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Abstract 

The paper describes networks of inventors and the position of academic inventors in France. 
The data on university inventors from the KEINS database complemented by new dataset on the 
inventors from CNRS covers all patent applications filed at the European Patent Office from 
1978 to 2004, and identifies who, among the inventors, were academic scientists in active 
service in 2004-2005 (KEINS). Structural properties of the networks of inventors and their 
dynamics are explored. Within such networks, academic scientists occupy central positions, as 
they stand in between other inventors, either taken as individuals or teams. 
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1. INTRODUCTION 

University patents have been studied intensively over the past twenty years. Recent contributions 
from Europe have revealed that, no matter how small patent portfolios of European universities may 
be compared to those of their US counterparts, European academic scientists contribute greatly to 
inventions that are then patented by business companies and, to a lesser extent, by large public 
research organizations (Verspagen, 2006, Lissoni et al. 2008).  

However, the role of academic scientists who contribute to patenting as inventors matters not only 
for the sheer number of the patents they produce, and their weight on total patents in a country 
and/or technological field. More important it is the relationship that academic scientists entertain 
with their co-inventors, many of whom come from industry or were students at the time when the 
patent was taken. More broadly, one may wish to investigate the academic inventors’ standing in 
the overall technological community. 

Such standing and the interaction with co-inventors may be revealing of how much information and 
knowledge academic inventors are in the position to pass on, or absorb from, technologists active in 
the invention process. Are academic inventors central to the communities of researchers 
contributing to the advancement of a given field? Is their presence necessary to connect people who 
would otherwise never exchange information and knowledge? 

In this paper we build upon Balconi’s et al. (2004) methodology in order to map the networks of 
inventors in France. We exploit the French section of the KEINS database complemented with the 
novel dataset on CNRS inventors collected following the KEINS methodology. 

We begin with re-examination of earlier findings that social networks of inventors are “small 
worlds”, having prominent local structure as characterized by high clustering coefficients and short 
social distances. We show that examining the “small world” features of social networks constructed 
from the “event-actor” data (patents-inventors data in our case) a researcher must carefully choose 
the proper random network against which small worlds properties of the observed network are 
tested. We find that inventors’ networks in some technological fields are, indeed, small worlds, 
while in other fields not (too fragmented). Small worlds are found in those technological fields 
where presence of academic and CNRS inventors is significant. 

We then apply a set of measures derived from both the classical and recent literature on social 
networks (Wasserman and Faust 1994; Blondel et al. 2008), in order to further explore both the 
structural properties of the network and the position and role of academic inventors therein. We 
find that that both academic and CNRS inventors are highly central actors both locally and globally. 
We use a modularity algorithm to uncover the block-model structure of the network, and find that 
the boundaries of tightly-knit clusters of inventors of which inventors’ networks consist often 
coincide with firms’ boundaries. This may explain why academic and CNRS inventors which are more 
likely to behave as “free lancers” for different firms exhibit higher centrality scores. We, indeed, find 
that academic and CNRS inventors are more likely to occupy important positions between clusters. 

In what follows we briefly survey the existing literature on academic inventors (section 2) and 
describe the data (section 3). We then proceed to analyse the structural properties of inventors’ 
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networks (section 4) and the position of academic inventors (section 5). The last section summarize 
our results and draw some conclusions. 

2. BACKGROUND LITERATURE 

3. DATA 

Data for building the networks of French inventors come from the EP-INV database produced at 

KITeS-Università Bocconi, which contains all the patent applications filed at the European Patent 

Office (EPO) since 1978, reclassified by applicant and inventor. Originally based upon legal 

information produced by EPO for patent attorneys, the EP-INV database is now currently updated by 

reading, cleaning, and matching applicants' and inventors' names and addresses as published in 

PATSTAT, the EPO worldwide statistical database1. The methodology of reclassification by inventor is 

explained in detail in Lissoni et al. (2006) can be summarized as follows: 

 First, names and addresses of inventors have been standardized (in order to assign a unique 

code to all inventors with the same name, surname, and address); 

 Second, for all pairs of inventors from the same country with the same name and surname, 

but different addresses “similarity scores” have been calculated; 

 Third, a threshold value for the similarity score, over which two inventors in a pair are 

considered the same individual, was identified and all pairs having the score above the 

threshold value were assigned the same unique inventor’s code2. 

An important subset of the EP-INV database is the KEINS database, which identifies "academic 

inventors" and provide information on their affiliation as well as (if available, depending on the 

country) on discipline, gender, date of last promotion, and date of birth. Academic inventors are 

identified by matching inventors' names with names of professors on active service either on 2004 

or 2005, depending on the country. Matches were then filtered by emailing or phoning the matched 

academics, asking for confirmation of their inventor status (see Lissoni et al., 2006, for 

methodological details; see also Lissoni et al., 2008).  

The KEINS database covers not only the patents signed by academics and filed by their universities, 

but also all patents signed by academics and filed by companies, public or private research 

organizations, government, and individuals (such as the inventors themselves). For France, the KEINS 

                                                             

1 EPO Worldwide Patent Statistical Database (http://forums.epo.org/epo-worldwide-patent-statistical-database/) 
2 In the case of France, the threshold was set at the median value of the similarity score distribution for all French inventors 
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database contains information on academic inventors from the hard sciences, medicine and 

engineering, who were active as maitre de conference or professors in any university of the country 

in 2004 and at least one patent signed after 1993 and before 2005. This make the data increasingly 

prone to return negatively biased estimates of academic patenting activity the farther back we go in 

time and highly unreliable for years before 1994 or after 2004. 

For the purposes of this and related papers, the French section of the KEINS database was 

complemented with information on CNRS inventors, also collected following the KEINS 

methodology. Data from CNRS used for name matching include all chercheurs, ingénieurs de 

recherche, and technical staff on duty in 2007, in all the hard sciences as well as medical and 

engineering disciplines. This means that CNRS patent data suffer more of academic patent data of 

underestimation for early years. [Llerena 2010, (Thibaut 2009, Guarisco 2009 - ?)]. 

Table 1 reports the populations of patent applications, inventors, academics and CNRS researchers, 

as from the database described above (for France). It also reports the number of academic and CNRS 

inventors, and their weight over the total population of university professors and CNRS researchers, 

which stand respectively at 3.75% and 4.72%. We observe that the percentage of academic 

inventors over the total tenured academic staff is similar to what found for other countries in the 

KEINS database (Lissoni et al. 2008; Lissoni et al. 2009), while the share of CNRS inventors among all 

CNRS researchers is somewhat higher. This may be due to composition effects: as opposed to CNRS, 

universities host many tenured staff members who are not full-time researchers or do not perform 

any research at all, as they are mostly engaged in teaching and, in the case of the medical sciences, 

clinical activities. 

Table 1 EPO patent applications, inventors, academics, and CNRS researchers 

Inventors 

Nr. inventors 
(1994-2004) All academics (1) 

Academic inv. 
(2) (2)/(1) 

CNRS 
research. (3) 

CNRS inv. (4) (3)/(4) 

51403 32006 1201 3.75% 15570 735 4.72% 

 
Patents 

Nr. Patents 
(5) 

Academic patents (6) (6)/ (5) 
CNRS 

researchers' 
patents, (7) 

(7)/(5) (6)+(7) * 
(6)+(7) 

(5) 

78800 2715 3.45% 1715 2.18% 4044 5.13% 

(1) Academics active in 2005 in a French universities, the hard sciences, medicine, and engineering (source: French Ministry of University) 
(2) Subset of (1), who have signed at least 1 EPO patent application in 1994-2004 (source: KEINS database) 
(3) Researcher active in 2007 in CNRS, in the hard sciences, medicine, and engineering (source: CNRS) 
(4) Subset of (3), who have signed at least 1 EPO patent application in 1994-2004 (source: elaboration on CNRS and EP-INV data) 
(5) Nr of EPO patents signed by at least one  inventor with French address with at least one patent in 1994-2004 (source: EP-INV 

database) 
(6) Nr of EPO patents signed by at least one French academic with at least one patent in 1994-2004  (source: KEINS database) 
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(7) Nr of EPO patents signed by at least one CNRS researcher with at least one patent in 1994-2004 (source: elaboration on CNRS and EP-
INV data) 

* When computing (6)+(7), care was taken to avoid double counting the patents signed by both academics and CNRS researchers. 

