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Abstract

We build a cumulative innovation model where both success and failure provide valu-

able information for future research. To test this learning mechanism, we use a dataset
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proxy knowledge flows with forward citations received by patents associated with each

project. Empirical results confirm theoretical predictions that patents associated with

successfully completed projects (i.e., leading to drug launch in the market) receive more

citations than those associated to failed projects, which in turn are cited more often

than patents lacking clinical or preclinical information. We therefore offer evidence of

the value of failures as research inputs in (pharmaceutical) innovation.
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1 Introduction

In this paper we look at the features of the learning mechanisms and R&D competition in

the pharmaceutical industry. We build a cumulative innovation model where each research

project may provide useful information for future research. Differently from the standard

single-research-line model, such as Green and Scotchmer (1995) and O’Donoghue (1998), we

consider a scientific space consisting of multiple research lines, or trajectories (Aghion et al.,

2008). Several trajectories are possible candidates to successfully reach a final invention (e.g.

to develop and launch a drug in the market). But, for simplicity, we consider the case where

at most one trajectory is the “right” approach. That is, trajectories compete with each other

for success, and it may well happen that no trajectories can lead to the final invention. In this

case, a piece of “positive” information that raises the successful likelihood of a trajectory will

at the same time reduce that of the other trajectories. Similarly, “negative” information, e.g.,

when a research project on some trajectory fails, although reduce the successful probability of

the experimented trajectory, will simultaneously raise the prospects of other trajectories. In

a simple way, this captures the idea that both success and failure convey useful information

for subsequent innovation.

Empirical analysis in the pharmaceutical domain reveals that, indeed, technological com-

petencies are accumulated building both on successfully developed compounds as well as on

failures (Magazzini et al., 2009). On the one side, it is not surprising that marketed products

play an important role in guiding subsequent research efforts of both the innovating firm and

its rivals. On the other side, also failures substantially spur rival innovative efforts.

The model is tested using data from a comprehensive dataset about the innovative activ-

ity of pharmaceutical and biotechnology firms, including R&D project level data, patents,

citations, and collaborations, allowing us to explore the nature of technological advances

and of the underlying learning regime, shaping the industrial patterns of innovative activity

(Nelson and Winter, 1982; Dosi, 1988; Winter, 1994; Malerba and Orsenigo, 1993; Breschi

et al., 2000). We exploit the information provided by patents and patent citations, as a

proxy for research efforts and to identify the different approaches or trajectories in order to

characterize the dynamic nature of the innovation process (Trajtenberg, 1990; Lanjouw and

Schankerman, 1999; Harhoff et al., 1999; Jaffe et al., 2000; Trajtenberg et al., 1997; ,Jaffe

and Trajtenberg, 2002).

The pharmaceutical industry represents a unique framework for innovation studies, given
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that: (i) the industry is a textbook example of a “science-based” sector (Pavitt, 1984):

strong linkages exist between drug development and the scientific advances in the “Open

Science”, leading firms to dissect and analyze an increasing number of techniques, trajectories

and exploration strategies (Orsenigo et al., 2001); (ii) patents play an important role as

means for protecting innovation – in exchange of the full disclosure of the characteristics

of the innovation (Mansfield, 1986; Cohen et al., 2000; Arundel and Kabla, 1998); (iii) the

pharmaceutical R&D process is characterized by a large presence of knowledge spillovers,

as rival research results are positively correlated with firm productivity (Henderson and

Cockburn, 1994; Henderson and Cockburn, 1996); (iv) the innovation process is characterized

by strong uncertainty and high failure rates in drug discovery and development (Munos, 2010;

Pammolli et al., 2011).

The paper is organized as follows. Section 2 describes the model and its main assump-

tions. Section 3 describes our empirical strategy, and the results are reported in Section 4.

Section 5 concludes.

2 Theory

We consider scientific research as a cumulative process that consists of a series of experi-

ments to discover the “right” or successful approach for product development (e.g., drugs).

The technology space contains I > 1 paradigms. Within each paradigm, there are J > 3

candidate approaches or trajectories. Different trajectories in a paradigm are competing for

success, but not different paradigms. That is, within one paradigm, there is at most one

trajectory leading to success (e.g., a marketable drug); but whether a paradigm contain a

successful trajectory is not affected by that of other paradigms. The true state of nature

concerning a paradigm is described by which trajectory, if any, is the successful one.

