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Abstract

Patent citations as a proxy for the value of innovations has received
considerable attention in the recent years. This paper examines how
the framework of technological trajectories can be applied to explain the
distribution of patent values. A simple model based on generalized Polya
urn processes is proposed, and it is shown that the model fits empirical
distribution of patent citations (USPTO and EPO data) surprisingly
well.

1 Introduction

It is well recognized these days that only efficient production,
accumulation, and utilization of technological knowledge can en-
sure long term economic growth. Planning and implementing
R&D programmes have become a routine task for many govern-
ments and companies around the world. Therefore the knowledge
about the distribution of returns from R&D is of great practical
importance.

The main problem hindering research in this direction has been
scarcity of data on R&D. However with the arrival of new data,
particularly patent data, and advances in methodology the field
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is rapidly expanding. The evidence accumulated in recent years
confirm earlier findings and are univocal on the overall features of
the distribution of the innovation values: it is highly skewed with
most of the innovations having value close to zero, and few inno-
vations scoring very high, a fact that has direct implications for
planning and evaluation of innovation policies and firm strategies
(Scherer and Harhoff 2000).

Although the extreme skewness of the distribution is now a
well established fact, the precise form of the distribution of the
innovation values is still under debate. In particular, there is a
controversy about the right tail of the distribution. Based on
the results of a survey of holders of German patents Harhoff,
Scherer, and Vopel (1997) report that the the best fit for the tail
(defined as innovations with values over DM 23,000) is obtained
with lognormal distribution (vs. Pareto and Singh-Maddala dis-
tributions). On the contrary, applying techniques of extreme-
value theory to the set of different data on the innovation values,
Silverberg and Verspagen (2004) demonstrate that if the lower
bound of the tail is set correctly, the tail is fitted better with
Pareto distribution (rather than with lognormal distribution).

So far, research in this direction has been focussed on the prop-
erties of the distribution. In this paper I propose to approach the
problem from the other end: instead of questioning what is the
exact form of the distribution of innovation values I inquire about
the process that generates the distribution. I will argue that the
evolutionary theory of technical change is helpful in understand-
ing the dynamics of innovation values.

My argument proceeds along the following lines. According to
evolutionary theory the process of technical change is incremen-
tal and follows “technological trajectories”. The latter implies
path-dependency in development of technology: success of the
innovation, representing a particular approach in solving certain
type of engineering problems, might lead to lock-in, i.e. for a
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period of time this type of problems will be approached in the
similar way. Moreover, success of the innovation, related to reso-
lution of an important design problem, plays a role of “focusing
device” (Rosenberg 1969): it directs innovative search to the ar-
eas of “technology space” where the given innovation may lead,
and as a result, stimulates the flow of the inventions based on
the technology represented by the innovation. Assuming that
the value of the innovation depends on the scope of the problems
it can be applied to, we can expect that the more valuable the
innovation is, the more likely it is to be employed in consequent
innovations, and, as a result, the more valuable it will become.

To formalize this intuition I propose a simple model based
on generalized Polya processes that takes into account the path-
dependent nature of technical change, and show that the model
fits the distribution of patent citations (a measure of the value of
patented inventions) very well.

The paper is structured as follows. In the next section I re-
view the literature on how the value of innovations is related to
the characteristics of the process of technical change, and the
measures of the value of innovations with particular attention to
patent citations that I use later to test my model. Then I for-
mulate the model and describe the data I use to test the model.
The results of fitting the distribution of patent citations are pre-
sented in Section 5. Section 6 discusses several aspects of the
model. The last section concludes the paper.

2 Literature

Value of Innovations and Direction of Technical Change

It is almost obvious and self-evident that the value of an innova-
tion depends on the characteristics of the technical change, and
therefore the value cannot be defined out of the context of the
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history of the technology. This fact is not very important for a
retrospective judgement (because the history has been already re-
alized), however if we aim at a dynamic view of technical change,
then before questioning what is the distribution of the value of
innovation, we must try to answer what is the process that makes
some innovations more important than others.

The answer to this question depends on what kind of picture of
the technical change one has in mind. For a simple linear model of
technological progress which seems to dominate modern growth
literature, the answer is straightforward: technological progress
is nothing but expansion of the production set, therefore the in-
novation offering the highest reduction of production costs (for a
process innovation), or/and higher quality of the product (for a
product innovation) will have the highest value which is steadily
decreasing as new, better methods of production keep coming
(e.g. Aghion and Howitt 1992). Assuming that the gain in the
productivity is distributed according to some probability law, the
uncertainty surrounding the value of the innovation is contained
in the demand and the rate at which innovations arrive. More-
over most models assume that demand does not change over time
(embedded in the utility function of a representative consumer).
Therefore ex-post distribution of the values can be inferred from
the distribution of the productivity gains and the rate of the
technical change. There is no place for the direction of technical
progress, because in the linear model there is only one (toward
increasing productivity).

On the other hand, according to the evolutionary tradition
in the economics of technology, the process of technical change
follows path-dependent “technological trajectories” punctuated
by discontinuities of “natural trajectories”/ “technological guide-
posts”/“technological paradigms” (Nelson and Winter 1977, Sahal
1981, Dosi 1982). Most of the time we expect to observe relatively
stable clusters of (interlinked) technologies, with more valuable
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core technologies in centre of each cluster.
The clustering of the patented inventions in technological space

has been analyzed with the use of patent documents through IPC
classification, patent citations (in bibliometric style), and textual
analysis of the patent documents. Pier, Rost, Teichert, and von
Wartburg (2003) use (EPO) patent citation data to decompose
the “technological blob” of mobile telecommunication. Huang,
Chen, Yip, Ng, Guo, Chen, and Roco (2003) use longitudinal
patent data for nanoscale science and engineering to make coun-
try, institution and technology field comparisons. They employ
both content map analysis and patent citations. On time-series
content maps they observe several dominant topics occupying dif-
ferent periods of time. Graff (2003) surveys the use of patent data
for identification of micropatterns in innovations in agricultural
technology.