 

Academic inventors are responsible for 2715 patent applications and CNRS researchers for 1715 

applications, which amount respectively to 3.45% and 2.18% of all domestic patent applications at 

EPO. In total all academic patents (both university and the CNRS) account for 4044 patent 

applications, which is 5.13% of all patent applications filed at EPO by French inventors. Notice that 

the latter figure is less than the sum of the previous two. This is because several patents are signed 

jointly by academics and CNRS researchers, so we counted them only once in the calculation. 

Table 2  EPO patents by technology: all, university, CNRS, and academic (university & CNRS) 

  

TECHNOLOGICAL FIELDS 

INVENTORS 

  

All inv. 
(1) 

Ac. inv. 
(2) 

(2)/(1) 
CNRS inv 

(3) 
(3)/(1) (2)+(3) 

(2)+(3) 
(1) 

1 Electrical engineering. Electronics 13610 217 1.59% 123 0.90% 340 2.50% 
2 Instruments 9714 363 3.74% 178 1.83% 541 5.57% 
3 Chemicals. Materials 8653 336 3.88% 259 2.99% 595 6.88% 
4 Pharmaceuticals. Biotechnology 5980 396 6.62% 280 4.68% 676 11.30% 
5 Industrial processes 8159 153 1.88% 97 1.19% 250 3.06% 
6 Mech. Eng. Machines. Transport 10386 64 0.62% 22 0.21% 86 0.83% 

7 Consumer goods. Civil eng. 5158 12 0.23% 5 0.10% 17 0.33% 

  
PATENTS 

    
All pat. 

(4) 
Ac. pat. 

(5) 
(5)/(4) 

CNRS pat 
(6) 

(6)/(4) (5)+(6) 
(5)+(6) 

(4) 

1 Electrical engineering. Electronics 18237 385 2.11% 167 0.92% 504 2.76% 
2 Instruments 10164 513 5.05% 210 2.07% 658 6.47% 
3 Chemicals. Materials 12157 801 6.59% 654 5.38% 1336 10.99% 
4 Pharmaceuticals. Biotechnology 7346 713 9.71% 523 7.12% 1119 15.23% 
5 Industrial processes 10043 195 1.94% 126 1.25% 290 2.89% 
6 Mech. Eng. Machines. Transport 13796 91 0.66% 28 0.20% 113 0.82% 

7 Consumer goods. Civil eng. 7057 17 0.24% 7 0.10% 24 0.34% 
(1) All inventors who have signed at least 1 EPO patent application in 1994-2004 (EP-INV data) 
(2) Academics active in 2005, 2005 in a French universities (sciences, medicine, engineering) who have signed at least 1 EPO patent 

application in 1994-2004 (source: KEINS database) 
(3) Researcher active in 2007 in CNRS, in the hard sciences, medicine, and engineering who have signed at least 1 EPO patent application 

in 1994-2004 (source: elaboration on CNRS and EP-INV data) 
(4) Nr of EPO patents signed by at least one  inventor with French address with at least one patent in 1994-2004 (source: EP-INV 

database) 
(5) Nr of EPO patents signed by at least one French academic with at least one patent in 1994-2004  (source: KEINS database) 
(6) Nr of EPO patents signed by at least one CNRS researcher with at least one patent in 1994-2004 (source: elaboration on CNRS and EP-

INV data) 
* When computing (5)+(6), care was taken to avoid double counting the patents signed by both academics and CNRS researchers. 

 

Table 2 provides a breakdown of these figures by technological field of patents (based upon the re-

classification of IPC codes proposed by OST, 2004). It shows that the most science-intensive fields 

(Instruments, Chemicals & Materials, and Pharmaceuticals & Biotechnology) are also those where 
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public research is the most relevant for inventive activity. In Chemistry & Materials the share of all 

academic (both university and CNRS invented) patents is about 11%; in Biotechnology & 

Pharmaceuticals the weight of academic patents over the overall national patenting activity is above 

15%.  As for Electrical engineering & Electronics  and Instruments, the percentage value are lower 

not because of a lack of academic patents (as in Mechanics or Consumer Goods), but because of the 

large number of total patent applications in the fields. 

 

Figure 1 Distribution of patents across technological fields.3 

The technological distribution of academic patents (Figure 1) resembles closely previous findings for 

the US (Mowery and Sampat, 2005). Academic patents concentrate in few technological fields: 

Chemicals & Materials, and Biotechnology & Pharmaceuticals and to less extent in Scientific and 

Control Instruments. Comparison of the CNRS-originated patents vis-à-vis university patents reveals 

that CNRS researchers tend to patent more in Chemicals & Materials and Biotechnology & 

Pharmaceuticals, while less in Electrical engineering & Electronics and Instruments. 

Inspection of the applicants' identity reveals that by and large academic patents are owned by 

business companies, rather than universities or other public research organizations. Figure 2 

                                                             
3 “ALL” - all inventors, “ACAD+CNRS”=academic and CNRS inventors, “ACAD” - academic inventors, “CNRS” - CNRS 
inventors. 
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describes the ownership distribution of academic patents in France. In about 14% cases patents are 

co-owned by applicants of different types (e.g. public research centre and university). These patents 

were counted as many times as there were different types of owners. Almost 60% of patent 

applications by either academic or CNRS inventors are owned by business companies; the share of 

large public research centres such as CNRS itself, INSERM  and INRA  is about 30%; while the 

universities' share is less than 10% (the few remaining patents are owned by individuals),. Further, 

CNRS controls a higher percentage of the patents signed by its employees than universities: in fact, 

more than 40% of patent applications with CNRS researchers as inventors belong to public research 

organizations (almost all of which to CNRS itself), while universities own only 11% of academic 

patents. Patents by academic inventors are also more likely to be held by companies (63%) than 

their CNRS equivalents (54%). 

 

Figure 2 Ownership of academic and CNRS patents in France (“ACAD+CNRS”=academic + CNRS 
inventors, “ACAD” - academic inventors, “CNRS” - CNRS inventors). 4 

Lissoni et al. (2008) compared ownership pattern of academic patents in Europe versus the US, 

where university ownership rates are significantly higher (close to 70% according to Thursby et al 

(2006)), and concluded that the differences are largely explained by legal factors (related to IPR 

legislation), as well as by the institutional features of the university and innovation systems in the 

various countries. Here we stress that that most academic patents owned by business companies are 

                                                             
4 “ALL” - all inventors, “ACAD+CNRS”=academic and CNRS inventors, “ACAD” - academic inventors, “CNRS” - CNRS 
inventors. Co-owned patents were counted as many times as there were different types of owners. 
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very much likely to be the result of research efforts conducted jointly by academic and industrial 

scientists. These patents result therefore from contacts between the academic and industrial 

communities. We turn now to explore the social structure resulting from such contacts, in terms of 

structural properties of the networks of inventors, and the position of academic scientists therein. 