A research project is an experiment on a trajectory. An experiment generates a piece

of evidence concerning whether the experimented trajectory can eventually succeed. Let an

experiment be run on trajectory j. Three outcomes may arise, τ j ∈ {s, f, n}, where a result

τ j = s means “success,” while τ j = f and n represent “failure” and “no result,” respectively.

With probability β, the experimental result coincides with the true state: the outcome is a

good sign τ j = s when trajectory j will succeed, and a bad sign τ j = f when it will fail.

With probability γ, the experiment generates no useful result: the occurrence of the signal
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τ j = n doesn’t depend on the true state. And with the remaining probability 1− β − γ, the

experiment delivers the wrong result. We impose the following assumption so that a result

τj ∈ {s, f} remains informative.

Assumption 1. (Informative experiments) β > 1− β − γ > 0.

A lower γ raises the likelihood that the experiment delivers some outcome (success or

failure), and a higher β ensures that this outcome provides more information, namely, it

is more aligned with the true state of nature. These parameters capture the “quality” of

experiment and determine how informative an experiment outcome is.

Remark 1. (Other types of research). This type of research is “applied” research in the sense

that the experiment is conducted only on one trajectory within on paradigm, despite its

informational externality to be shown below. On the other hand, “basic” or “fundamental”

research can be thought of as experiments delivering direct results about several trajectories,

within or across paradigms according to how “fundamental” the research could be. This

distinction between basic and applied research stresses not the timing of invention, but the

contribution to the knowledge accumulation process. Another type of research is research

tools, which can be modeled as an invention that increases the precision of applied research,

i.e., a better research tool increases β. ‖

Given this information structure, we use Bayesian updating to calculate the successful

probability in the research process. After t experiments conducted in the same paradigm, de-

note the profile of each trajectory’s success probability as {α̂j
t}j=1,2,...,J , with 0 ≤

∑J
j=1

α̂
j
t ≤ 1

due to mutually exclusive success of each trajectory. Let the t+1th experiment be conducted

on trajectory j. The realization of the experiment outcome τ
j
t+1 ∈ {s, f, n} causes new as-

sessment of the success probability according to Bayesian updating. Let k ∈ {1, 2, . . . , J}

and k 6= j,

• τ
j
t+1 = s: it occurs with probability α̂

j
tβ + (1− α̂

j
t )(1− β − γ), and

α̂
j
t+1 =

α̂
j
tβ

α̂
j
tβ + (1− α̂

j
t )(1− β − γ)

> α̂
j
t , α̂k

t+1 =
α̂k
t (1− β − γ)

α̂
j
tβ + (1− α̂

j
t )(1− β − γ)

< α̂k
t ; (1)

• τjt+1 = f : it occurs with probability α̂
j
t (1− β − γ) + (1− α̂

j
t )β, and

α̂
j
t+1 =

α̂
j
t (1− β − γ)

α̂
j
t (1− β − γ) + (1− α̂

j
t )β

< α̂
j
t , α̂k

t+1 =
α̂k
t β

α̂
j
t (1− β − γ) + (1− α̂

j
t )β

> α̂k
t ; (2)

and
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• τjt+1 = n: it occurs with probability α̂
j
tγ + (1− α̂

j
t )γ, and

α̂
j
t+1 =

α̂
j
tγ

α̂
j
tγ + (1− α̂

j
t )γ

= α̂
j
t , α̂k

t+1 =
α̂k
t γ

α̂
j
tγ + (1− α̂

j
t )γ

= α̂k
t . (3)

By mutual exclusivity, a trajectories’s positive outcome “crowds out” the prospects of

other trajectories in the same paradigm. More interestingly, a failed experiment reduces

the success probability of that trajectory (and the whole paradigm), but at the same time

increases the probability that the successful route may hide in other trajectories. In other

words, both successful and failed experiments are informative.

To empirically test this insight, we use forward citations to assess the knowledge con-

tribution of a patented technology. We consider a very simple R&D decision and patent

citation generation process. Strategic interactions at the both the final market and R&D

competition stages could be introduced to enrich the model. But as a first step, we ignore

these concerns in order to focus on the learning mechanism outlined above. Assume that

all experiments in a research field are made public and receive patents, regardless of the

outcome of the experiment. In the patent application all the previous patents in the same

fields are cited, but not in other fields, i.e., there is no strategic citation. The number of

forward citations a patent receives, then, is positively correlated with subsequent inventors’

incentive to enter into the same research field. Denote α̂∗

t ≡ max{α̂j
t} as the highest success-

ful probability in the paradigm after t experiments, and let the corresponding trajectory be

j∗. For simplicity, assume that a firm’s incentive to enter and start a research project in this

paradigm is increasing in the probability α̂∗

t . Post entry, the firm, with the knowledge {α̂j
t},

conducts experiment on the trajectory j∗. In sum, these assumptions imply that a patent

will receive more forward citation if its outcome raises the highest successful probability of

the paradigm by a larger magnitude.