There are (at least) two factors behind path-dependency in
technical change which tend to ‘bunch’ technologies together: (a)
complementarities between contemporary technologies, and (b)
localization of the search in the technological space, due to the
bounded rationality of agents.1

In the study of interdependencies between technologies in the
American economy Nathan Rosenberg notes

Inventions hardly ever function in isolation. Time and time again in the

history of American technology, it has happened that the productivity of

a given invention has turned on the question of the availability of com-

plementary technologies. Often technologies did not initially exist, so

that the benefits of potentially flowing from invention A had to await

the achievements of inventions B, C, and D. These relationships of com-

plementarity therefore make it exceedingly difficult to predict the flow of

benefits from any single invention and commonly lead to postponement

in the flow of such expected benefits. (Rosenberg 1982, p.56)

1For different technologies relative importance of systemic and cognitive factors mentioned here may
differ.
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Rosenberg supports this thesis with a number of examples from
the history of transport sector, agriculture, electricity, machine
tools, metallurgy etc.

Silverberg and Verspagen (2005) point out that even such
seemingly simple invention as a bicycle is, in fact, a collection of
many related inventions including “pneumatic tyres, ball bear-
ing (and thus precision machining, the precision grinding ma-
chine . . . ) [. . . ] without which bicycle boom of the 1890s would
have been unthinkable”. They formulate and examine a model
in which a new technology becomes feasible only if it has links
with the technologies already in use. In this model the impor-
tance (value) of the technology depends not only on the increase
in the productivity this technology offers, but also on whether
this technology can make other technologies available, i.e. on the
direction of technical change.

From the very beginning, modern evolutionary economics has
recognized that economic agents are characterized by bounded
rationality (Nelson and Winter 1982), i.e. their behaviour is
governed not by full optimization over the complete set of con-
trol variables, but by the process of trial-and-error, some search
heuristics (embedded in the routines of an organization), or op-
timization over a subset of control variables in a limited domain.
A range of different models of the search process can be found
in the current evolutionary economics literature (Frenken 2004,
for a survey): simple trial-and-error similar to the learning in
an evolutionary game, genetic algorithms when strategies are
coded in binary strings, and a new string arises through re-
combination of parent strings (Birchenhall 1995, Dawid 1999),
NK-models of search on technological landscapes, an applica-
tion of the cutting-edge theories from the evolutionary biology
(Kauffman 1993, Frenken and Nuvolari 2004), and simulated an-
nealing, a method of combinatorial optimization originated from
modelling thermodynamic systems in physics (Cooper 2000).
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It is worth emphasising that given our research question we
shall view the search process not at the level of individual agents
performing their search on their own, but as a process that in-
volves the whole technological community; this community in-
cludes inventors, firms, government labs, academicians and the
like. There is an obvious parallel with the sociology of science, in
particular, with Thomas Kuhn’s “scientific paradigms”. During
the stable phase of the development of a technology researchers
and engineers have a number of standard approaches to solve
standard problems shared by the community. To solve a partic-
ular engineering problem means to find an appropriate standard
solution (design) and to adjust it to the problem (Cooper 2000).

Furthermore, the research agenda (i.e. what needs to be im-
proved, what can be achieved with available techniques etc.) is
also shared at the community level. As a result, the direction
of innovative search is framed by the current state of the tech-
nology and hence depends on the previous success (in terms of
both technological achievements and commercial benefits). Such
a picture of innovative search goes along with the views of Rosen-
berg (1969, 1974) who sees inventive activities as focused on a set
of related engineering problems (“focusing devices/technological
imperatives”) which result in “compulsive sequences” of innova-
tions over time.

The evolutionary view of technical change does not contradict
the intuition one can get from patent citation literature. Tra-
jtenberg (1990) explains that “if citations keep coming, it must
be that the innovation originating in the cited patent had in-
deed proven to be valuable”. Somewhat similarly Harhoff, Narin,
Scherer, and Vopel (1999) word it as “ it is reasonable to suppose
that the prior inventions cited in new patents tend to be the rel-
atively important precursors that best define the state of the art.
The broader the shoulders, the more likely they are to be cited”.

Summarizing at this point, we expect to see clusters of related
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technologies with the set of “standard solutions” in the centre
of each cluster. The value of an innovation depends on the di-
rection of technical change: a successful innovation is likely to
be replicated time and time again, either because it is a key to
link new technologies with existing ones as in the model of Silver-
berg and Verspagen (2005), or because boundedly rational agents
use it as a starting point in the process of search in technology
space. We can hypothesize that the patent citations capture this
relationship between innovations.2

Moreover, success in solving an important design problem at-
tracts more innovative search in the related area of the technology
space. Search aims both to improve the solution and to explore
the area of the technology space opened by the innovation. In-
creasing intensity of the search, in turn, leads to an increasing
flow of innovations based on the given innovation, and expands
the scope of the problems to which the technological knowledge
underlying the innovation can be applied. Therefore, other things
equal, the path-dependent nature of technical change implies a
path-dependent dynamics of innovation values.

Now, let us turn to the issue of how we can trace the path-
dependent nature of technical change in the patent data.

Patent citations and the value of innovations

There are several ways to assess the values of patented inventions.
Pakes and Schankerman (1984), Pakes (1986), Schankerman and
Pakes (1986) have employed data on patent renewal to estimate
the characteristics of the values of the patent rights. Lanjouw,
Pakes, and Putnam (1998) extended this framework in order to
utilize data on the applications for a patent (related to the same
invention) in different countries (“family size”). Another ap-
proach to assessing the value of patents is to use the stock market

2Citations can be made by inventors themselves or added by their attorneys or patent examiners.
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valuation of a company to which the patents have been granted
(Griliches 1981, Pakes 1985, Hall, Trajtenberg, and Jaffe 2001,
among others). Yet another stream of research that has proved
to be very productive is to utilize information contained in the
patent documents themselves (number of citations, number of
claims, number of IPC classes). In particular, citations-based
indices have been very successful (Trajtenberg 1990, Trajten-
berg, Henderson, and Jaffe 1997, Harhoff, Narin, Scherer, and
Vopel 1999, Jaffe and Trajtenberg 2002). Finally, in the recent
paper Harhoff, Scherer, and Vopel (2003) found that outcomes of
opposition against patent grants proved to be highly informative
for predicting the value of the patent rights (taken from a survey
of holders of German patents).

Results of most studies indicate that the measures of the patent
values mentioned above are mutually coherent, and more impor-
tantly, most of the measures correlate well with the value of the
patents inferred from the direct surveys of the patent holders.
Harhoff, Narin, Scherer, and Vopel (1999), Harhoff, Scherer, and
Vopel (2003) tested a set of different measures of patent quality as
predictors of the patent value obtained from the survey of holders
of German patents and found that forward citations, family size,
outcomes of opposition proceedings, and whether patents were
renewed to a full-term correlate well with the patent values.