4. NETWORKS OF INVENTORS AS SMALL WORLDS 

Patent and inventor data lend themselves to be transformed into “affiliation networks” (also known 

as "two-mode" networks). The latter are bipartite graphs with two types of nodes: actors and 

events, where actors are linked to events in which they participate. In our case actors are the 

inventors and the events correspond to patent applications.5 

Affiliation networks, in turn, can be used for deriving corresponding "one-mode" networks in which 

actors are directly connected, based on the assumption that all actors affiliated to the same event 

are also in direct contact. Following the methodology outlined in Balconi et al. (2004) we projected 

the bipartite network of patents and inventors onto the set of inventors, under the assumption that 

all inventors of the same patent have direct links with each other. Such an assumption seems to be 

reasonable, if one takes into account that teams of inventors are on average rather small (less than 

1% of all patents have more than 5 inventors, the average team size is in between 1.5 and 2.5 co-

inventors, depending on the technological field. 

In what follows, we first report some basic statistics on the French networks of inventors, by 

technology (section 4.1). We then discuss the small world properties of such networks for the 

technologies with the highest presence of academic and CNRS inventors (section 4.2). The networks 

were constructed using data on all patents from 1978 to 2004. 

 

4.1 BASIC EVIDENCE 

Networks of inventors appear to be highly fragmented, as they are composed of a large number of 

distinct components. However, as shown in Table 3, in the five technologies with a higher presence 

of academic and CNRS inventors we see that the largest component is much larger than all others, 

including the second largest one. This suggests some resemblance with networks of scientific 

collaborations, as measured by co-authorship of scientific papers, which in turn present some 

                                                             

5 Other typical instances of affiliation networks are found in corporate interlocks (Koenig and Gogel 1981), research 
collaborations (Powell et al. 1996), scientific co-authorship (Newman 2001), and underwriting syndicates (Baum et al. 
2003). 
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characteristics typical of "small-world" networks (Newman, 2001)6. We will come back to this issue 

in section 5. 

 

Table 3 Networks of inventors: size of the main components, and distribution of academic 
inventors therein 

TECHNOLOGICAL FIELDS 

  Nr. of inventors 
C1/ALL C2/C1 

 ALL (1) C1 (2) C2 (3) 

  (4) (5) (4) (5) (4) (5) (4) (5)   

Electrical engineering. 
Electronics 

All. inv 23183 13610 6459 3978 928 567 0.28 0.29 0.14 
Ac.Inv 226 217 99 94 1 1 0.44 0.43  
CNRS 166 123 71 49 0 0 0.43 0.40  

Instruments 
All. inv 18419 9714 4542 2870 128 70 0.25 0.30 0.03 
Ac.Inv 370 363 149 147 0 0 0.40 0.40  
CNRS 256 178 108 77 0 0 0.42 0.43  

Chemicals. Materials 
All. inv 15908 8653 9611 5723 85 48 0.60 0.66 0.01 
Ac.Inv 345 336 276 268 0 0 0.80 0.80  
CNRS 369 259 298 208 0 0 0.81 0.80  

Pharmaceuticals. 
Biotechnology 

All. Inv 9134 5980 5213 3608 28 19 0.57 0.60 0.01 
Ac.Inv 398 396 232 232 0 0 0.58 0.59  
CNRS 362 280 242 183 0 0 0.67 0.65  

Industrial processes 
All. Inv 15677 8159 3203 2049 54 18 0.20 0.25 0.02 
Ac.Inv 155 153 85 84 0 0 0.55 0.55  
CNRS 132 97 86 68 0 0 0.65 0.70  

Mech. Eng. Machines. 
Transport 

All. Inv 19869 10386 1005 647 881 611 0.05 0.06 0.88 
Ac.Inv 64 64 2 2 2 2 0.03 0.03  
CNRS 28 22 4 4 2 2 0.14 0.18  

Consumer goods. Civil 
eng. 

All. Inv 10310 5158 201 150 171 137 0.02 0.03 0.85 

Ac.Inv 13 12 1 1 1 1 0.08 0.08  
CNRS 9 5 0 0 0 0       

(1) Overall network of inventors. 
(2) Largest connected component of the inventors’ network. 
(3) Second largest component of the inventors’ network. 
(4) All inventors (including those who signed no patents after 1993). 
(5) Only inventors with at least one patent in 1994-2004. 

 

The largest components of networks in Electrical engineering & Electronics and Instruments collect  

25% and 28%  of all inventors, respectively, with the second largest component being just one or 

two tenth of it. The results are even stronger in Chemicals & Materials and Pharmaceuticals & 

Biotechnology, where the share of the inventors in the largest component is well over half of the 

total size of the network, and the second largest is follows at a ratio of 1:100. As for Industrial 

                                                             
6 Comparing our result with Newman (2001) we shall keep in mind that our networks are less connected for a number of 
reasons: taken two comparable population of inventors and scientific authors active in related technologies and scientific 
disciplines, the number of patents per inventor is usually lower than the number of papers per author; and the average 
number of co-inventors in a patent is lower than the average number of co-authors per scientific paper. In addition, our 
networks spread through technological fields which are much larger and more heterogeneous than Newman’s scientific 
disciplines. 
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Processes, we observe an intermediate situation, with the weight of the principal component in line 

with what found for Electrical engineering & Electronics and Instruments (20%), but a first/second 

component size ratio close to that of Chemicals & Materials and Pharmaceuticals & Biotechnology 

(2:100). 

Academic and CNRS inventors are more likely to be found in the main components of the most 

science-based technological fields such as Chemicals & Materials and Pharmaceuticals & 

Biotechnology, with Instruments, Industrial Processes, and Electrical Engineering & Electronics 

following in decreasing order. Notice that the technological fields with the lowest presence of 

academic and CNRS scientists, namely Mechanical Engineering and Consumer Goods, exhibit a small 

size of the main component. .  

Table 4 provides information on the main characteristics of the largest components in our networks. 

The first column in the table reports the number of inventors in the largest component (N). The 

second and third columns report two distinct graph centralization measures, namely “betweenness”, 

“degree” and “closeness” centralization index (BCENT, DCENT, and CCENT, respectively)7.  

 

Table 4 Networks of inventors: Properties of the largest components* 

TECHNOLOGICAL FIELD N S BCENT DCENT CCENT C D L 

Electrical engineering. Electronics 6459 0.07% 0.194 0.009 0.101 0.345 35 12.4 

Instruments 4542 0.11% 0.133 0.016 0.091 0.546 39 12.3 

Chemicals. Materials 9611 0.06% 0.118 0.018 0.112 0.319 31 8.7 

Pharmaceuticals. Biotechnology 5213 0.11% 0.115 0.014 0.120 0.390 28 8.8 

Industrial processes 3203 0.15% 0.166 0.016 0.108 0.350 35 9.8 

Mechanical eng. Machines. Transport 1005 0.50% 0.482 0.039 0.097 0.441 34 10.4 

Consumer goods. Civil engineering 201 1.95% 0.390 0.076 0.181 0.306 11 5.3 
N = Nr of inventors in the largest component 
S = network density (number of links/max. number of links) 
BCENT= Betweenness centralization index of the largest component (Avg betweenness/Avg betweenness of N-node star graph) 
CCENT= Closeness centralization index of the largest component (Avg closeness centrality/Avg closeness centrality of  N-node star graph) 
DCENT= Degree centralization index of the largest component (Avg degree centrality/Avg degree centrality of  N-node star graph) 
C = Clustering coefficient of the largest component (definition in main text) 
L = Avg path length of the largest component  
D = Diameter of the main component 
* All inventors (including those who signed no patents after 1993). 
 

 

                                                             
7 All network measures in the paper have been calculated using igraph package of R (Csardi and Nepusz 2006). 
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In social network analysis these measures are used to characterize the observed variation in actors’ 

centralities across the network (Wasserman and Faust, 1994). They take values from 0 to 1 and 

indicate how far a network is from being as centralized as a star graph8.  