We now derive two hypotheses. First, consider the firm’s experiment on trajectory j∗. An

uninformative result (τ j
∗

t+1 = n) does not change the knowledge stock and so the entry incen-

tives, {α̂j
t+1} = {α̂j

t}. But a positive sign (τ j
∗

t+1 = s) raises the highest successful probability.

A positive experimental result maintains the status of j∗ as the most promising trajectory,

and raises its successful probability, α̂
j∗

t+1 > α̂
j∗

t . Therefore, a patent associated with a

successful experiment should receive more forward citations than one with no informative

outcome.

If the experiment outcome is negative, (τ j
∗

t+1 = f), then the successful probability of
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trajectory j∗ becomes lower. But the information brought by a failed experiment may suffi-

ciently boost the successful probability of other trajectories, such that the highest successful

probability after incorporating the new information is larger than α̂
j∗

t . That is, there may

exist k 6= j∗ such that

α̂k
t+1 =

α̂k
t β

α̂
j∗

t (1− β − γ) + (1− α̂
j∗

t )β
> α̂

j∗

t ⇔ β

(

α̂
j∗

t −
α̂
j∗

t − α̂k
t

α̂
j∗

t

)

> (1− β − γ)α̂j∗

t . (4)

When this condition holds, a patent associated with failed outcome will also receive more

forward citation than one with uninformative outcome.1 In general, this condition requires

that the difference in successful probability between the most promising and the second

most promising trajectory is not too large. For instance, if at the initial state, i.e., before

any experiments are run, the prior belief is characterized by uniform distribution, α̂j
0 is the

same for all j, then the condition holds. Or, if the number of candidate trajectories J is

large enough, and if past experiments are all failures, then there is always some “untested”

trajectory k. The successful probability of trajectory k is the same as α̂j∗

t ; the condition also

holds. These two scenarios seem fit the pharmaceutical context well, where most patents

either have no informative results in their backward citation, or only cite past failures.2

Second, we compare positive and negative experimental outcomes. Fixing α̂
j∗

t , compare

the highest successful probability after an experiment is conducted on trajectory j∗. For

k 6= j∗,

α̂
j∗

t β

α̂
j∗

t β + (1− α̂
j∗

t )(1− β − γ)
>

α̂k
t β

α̂
j∗

t (1− β − γ) + (1− α̂
j∗

t )β
(5)

⇔ α̂
j∗

t [(1− α̂
j∗

t )− α̂k
t ]β > [α̂k

t (1− α̂
j∗

t )− α̂
j∗2
t ](1− β − γ), (6)

because β > 1− β − γ, and because

α̂
j∗

t [(1− α̂
j∗

t )− α̂k
t ] > α̂k

t (1− α̂
j∗

t )− α̂
j∗2
t ⇔ α̂

j∗

t > α̂k
t , (7)

where α̂
j∗

t + α̂k
t ≤ 1. A positive result must raise the highest successful probability by a

larger amount than a negative result, and so must receive more forward citations. Note that

this is robust to the history of research, as summarized in {α̂j
t}.

1If we assume that patents with informative outcomes receive more forward citations than those with
uninformative outcomes, then this relationship holds directly from the information spillover of failed exper-
iments.

2In our data, the majority of patents (80.34%) do not contain any informative outcomes in their backward
citation, and only 15.31% of patents contain one known outcome in the backward citation.
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Last, note that as β increases, i.e, as each experiment has a higher probability to deliver

an informative result, then both a success and failure becomes more informative:

∂

∂β

(

α̂
j∗

t β

α̂
j∗

t β + (1− α̂
j∗

t )(1− β − γ)

)

> 0, and
∂

∂β

(

α̂k
t β

α̂
j∗

t (1− β − γ) + (1− α̂
j∗

t )β

)

> 0.

(8)

In the empirical analysis, we use the number of scientific publication a patent cites (in

backward citation) to capture the “quality” of the experiment associated with the patent.

Citing more scientific publications implies, say, absorbing more knowledge and so leads to

a more thorough experiment design, which raises β. We then expect a higher number of

forward citations.