Among other measures of the patent quality measures based
on citations (in particular, forward citations) are appealing for a
number of reasons. First, as has already been mentioned, most
studies suggest that the number of citations a patent has re-
ceived (forward citations) is a good proxy for social and private
returns to the innovations. Second, all information needed for
the construction of appropriate measures is contained within the
patent document. Third, modern software and publicly available
computer-readable data make it easy to construct these measures
tailored to different patent classes, institutions, countries etc.
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Furthermore, one might interpret patent citations to prior art
as “paper trails” of knowledge spillovers (Jaffe and Trajtenberg
2002). Such interpretation of patent citations led to a prolific
research avenue in different areas of innovation studies ranging
from spatial economics (Jaffe, Trajtenberg, and Henderson 1993),
to university-industry links (Henderson, Jaffe, and Trajtenberg
1998), and social network analysis (Balconi, Breschi, and Lissoni
2004).

Nevertheless, patent citation data should be used with some
caution. First, there is a problem with the “benchmarking” of
citation data (Hall, Jaffe, and Trajtenberg 2001). For example,
if we are to compare two patents taken in different years, and
suppose that the older patent has received more citations than
the other one, then it is not clear if it is because the old patent
is more valuable, or simply because, it had more chances to be
cited (truncation problem). It is also important to keep in mind
that the stock of patents is rapidly growing; hence, other things
equal, the earlier patent have higher chances to be cited, then the
patents which were taken later. Furthermore, changes in prac-
tices in Patent Offices and in patenting strategies of firms may
lead to additional complications for an intertemporal comparison.

Second, results of surveys of innovators have cast some doubts
that patent citations represent “paper trails” of direct spillovers
i.e. the fact that the owner of a citing patent learned about the
innovation contained in the cited patent from the cited patent it-
self or from the holder of this patent prior to the invention (Jaffe,
Trajtenberg, and Fogarty 2000). It is not rare that innovators
have learned about the predecessors of their patents only at the
stage of patenting. Many citations have been added by patent ex-
aminers, or innovators’ attorneys, and hence cannot be regarded
as an evidence of direct spillovers.

The problem with benchmarking can be resolved if we limit
comparison of patents to one cohort, i.e. to patented inventions
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made in more or less the same time, provided that by the time
of observation the patents have accumulated enough citations.
This, in turn, raises a question about dating the patents. A
patent document published by a Patent Office of interest, in our
case - the United States Patent and Trademark Office (USPTO)
for the NBER dataset, and the European Patent Office (EPO)
for the CESPRI dataset, contains several dates: priority date -
the date when the patent was applied to the Patent Office in any
jurisdiction; application date - the date when the inventor filed
the documents for a patent to the Patent Office of interest; grant
date - the date when the Patent Office issued the patent to the
inventor. We are interested in the date closest to the time of
invention, which is the priority date for the EPO patent data,
and application date for the USPTO data3. Therefore to avoid
the problem with benchmarking we shall select patents with the
priority/application date within a small period of time (one year
seems to be appropriate time span).

The concern about whether a patent citation represents a di-
rect spillover, or it is evidence of an indirect spillover coming
through the “word-of-mouth” via the social network of inventors
(Breschi and Lissoni 2004), is not essential for our purposes, as
far as the citation correctly traces the lineage of the technologies,
i.e. it links related technologies and establishes the precedence of
the inventions.

3 The Model

The model is based on the evolutionary view of technical change
and patent citation literature outlined in the previous section.
According to the evolutionary theory the value of an innovation
depends on how well the innovation is embedded in the current

3NBER dataset provides no priority dates, however if we consider a cohort of patents issued to the
US inventors the difference in the dates is likely to be small.
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“technological paradigm”, i.e. on the frequency with which the
technological knowledge underlying the innovation is utilized in
the consequent development of the technology. We also assume
that a citation received by a patent documents an instance when
the piece of knowledge represented by the patent has been used.
Thus, in accordance with the patent citation literature we can
state

Assumption 1 The value of a patented invention is reflected by
the number of citations received by the patent: the higher is the
number of citations, the more valuable the invention is.

Furthermore, a successful innovation might work as a “focusing
device” for the consequent innovative search. It is reasonable to
assume that the impact of innovation on the direction of devel-
opment of technology depends on the current value of the inno-
vation. The more valuable the innovation is, the more likely the
particular piece of technological knowledge represented by the
patent will be utilized in consequent innovations, and, as a re-
sult, the more valuable it will become. According to Assumption
1 the growing importance of the innovation will be reflected in
the frequency of citations the patent will receive. Therefore,

Assumption 2 The higher is the value of a patented invention,
the more likely it is to be used by consequent innovations, the more
valuable it will become, and the more citations it will receive.

The model can be formalized as follows. Consider N patents
at time t = 0 indexed by i, i ∈ {1, . . . , N}. At time t = 0 the
patent i has value vi,0, reflected by the number of citations it has
received, ci,0. Each moment in time one citation is made.4 The
probability that the patent i is cited is proportional to the value
of the technology the patent i represents, vi,t

pi,t =
vi,t∑N
j=1 vj,t

(1)

4Time in this model is measured in citations. It is not the same as the calendar time.
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A citation received by patent i implies that technology i has been
used, and reflects the increase in the value of the patent, i.e.
vi,t+1 > vi,t if ci,t+1 = ci,t + 1. We consider two “value functions”
mapping values into citations: a linear function

v(ci,t) = v0 + ci,t, (2)

and non-linear function in the form

v(ci,t) = v0 + ci,t
α. (3)

Inserting (2) into (1) we can rewrite it as

Pr(ci,t+1 = ci,t + 1|c1,t, . . . , cN,t) =
v0 + ci,t

V0 + t
, (4)

where V0 =
∑N

j=1(v0 + cj,0), i.e. the sum of the patent values at
time t = 0.

For the non-linear value function (3) we have

Pr(ci,t+1 = ci,t + 1|c1,t, . . . , cN,t) =
v0 + ci,t

α

v0N +
∑N

j=1 cj,t
α
. (5)

Formulas (4) and (5) define stochastic processes that belong
to the class of generalized Polya processes (finite case). Early
applications of Polya processes in economics go back to the works
of an IIASA group in the 1980s (Arthur, Ermoliev, and Kaniovski
1983). The recent revival of the interest in the Polya processes
was induced by the rapidly growing literature on the evolution
of networks originating from the studies of WWW, but spread
into a number of disciplines (physics, ecology, molecular biology,
sociology etc.).