In general, large social networks based upon archival data, such as ours, exhibit a degree 

centralization index very close to zero: no single node is connected to all others, and most nodes 

exhibit more than one tie, which suggest a structure very far from that of a star graph. The main 

component of our network is no exception: there are no inventors who worked with a very large 

share of the total population of inventors, but many inventors have worked with more than one 

partner, either because they have joined different teams throughout their career, or, more 

commonly, because the only team they joined comprised more than two inventors. As a result, the 

degree centralization DCENT is very low (close to zero).  

However, we find that the betweenness and closeness centralization indices of our networks (BCENT 

and CCENT ) are rather high, which suggests the existence of a few inventors who occupy key positions 

in between other inventors or groups of inventors, without whom average social distances would be 

higher. As we will see in section 5, a disproportionate number of these in-between inventors are 

indeed academics and CNRS researchers. 

The fourth, sixth, and eight columns of Table 4 report the clustering coefficient (C) 9, average length 

(L) and diameter (D) of our networks.  

The clustering coefficient can be interpreted as the probability of two randomly chosen inventors to 

be co-inventors conditional on that they have (at least) one co-inventor in common. The two 

measures in Table 4, average distance L, and diameter D, are both related to the notion of the 

shortest path (“geodesic”): L is the length of the shortest path between two nodes on the graph, 

averaged over all nodes of the graph; D is the maximum of all geodesics of the graph (Wasserman 

and Faust, 1994). The values of such indicators suggest that networks of inventors, especially in 

                                                             
8 A star graph of n nodes is made of one central node that is connected to all the other (n-1) nodes, none of which is 
connected to each other. That is, reaching a non-central node from another non-central node requires following a path 
through the central one. The degree centrality of node j is simply the number of ties pointing to the node. The 
betweenness centrality of node j is calculated as the number of shortest paths linking any two other nodes, which cross 
node j (node j stands “in between” the two other nodes). The degree (betweenness or closeness) centralization index of 
the network is calculated as the ratio between the average degree (betweenness or closeness) centrality of its nodes and 
the average degree (betweenness or closeness) centrality for a star graph network of the same size.  

9 We define the clustering coefficient of a network as in Newman et al. (2001): 

퐶 =
3 × 푛푢푚푏푒푟 표푓 푡푟푖푎푛푔푙푒푠 표푛 푡ℎ푒 푔푟푎푝ℎ
푛푢푚푏푒푟 표푓 푐표푛푛푒푐푡푒푑 푡푟푖푝푙푒푠 표푓 푣푒푟푡푖푐푒푠 

By “triangle” it is meant here a set of three nodes (a “triple”), each of which is connected to both the others; while a 
“connected triple” is a triple in which at least one node is connected to both the others.  The numerator is multiplied by 3 
because each triangle contributes to 3 connected triples of vertices, one for each of its 3 vertices; this adjustment ensures 
that the value of C will be always comprised between 0 and 1. This definition of clustering coefficient is sometimes referred 
as “transitivity” (or “transitivity ratio”). 



 11

fields with strong presence of academics and CNRS researchers, may have some properties typical of 

small worlds (Watts and Strogatz, 1998). 

First, very much like most large scale networks they are quite sparse: their network density (defined 

as the ratio of observed links to the number of all possible links between the network's nodes) is 

very low, lying as it does below 0.05% (the most dense network in Pharmaceuticals & Biotechnology 

has a density of only 0.045%).  Even largest components which are generally denser than overall 

networks have density limited by 0.15%. 

Second, their clustering coefficients appear to be very high.  In particular, the values reported for 

Chemicals & Materials and for Pharmaceuticals & Biotechnology, the clustering coefficients for the 

inventors' networks are more than 1000 times larger than those we would find in a the theoretical 

random graph with the same number of nodes and ties.  

Third, the average path length is rather short, as it never exceeds 13 steps and it is around 8 steps 

for the more science-based technologies. 

 

4.2 SMALL WORLD PROPERTIES OF INVENTOR NETWORKS  

The evidence we produced so far suggest that networks of inventors exhibit some small world 

properties, also typical of networks of scientists (Newman, 2001). To investigate further in this 

direction, we ought to produce a more proper test. In fact, we produce two: a small-world ratio 

measure adapted to networks of inventors; and a "rewiring-based" test . 

4.2.1  A INVENTOR-NETWORK-SPECIFIC SMALL WORLD RATIO 

As suggested by Watts and Strogatz (1998), this should consist in comparing the observed network's 

clustering coefficient and average path length ("distance") to the values they would take in a 

benchmark random network (BRN), that is a graph with the same number of nodes and ties, where 

ties are distributed randomly.  A synthetic way to conduct this comparison is proposed by Davis et al. 

(2003), who suggest calculating the following "small world ratio" Q: 

푄 = (퐶 /퐶 )/(퐿 /퐿 ) 

where Cobs and Lobs are respectively the clustering coefficient and the average path length in the 

observed network, and CBRN and LBRN the  values  of the same indicators in the benchmark random 

network. High values of Q suggest that the observed network has a higher clustering coefficient, but 

a similar average path length of a comparable random graph; as such they are indicative of small 

world qualities in the observed network. 
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The BRN used to calculate Q has to be generated by a stochastic process compatible with the nature 

of the data at hand. Accordingly, we follow Molloy and Reed (1995) in building a random two-mode 

inventor-patent network, which preserves the same patents-per-inventor and inventors-per-patent 

of the original network; and then project it onto the set of inventors, thus obtaining a one-mode 

network to be compared with the observed one. 10 11. We also limit our attention to technological 

fields which report a significant presence of academics and CNRS researchers (Instruments, 

Chemicals & Materials, Pharmaceuticals & Biotechnology, and Industrial processes). 

Table 5 reports the structural characteristics of the simulated BRN averaged over 100 simulation 

runs (second line, in italics).  

First, we notice a wide difference between the sizes of the first two largest components (columns C1 

and C2) in the observed network and the BRN. Random matching of inventors and research teams 

does not respect the existing boundaries between organizations, localities and technological niches 

typical of the real world, thus introducing a much higher level of connectedness hardly than 

observed networks can possibly achieve. 

Further, connectivity of networks is achieved through most productive inventors, who participate in 

many patents. This effect, which is also present in observed networks, is disproportionally inflated in 

the BRN. While in the real world prolific inventors tend to move little in space and across firms or 

technologies, in the BRN the probability that the same inventors will engage in repeated 

collaborations is negligibly small. This explains why degree centralization of the main component 

(DCENT), a measure of variation in the number of an individual’s collaborators, is somewhat higher in 

BRNs than in the observed networks. Larger main component and shorter social distances also 

results in BRNs exhibiting a higher centralization of the main component (CCENT). 

                                                             

10 Our choice contrasts with the more common choice to found in the literature, where the "corresponding random graph" 
is usually the Erdos-Renyi (ER) one.  In the ER model the random process is such that a tie between any pair of nodes is 
generated with equal probability, independently of the existence of other ties. The probability of a tie's existence is simply 
equal the network density. However, a difficulty arises when we wish to produce ER random graphs for networks of 
inventors, due to the latter's origin in a inventor-patent affiliation network (Uzzi et al., 2007).  As in all affiliation network, 
connections are carried by events (in our case, the patents), so they come in a bunch. As a consequence, we cannot 
‘rewire’ network ties one by one: inventors, in fact, establish contacts with whole teams of other co-inventors (as listed on 
a patent), hence rearranging each time a whole set of contacts with all co-inventors in the corresponding patent teams. 
This will necessarily result in high clustering coefficients, which in turn drive up artificially the small world ratio Q. It follows 
that the standard ER random graph, often used as a benchmark in studying small-world network structures, is not an 
appropriate model for networks of inventors (and, in general, for any other network constructed as a projection of a 
bipartite network). 
11 In network literature Molloy-Reed algorithm in which random graphs are generated for a given sequence of nodal 
degrees is referred as “configuration model”. Newman et al. (2001) study somewhat different family of random graphs, 
random networks from a given distribution of degree sequences. Both models converge to the same result for networks as 
large as the ones discussed in this paper. See also Robins and Alexander (2004) and Kogut and Belinky (2008). 
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Table 5 reinforces our earlier statement about the presence of central inventors: observed networks 

have significantly higher betweenness centralization (BCENT) than BRNs, which implies that some 

inventors are significantly more important for network connectivity than others. Typically such 

inventors connect communities of inventors otherwise disconnected or separated by long social 

distances (as in Breschi and Lissoni, 2009). 