To summarize, we will test the following two hypotheses:

Hypothesis 1. (Information spillover) A patent associated to a successful project receives

more citation than a patent associated to a failed project or a patent whose project is

inconclusive. When condition (4) holds, a patent corresponding to a failed project also

receives more forward citation than one corresponding to project that is inconclusive.

Hypothesis 2. (Scientific publication) A patent receives more forward citations when it

cites more scientific publications.

3 Empirical strategy

The empirical analysis builds on a comprehensive dataset on the innovative activity under-

taken within the pharmaceutical industry, including R&D project level data, patents, cita-

tions, and collaborations maintained by the CERM Foundation, Rome, Italy. The database

contains information about all pharmaceutical and biotechnology patents granted by the

USPTO since 1965, including backward and forward citations.3 Firm data at the level of

specific R&D projects worldwide in the last 30 years are also available. The database tracks

the development history of more than 22,000 R&D projects, starting from patent applica-

tion to the latest stage of drug development through preclinical, clinical development and

commercialization. In case of aborted projects, the database reports the time when the firm

3US patents are selected in the database on the basis of the the International Patent Classification (IPC)
and US classification. Namely, pharmaceutical patents are defined as those in IPC classes A61K and A01N
(Lanjouw and Cockburn, 2001) and we further include patents in US classes 424, 435, 514, and 800.
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announces that the research around the compound has been terminated. By exploiting the

information about the patents protecting the compound, the project data have been linked

to patent data (number of forward citations up to May 2004, the application date, and the

name of the assignee(s)).4 Patent history is available for 49 per cent of the projects included

in the database.

The matching of the different sets of data proved to be a formidable, large-scale task,

that tied up a great deal of our research efforts for a long time, providing us a unique dataset

that monitors R&D activities of pharmaceutical and biotechnology firms from patenting to

commercialization (if any) of the protected compound.

We further selected the patents associated to R&D projects of candidate drugs whose

outcome was a success (s), i.e. a new product launched on the market, or a failure (f),

i.e. the project was stopped due to the emergence of toxicological effects or to lack of

effectiveness. The final database encompasses information about 2,000 R&D projects with

informative outcome and their associated patents, entering into clinical trials from 1977 to

2002. Henceforth, we refer to successful (failed) patents as the patent associated to successful

(failed) R&D projects.

Citation patterns of our sample of patents is compared with patents whose protected

compound has not entered preclinical or clinical development. For each (successful or failed)

patent in the original sample, a patent has been randomly matched from the set of bio-

pharmaceutical patents with the same application year, publication year, and IPC class but

no information about preclinical or clinical development (n, no result). By comparing the

citation pattern of failed and successful patents against the sample of “no info” patents,

we will be able to ascertain the level of knowledge utilization and diffusion associated with

each trajectory and the related R&D competition dynamics. The three groups resemble the

three research outcomes considered in the model (successful: s; failed: f ; no information on

preclinical or clinical development: n).

Since the focus is on the pharmaceutical industry, only citations from subsequent patents

4For projects listing a patent granted by a patent office other than the USPTO, we considered the US
patent in the same family as the one listed in the database. In case no US patent is identified, the project
is not considered in the analysis. This choice has been driven by the fact our data sources only provide
citation data for the US patents. Moreover, different patent examination procedures characterizes the the
US and European patent offices, leading to large differences in the average number of citations per patent
(Breschi and Lissoni, 2004; Michel and Bettels, 2001). Focusing only on US citations avoids the emergence of
spurious results driven by different institutional settings. We further excluded old molecules and/or natural
products, which do not have any associated patent.
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in the pharmaceutical domain have been taken into account. We disregard self-citations and

only consider citations made by other companies, proved to be a good proxy for knowledge

spillovers (Jaffe et al., 2000). On the contrary, self-citations are considered to be indicators

of the cumulative nature of the technology and a measure of the extent to which innovators

are able to reap the benefits of their own research (Hall et al., 2001).

First, we employ the double-exponential function to model the citation lag distribution for

successful and failed patents, against biopharmaceutical patents with no information about

development. The model provides a flexible framework for studying the process underlying

the generation of citations, where an exponential process by which knowledge diffuses is

combined with a second exponential process by which knowledge becomes obsolete (Jaffe

and Trajtenberg, 1996; Caballero and Jaffe, 1993).

The analysis allows us to characterize knowledge dynamics of successful and failed trajec-

tories (as identified trough patents) with respect to the uninformative patents issued within

the biopharmaceutical domain (Hypothesis 1).