The generalized Polya process (Chung, Handjani, and Jungreis
2003) can be defined as follows

Definition 1 For fixed parameters, α ∈ R, 0 ≤ p < 1 and a
positive integer N > 1, begin with N bins, each containing one
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ball and then introduce balls one at a time. For each new ball,
with probability p, create a new bin and place the ball in that bin;
with probability 1− p, place the ball in an existing bin, such that
the probability that the ball is placed in a bin is proportional to
kα, where k is the number of balls in that bin.

For a finite Polya process p = 0, i.e. no new bins are created. If
p > 0 we have an infinite Polya process. Parameter α describes
the type of feedback: it is said that there is positive feedback,
if α > 1, negative feedback if α < 1, and linear feedback if if
α = 1. The case of α = 1 and p = 1/2 is often referred in
the literature as the preferential attachment scheme (Albert and
Barabasi 2002, Barabasi 2002).

The infinite process with different types of the feedback func-
tion has been studied extensively in the context of network growth
(mostly to explain the distribution of nodal degrees). In partic-
ular, the preferential attachment scheme has received a lot of at-
tention. The nodal degrees of the resulting graph, so called scale-
free network, are distributed according to a power (Pareto) law,
which is often seen as an indication of self-organization and can
be observed in nature in a variety of situations (Barabasi 2002).
However for our purposes we shall limit our attention to the finite
case.

For the finite process with linear feedback (p = 0, α = 1)
such as one defined by (4) it is possible to show that as time (the
number of balls) goes to infinity, the proportions of the balls in the
bins (a.s., almost surely) approach their limits Xi, i ∈ {1, ..., N},
which are distributed uniformly on the simplex {(X1, ..., XN) :
Xi > 0, X1 + ...+XN = 1} (Chung, Handjani, and Jungreis 2003,
Theorem 2.1).5 It follows that, the distribution of the proportions
has an exponential tail in drastic contrast with the infinite case

5The processes defined by equations (4) and (5) are not exactly the same as the process in Definition 1,
because, in general, v0 is not equal to 1. However it does not affect the results for the limit distributions
mentioned here.
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mentioned above.
The limit distribution of proportions is different for the other

types of the feedback. For negative feedback, α < 1, balls are dis-
tributed equally among bins, i.e. Xi = 1/N for any i ∈ {1, ..., N}.
If positive feedback is the case as in the process defined by (5),
then Xi = 1 for one bin and Xi = 0 for the other balls, i.e. a “win-
ner takes all” situation (Chung, Handjani, and Jungreis 2003,
Theorem 2.2). The latter case is interesting, we may expect to
see long and probably fat tails at any finite time.

The results for the limit distribution (t →∞) mentioned above
are indicative for what we can expect for the asymptotic distri-
bution, (xt

1, ..., x
t
N) for t >> N : in the case of linear feedback

the distribution the tail of the distribution is decreasing expo-
nentially, in case of the positive feedback we may expect to see
heavier tails. However, a distribution arising at finite time (the
number of citations in our case) which we are interested in can
be quite different from the limit distribution.

Most studies of Polya processes focus either on the asymptotic
distribution (t >> 1, when the initial conditions are not impor-
tant) for the infinite case (Albert and Barabasi 2002, Krapivsky,
Redner, and Leyvraz 2000), or on the limit distribution for the
finite case and the rate of convergence toward the limit distrib-
ution (Bassanini and Dosi 1999). To the best of my knowledge
there are no general results concerning the distribution at any
given period of time. In the Appendix to this paper using the
rate equation describing the evolution of the distribution of the
number of the balls in a bin I derive the recursive formula for
the distribution at any given t. In case of the linear feedback the
solution can be found in a closed form (formula 9). For the case
of the non-linear feedback there is no solution in the closed form
and therefore we have to rely on the results of simulations.
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4 Data

The NBER dataset created by Hall, Jaffe, and Trajtenberg (2001)
contains data for all utility patents granted by the USPTO from
1963 to 1999 (about 3 million patents) and all citations made by
patents granted from 1975 to 1999 (about 16 million citations).

For my study I have chosen patents applied in 1989, similar
to the cohort used in (Silverberg and Verspagen 2004). Since
the NBER dataset contains no priority dates, there might be
a problem with dating the patented inventions related to the
patents applied earlier in other (then the USA) countries, because
for these inventions the date of invention (which we are interested
in) is likely to distant from the date of application to the USPTO.
Moreover, patent citations might have a ‘home country bias’ i.e.
other things equal there may be a bias towards citing the patents
granted to US inventors. These problems can be reduced if we
restrict our focus to the patents issued to the US inventors (first
inventor), assuming that before applying to other Patent Offices
US inventors are more likely to apply for a patent at USPTO.
In addition, it also helps to avoid a potential complication due
to home country bias. This leaves 50,263 patents in the 1989
cohort and 341,365 citations received by these patents from 1990
to (including)1999. The distribution of the citations from 1989-
1999 is shown at the left diagram of Figure 1 (blue triangles).
The distribution is highly skewed with the large share of patents
having received near zero citations. It also has a long and heavy
tail. The most cited patent has received 245 citations.

To perform the simulations and fitting we need the initial dis-
tribution of patent citations. Left diagram of Figure 1 also shows
the distribution of the patent citations in 1989, i.e. citations
within the cohort (green circles). In total there are 3,434 ci-
tations unequally distributed among the patents. Most of the
patents 47,472 (94.4%) have no citation, the maximum number
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of citations received by a patent is 7.
I also used the data on patents granted has been collected at

CESPRI. Similarly, I limit the scope of my study to the patents
with the priority year 1989. The EPO cohort of 1989 contains
61,799 patents. Due to differences in the citations practices adopted
by EPO and USPTO the average number of citations per patent
for the EPO patents is lower than for the USPTO patents (e.g.
Breschi and Lissoni 2004), therefore for the EPO cohort of 1989
the total number of citations received is much lower than for the
USPTO patents, by the end of 1999 the patents have received
99,684 citations. The most cited patent receiving 82 citations.
The number of citations internal to the cohort is 1,591, with the
most cited patent having received 6 citations in 1989. Both dis-
tributions of patent citations in 1989 and 1999 are shown at the
right diagram of Figure 1.