 

Table 5 Observed inventors’ network vs. simulated random graph* 

TECHNOLOGICAL FIELDS  C1 C2 Bcent Dcent Ccent C D L Q 

Electrical engineering. Electronics 
observed 6459 928 0.194 0.009 0.101 0.345 35 12.4 0.6 

simulated 16922 7.9 0.068 0.011 0.193 0.262 14.7 5.5  

Instruments 
observed 4542 128 0.133 0.016 0.091 0.546 39 12.3 1.1 

simulated 12955 8.3 0.089 0.015 0.206 0.216 14.7 5.4  

Chemicals. Materials 
observed 9611 85 0.118 0.018 0.112 0.319 31 8.7 1.6 

simulated 13784 4.7 0.038 0.018 0.225 0.096 10.5 4.2  

Pharmaceuticals. Biotechnology 
observed 5213 28 0.115 0.014 0.120 0.390 28 8.8 1.8 

simulated 7789 4.8 0.063 0.034 0.257 0.101 10.1 4.0  

Industrial processes 
observed 3203 54 0.166 0.016 0.108 0.350 35 9.8 1.4 

simulated 10232 6.9 0.075 0.016 0.210 0.124 13.3 5.0  
C1 = Nr of inventors in the largest component 
C2 = Nr of inventors in the second largest component 
BCENT= Betweenness centralization index of the largest component (Avg betweenness/Avg betweenness of N-node star graph) 
CCENT= Closeness centralization index of the largest component (Avg closeness centrality/Avg closeness centrality of  N-node star graph) 
DCENT= Degree centralization index of the largest component (Avg degree centrality/Avg degree centrality of  N-node star graph) 
C = Clustering coefficient of the largest component (definition in main text) 
L = Avg path length of the largest component  
D = Diameter of the main component 
Q = Small worlds ratio (definition in main text) 
* All inventors (including those who signed no patents after 1993). 

 

Turning to the last three columns of Table 5 we first notice that the small world ratio (column Q) 

ranges from 0.6 in Electrical engineering & Electronics to 1.8 in Pharmaceuticals & Biotechnology. 

This, perhaps, allow us to say that the network of inventors in Electrical engineering & Electronics is 

not a small word at all (because for small worlds 푄 must be significantly larger than 1), but it does 

not provide any conclusive evidence on whether networks of inventors in other technologies have 

small-world structures.  

This is because we do not know, a priori, how big 푄 should be “to qualify” a network as a small world 

one, nor we can be sure that 푄 , as calculated above, works well networks, such as ours, which are 

projections of affiliation networks. 
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4.2.2  A "REWIRING-BASED" TEST 

In order to solve these doubts, we introduce an extension of the Watts-Strogatz model for one-

mode projections of bipartite networks. In the same way we constructed the BRN above we, now 

introduce randomness into the observed networks. Again we start with the original bipartite 

network of inventors-patents and with some probability we randomly ‘rewire’ existing connection 

between inventor and patent. As in the Watts-Strogatz model, the higher the rewiring probability 

the closer we are to the corresponding random graph (in which both the clustering coefficient and 

the average distance are very low).  

 

Figure 3 Small worlds networks (model). 

The left panel of Figure 3 shows a typical relationship between rewiring probability, clustering, and 

the average path length in the main component for an idealized network with 100 inventors 

collaborating on 100 patents, where each patent is produced by a team of 5 inventors and two 

consequent patents overlap by 4 inventors, so that corresponding one-mode projection is a ring 

structure as in Watts and Strogatz (1998). The diagram to the left closely replicates the figure in the 

original work of Watts-Strogatz (1998), which shows that small worlds emerge where corresponding 

curves for distances and clustering diverge: as the re-wiring probability increases, the scaled average 

distance 퐿 soon drops to the level of the random network while the clustering coefficient follows 

with some delay. For the modelled network rewiring results in networks with small world properties 

when the rewiring probability is in the range between 0.01 and 0.1 (marked by two dashed vertical 

lines at the diagram).  

Rewiring starts here 
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The right panel of Figure 3 presents the model in distance-clustering coordinates (scaled by average 

distance and average clustering coefficient of BRN). We start from the regular lattice (ring) 

characterized by high clustering and large average distances (North-East corner of the diagram). As 

the probability of rewiring approaches 1, we move steadily towards the South-West corner and we 

come close to the BRN, which is a point with coordinates (1,1) on distance-clustering plain. Small 

world structures lie between these two extremes. 

This simple exercise suggests that the logic of the Watts-Strogatz model (1998) can be directly 

extended to our case, when ‘randomization’ is achieved through re-wiring of the original bipartite 

network as explained above, and as in Watts-Strogatz model it can be said that the set of networks 

produced by the re-wiring algorithm portrays a spectrum of network structures from ordered regular 

graphs to completely random BRNs giving the probability of re-wiring meaning of ‘degree of 

randomness’.  

Thus a test for small-world structure in the networks of inventors can be conducted as follows: we 

hypothesize that inventor networks, in order to exhibit small world properties, should also exhibit 

higher clustering and shorter distances, than their corresponding BRNs. As a consequence, when 

rewiring of a small-world inventor network we should observe only minor negative effect on the 

distances, but proportionally higher (negative) effect on clustering.  By contrast, if the inventor 

network does not exhibit any clear small world feature, and it is composed of many isolated cliques, 

rewiring should have a strong effect on distances and a small effect on clustering. 

The results of our experiments are shown in Figure 4.  Networks of inventors in Chemicals & 

Materials and Pharmaceuticals & Biotechnology are somewhat closer to BRN, while networks in 

Scientific & Control Instruments and Industrial Processes are closer to regular networks. Yet all these 

networks show the same pattern of Figure 3(they move from North-East to South-West in the graph 

as rewiring proceeds), which suggests that they have small world structure. By contrast, the inventor 

network in Electrical engineering & Electronics exhibit a somewhat different pattern, in that rewiring 

at first increases both distances and clustering in the largest component.  
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Figure 4 Small worlds in inventors' networks (networks of all inventors, including those who 
signed no patent after 1993). 

Increasing distances derive from the growing size of the largest component (since rewiring increases 

the size of the largest component in all four networks, in the other networks the effect of introduced 

short-cuts offsets the effect of growing main component so that overall effect of rewiring on 

distances is negative. The largest component grow by connecting otherwise disconnected large 

tightly linked clusters which increases the clustering in the largest component. By contrast, in the 

other four networks all large clusters are part of the corresponding largest components, and main 

effect of rewiring in such networks is in breaking dense clusters within the largest component 

decreases clustering within the largest component. 

 

5 POSITION AND ROLE OF ACADEMIC AND CNRS INVENTORS 

So far, we have observed that four out of five of our inventor networks with high presence of 

academic and CNRS inventors have small world features. That is, they are composed of many cluster 

of tightly connected  inventors, held together by a few inventors whose connections reach out the 

cluster, and contribute to keep average path lengths low. 