Next, we test Hypothesis 2 and whether condition (4) is satisfied within the pharma-

ceutical domain. In particular, we run a regression where the dependent variable is the

number of citations received by the patents adjusted on the basis of the estimated citation

lag distribution, in order to reflect life-time citations. Variables on the right hand side mea-

sures the importance of scientific references and the level of knowledge accumulated within

the relevant trajectory, controlling for characteristics of the technological classes (defined

on the basis of the International Patent Classification, henceforth IPC), assignees and the

patent-innovation itself.

The two sets of results will provide a comprehensive view of the dynamics underlying

R&D competition in the biopharmaceutical domain, providing a clearcut test of the model

developed in Section 2.

4 Results

� The value of failures. Figure 1 compares the observed and estimated citation lag

distribution functions for successful and failed patents, taking as a benchmark the citation lag

distribution function of patents with no information about preclinical or clinical development.

The x-axis reports the citation lag, i.e. the difference between the citing and the cited patent
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grant year. It represents the time elapsed from the grant date. The vertical line drawn 8 years

after patent grant corresponds to the average length from patent application to termination

of the project.5 The y-axis depicts the (average) observed and estimated citation intensities,

i.e. the likelihood that any patent will be cited by the patents granted x years apart (Jaffe

and Trajtenberg, 1996).

The observed citation lag distribution is computed as the ratio between the number

of citations received by patents granted in year t from patents granted in year T and the

theoretical number of potential citations (T − t is the citation lag):

p(t, T, τ) =
C(t, T, τ)

N(t, τ)N(T )

where t indicates the grant year of the cited patent, T is the grant year of the citing patent,

and τ represents the outcome of the associated R&D project (τ ∈ {s, f, n}). The potential

number of citations is given by the number of citations that would have been observed if

all patents granted in year T would cite all patents granted in year t with outcome τ , that

is equal to the product of the number N(T ) of patents granted in the citing year and the

number N(t, τ) of patents granted in the cited year with a known outcome τ .

In order to estimate the theoretical citation lag distribution, we considered the follow-

ing specification of the double-exponential function, modeling the likelihood that a patent

granted in year T will cite a patent granted in year t, with T > t (Jaffe, Trajtenberg, 1996):

p(t, T, τ) = δ0(t, T, τ) exp[−δ1(τ)(T − t)](1− exp[−δ2(T − t)]).

where δ0 is linked to the overall likelihood of receiving a citation, whereas δ1 and δ2 are

indicators of, respectively, the rate of obsolescence of knowledge (i.e., the rate at which new

knowledge replaces the existing one) and the rate of diffusion of the knowledge related to the

invention protected by the patent. We claim that the grant year of the citing and the cited

patent only affect the average citation intensity δ0, while the outcome of the project affect

both the average citation intensity δ0 and the rate of obsolescence δ1.
6 Due to identification

5This is actually few months longer for marketed compounds, being equal to 7.8 years for failed R&D
projects and to 8.3 years for marketed R&D projects. The value is coherent with previous studies analyzing
average duration of the drug development process (Abrantes-Metz et al., 2004)

6As in previous empirical literature dealing with this model, convergence problem forbids the estimation
of the model where all the cited-year effects are considered. The problem is solved by introducing the
cited-year effects defined on the basis of 5-year time periods.
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Coefficients Model 1 Model 2

δ
f
0 1.264 (.182)* 1.329 (.111)*

δs0 1.309 (.158)* 1.511 (.108)*

δ1 0.107 (.008)* 0.084 (.013)*

δ
f
1 0.827 (.135)* 1.049 (.108)*

δs1 0.554 (.087)* 0.604 (.077)*

δ2 0.114 (.014)* 0.248 (.042)*

Cited year effects no yes

Citing year effects no yes

R-squared .609 .641

* statistically significant at 5% level.

Table 1: Double-exponential function, results of estimation, dependent variable: citation

intensity

problems, the rate of diffusion (δ2) is considered constant over time and across the three sets

of patents.

According to our model, we expect that successful patents receive on average a higher

number of citations with respect to failed patents. The model specification however allows

us also to dig further into the dynamics of knowledge utilization and diffusion and to analyze

the speed and extent to which existing knowledge is “picked up” in the case of failures and

successes, as a proxy for the diffusion and utilization of the associated trajectory. Results,

reported in Table 1, are obtained by nonlinear least squares estimation, weighting each

observation by [N(t, τ)N(T )]1/2. The lines depicted in Figure 1 are obtained by taking the

average,7 for each lag, of the fitted values from Model 2.

