin ≥ 0.60). 

A second criterion, based on the number of common terms divided by the maximum of the 

number of terms of the patent document and publication document, is used to filter out 

ambiguous cases (CommonTermsMax ≥ 0.30). These two content-based criteria are 

combined with an additional criterion based on ownership: at least one of the patent inventors 

has to be listed as a publication author. Together those three criteria allow an accurate 

identification of patent-paper pairs (precision equals to 0.96/0.98 and recall equals to 

0.90/0.84 – depending on a conservative or optimistic definition of equality - based on the 

data of the validation sample of 300 cases). For a more elaborate discussion of the technical 

details and comparison of content based similarity measures best suited for the identification 

of patent-paper pairs, we refer to Magerman et al., 2011. 

Identified patent-paper pairs  

The starting point for the identification of patent-paper pairs is the combined dataset of 

88,248 biotech patents and 948,432 biotech publications8. Application of the first matching 

                                                 

7 9 levels of dimensionality reduction plus one variant without dimensionality reduction are combined with 4 

weighting methods, resulting in 10x4=40 measures. Three variants based on the number of common terms are 

added (three variants of normalization), resulting in a total of 43 measures. 
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criterion, a content similarity of at least 0.60 based on the number of common terms weighted 

for the minimum of the number of terms of both documents, yields 27,250 related patent-

paper combinations out of the more than 80 billion combinations under examination. 

Application of the second matching criterion, a content similarity of at least 0.30 based on the 

number of common terms weighted for the maximum of the number of terms of both 

documents, resulted in 645 patent-paper pairs. Application of the last criterion, at least one 

patent inventor being listed as a publication author, resulted in a final set of 584 patent-paper 

pairs. 17 patents are matched with multiple publications (up to three publications), which 

seems to be cases of (partly) disclosure of the same results in multiple scientific articles. At 

the same time, 115 publications are matched to multiple patents (up to seven patents), which 

revealed to be members of the same patent family. Hence we have 566 distinct biotechnology 

patents having a paired biotechnology publication, and 400 distinct biotechnology 

publications having a paired biotechnology patent.  

Note that we deliberately opted for a very conservative selection to identify patent-paper 

pairs. Especially the second criterion filters out a lot of ambiguous cases, so we can be 

confident that the described patent-paper matching method reveals real patent-paper 

combinations. 

Findings on citation patterns of scientific publications 
(publication-to-publication citations) 
Within this section we report and discuss the empirical results obtained when analysing 

scientific citations - i.e. citations from other scientific publications - to scientific publications 

that are part of a patent-paper pair. This analysis implies a comparison with scientific 

citations to scientific publications which do not belong to a patent-paper pair.  

Descriptive statistics  

Table 1 provides a summary overview of the number of biotechnology publications under 

study as well as the observed forward citations, organized by publication year. 

 

                                                                                                                                                        

8 Only patents and publications with titles and abstracts of sufficient length are retained to allow for content-

based matching. 
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Table 1. Number of biotechnology publications and forward citations per year (all publication 
matching our search key without elimination of publications having no or small abstract) 

 

YEAR 

NUMBER OF 
BIOTECHNOLOGY 
PUBLICATIONS 

NUMBER OF 
FORWARD 
PUBLICATION 
CITATIONS 

AVERAGE 
NUMBER OF 
FORWARD 
CITATIONS 

1991 31,381 1,585,560 50.53 

1992 35,185 1,734,412 49.29 

1993 38,677 1,913,155 49.46 

1994 42,764 2,014,535 47.11 

1995 48,092 2,210,601 45.97 

1996 50,788 2,256,455 44.43 

1997 53,175 2,441,374 45.91 

1998 57,361 2,638,305 45.99 

1999 59,866 2,739,699 45.76 

2000 61,072 2,877,433 47.12 

2001 62,299 2,697,178 43.29 

2002 63,409 2,445,989 38.57 

2003 66,564 2,230,473 33.51 

2004 65,705 1,870,815 28.47 

2005 72,378 1,609,861 22.24 

2006 70,529 1,127,408 15.99 

2007 69,756 738,183 10.58 

2008 76,004 377,639 4.97 

 1,025,005 35,509,075 34.64 

 

The number of biotechnology publications in our dataset is steadily growing from 31,381 in 

1991 to 76,004 publications in 2008. After a first period characterized by double-digit growth 

figures (from 1991 to 1995 - 10 to 12 per cent annual growth in publication outcome), we 

observe a period of moderate growth (4.3 to 8.0 per cent between 1996 and 1999) followed 

by a period of volatility during the most recent years (-2.5% to 2% with some upward outliers 

in 2003, 2005 and 2008). 