We now investigate whether it is precisely academic and CNRS inventors who provide the out-of-

cluster connections that typically transform a regular graph into a small world. 
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We first we examine some measures of academic inventors’ position (centrality) in the largest 

component of each technological field, with respect to all the inventors in the component (section 

5.1). Then, we identify cohesive subgroups and point at the importance of academic and CNRS 

inventors in providing a connection between them (section 5.2). 

As mentioned in section 3, the data on academic and CNRS inventors becomes less reliable as we go 

back in time. To correct for such a bias all comparisons between academic, CNRS, and industrial 

researchers and their patents reported here are done on the subset of inventors having at least one 

patent signed between 1994 and 2004. 

5.1 CENTRALITY 

As we mentioned above, high centralization scores indicate the existence of asymmetries in 

positions within the networks, with a few inventors occupying central positions and many others at 

the periphery. We expect central inventors to play an important role in transferring knowledge and 

related resources, both symbolic and material (for example, they may be senior scientists in large 

R&D labs and decide over the allocation of funds to project; or they may have a say on the 

distribution of scientific credit, as discussed in Lissoni and Montobbio, 2010).  

Table 6 Position of academic inventors in the main component* 

TECHNOLOGICAL FIELDS  N BCENT CCENT DCENT 

  All inv. 3978 0.0024 0.0837 4.9 

Electrical engineering. Electronics Uni inv 94 0.0027 0.0811 5.5 

  CNRS inv 49 0.0037 0.0856 5.5 

  All inv. 2870 0.0034 0.0841 5.7 

Instruments Uni inv 147 0.0069 0.0840 6.5 

  CNRS inv 77 0.0039 0.0844 5.4 

  All inv. 5723 0.0011 0.1210 7.1 

Chemicals. Materials Uni inv 268 0.0019 0.1256 8.2 

  CNRS inv 208 0.0019 0.1257 7.9 

  All inv. 3608 0.0018 0.1186 6.4 

Pharmaceuticals. Biotechnology Uni inv 232 0.0034 0.1216 7.0 

  CNRS inv 183 0.0026 0.1246 7.7 

  All inv. 2049 0.0035 0.1098 5.6 

Industrial processes Uni inv 84 0.0081 0.1146 6.8 

  CNRS inv 68 0.0038 0.1177 6.0 
BCENT= Avg betweenness centrality of inventors considered 
CCENT= Avg closeness centrality of inventors considered 
DCENT= Avg degree centrality of inventors considered 
* Inventors who signed at least one patent between 1994 and 2004. 
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Table 6 reports the average betweenness, closeness and degree centrality scores (respectively BCENT, 

CCENT and DCENT) for academic and CNRS inventors as opposed to all inventors, within the main 

component of each technological field12. Academic and CNRS inventors tend to occupy more central 

positions than the average inventor, both locally (DCENT) and globally (BCENT and CCENT). 

Whatever the technological field considered, DCENT for both academic and CNRS inventors is higher 

than average which implies that academic and CNRS inventors have a higher-than-average number 

of co-inventors.. This, in turn, may be a result of either (a) higher number of patents signed by the 

inventor, (b) larger invention teams (number of co-inventors per patent) in which the individual 

participates, or (c) higher mobility across different invention teams. 

As for BCENT and CCENT they are also higher for academic and CNRS inventors than for the all inventors, 

with the only exception of Electrical engineering & Electronics and Instruments for CCENT. 

Table 7 reports some descriptive statistics on the size of inventors’ teams, number of inventors 

designated on the same patent, and on inventors’ productivity, defined as number of patents signed 

by each inventor (in commenting it, we will refer to teams that include at least one identified 

academic inventor as “academic teams”).  

 

Table 7 Size of inventors’ teams and productivity of inventors, by technological field* 

 
 

Team size 

 TECHNOLOGICAL FIELD All inventors Academic Invs (1) CNRS inventors (2) (1) + (2) 

Electrical engineering. Electronics 2.01 3.01 3.43 3.06 

Instruments 2.10 3.45 3.80 3.43 

Chemicals. Materials 2.68 3.98 3.84 3.87 

Pharmaceuticals. Biotechnology 2.51 3.63 3.98 3.68 

Industrial processes 1.87 3.72 3.81 3.65 

ALL TECHNOLOGIES 2.08 3.59 3.82 3.59 

 
 

Productivity 

 TECHNOLOGICAL FIELD All inventors Academic Invs (1) CNRS inventors (2) (1) + (2) 

Electrical engineering. Electronics 3.12 3.25 3.18 3.22 

Instruments 3.59 3.47 3.50 3.48 

Chemicals. Materials 4.72 4.32 4.36 4.34 

Pharmaceuticals. Biotechnology 4.12 3.06 3.14 3.09 

Industrial processes 4.00 4.60 5.07 4.78 

ALL TECHNOLOGIES 2.79 2.84 2.95 2.88 
* Only inventors who signed at least one patent between 1994 and 2004 and their patents.. 

                                                             
12 For a definition of DCENT see footnote 4. 
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With respect to overall productivity (“all technologies” in Table 7) we find that although academics 

seem to be more productive than average, more careful comparison of inventors’ productivity by 

field reveals that this is largely a composition effect. Academic researchers tend to be concentrated 

in technological fields such as Pharmaceuticals & Biotechnology and Chemicals & Materials (Figure 

1), where the number of patents per inventor is higher than in other fields. However within these 

two fields their productivity is lower than average. Comparing academic and CNRS inventors we find 

that the latter are more productive than the former in most technologies (with the exception of 

Electrical engineering & Electronics). 

As for size of research teams, we first notice that the mean size of inventors’ teams in science-

intensive technologies (where academic patenting is more relevant), is larger than average, because 

inventions are more likely to result from a collective effort rather than from a solitary one. Second, 

in all technological fields the size of academic teams tends to be larger than the average team size 

for the field. This may suggest that, even within science-intensive technologies, patents produced by 

academic teams are more science intensive than others, and this intensity shows up in the team size. 

Before accepting this interpretation, however, one has to discard a more obvious one, which is 

purely statistical and arises from our definition of “academic team”. 

In order to understand this point one has to realize that even if the size of a team were independent 

on the presence of an academic member, the probability to have at least one academic inventor in a 

team increases with the size of the team. This means that even if teams were assembled at random, 

the expected size of academic teams would greater than average. The magnitude of the bias is 

larger, the larger the share of academic inventors in the technological field. 

In order to correct for this statistical effect we produce a “baseline” distribution of academic teams 

according to the procedure outlined in Appendix A. The average of sizes of “baseline” academic 

teams for each of technological fields is shown at Table 8 (in italics, below the observed team sizes). 

Comparing these averages with the average sizes of academic teams we find that academic 

researchers are more likely to be a part of a larger inventors’ team in all technological fields. In 

Chemicals & Materials and Pharmaceuticals & Biotechnology, most science-intensive sectors, 

however the difference between observed and “baseline” averages is less pronounced than in other 

technologies, in these two technological fields including an academic researcher into the inventors’ 

team does not seem to make any significant difference in terms of team size; possibly, this is 

because such inclusion would not make any difference in terms of the team structure of the 

inventive effort. 
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Table 8 Adjusted size of inventors’ teams, academic, university, CNRS; by discipline* 

TECHNOLOGICAL FIELD  All inventors Acad. Invs (1) CNRS invs (2) (1) + (2) 

Electrical engineering. Electronics Observed 2.01 3.01 3.43 3.06 

 Baseline  2.72 2.75 2.70 

Instruments Observed 2.10 3.45 3.80 3.43 

 Baseline  2.90 2.96 2.87 

Chemicals. Materials Observed 2.68 3.98 3.84 3.87 

 Baseline  3.44 3.46 3.38 

Pharmaceuticals. Biotechnology Observed 2.51 3.63 3.98 3.68 

 Baseline  3.28 3.33 3.20 

Industrial processes Observed 1.87 3.72 3.81 3.65 

 Baseline  2.53 2.54 2.52 

ALL TECHNOLOGIES Observed 2.08 3.59 3.82 3.59 

  Baseline  2.85 2.87 2.82 
* Patents of inventors with at least one patent between 1994 and 2004. 