Coherently with our model and previous literature showing that the number of citations

received by a patent is positively associated to its value,8 citations turn out to be related

to the outcome of the project. The observed and estimated distributions indicate that,

on average, failed patents receive a number of citations that is lower than the number of

7Both in the case of observed and estimated citation lag distributions, weighted averages are considered,
where the weights are the same as the ones used in the estimation process.

8See Trajtenberg (1990); Lanjouw and Schankerman (1999); Harhoff et al. (1999); Jaffe et al. (2000);
Trajtenberg et al. (1997); Jaffe and Trajtenberg (2002).
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citations received by patents associated to successful projects (compare the estimated values

of the δ
f
0 and δs0 coefficients). Furthermore, coherently with Hypothesis 1, both sets receive

a higher number of citations than the average patent in the biopharmaceutical domain with

no information about clinical or preclinical development (τ = n). The estimate of the δ0

coefficients associated to failed and successful patents are higher than 1, indicating that

patents associated to preclinical or clinical development, irrespective of their outcome, are

more likely to receive a citation than biopharmaceutical patents with no informative results

(taken as the reference category). The analysis shows the existence of a value associated also

with failed patents: even though the compound associated with the patent will never reach

the market (e.g., due to the emergence of toxicological problems or lack of effectiveness);

the opened research trajectory is subsequently exploited by firms other than the original

innovator.

It is interesting to note that within the first 5 years from patent grant, no significant

difference is detected between failed and successful patents, whereas starting from year 5

the two series start to diverge in a significant way. The analysis of the estimates of δ1

reveals an important difference between successful and failed compounds in terms of knowl-

edge obsolescence. Under this perspective, failed and the uninformative patents exhibit very

similar dynamics (the δ1 associated with associated with failed patents is very close to 1,

pointing to no differences between failed patents and the uninformative patents). On the

contrary, the knowledge embedded in patents protecting marketable compounds becomes

obsolete less quickly than the other patents in the biopharmaceutical domain (the δ1 asso-

ciated with successful patents is lower than 1). Indeed, the citation intensity of marketed

compounds is rather stable after commercialization, whereas the citation intensity of failed

patents decreases substantially.9

The maximal citation frequency for failed patents is earlier in time than the maximal

citation frequency of successful patents.10

9Also note that the larger departures between the estimated and observed citation lag distribution in the
case of failed patents is registered right after the average time when the project is stopped. This might point
to the fact that the termination of the research around a compound/mechanism of action is a major signal for
rival firms that nonetheless regain interest after few years from the time of discontinuation and the citation
intensity of failed patents is still higher than the citation intensity of the patents with no preclinical or clinical
development (no info), also many years after discontinuation. On this issue, we asked a pharmacologist to
extensively inspect the patents citing failed projects in search of a reason for the citation, finding no instance
of “negative” citations, rather citations refer to pharmacological action or the structure of the compound
(i.e., to the trajectory / paradigm opened up by the original innovator).

10Our estimates are coherent with the estimates of the Drugs and Medical sector presented by Hall et al.
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� When are failures valuable? The disclosure of the information about the compound

under study in patents and the advances in science sets the ground for a “race” for reaching

the market, where competitors start exploring the new research arena pursuing parallel

research trajectories even though the outcome is still highly uncertain. Competition on the

R&D side in the pharmaceutical industry is substantial and firms entering the new research

arena build both on failures and successes (Figure 1).

We now build a regression model that looks at failures and successes separately and at the

drivers of their citation intensity. The analysis will allow us to understand the characteristics

of innovations and trajectories that are subject to a higher degree of exploration by rival

firms. In particular we will test Hypothesis 2, explicitly considering in the regression the

share of scientific publications cited over the total number of citations (patent and non-patent

references).

The dependent variable is the number of citation received during the life time of the

patent, where the observed citation frequency has been adjusted using the estimated coeffi-

cient of the citation lag distribution function (on the basis of estimated coefficients in Table

1).

The independent variables are listed in Table 2 and aim at capturing the characteristics

of the cited patent (pt), of the IPC class (ipc) and of the patenting firm (asg).