The average number of forward publication citations (publication-to-publication citations 

counted by a 10-year citation window: year of publication plus following nine years)9 for the 

biotechnology publications follows a more stable pattern; within a first time period observed 

citation rates vary between 45 and 50 (till 2000) followed by a decrease from 2000 onwards, 

                                                 

9 For all forward publication citation counts in this publication we use citation counts based on a 10-year citation 

window except when explicitly mentioned otherwise. 
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reflecting the shorter time window of observation. The average number of forward citations 

for all publications between 1991 and 2000 is 46.9 (median number of forward citations is 

20). 

For the same relevant period 1991-2000 we have 328 publications that are part of a patent-

paper pair, starting from 16 in 1991 and rapidly growing to 40 in 1994, to smooth out around 

40 between 1994 and 1999, and ending with a decrease to 26 in 2000. For those publications, 

the average number of forward citations is far more volatile throughout the years, ranging 

from a minimum of 77.8 forward citations on average in 1992 to a maximum of 233.9 

citations on average in 1997, with no clear trend. The average number of forward citations for 

all publications that are part of a patent-paper pair for the total period of 1991-2000 is 161.8 

(median number of forward citations is equal to 65). 

On average we clearly observe substantially higher forward citation counts for publications 

that are part of a patent-paper pair and other publications (mean of 161.8 versus 46.9, median 

of 65 versus 20). But not only the average numbers are higher, the complete distribution of 

forward citation counts is shifted to the right in favour of publications that are part of a 

patent-paper pair.  

Figure 1 shows the distribution of the number of forward publication citations for all 

biotechnology publications and biotechnology publication part of a patent-paper pair for the 

period 1991-2000. 25% of paired biotechnology publications have 27 or less citations 

compared to 7 or less citations for the first quartile for all biotechnology publications; 50% of 

paired biotechnology publications have 65 citations or less (20 citations for all biotechnology 

publications) and 75% of paired citations have 160 or less citations (48 citations for all 

biotechnology publications). At the right side of the distribution we observe substantial 

outliers, especially for publications that are related to a patent.  
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Figure 1. Distribution of the number of forward publication citations for all biotechnology 
publications and biotechnology publications part of a patent-paper pair (1991-2000). 

 

 

 

One potential explanation for the higher number of forward citations for paired publications 

might be the difference in the number of authors. Publications having more authors tend to 

have more forward citations - as is confirmed by our data (an average of 38 forward citations 

for single authored papers up to 46 citations for publications with 5 authors and 86 citations 

for publications with 10 authors)10. We indeed observe a higher number of authors for paired 

publications (26% more authors on average), but this seems not to be a satisfactory 

explanation for the differences in citation behaviour; for publications with the same number 

of authors, the average number of forward citations is again substantially higher for paired 

publications, with a notable exception for single authored publications (an average of 19 

                                                 

10 78% of the biotechnology publications in our sample have 5 or less authors, 20% have 6 to 10 authors. 
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citations for single authored papers up to 135 citations for publications with 5 authors and 

345 citations for publications with 10 authors)11. 

Another, more important, consideration when observing the difference in forward citation 

counts is the presence of a selection bias for paired publications towards “higher quality” 

publications. For the large overall biotechnology publication sample, all kind of quality levels 

will be present in the dataset. For publications that are part of a patent-paper pair, one can 

expect to find more publication of higher quality than average, i.e. publications valuable 

enough to justify costs and effort to apply for a patent. We correct this by taking into account 

the journal in which publications are published as an indication of the quality level of 

publications (i.e. we assume underlying journal impact factors are a good indication of the 

average quality of publications appearing in that journal). 

Table 2 contains the most important journals for biotechnology publications for the period 

1991-2000. The top of the table contains the most important journals in terms of the number 

of biotechnology publications – expressed in share of all biotech publications – while the 

bottom of the table contains the most important journals measured by the average number of 

citations for the biotechnology publications12. The left side of the table contains the most 

important journals for all biotechnology publications in our sample and the right side contains 

the most important journals for biotechnology publications that are part of a patent-paper 

pair. For every journal the average number of citations (for the biotechnology publications in 

our sample) and the share of biotechnology publications within our sample are listed13.  