5 Results

Linear feedback For a linear feedback (4) the dynamics of the
number of the patents with zero citations, n0, is (formula (10) in
the Appendix)

n0,t = N

(
1 +

t

v0N + t0

)−v0

,

where t0 =
∑N

i=1 ci,0, i.e. the total number of citations at t =
0 (citations within the cohort). Therefore fitting v0 (the only
parameter in the linear model (4)) can be done using only values
for n0,t (instead of fitting whole distribution). Fitting the cohort
of the USPTO patents gives v0 = 1.1. The results of fitting are
shown at Figure 2.

Now, with the initial distribution of patent citations and the
estimated value of v0, using equation 11 we can predict the dis-
tribution of the frequency of the number of citations by the end
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of 1999 (t = 337, 931). The resulting distribution is shown at
Figure 3.6

First, note that for the patents with small number of citations,
the fit is good (especially if consider that we have only one para-
meter in the model). It indicates that the function of preferential
attachment is close to linear in the region of small number of ci-
tations, c, where most of the distribution resides (98% of patents
have not more than 30 citations).

Second, the tail of the actual distribution is obviously heavier
than the linear model predicts (Figure 3). Indeed, a linear value
function generates distributions with exponential tails, while the
actual distribution has a Pareto-type shape for large values of
c. Thus we might expect that the function of preferential at-
tachment underlying the actual distribution of patent citations
is superlinear (convex). The nonlinearity leads to (a) effective
“freezing” of the low end of the distribution at large t, because
the probability that a patent with small number of citations re-
ceives additional citations is falling rapidly (faster than t−1); and
(b) depletion of the middle of the distribution, and as a result
“fatter” tails.

Non-linear feedback The results for fitting the distribution of
USPTO patent citations with simulated distribution, in case of
non-linear feedback in the form (5) are shown at the top diagrams
of Figure 4. The values of parameters providing the best fit are
v0 = 2.0 and α = 1.26. As one can see the simulated distribution
fits observed distribution very well for most values of c (there is
an overshooting at c = 1).

Fitting the EPO data using the same procedure gives v0 = 1.1
and α = 1.3. A fit (in linear and double logarithmic scale)
is shown at the two bottom diagrams of Figure 4. The lower
“propensity to cite” of EPO patents mentioned above reveal itself

6Fitting the distribution of the EPO citations produces similar results and is not reported here.
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in the lower value of parameter v0. However, and more impor-
tant, the value of the parameter α describing non-linearity and
controlling the shape of the middle range and the tail of the dis-
tribution is not that different from the value of α providing the
best fit for the USPTO cohort.7

Figure 5 shows quantile-quantile plots (QQ-plots) for the simu-
lated distributions vs. observed distributions. If the data falls on
450 line of a QQ plot, it means that the distributions underlying
the samples of observed and simulated are identical. As one can
see from the Figure 5 the quantiles of the simulated distribution
for the EPO cohort are lying on the 450 line until approximately
40 citations, which is 99.99-percentile of the observed sample (30
citations is the 99.96 percentile). For the USPTO cohort reason-
able fit is achieved from 0 to about 150 citations which includes
99.98% of patents (100 citations correspond to 99.92 percentile).

The simulated distributions have fat tails. The tail index of the
distribution (the exponent in the Pareto distribution describing
the tail) can be estimated using the Hill estimator (Hill 1975)

γN,k =
1

k

k∑
i=1

(ln c(i) − ln c(k+1)),

where c(1) ≥ c(2) ≥ · · · ≥ c(N) denote order statistics. A Hill
plot, the diagram of the inverse of the Hill estimator, 1/γN,k, vs.
the rank of the observation, k, can be used to learn about the
tail index and the cut-off value of the tail: the value of 1/γN,k

at which the plot stabilizes provides an estimate for a tail index,
and the value of the corresponding order statistic gives the cut-
off value for the tail. The Hill plots for observed and simulated
data for the USPTO and the EPO cohorts are shown at Figure 6

7Experiments with fitting the whole 1989 cohort of the USPTO patents without selection on the
country of the first inventor (96,077 patents), and the cohort of the USPTO patents applied for in 1975
(with citations received from 1975 to 1999) gives slightly different values of v0, but rather robust on the
value of parameter α ≈ 1.2–1.3.
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(left: USPTO data v0 = 2.0, α = 1.26, right: EPO data v0 = 1.1,
α = 1.3). The plot stabilizes at value of α somewhere between
3.0 and 4.0 for both cohorts, i.e. the exponent in the Pareto
distribution exceeds 2.0 therefore the distribution has finite mean
and variance.

It is interesting to compare our results with the results of Tra-
jtenberg (1990) who used value functions similar to (2) and (3)
(with fixed v0 = 1) in the study of patents in CT scanner technol-
ogy for construction of weighted patent counts (WPC). He found
that WPC have significant (cross-time) correlation with the social
value of innovations estimated via demand for the new models of
scanners. For the non-linear WPC the best results were obtained
with α = 1.3 and α = 1.5. Although our data and approach are
rather different, the value of the parameter α providing the best
fit falls in the same range.8

It is also worth mentioning that Hall, Trajtenberg, and Jaffe
(2001) in their study of the impact of company’s stock of patents
on the market valuation of the company found that the relation-
ship between the market valuation and the number of citations
received by the patents owned by the company is non-linear -
while the impact of citations is not significant for patents with
low number of citations, the magnitude of the effect becomes sig-
nificant as the number of citations grows. A comparison between
the results of the simulations with the linear (4) and non-linear
(4) models lead to the conclusion that the value function v(c) is
non-linear.

6 Discussion

Let us turn to limitations and possible extensions of the model.
First, I would like to elaborate on the problem of “intrinsic val-

8According to (Trajtenberg 1990) the difference in correlation between α = 1.3 and α = 1.2 are only
several percentage points.
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ues” of inventions and their relationship with the productivity
gain. Then I will make a brief remark on the omission of the
variation mechanism. At the end of the section I will discuss
the use of technological fields conveyed by patent classification
to describe the path-dependent process of technical change.