Patents characteristics are measured using the indicators developed by Trajtenberg et

al. (1997) on the basis of backward citations. The importance of scientific sources with

respect to technological ones within the patent is captured by science, which is the ratio

between the non-patent references and the total number of references (previous patents or

previous scientific literature) listed in the patent. The closer to 1, the larger the scientific

underpinnings of the research, relying more heavily on the scientific literature rather than on

previous patents. Hypothesis 2 posits that this variable has a positive effect on the number of

forward citations received. We also consider the share of self-citations in the patents (selfc)

(2001), with the exception of the estimated δ2 which is lower. This might be explained by the fact that we
only consider citations by institution other than the original assignee, which can require a longer time span
with respect to self-citations to manifest. Moreover, an interesting pattern emerges in their results when
comparing Drugs and Medical to other sectors. The citation lag distribution for this sector is more flat,
whereas the citation lag distribution functions for the sectors of Computers and Communications, Electrical
and Electronics, Chemical, and Mechanical have higher peak earlier in time. Knowledge in the Drugs and
Medical sector diffuses less rapidly and takes a longer time to become obsolete. Important information about
the protected compounds in terms of toxicological effects and effectiveness are revealed over time leading to
a lengthier process of citation within this industry.
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Variable Char. Description Mean σ

science (pt) Science Index∗ 0.34 0.35

cite-sf (pt) Number of backward citations with known out-

come (either failure or success)

0.25 0.59

selfc (pt) Share of self-citations of the patent∗ 0.14 0.29

orig (pt) Index of originality of the patent∗ 0.43 0.37

timeb (pt) Average time lag∗ 5.56 4.50

importb (pt) Importance of cited patents∗ 122.4 640.7

nimp (ipc) Number of firms operating in the same IPC class 110.21 126.32

conc (ipc) Concentration of the IPC Class (Herfindhal index) 0.10 0.21

coree (asg) Share of firm patent within the same technology

class (IPC)

0.14 0.23

dbf (asg) Dummy equal to 1 if the originating firm is a ded-

icated biotechnology company

0.19 0.39

pro (asg) Dummy equal to 1 if the originator is a public re-

search organization

0.09 0.29

∗ defined as in Trajtenberg et al. (1997).

Char.: characteristic of (pt) patent; (ipc) IPC class; (asg) assignee.

Table 2: Description of the variables
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that measures the extent to which benefits from research antecedents are appropriated by the

firm and help in understanding whether the patent belongs to a research trajectory strongly

rooted within the company. The index of originality of the patent (orig) measures the

breadth of its technological roots,11 whereas the importance of the previous patents cited by

the patent under investigation is measured by importb which takes into account the number

of backward citations in the patents and the number of citations they receive.12 Besides this

variable, we also include the number of citations with known outcome in the regressions to

proxy the level of information that characterizes the patent’s research trajectory (cite-sf).

Finally, timeb measures the time distance between the citing and the cited patents. The

higher timeb, the older the sources the patent builds upon.13

As far as the characteristics of the technological class of the patent, we consider the

number of firms active in the IPC class, and the Herfindahl index of concentration computed

at the technology class level on the basis of patent counts.

As for the assignee, we take into account the share of firm patent within the same tech-

nology class (IPC), and two dummy variables indicating whether the patentee is a dedicated

biotechnology company (DBF) or a public research organization (PRO). The largest share

of patents in our sample are assigned to pharmaceutical companies: 19 per cent of patents

are assigned to DBF, and 9 per cent to PRO. Finally, cited year dummies are included in

all the specifications.

Results of the estimation of a Poisson regression model are reported in Table 3 where we

distinguish the dynamics characterizing successes and failures. The Poisson modeling has

been preferred to simple regression of a log-linearized equation, as recent research shows that,

under heteroskedasticity, OLS estimation of log-linearized models lead to biased estimates

of the true elasticities (Santos Silva and Tenreyro, 2006). Furthermore, we record 20.77%

11The index is computed as an Herfindahl index of diversification, considering the share of backward
citation in each IPC class. The closer orig is to 1, the broader are the technological roots of the underlying
research, i.e. they span many different IPC classes. The index is zero when all backward citations contained
in the patent are classified within the same IPC class.

12The higher is the value of importb, the higher is the number of backward citations contained in the
patent and the citations they receive.