 

                                                 

11 When comparing the number of forward citations for groups of publications with a given number of authors 

with a bin size of 5, paired publications always have a substantial higher number of forward citations. For 

publications having 1, 2, … 10 authors (the vast majority of publications), paired publications always have 

higher citation counts for all levels of the number of authors, except for single authored publications. 

12 The three multidisciplinary journals that were added to our selection of biotechnology patents also have a 

large share of all biotechnology publications in our dataset (PROCEEDINGS OF THE NATIONAL 

ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA: 5.3%; NATURE, 3.1% and 

SCIENCE: 2.8%) but this is misleading as all publication of those journals were included in our dataset, and not 

only the biotechnology publications. 

13 For the right side of the table, the share of paired biotechnology publications is listed. 
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Table 2. Top publishing and top cited journals for all biotechnology publications and for 
biotechnology publications with a paired patent (1991-2001) 

 

 
ALL BIOTECHNOLOGY PUBLICATIONS 

BIOTECHNOLOGY PUBLICATIONS 
WITH PAIRED PATENT 

    

JOURNAL 

A
V

E
R

A
G

E
 

C
IT

A
T

IO
N

S
 

S
H

A
R

E
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F
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ll 
B

IO
T

E
C

H
 

P
U

B
L

IC
A

T
IO

N
S

 

JOURNAL 

A
V

E
R

A
G

E
 

C
IT

A
T

IO
N

S
 

S
H

A
R

E
 O

F
 

P
A

IR
E

D
 

B
IO

T
E

C
H

 
P

U
B

L
IC

A
T

IO
N

S

1 

JOURNAL OF 
BIOLOGICAL 
CHEMISTRY 67.14 4.96%

PROCEEDINGS OF THE 
NATIONAL ACADEMY 
OF SCIENCES OF THE 
UNITED STATES OF 
AMERICA 108.99 22.26%

2 BIOCHEMISTRY 45.03 1.67% SCIENCE 550.68 8.54%

3 
JOURNAL OF 
BACTERIOLOGY 34.46 1.66% CELL 366.36 6.71%

4 

APPLIED AND 
ENVIRONMENTAL 
MICROBIOLOGY 33.01 1.59%

JOURNAL OF 
BIOLOGICAL 
CHEMISTRY 98.67 6.40%

T
op

 p
u

b
li

sh
in

g 
jo

ur
n

al
s 

5 

BIOCHEMICAL AND 
BIOPHYSICAL 
RESEARCH 
COMMUNICATIONS 32.74 1.31%

NUCLEIC ACIDS 
RESEARCH 57.9 3.05%

1 

NATURE REVIEWS 
MOLECULAR CELL 
BIOLOGY 400.56 0.00% NATURE 803.13 2.44%

2 
ANNUAL REVIEW OF 
BIOCHEMISTRY 374.20 0.06% MOLECULAR CELL 617.33 0.91%

3 
ANNUAL REVIEW OF 
CELL BIOLOGY 305.20 0.01% SCIENCE 550.68 8.54%

4 CELL 296.03 0.78% CELL 366.36 6.71%

T
op

 c
it

ed
 j

ou
rn

al
s 

5 

ANNUAL REVIEW OF 
CELL AND 
DEVELOPMENTAL 
BIOLOGY 280.95 0.02% GENES & DEVELOPMENT 307.00 1.52%

 

Multivariate analysis 

To verify the significance of the observed difference when controlling for other factors 

multivariate analysis have been performed. Given the nature of the data (citation data) we 

opted for a negative binomial regression with the number of forward citations as dependent 

variable and a dummy variable indicating whether a publication is part of a patent-paper pair 

as independent variable. 
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To adjust for the expected difference in average quality between paired and non-paired 

publications (due to the potential selection bias of publications that are part of a patent-paper 

pair), we only include publications from journals that have at least one publication that could 

be paired with a patent, i.e., we only use publications that are comparable in average impact 

factor because they originate from the same set of journals. For this analysis, we use net 

citation counts, i.e. citations counts corrected for self-citations, as independent variable. This 

leaves 400 biotechnology publications that are part of a patent-paper pairs, and 451,803 

biotechnology publications that are not part of a patent-paper pair. 

We further control for journal of publications (105 distinct journals), publication document 

type (article, letter, note, review), number of backward publication-to-publication citations, 

and finally, the number of authors. We also include a time variable (1 for the first year, 1991, 

up to 18 for the last year, 2008) and a squared time variable to accommodate evolutions over 

time. 