 

Thus in these science-intensive sectors higher degree centrality of academic and CNRS inventors is 

related neither to the number of patents per inventor, nor to the size of the research teams. It 

points to the third explanation listed above – on average academic and CNRS inventors move across 

teams more often, while researchers in industry tend to work within same teams. This in turn may 

be due to: 

- The size of research teams which involve academic and CRNS personnel. Such teams are 

likely to be teams attached to scientific, rather than purely technological projects; and to 

involve universities and the CNRS at the institutional level, thus guaranteeing their 

participants more freedom to pick up collaborators and partners than projects entirely 

controlled by business companies. As a consequence, we may expect a higher number of co-

inventors per patent 

- The tendency of academic inventors to work for a diverse set of inventors' teams. Most 

inventors are R&D employees of business companies; as such, they cannot easily change 

team, unless their employer is very large (i.e. hosts many different teams) or they change 

employer (so that, a fortiori, they change team). Academic and CNRS inventors, on the 

contrary, behave more like "free lance" inventors, who look for different sources of funding 

and partnerships, and change inventors' teams accordingly. 
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5.2  MOBILITY ACROSS ORGANIZATIONAL BOUNDARIES 

Social network theory offers several approaches to identify tightly-knit subgroups in a network, such 

as traditional blockmodeling techniques (based on the notion of network position and structural 

equivalence: Wasserman and Faust, 1994), stochastic blockmodeling methods (based on estimation 

of particular stochastic process which generate observed network: Frank, 1995; Snijders and 

Nowicki, 1997) or structural cohesion methods (based on connectivity: Moody and White 2003). For 

our purposes, however, we have opted for a “community detection” approach that has become 

popular in interdisciplinary “network research” in the last decade. Community detection algorithms 

try to find division of a network into subgroups (partition) with the highest modularity, a measure 

which quantifies goodness of partition comparing observed density of connections within and 

between subgroups vs. expected densities in BRN.13 Further, out of many available algorithms to 

optimize modularity we have chosen a recent “Louvein” algorithm (Blondel et al. 2008), which is 

best suited for one-mode projections of bipartite networks, as it our case14. 

A bipartite network of inventors and patents can be projected both onto the set of inventors (as we 

have done so far in the paper) as well as onto the set of patents. In most contexts the latter make 

little sense, however it can be useful for the purposes of this section of the paper.. First, while a 

standard result of blockmodeling consists, from a theoretical perspective, in a partitioning of a 

network into a set of separate clusters such that each given individual belong to one group only15, it 

might be advantageous to have a set of overlapping communities of inventors, so that we can see 

which inventors are located at the intersects of several communities. This can be easily achieved by 

identifying clusters of patents first and then associating inventors’ communities to the patent 

clusters: an inventor who has patents in several clusters will immediately appear to be at the 

                                                             

13 Formal definition of modularity score for a partition of a network into communities  푐 , . . , 푐  is 

푄 =
1

2푚 퐴 −
푘 푘
2푚

,

훿(푐 , 푐 ) 

where 푨 is adjacency matrix, 푚 is total number of edges, 푘  is degree of node 푖, and 훿 푐 , 푐  is the Kronecker delta (equal 
to 1 only if both 푖 and 푗 belong to the same community. With exception of small and trivial networks there is no exact 
analytical solution to the optimization problem, a number of approximate algorithms have been proposed and examined 
including original method of Newman and Girvan (2004). For a broad review of community detection methods see 
Fortunato (2010). 
14 Two reasons stay behind our choice: first, straightforward application of community detection algorithms might not 
work, due to the "two-mode  origin" of our network; second, the methods developed specifically for two-mode networks 
(e.g. Barber 2007) are computationally intensive, which might be an obstacle given the size of the networks we want to 
analyze. However, in their study Guimera et al. (2007) found that modularity optimization on a weighted projection of a 
bipartite network generally performs well.  The “Louvein” algorithm by Blondel et al. (2008) has certain advantages in this 
respect: first, it can work with weighted networks and second it is fast even on large networks (its authors have 
successfully applied to a mobile phone network of 2.6 million customers). In addition, the algorithm may help uncovering 
the finer structure of the clusters (i.e. clusters within clusters). 
15 Several methods for identifying overlapping communities have been developed recently (Palla 2005, Moody and White 
2003). 
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intersection of the communities of inventors corresponding to the clusters. Further, from the 

practical perspective of identifying patent clusters, might make it easier to rationalize the results of 

the blockmodeling, because more information is available on patents (time, applicant, IPC class) than 

on their inventors. 

We proceed as follows. First we construct a network of patents as a weighted projection of bipartite 

network of inventors and patents. We then analyse it by using a community detection method, 

which allows us to identify tightly linked patent clusters. The latter induce a partitioning of inventors 

consisting of overlapping communities. Then using characteristics of the patents (priority date and 

applicant) we can rationalize the nature of the communities and examine inventors who are located 

at the intersection of several communities.  

We first illustrate the implementation of these steps on the largest component of inventors in 

Industrial processes technological field, and then move on to look at the results for all fields. 

The largest component of the inventors’ network in Industrial processes connects 3203 inventors, 

2049 or about 2/3 of these inventors have at least one patent after 1993, among them there 84 

academic inventors and 68 CNRS researchers (Table 3). The distribution of patents by priority date 

and applicant (top 15 applicants) is shown at Figure 5 (fractional counts for patents assigned to more 

than one applicant, patents owned by individuals rather than organizations ignored). 

 

Figure 5. Distribution of patents in Industrial Processes by priority date and applicants. 

We project the bipartite network of inventors and patents onto the set of 9494 patents, so that two 

patents are linked if the corresponding research teams share at least one inventor; the strength 
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(weight) of a link between the two patents is equal to the number of inventors they share (self-links 

excluded).  

We then apply the “Louvein” aggregation method. First, each of the 9494 patents is considered as a 

cluster of its own. Then they are placed one by one into a cluster which provides highest positive 

modularity gain until all such moves are exhausted. At this stage (level 1) there are 1082 clusters 

with the largest including 278 patents and the smallest 2 patents. Then network of clusters of 

patents is constructed and the aggregation procedure is re-iterated. The second iteration leaves us 

with 246 clusters (max size 495, min size 4). Further iterations are repeated until modularity stops 

increasing, which in our case occurred after 4 iterations. At the end we were left with 77 distinct 

clusters, with sizes ranging from 597 patents to just 4 patents. The distributions of cluster sizes at 

each level are shown at the right panel of Figure 6. The right panel of Figure 6 shows the final result 

as a adjacency matrix of network sorted by identified clusters (the clusters sorted in the decreasing 

order according to their size). 

 

 

Figure 6 Distribution of clusters size by level (left) and block-matrix (right). 

We then proceed to examine the priority dates and ownership of the patents in the various clusters. 

As far dates as concerned, we do not detect any pattern; that is, we conclude that cluster do not 

differ for the age of the patents therein, with the only exception of very small clusters. The left panel 

of Figure 7 reports the distribution of patents by priority date in the 20 largest clusters: we notice 

that,. while there is some variation in priority years among the clusters, all large clusters show a 

fairly similar time profile, one that does not significantly differ from overall distribution of patents by 

priority dates shown in the left panel at Figure 5.   
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Figure 7 Distribution of patents in clusters by priority date (left) and applicants (right). 