Many models concerning technical change emphasise that the
main characteristic of an innovation is the increase of the produc-
tivity which this given innovation offer once it is adopted. From
this perspective the “intrinsic value” of an innovation is already
predetermined and mostly (if not solely) depends on the produc-
tivity gain which is assumed to be distributed according to some
probability law. Therefore, there is no question about the process
that govern the dynamics of the values, but an inquiry about the
distribution of patent values can be safely reduced to the ques-
tion about the exact form of the distribution of the productivity
gains. This view is in sharp contrast with the model proposed in
this paper. Indeed, the model assumes that all innovations are
“born” equal, and it is selection which following the evolutionary
theory of technical change that generates the differences in the
values.

Surely, the value of an innovation depends on many factors
besides the direction of technical change, including productivity
gain, but also demand for the new product, advances in science
and so on. Acknowledging the importance of factors other than
the productivity gain, I shall remark on the latter, primarily be-
cause as has already been mentioned, most models take it as a
premise.

It is certainly true, that if we consider a range of alternative
technologies which were developed some time in the past to ad-
dress a certain design problem, then a technology dominating the
market at present is more likely to be more efficient. However,
to conclude that at the time of invention it had higher “intrinsic
value” related to its efficiency in comparison with other alterna-
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tives might be an unjustified stretch.
From the history of technology we know many examples when

with respect to productivity a newly born technology had been
inferior to the existing one and only incremental improvements
over a long period of time let these technologies prevail.9 The
reason why innovators spent their time on working with seemingly
inferior technologies is that these technologies, while being less
productive, offered a basis for a technological breakthrough, and
reasons why these technologies have surpassed the alternative
designs are rooted in the complementarities between technologies
(Rosenberg 1982).

Let me illustrate this point with the results from the perco-
lation model of Silverberg and Verspagen (2005) mentioned in
Section 2. Consider the technology space in a form of two-
dimensional lattice, with the vertical dimension representing pro-
ductivity (with more productive technologies at the top and less
productive ones in the lower part of the lattice). A technology
becomes available only when at least one adjacent technology is
already in use. Initially agents know only technologies at the
bottom. Growth in such a model is the process of percolation
from the bottom to the top of the lattice. If all technologies had
the same probability to be discovered, growth would occur along
a line(s) connecting bottom and top of the lattice. However, lin-
ear growth is prevented by a random “landscape”: each point of
the lattice representing a certain technology has different prob-
ability to be discovered. Consider the extreme case when the
probability of discovering technology which is the next on the
“linear expansion path” is zero. If the search were constrained
to the area of the technology space just above the most efficient
current technology, then the technological progress would cease
forever. Nevertheless, it proceeds due to the agents who keep
searching in areas of less productive technologies which at the

9We can only guess how many potentially valuable technologies never made it through.
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end results in finding a “side-path”. What is important in our
context is that most productive technologies does not have to be
the most promising, and once the growth is stuck it is less pro-
ductive technology that can make a difference, if it can lead out
of the “deadlock”.

Therefore judgments about “intrinsic value” ex-post, condi-
tional on the success or failure of technologies might oversimplify
the complex picture of technical change. The ex-post value as
measured by patent citations is the result of a path-dependent
process and reflects different factors such as productivity gains,
demand conditions, complementarity with other innovations, and
some (mis)fortune. It hardly can be reduced to the productivity
gain alone.

Having stated that, I nevertheless shall note that the approach
presented in this paper can be (and should be) improved. Em-
phasising importance of path-dependency in the evolution of in-
novation values, I have omitted the fact that the innovations in
consideration (patent from the 1989 cohorts in our case) were not
born in vacuum, but also were a consequent development of some
earlier technologies. Once we assume that the current value of
an innovation depends on how well the innovation is embedded
in the current “technological paradigm” reflected by the number
of “forward citations”, we can make one step further and assume
that the initial value of an innovation i, vi,0, depends on how
well the innovation was embedded in the paradigm at the time
of the invention, and hypothesize that “backward citations” i.e.
citations made by the patent convey some information about it.10

Another limitation of the study presented here is that focus-
ing on the patents from one cohort I have restricted the scope of
the analysis to the selection mechanism, omitting the other main
component of the evolutionary process - the variation mechanism,

10Deng et al. (1999) report that the number of backward citations is indicative for the value of
innovations.
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the mechanism that generates new technologies and leads to the
discontinuities in the technological trajectories. Some features of
the variation can be traced in the patent data. For example, “ag-
ing” of patents, i.e. the decline in the rate of receiving citations
with time may be a reflection of the shifts in technological tra-
jectories in different subfields of the technology. Moreover, the
process of formation of new technologies might be reflected in the
patent classification, the point to which we will come late in this
section. However, to conduct the study of variation mechanism
based on patent citations, one has to find a solution for the prob-
lem of “benchmarking” mentioned in the Section 2, because such
a study cannot be done without inter-cohort comparisons.

There is also a problem related to the fact that patents which
we consider do not belong to the same technological field. It raises
two issues. First, it is well known that different industries have
different “propensity to patent”. Therefore, it may be that the
actual distribution of patent citations is sheer reflection of this
fact rather than a result of the path-dependent process similar
to one proposed in this paper. Underlying this question is a
suspicion that if we restrict our analysis to one technology then
the shape of the distribution of patent citations may be quite
different from the shape of the overall distribution. On the other
hand, if the model is correct, then at the level of a patent class
(or related patent classes) we expect to see the distribution of
patent citations similar to one on the level of the whole cohort.

First, note that there are, indeed, differences in the average
number of citation in different classes that can be attributed to
differences in the “propensity to patent” across industries: distri-
butions of patent citations from different patent classes occupies
different range of distribution. For example, the USPTO patents
related to data processing (USPTO patent classes 700-714) are on
average more heavily cited through 1989-1999. However, inspec-
tion of the distribution of the patent citations within the same
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patent class (or related patent classes) reveals the picture similar
to one we have seen at the level of the whole cohort.

Figure 8 shows the distribution of patent citations for USPTO
patents related to data processing (classes 700-714) applied in
1989. As one can see it is strikingly resembles distribution of
patent citations for the whole cohort of 1989 (Figure 1): it is
highly skewed and has a long tail. The best fit is obtained with
parameters v0 = 4.0 and α = 1.26. The value v0 = 4.0 is twice as
high as the fitting value for the whole cohort (v0 = 2.0), which re-
flects the fact that through 1989-99 the patents in data processing
have been cited more frequently than patents from other classes.
However the parameter α = 1.26 controlling the shape of the cen-
tre and top end of the distribution is the same as for the whole
population, which implies that the functional form of the value
function (except the shift of intercept) is the same as for the
whole cohort.