Table 3 reports the results of the regression analysis of forward publication citations of 

publications. Publications being part of patent-paper pairs have significantly more forward 

publication citations (Pair Y/N).  One also notices a positive relationship between forward 

citations and the number of authors as well as the number of backward citations. Citation 

rates differ between document types: reviews receive more citations compared to articles, 

letters and notes. The number of forward citations differ significantly between journals 

(journal dummies have been included, but not reported, n=104). Finally, the observed citation 

rates reflect an inverse U pattern over time.    

When removing outliers, i.e. all publications with a forward citation count larger than the 

mean plus three times the standard deviation, similar results are obtained then the ones 

reported in Table 3. 
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Table 3. Results of negative binomial regression - Number of forward publication citations of 
publications (net, i.e. with exclusion of self-citations) (1991-2008) 

 

Parameter Estimates 

95% Wald 
Confidence Interval Hypothesis Test 

Parameter B 
Std. 

Error Lower Upper 
Wald Chi-

Square df Sig. 
(Intercept) 2.966 .1258 2.719 3.213 555.643 1 .000
Pair (Y/N) .450 .0506 .350 .549 78.945 1 .000
Document type:    
     Article -.574 .0113 -.596 -.552 2589.688 1 .000
     Letter -.774 .0590 -.890 -.659 172.469 1 .000
     Note -.567 .0175 -.601 -.533 1051.989 1 .000
     Review 0 . . . . . .
Number of 
backward 
publication 
citations 

.013 .0001 .013 .014 10416.453 1 .000

Number of authors .033 .0005 .032 .034 4613.407 1 .000
Time .125 .0015 .122 .128 7191.199 1 .000
Time²  -.012 .0001 -.013 -.012 29450.994 1 .000
             
Journal dummies 
(n=104) 
 

 
Included  

 

Comparison of citation counts before and after patent grant 

Inspired by the observations of Murray and Stern (2007) - a relative decline in citation 

patterns after patents have been granted – we verify whether the citation rates differ before 

and after a patent has been granted. We follow the reasoning of Murray and Stern stating that 

if a patent grant comes to a complete surprise to follow-on researchers, i.e. if researchers that 

continue working on previous discoveries are not aware of pending patent applications on 

those previous discoveries, a drop in citation rate can be an indication of the presence of an 

anti-commons effect. The reasoning behind this construct is that if researchers are not aware 

whether a given piece of knowledge is subject to patent filing, they will use (cite) this 

knowledge (publication) in a normal way. As soon as a patent covering that piece of 

knowledge is granted, those follow-on researchers might stop using (citing) this knowledge 

because of the perceived “price” (patent rights) of building on the prior discovery. Hence in 
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case of the presence of an anti-commons effect, forward citations of publications that are part 

of a patent-paper pair are expected to drop as soon as the corresponding patent is granted. 

To test this we split up forward citation counts for all pairs into the number of citations 

received before and after the grant year of their corresponding patent14 15 16. These numbers 

are aggregated at the level of journals and publication years, resulting in two average 

citations counts; one for the pre-grant period, and one for the post-grant period. Next, for 

every observed journal and publication year, we construct a control group that consists of all 

non-paired biotechnology publications published in that given journal and year. For these 

publications, forward citations are split up in exactly the same manner as to reflect the pre- 

and post-grant period. This is done as follows: if for a given journal and publication year only 

one paired publication is present, we split citation counts for all non-paired publications 

published in the same year and journal based on the lag between the publication year 

(journal) and grant year (corresponding patent). This is again aggregated at the level of the 

journal and publication year, resulting in an average citation count pre- and post-grant for 

non-paired patents for the given journal and publication year. If a given journal has multiple 

publication with a paired patent in a given publication year, we split up forward publication 

citation counts for the non-paired publications multiple times, once for every lag between the 

publication year and the grant year of the corresponding patents. All these number are 

aggregated at the level of the journal and publication year, resulting in an average citation 

count pre- and post-grant for non-paired patents. Finally, for all combinations of journals and 

publication years in which pairs have been observed, we calculate the ratio between citation 

received by pairs versus non-pairs two times: for the pre-grant period as well as the post-

grant period. If an anti-commons effect would manifest itself, the ratio between pairs and 

non-pairs would drop significantly after granting the patent.   

                                                 

14 For those publications linked to multiple patents (multiple members of patent families), the earliest patent 

grant data was used to split citations into a pre-grant and post-grant period. 