13As compared to the descriptive statistics reported in Trajtenberg et al. (1997), no difference emerges
with respect to the value of selfc. On the contrary, the average value of timeb in our sample is lower,
indicating younger sources for our sample of patents, whereas the values of orig, science, and importb are
higher. One important difference with the sample in Trajtenberg et al. (1997) relies in the fact that we only
consider pharmaceutical patents, and citations are counted only within the pharmaceutical technological
classes.
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Variable Failure Success

science .9689 (.1729)* .4841 (.1744)*

cite-sf -.2704 (.0895)* .0174 (.0794)

conc -.2452 (.3553) .0997 (.2850)

nimp -.0009 (.0005) .0005 (.0005)

selfc -.2626 (.1863) -.1983 (.1909)

orig -.8878 (.1368)* -.5642 (.1534)*

timeb -.0030 (.0106) -.0253 (.0130)

importb .0002 (.4E-4)* .0003 (.6E-4)*

coree .1886 (.2292) -.0587 (.1630)

dbf .7057 (.1085)* .6450 (.1289)*

pro .6216 (.1914)* .3617 (.1775)*

constant 2.672 (.2422)* 3.247 (.2853)*

Obs. 1,554 725

Log lik. -21123.2 -11679.7

* statistically significant at 5% level.

Cited year (application) included in all regressions.

Table 3: Regression results (Poisson). Dependent variable: number of adjusted forward

citations).

patents receiving zero citations.

Even though the magnitude of the coefficients differ between successes and failures, statis-

tical significance of the chosen regressors does not change. The one exception is the coefficient

associated with the number of citations with known outcome (cite-sf) that is negative for

failures and seems to exhibit no effect for successes. The lower the number of informative

outcomes, the higher the citations to failed patents. Put it differently, failures receive a

higher number of citations (i.e. are the basis for subsequent innovations) in nascent fields

as compared to fields where larger knowledge has been accumulated, leading us to claim

that condition (4) is actually satisfied within the pharmaceutical domain. On the contrary,

citation to successes does not seem to be driven by the level of knowledge accumulated along

the trajectory.
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Coherently with Hypothesis 2, patents with predominance of scientific sources over tech-

nological ones contribute more heavily to subsequent research.

The estimated coefficient of orig shows that patents with sparse technological roots receive

a lower number of citations by other firms. These are likely patents within narrow fields of

application, therefore being relevant only to the firms and institutions working within the

same technological domain. Patents building on an important (in the sense of highly cited)

knowledge base are more often subsequently cited.

As far as the characteristics of the patent assignee are concerned patents by DBF and

PRO receive on average a higher number of citations. The former result is consistent with

Hall et al. (2000) who find that in the pharmaceutical sector smaller biotechnology firms are

more likely to average a higher citation rate. As a tentative explanation for this phenomenon,

we propose that this is due the growing division of innovative labor and the wide network of

collaborations among the different actors involved in the drug development process that has

come to characterized the pharmaceutical industry (Arora and Gambardella, 1994; Powell

et al., 1996; Orsenigo et al., 2001). The small biotechnology firms are highly specialized

in the early stages of drug development, but they lack the resources and capabilities that

are needed for the large clinical trials, therefore they are more likely to license-out their

compounds to the large pharmaceutical companies with significant expertise with clinical

trials. This is also true for PROs, strongly oriented toward basic science and the early stages

of the innovation process in pharmaceuticals. As a result, DBF and PRO patents are more

likely to be the object of an alliance and the basis of subsequent research by firms other

than the original innovators, leading to knowledge transfer from the original innovator to

the company that licensed-in the compound and continues the research around it.

The characteristics of the IPC class of the patent do not seem to exert a significant effect

on the number of subsequent citations received by the patent.

5 Concluding discussion

The paper has explored the learning processes and R&D competition in the pharmaceuti-

cal domain. We developed a cumulative innovation model analyzing R&D competition and

learning mechanisms along different research trajectories, that posits a role for successes

as well as (under suitable conditions) failures as inputs to the innovative activities of the
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innovation process. The model has been tested in the context of the worldwide pharmaceu-

tical industry, a unique framework for studying issues related to innovation and innovative

activities.

By relying on a comprehensive dataset of innovative activities in the pharmaceutical

industry, we have provided evidence of the value of failures in the pharmaceutical innovation

process. The analysis suggests the existence of a social value associated to failed projects

and to the disclosure of the associated information.

Within this scenario, the discussion about patent scope becomes crucial in this industry,

where research is highly cumulative in nature and firms enjoy knowledge spillovers spanning

from internal and, to some extent, from external R&D projects, pointing to a trade-off that

cannot be easily resolved. This poses problems for the optimal design of patent law. On

the one side, it is necessary to fully reward early innovators for the technological foundation

they provide to later innovators, but also later innovators should be rewarded adequately for

their improvements and new products.14
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