The second issue concerning the technological field is related to
the boundaries within which a company can reallocate its R&D
activities responding to shifts in technological trajectories. The
model assumes that exploring opportunities opened by previous
inventions a company chooses to search in the area of the tech-
nology space that is “popular”. It does not contradict economic
intuition, when the reallocation is to take place within the same
technological field, however if it is to be done across industries,
then, at least, one need an explanation: afterall, why a com-
pany producing, say, domestic appliance should be investing in
nanotechnology?

There are two reasons which could partially justify assump-
tions of the model. First, most patents is assigned to large di-
versified companies (such as IBM), or industrial conglomerates
involved in innovative activities in many R&D intensive sectors,
and reallocation of innovative activities by such company corre-
sponds to the reallocation of R&D budgets within a company
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or a conglomerate. Second, highly cited patents are likely to
be related to General Purpose Technologies (GPTs) (Hall and
Trajtenberg 2004), the technologies which penetrate most sectors
of the economy. Therefore companies in different sectors may be
involved in adapting a GPT to their needs, and it is reflected in
the observed pattern of patent citations.

However reasonable it seems, the model needs to be modified
to take into account the fact that many economic entities per-
forming R&D are specialized in certain sectors. For example, we
may change the model in such a way that the selection of the
technology from which to start the R&D search, and as a result
which patent will be cited is done in two steps. At the first step,
the sector in which a new patent is to be taken will be selected,
and then a particular technology (represented by the correspond-
ing patent), which is to be used as a starting point will be chosen
on the basis of the values of technologies in this field.

This modification of the model, in turn, opens a question of
how to choose the technological field for a new patent. For that
we can use information about the patent classes (as a represen-
tation of separate fields). The problems concerning the use of
patent classifications are discussed below. If the selection of the
technological field is done in the way similar to the one which
we use in our model of patent citations, i.e. the probability of a
patent to appear in a certain sector is a function of the number of
patents in this field in comparison to the whole stock of patents
in all patent classes, then we would have some kind of a “nested”
Polya process.11

Our model states that the more R&D have been done in a cer-
tain field (resulting in more patented inventions), the more R&D
effort will be directed to this field in close future. Translating the

11If both value functions at both stages of selection are linear then the two-stage process is observa-
tionally equivalent (i.e. distribution of citations is the same) to one in simple one-stage citations model
(4).
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assumptions of the model into the context of patent classes we
would expect that the larger is the share of a patent class in the
stock of patents, the higher is the probability that the next patent
will appear in this patent class. 12 To check if this intuition is
correct, in Figure 7 (left diagram) I plot the share of a USPTO
patent class (417 patent classes) in the stock of the patents ap-
plied in each of the years 1989-1999 (ni,t/nt) against the share
of the patent class in the stock of the patents from 1963 to the
respective year (Ni,t/Nt). Take for example, 932 patents applied
in 1989 in the patent class 29 “Metal working”(n29,1989 = 932).
In 1989 the number of patent applications to all classes, n1989,
was 96,077, it gives us the share of the class 29 in the stock of
all patents applied in 1989, n29,1989/n1989 = 932/96, 077 ≈ 0.0097.
Now, from 1963 to (not including) 1989 there were 20,323 patent
applications in the class 29 (N29,1989 = 20, 323). The total stock
of all patents from 1963 to 1989 is N1989 = 1, 878, 708, therefore
the share of the class 29in the total stock of patent applications
in 1989-1999 is N29,1989/N1989 = 20, 323/1, 878, 708 ≈ 0.0108. As
one can see from Figure 7 the observations reside close to 450

line.13

Figure 7 (diagram on the right) shows the evolution of sev-
eral patent classes (circles mark points in 1989). Generally we
can divide all patent classes into three broad categories accord-
ing to their growth patterns: mature technologies with stable
shares, old technologies with shrinking shares, and new technolo-
gies with growing shares. As one can see from Figure 8 patent
class 29 “Metal Working” containing 29,858 patents, or 1.02%
of all patents from 1963-1999, has a stable share in the total
patent stock, and the rate of arrival of new patented inventions
in this class is proportional to its share. Classes 435 (“Chemistry:

12This maps exactly into the model but at a higher level of aggregation.
13The slope in double logarithmic scale slightly exceeds 1.0 indicating a superlinear relationship between

the variables, akin to the non-linear model discussed earlier.
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Molecular Biology and Microbiology”, 30,257 patents or 1.03%),
436 (“Chemistry: Analytical and Immunological Testing”, 6,998
patents or 0.24), and 514 (“Drug, Bio-Affecting and Body Treat-
ing Compositions”, 58,062 patents or 1.99%) are rapidly expand-
ing through 1963-1999. At the same time the shares of class 12
(“Boot and Shoe Making”, 1,251 patents or 0.04%) and class 66
(“Textiles: Knitting”, 3,846 or 0.13%) are going down. These
developments in patenting activities are not necessarily related
to the current shares of the corresponding industries in the total
output, but we might expect that they reflect long-term trends
in the economy.

The distribution of the USPTO patents in the patent classes
and the results of fitting with lognormal and gamma distribu-
tions is shown at Figure 9. The results of fitting, goodness-of-fit
statistics, and comparison of observed and estimated quantiles
are reported in Table 1–3. Although goodness-of-fit for both log-
normal and gamma distributions are reasonable (p < 0.01), the
Gamma distribution is marginally better. Notice, that formula
(9) derived for the finite Polya process with linear feedback pre-
dicts the distribution close to gamma distribution.14.