15 For this analysis, the total number of citations was used, not the net number of citations (excluding self-

citations) 

16 Only publications of period 1991-2000 are included to have a full 10-year citation window for all publications 

and to make use of the fact that USPTO applications were not made public before 2001, making the changes of 

a ‘surprise’ grant to follow-up researchers more likely. 
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As table 4 indicates, the ratio of average citations received by pairs versus non-pairs equals to 

1.71 and 1.74 before and after granting respectively. Controlling for journal and publication 

year, this figure means that papers that are part of a pair receive on average 71% and 74% 

more citations than their counterparts not belonging to a pair. While these descriptive 

statistics do no indicate a decline, a formal t-test reveals that both ratios are not significantly 

different (p=0.86). As such, our data do not show any sign of anti-common effects that 

become visible after patent rights have been granted.    

 

Table 4. Results of independent T-test – Ratio average citations pairs/non-pairs pre-grant 
versus post-grant (1991-2000) 

 

VARIABLE CLASS N 
LOWER CL 

MEAN MEAN 
UPPER CL 

MEAN 
Ratio average citations 
pairs/non-pairs Pre-grant 288 1.42 1.71 2.00 
Ratio average citations 
pairs/non- pairs Post-grant 288 1.48 1.74 2.00 

Diff (1-2)  -0.43 -0.03 0.36 
 

T-TESTS 

VARIABLE METHOD VARIANCES DF T VALUE PR > |T| 
Ratio average citations 
pairs/non-pairs Pooled Equal 574 -0.17 0.8666 
Ratio average citations 
pairs/non-pairs Satterthwaite Unequal 565 -0.17 0.8666 

 

EQUALITY OF VARIANCES 

VARIABLE METHOD NUM DF DEN DF F VALUE PR > F 
Ratio average citations 
pairs/non-pairs Folded F 287 287 1.29 0.0299 

 

Findings on citation patterns of patents (patent-to-patent 
citations) 
Within this section we report and discuss the empirical results obtained when analysing 

patent citations - i.e. citations from other patent document - to patent documents that are part 

of a patent-paper pair. This analysis implies a comparison with patent citations to patent 

documents which do not belong to a patent-paper pair.  
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Descriptive results 

Table 5 provides a summary overview of the number of biotechnology patents under study as 

well as the observed average number of forward patent citations, organized by application 

year, for all biotechnology patents and for the paired biotechnology patents. 

 

Table 5. Number of biotechnology patents and forward citations per year (only patents with 
substantial abstract) 

 

 
ALL BIOTECHNOLOGY 

PATENTS 
PAIRED BIOTECHNOLOGY 

PATENTS 

APPLICATION 
YEAR 

NUMBER 
OF 

PATENTS 

AVERAGE 
NUMBER OF 
FORWARD 

PATENT 
CITATIONS 

NUMBER 
OF 

PATENTS 

AVERAGE 
NUMBER OF 
FORWARD 

PATENT 
CITATIONS 

1991 3,069 16.21 9 14.56 

1992 3,727 16.14 11 24.09 

1993 4,392 16.01 25 12.68 

1994 6,170 14.39 37 11.16 

1995 9,881 14.60 71 13.51 

1996 5,635 12.13 33 6.45 

1997 7,097 10.12 56 11.68 

1998 6,974 8.30 70 8.84 

1999 7,742 7.35 58 5.47 

2000 7,798 5.46 65 3.52 

2001 7,509 4.43 49 2.86 

2002 6,315 3.06 30 3.17 

2003 4,554 2.50 19 1.26 

2004 3,590 2.16 23 11.52 

2005 2,342 1.67 7 0.57 

2006 1,170 1.61 3 0.33 

2007 275 1.03 0 N/A 

2008 8 0.75 0 N/A 

TOTAL 88,248 8.94 566 8.21 
 

The number of biotechnology patent grants in our dataset is starting at 3,069 patents in 1991 

and exponentially growing to 9,881 patents in 199517. In 1996 the number of patents falls 

                                                 

17 All patent counts mentioned in this publication are granted patents by application year for patents having a 

substantial abstract to be of use in text mining, unless stated otherwise. 
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down to 5,635 to level around (and later above) 7,000 patents in the period 1997 to 2001. 