By contrast, the identity of patent applicants differs significantly across clusters. The right panel of 

Figure 7 reports the ownership shares for several large applicants, for the 20 largest clusters (the size 

of a pie chart is proportional to the size of the cluster it represents). Notice that most of the clusters 

are dominated by one applicant only; for example Sanofi-Aventis dominates clusters 1, 12 and 13; 

while cluster 19 consists exclusively of patents by L’Oreal. If we explore deeper into the hierarchy of 

the clusters (by breaking clusters obtained at iteration 4 back into those obtained at iteration 3 and 

so on) we would find even more homogeneous compositions.  

This result is not entirely surprising, in that it confirms that a cluster of patents is tightly connected 

by the virtually the same set of inventors who work together time and again precisely because they 

all work for the same company. But it also confirms previous findings (e.g., by Breschi and Lissoni, 

2009) which suggest that inventors move rarely across firms; and that the task of connecting the 

whole network falls entirely onto the shoulders of a few “mobile” inventors, that is on the few 

inventors who work for different applicants. 

Such mobile inventors may either be R&D employees who change employer; but also researchers 

affiliated to organizations, such as universities or public research organizations, which engage in 

contract or collaborative research, and do not always share in the resulting intellectual, as we have 

seen to be the case with French universities and the CNRS. Therefore, we expect that a 

disproportionate number of mobile inventors to be academic and CNRS inventors. 

5.2  COHESIVE SUBGROUPS AND THE POSITION OF ACADEMIC AND CNRS INVENTORS 

First, we repeat the steps described in the previous section for the largest components of the 

networks of inventors in the other technological fields with both high presence of academic and 
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CNRS inventors and small world features. Blockmatrices for the weighted networks of patents are 

shown at Figure 8. 

 

Figure 8 Blockmatrices for the largest components of networks of patents in four technological 
fields. 

The most intuitive way to characterise the position of an inventor with respect to the various patent 

clusters consists in counting the number of distinct patent clusters the inventor belongs. Formally, 

let 푈 be the set of all inventors’ communities 퐾, then the individual score of inventor  푖 is 

 푆 (푖) = 퐼(푖 ∈ 퐾⋂퐾′)
, ∈

 

 where 퐼(. ) is the indicator function. 

S0, however, has two drawbacks. First, it does not take into account the uniqueness of the inventors’ 

position. We may expect that an inventor who is the only one connecting two communities is in 

general more important than an inventor who connects communities which are connected by a 

number of other inventors.  We can correct for this by dividing 퐼(. )  by the number of all inventors 

lying at the intersection of the communities. Thus, when an inventor is found to be only one 

connecting two communities he/she will receive the full score; but in case the two communities 

were connected by a total 푘 inventors, the individual score would be just 1/푘. We then sum we sum 

up the scores and obtain: 
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푆 (푖) =
퐼(푖 ∈ 퐾⋂퐾′)

|퐾⋂퐾′|
, ∈

. 

The second problem with S0, one that neither  푆  solves, derives from the fact that it gives the same 

weight to any connection independent of the size of the connected clusters, while we may wish to 

attach more importance to connecting larger clusters rather than small ones. A measure that assigns 

different weights according to the size of the connected clusters is as follows:  

푆 (푖) =
퐼(푖 ∈ 퐾⋂퐾′)

|퐾⋂퐾′|
, ∈

|퐾| ∙ |퐾′|. 

where |퐾|and |퐾′| represent the numerosity of the connected clusters 

Table 9 reports the S0, S1 and S2 scores for academic, CNRS and other inventors who have signed at 

least one patent between 1994 and 2004. We notice that academic and CNRS inventors do not 

exhibit higher values for S0, which may be related to the fact that they sign a lower number of 

patents than most other inventors. However, it appears that academic and especially CNRS inventors 

are more likely to connect otherwise distant communities of inventors as witnessed by the higher 

values they score for S1;. We get a similar result when examining S2, which suggests that academic 

and CNRS inventors are more likely to connect larger communities than those connected by non-

academic inventors. Interestingly, in Instruments and Industrial processes the relative ranking of 

academic and CNRS inventors reverts when we use size adjusted score S2, which indicates that on 

average academic inventors connect larger clusters than their counterparts from CNRS. In 

Pharmaceuticals and Biotechnology academic inventors rank higher than CNRS researchers both in 

S1 and S2, while in CNRS researchers have higher scores than academic inventors in Chemicals & 

Materials. 

Table 5 S0, S1 and S2 scores for inventors in the largest components* 

TECHNOLOGICAL FIELDS  S0 S1 S2 

  Non-ac. inv. 0.083 0.038 336.9 

Instruments Ac. inv 0.075 0.066 972.5 

  CNRS inv 0.130 0.117 542.8 

  Non-ac. inv. 0.151 0.038 2968.1 

Chemicals. Materials Ac. inv 0.190 0.098 6665.7 

  CNRS inv 0.313 0.132 7961.7 

  Non-ac. inv. 0.160 0.035 1260.0 

Pharmaceuticals. Biotechnology Uni inv 0.151 0.087 2613.9 

  CNRS inv 0.066 0.013 1423.1 

  Non-ac. inv. 0.197 0.053 439.9 

Industrial processes Uni inv 0.250 0.207 1981.6 

  CNRS inv 0.382 0.265 1655.9 
*Only for inventors signed least one patent between 1994 and 2004. 
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These results suggest that both university and CNRS scientists in France occupy key positions in the 

network of inventors. They do not only breed more contacts than the average inventor in 

comparable technological fields, but also their contacts are more strategic. In particular, they play a 

key role in contributing to the small-world features of four out of the five technologies they 

contribute to, as they stand in between inventors and inventors’ teams with no direct connection to 

each other, and possibly no connection at all. 

6. CONCLUSIONS 

The literature on social networks suggest that positions such as those taken by academic inventors in 

the networks examined here are indicative of an important role in the mediation and diffusion of 

information and knowledge. Breschi and Lissoni (2004), for example, make use of patent citations as 

indicators of knowledge diffusion and find that the distance between any two inventors in the same 

network greatly affects the probability of a citation link to exist between the two inventors’ patents. 

To the extent that academic inventors, being central, are also relatively close to many other 

inventors in the network, one can expect their patents to be widely cited, and information therein 

widely diffused. 
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APPENDIX A: ACADEMIC INVENTORS’ TEAM SIZE 

Let 푞  for 푚 = 1,2..  be the observed distribution of sizes for all teams (academic and non-

academic), i.e. the probability to extract at random from our data a team of size 푚, and 푝 be the 

probability to select at random from our data an academic inventor.  

If the inventors’ teams were assembled at random, then probability for a team of size 푚 to be 

“academic” (i.e. to include at least one university researcher) would be equal to  

Pr{team of size 푚 푖푠 academic} = 푞 (1− (1− 푝) ). 

It follows that the “baseline” distribution defined as the distribution of sizes of “academic” teams 

when research teams are assembled randomly, 푏 , would be 

푏 = ( ( ) )
∑ ( )

  

(in the limit of small 푝 this expression reduces to 푏 = 푞 푚/〈푚〉 ). 

Then we can calculate it for all technological fields, compare to it our observed distribution of 

academic and CNRS teams, 푎 , in the same field and examine whether the two differ.  

 

Figure A 1. Observed and “baseline” distributions of the team sizes in Chemicals & Materials. 

As an illustration consider academic patents in technological field Chemicals & Materials. Figure A 1 

shows the distribution of all teams (푞 ), observed distribution of academic teams (푎 ) and 

corresponding “baseline” distribution of (푏 ). At the first glance the observed distribution of 
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academic teams (blue solid circles), differ widely from the distribution for all teams (red hollow 

circles). However, once we make the correction for the statistical effect, and calculate the “baseline” 

distribution (green squares), the difference between academic teams and all teams “baseline” 

distribution become less apparent (although even the corrected “baseline” distribution is still more 

right-skewed than the observed one). 