After 2001 the number of patents gradually diminishes.18 The average number of forward 

patent citations (patent-to-patent citations) for the biotechnology patents follow a negative 

trend, starting around 16 from 1991 to 1993 and steadily going down from 1994 onwards (a 

decrease of roughly 1.5 for every year)19 20. The average number of forward citations for all 

biotechnology patents is 8.9 (median number of forward citations is 4). For the period 1991-

2000 (to allow for a sufficient time lag for citations) the average number of forward citations  

is 11.4 (median is equal to 5). 

The number of biotechnology patents linked to a publication (566) follows a trend similar to 

the overall evolution of biotechnology patents: first an exponential growth phase starting 

from 9 in 1991 to 71 in 1995, followed by a drop to 33 in 1996 and a phase with numbers 

fluctuating around 63 between 1995 and 2000. Again the numbers gradually diminish after 

2001, with a notable exception of 2004 (23 patents versus 19 patents for 2003 and 7 patents 

for 2005). The average number of forward patent citations (patent-to-patent citations) for the 

biotechnology patents linked to a scientific publication follow a less stable pattern and 

fluctuate around 13 for the period 1991-1997 (with a significant positive raise to 24 in 1992 

and negative drop to 6.45 in 1996) and steadily goes down from 1997 onwards (with a steep 

increase to 11.52 in 2004; compared to 1.26 in 2003 and 0.57 in 2005). The average number 

of forward citations for biotechnology patents linked to a publication is 8.2 (median number 

of forward citations is 3). For the period 1991-2000, the average number of forward citations 

is 9.5 (median is equal to 4). These averages are about 8% lower compared to non-paired 

patents. 

                                                 

18 For more recent years, trends in granted patent numbers per application year are not reliable because of 

declining grants due to the grant lag in patent systems. 

19 In contrast with the publication citation counts (publication-to-publication citations), patent counts in this 

study are not counted by a fixed citation window but continuously for all succeeding years up to 2009, the last 

year for which we have information available. This explains the early fall in average number of citations. 

20 The patent citation counts are corrected for patent families, both at the cited as at the citing side. At the cited 

side, all citations to the patent and one of its DOCDB patent family members are added together. At the citing 

cite, citations of multiple members of the same DOCDB patent family are counted as one. 
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As can be expected, patent-paper pairs are largely related to academic patenting; 52% of 

biotechnology patents that are linked to a publication have at least one academic patentee, 

compared to 18% for all non-paired biotechnology patents. Patents with at least one 

government or non-profit patentee are also overrepresented in the set of patents closely 

related to publications (23% for paired patents versus 10% for non-paired patents). 

Multivariate analysis 

In order to assess whether observed differences are statistically significant, we performed a 

negative binomial regression with the number of forward patent-to-patent citations as 

dependent variable and a dummy variable indicating whether a patent is or is not part of a 

patent-paper pair as independent variable. We use all 88,248 biotechnology patents having a 

substantial abstract (566 patents that are part of a patent-paper pair and 87,682 patents that 

are not part of a patent-paper pair). 

We further control for the patent system (EPO or USPTO), the number of IPC codes 

(technological specialization), the presence of academia as patentee, the number of backward 

scientific non-patent citations, the number of backward patent citations, the number of 

forward publication citations (citations from Web of Science publications to the particular 

patent), the number of inventors and the number of patentees. We also included dummy 

variables for all 11 biotechnology IPC subclasses (4 digits) present in our selection of 

biotechnology patents (see Appendix A for all IPC-codes as used in the OECD biotechnology 

definition). Again we include a time variable (1 for the first year, 1991, up to 18 for the last 

year, 2008) and a squared time variable to include the evolution over time. 

Table 6 reports the results of the regression analysis of forward patent citations of patents. 

Patents being part of a patent-paper pairs have more forward publication citations (variable 

Pair Y/N), but the difference is not significant. USPTO patents have more citations than EPO 

patents. All other controlling variables have a significant and positive impact, except for the 

number of patentees, which has a negative but not significant impact and time, which 

displays a decreasing, curvilinear relationship with patent citations.  
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Table 6. Results of negative binomial regression - Number of forward patent citations of patents 
(corrected for DOCDB patent family members, both at cited and citing side) (1991-2008) 

 

Parameter Estimates 

95% Wald 
Confidence Interval Hypothesis Test 

Parameter B 
Std. 

Error Lower Upper 
Wald Chi-

Square df Sig. 
(Intercept) 2.300 .0197 2.262 2.339 13585.101 1 .000

Pair (Y/N) .058 .0460 -.032 .148 1.599 1 .206

Patent system       

     EPO -.193 .0140 -.221 -.166 190.450 1 .000

     USPTO 0 . . . . . .

Subfield       

     IPC subclass A01H .114 .0222 .071 .158 26.596 1 .000

     IPC subclass A61K .005 .0094 -.013 .024 .314 1 .575

     IPC subclass C02F -.056 .0357 -.126 .014 2.467 1 .116

     IPC subclass C07G -.633 .1145 -.858 -.409 30.574 1 .000

     IPC subclass C07K -.144 .0086 -.161 -.127 282.766 1 .000

     IPC subclass C12M .274 .0183 .239 .310 225.680 1 .000

     IPC subclass C12N .075 .0080 .059 .091 88.167 1 .000

     IPC subclass C12P -.180 .0105 -.201 -.160 292.404 1 .000

     IPC subclass C12Q .291 .0095 .272 .309 941.663 1 .000

     IPC subclass C12S -.085 .0473 -.177 .008 3.207 1 .073

     IPC subclass G01N .168 .0096 .149 .187 305.363 1 .000

Number of IPC codes .043 .0008 .042 .045 3265.759 1 .000

Has university patentee 
(Y/N) 

.036 .0097 .017 .055 13.462 1 .000

Number of backward 
scientific non-patent 
citations 

.003 .0002 .003 .003 248.658 1 .000

Number of backward 
patent citations 

.016 .0003 .016 .017 3370.269 1 .000

Number of forward 
publication citations 
from WOS publications 

.141 .0052 .131 .152 744.627 1 .000

Number of inventors .018 .0019 .014 .022 92.591 1 .000

Number of patentees -.010 .0074 -.025 .004 1.945 1 .163

Time -.063 .0042 -.071 -.055 228.478 1 .000

Time² -.007 .0003 -.008 -.007 766.940 1 .000

              

 

After removing outliers, i.e. all patents with a forward citation count larger than the mean 

plus three times the standard deviation, similar results are obtained as the ones reported in 

Table 6. Finally, when we limit the time period to all patents applied for between 1991 and 

2000 – in order to allow all patents to have at least 10 years of forward patent citations – 

patent-paper pairs have less forward patent citations, but also this difference is not significant 
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(both when including and excluding outliers). Overall, we observe no significant difference in 

terms of (forward) patent citations when comparing patents that are associated with a 

scientific publication with their solitary counterparts.  

Discussion and (intermediate) conclusions  
In this paper, we have applied an advanced text mining methodology to examine the possible 

presence of anti-commons effects in biotechnology research. Inspired by previous work 

undertaken by Murray, Stern and others, we analyse citation flows stemming from patent-

paper pairs present within the field of biotechnology. The delineation of the biotechnology 

domain was based on the use and the refined application of existing classification schemes. 

An elaborate text mining scheme was developed and implemented in order to identify and 

validate the patent-paper pairs. A total of 584 pairs were ultimately included in the citation 

analysis. The necessary validation and control strategies were introduced and executed. After 

taking into account these controls and studying the citation patterns of the documents 

included in the patent-paper pairs, we were not able to detect a significant anti-commons 

effect on the basis of the 584 pairs identified. On the contrary, scientific publications 

belonging to a patent-paper pair receive significantly more scientific citations than their 

counterparts for which no patent document has been identified.  This difference remains 

outspoken (and significant) after taking into account the granted nature of implied patent 

documents. As such, our findings do not reveal the presence of anti-commons effects once 

scientific findings become translated into intellectual property rights (in this case, patents). In 

terms of technological citations, we observed no difference between patents belonging to a 

patent-paper pair and patent documents that are not associated directly with a scientific 

publication. As such, no additional impact – on future technological developments - is 

observed when patent documents are situated in the vicinity of science.   

These findings add to the current stock of insights on the interaction between patenting and 

publication behaviour. Through the design and application of advanced text mining 

techniques on a broad set of data, we intended to take the current insights a step further. 

Extensive validation efforts were undertaken in order to confirm the results obtained. 

These results definitely are an invitation to further examine the joint effects of patenting and 

publishing activities by scientists. The first point of attention that arises is the one of 

generalization towards other fields of ‘techno-scientific’ economical activity. Can we 
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substantiate the current findings in technology domains such as materials or in other fields? 

The second point relates to corroborating and consolidating the robustness of the text mining 

methodology that was deployed, as well as a further, independent, confirmation of the 

optimal identification algorithm. The third point pertains to the continuous cross-validation of 

the results obtained with our method with the results obtained by sets of patent-paper pairs 

that have been constructed manually by experts. 

Finally, the absence of an anti-commons effect does not imply that we have reached the end 

of the patent-paper debate. On the contrary, we still need a far better understanding of the 

many, often multidimensional, spillovers that involvement of scientists in both patent and 

publication activities can bring and generate. These spillovers do not only occur at the 

material level, but also at the immaterial, cognitive level. Understanding them and linking 

them to the performance of scientists in setting and advancing their research agendas, remains 

a question of primary importance. A better insight into these substantive relationships, both at 

the personal level and at the institutional level, can indeed only improve our understanding of 

the effective and fruitful management of scientific activity.   
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Appendix A : OECD biotechnology IPC-codes (OECD, 2005) 
IPC codes  Title  
A01H 1/00  Processes for modifying genotypes  
A01H 4/00  Plant reproduction by tissue culture techniques  
A61K 38/00  Medicinal preparations containing peptides  
A61K 39/00  Medicinal preparations containing antigens or antibodies  
A61K 48/00  Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic 

diseases; Gene therapy  
C02F 3/34  Biological treatment of water, waste water, or sewage: characterised by the micro-organisms used  
C07G 11/00  Compounds of unknown constitution: antibiotics  
C07G 13/00  Compounds of unknown constitution: vitamins  
C07G 15/00  Compounds of unknown constitution: hormones  
C07K 4/00  Peptides having up to 20 amino acids in an undefined or only partially defined sequence; Derivatives thereof  
C07K 14/00  Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof  
C07K 16/00  Immunoglobulins, e.g. monoclonal or polyclonal antibodies  
C07K 17/00  Carrier-bound or immobilised peptides; Preparation thereof  
C07K 19/00  Hybrid peptides  
C12M  Apparatus for enzymology or microbiology  
C12N  Micro-organisms or enzymes; compositions thereof  

C12P  
Fermentation or enzyme-using processes to synthesise a desired chemical compound or composition or to 
separate optical isomers from a racemic mixture  

C12Q  
Measuring or testing processes involving enzymes or micro-organisms; compositions or test papers therefor; 
processes of preparing such compositions; condition-responsive control in microbiological or enzymological 
processes  

C12S  
Processes using enzymes or micro-organisms to liberate, separate or purify a pre-existing compound or 
composition processes using enzymes or micro-organisms to treat textiles or to clean solid surfaces of materials  

G01N 27/327  Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means: biochemical 
G01N 33/53*  Investigating or analysing materials by specific methods not covered by the preceding groups: immunoassay; 
G01N 33/54*  Investigating or analysing materials by specific methods not covered by the preceding groups: double or second 

antibody: with steric inhibition or signal modification: with an insoluble carrier for immobilising 
immunochemicals: the carrier being organic: synthetic resin: as water suspendable particles: with antigen or 
antibody attached to the carrier via a bridging agent: Carbohydrates: with antigen or antibody entrapped within 
the carrier  

G01N 33/55*  Investigating or analysing materials by specific methods not covered by the preceding groups: the carrier being 
inorganic: Glass or silica: Metal or metal coated: the carrier being a biological cell or cell fragment: Red blood 
cell: Fixed or stabilised red blood cell: using kinetic measurement: using diffusion or migration of antigen or 
antibody: through a gel  

G01N 33/57*  Investigating or analysing materials by specific methods not covered by the preceding groups: for venereal 
disease: for enzymes or isoenzymes: for cancer: for hepatitis: involving monoclonal antibodies: involving 
limulus lysate  

G01N 33/68  Investigating or analysing materials by specific methods not covered by the preceding groups: involving 
proteins, peptides or amino acids  

G01N 33/74  Investigating or analysing materials by specific methods not covered by the preceding groups: involving 
hormones  

G01N 33/76  Investigating or analysing materials by specific methods not covered by the preceding groups: human chorionic 
gonadotropin  

G01N 33/78  Investigating or analysing materials by specific methods not covered by the preceding groups: thyroid gland 
hormones  

G01N 33/88  Investigating or analysing materials by specific methods not covered by the preceding groups: involving 
prostaglandins  

G01N 33/92  Investigating or analysing materials by specific methods not covered by the preceding groups: involving lipids, 
e.g. cholesterol  

* Those IPC codes also include subgroups up to one digit (0 or 1 digit). For example, in addition to the code G01N 33/53, the 
codes G01N 33/531, GO1N 33/532, etc. are included.  
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