Coming back to our research question, this information could
be used for building a two-stage model as described above. How-
ever, there are also some difficulties here related to patent clas-
sification. First, there is inherent ambiguity to which industry
(and related patent class) an invention should be assigned. An
invention may be assigned to a class on the basis of the industry
from which it originated, the industry that will produce the new
product, or the industry which will use it (Griliches 1990). As
a result, developments of the same technology may be divided
among different patent classes. Another problem, also related
to the interconnections between patent classes, is that a patent
class hardly can represent a whole industry or a sector. There-

14to see this one can use the representation of Beta function through Gamma functions
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fore to proceed with a two-stage model one has to decide how to
aggregate classes into industries.15

Notice also, that the patent classification is evolving with the
technology: new patent (sub)classes are being added, reclassified
etc. Relying on the current classification one necessarily has some
kind of bias when making judgement about past inventions. For
example, if one is to use current classification on some fine level,
say, 6-digit subclasses, then one might be surprised by discovering
that a number of subclasses were unpopulated back in the 70s.
These subclasses have been added as the corresponding technol-
ogy came into being. In terms of the model the situation with
addition of patent (sub)classes should be modelled with an infi-
nite Polya process, where new bins are constantly being added.
It is also possible to use more general class of the processes, Yule
processes (Yule 1925), earlier applied in evolutionary biology. An
advantage of the Yule process is that it not only accounts for the
addition of the new classes, but also traces the lineage of the
evolutionary tree.16

7 Conclusions

Taking the prospective of the evolutionary theory of technical
change I argued that the value of innovations depends on the di-
rection of technical change, and patent citations reflect the path-
dependencies in the development of technology. Innovations well
embedded in the current “technological paradigm” have higher
value and play a role of “focusing devices” shaping direction of
innovation search. As a result the higher is the value of an in-
novation the more likely it is to be used as a starting point for
consequent innovations and the more valuable it will become.

15Several ways to do it are outlined in (Hall and Trajtenberg 2004).
16For a description of the Yule processes and the properties of the distributions generated in these

processes see (Newman 2005).
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To formalize this argument I proposed a simple model based on
generalized Polya processes with linear and non-linear (positive)
feedback.

Using NBER and CESPRI data on patents granted by the
USPTO and EPO I have shown that the model does produce
distribution of patent citations close to the observed one. The
model with a linear feedback predicts correctly the distribution
of patent citation for patents with relatively small number of cita-
tions (about 95% of the distribution). The model with non-linear
feedback predicts the distribution of patent citations correctly for
the whole range of citations. Simulated distributions do have fat
tails (as the observed distributions). Interestingly, the exponent
in the feedback function providing the best fit is in the same
range as the estimate of Trajtenberg (1990) obtained in a differ-
ent context.
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Appendix

Consider N patents indexed by i ∈ {1, . . . , N}. Let ci,t denote the number of
citations the patent i received at time t. The distribution of the patents at time
t is n(t) = (n0,t, n1,t, . . . ), where nc,t is the number of patents cited c times.
Further assume that the probability of a patent i to be cited is proportional
to the current value of the patented invention which is related to the number
of citations the patent received, ci, as vi,t = v(ci,t). Then the rate equation17

describing the dynamics of the system is

nc,t+1 − nc,t =
vc−1∑cmax(t)

j=0 vjnj,t

nc−1,t −
vc∑cmax(t)

j=0 vjnj,t

nc,t, (6)

where vc = v(c), and cmax(t) is the maximum number of citations a patent
may have received by time t (cmax(t) = cmax(0) + t). The first term in RHS
(6) describes an increase in the number of the patents with c citations due
to citing of a patent with (c − 1) citations. The second term in (6) is a loss
term due to citing of a patent with c citations. Since there is no arrival of
new patents (the number of patents in the cohort is fixed), for patents with
no citations (c = 0) the first term is equal to zero, i.e.

n0,t+1 − n0,t = − v0∑cmax(t)
j=0 vjnj,t

n0,t. (7)

At time t = 0 the distribution of patents is

n(0) = (n0
0, . . . , n

0
cmax(0), 0, . . . ).

Equations (6), (7), and the initial condition define the evolution of the system.

17deterministic equation that describes evolution of expected values
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Linear feedback In case of the linear value (preferential attachment) func-
tion (2) we can find a closed-form solution. The sum in the denominator of
the equation (6) is

cmax(t)∑
j=0

(v0 + j)nj,t = V0 + t, (8)

where V0 is the sum of the values of the patented inventions at t = 0, i.e.
V0 = v1,0 + . . . vN,0. Note that

V0 =

cmax(0)∑
j=0

(v0 + j) = v0N + t0,

where t0 is the total number of citations at t = 0, i.e. citations within the
cohort.

For the sake of simplicity assume that at t = 0 patents have no citations
(n0

0 = N , and n0
c = 0 ∀c 6= 0, i.e. t0 = 0). The evolution of the system can be

analyzed drawing a binomial tree: each node ot the tree represents nc,t, the
probability of transition from node (c, t) to the node (c + 1, t + 1) is equal to
the probability of citing a patent with c citations at time t. Given (6) it is
clear that the probability to arrive to node (c, t) from the origin (0, 0) does
not depend on the path chosen.18 Taking into account this fact the further
derivation of the distribution n(t) becomes trivial, for c ≥ 1 the result is

nc,t = N

(
t

c

)∏c−1
i=0(v0 + i)

∏t−c−1
i=0 (V0 − v0 + i)∏t−1

i=0(V0 + i)
=

= N

(
t

c

)
B(V0 + t, v0 + c)

B(V0, v0)
, (9)

where B(x, y) is a Legendre beta-function. For patents with no citations
(c = 0)

n0,t = N

t−1∏
i=0

(
1− v0

V0 + i

)
.

Provided that V0 = v0N >> v0 we can approximate it as

ln n0,t = ln N +
t−1∑
i=0

ln

(
1− v0

V0 + i

)
≈ ln N −

t−1∑
i=0

ln
v0

V0 + i
≈

≈ ln N − v0 ln

(
1 +

t

V0

)
,

18no such luck for a non-linear feedback...
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therefore

n0,t = N

(
1 +

t

V0

)−v0

. (10)

Since the linear model has only one parameter (v0), fitting of this parameter
can be done with the equation (10) using only data on n0,t.

The equation (9) can be rewritten in a more convenient recursive form as
following (c ≥ 1)

ln nc+1,t = ln nc,t + ln
(t− c)(v0 + c)

(c + 1)(t− c + V0 − v0 − 1)
. (11)

The system of (10) and (11) provides us with the distribution of patent cita-
tions at any t.

The linearity of the process allows us to extend the solution to the general
case of initial conditions. The resulting distribution is simply a superposition
of the distributions, which one can derive from the analysis of binomial trees
with origin in (c, 0) where 0 ≤ c ≤ cmax(0).
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Figure 1: The distributions of patent citations. Left:USPTO cohort, application year
1989. Right: EPO cohort priority year 1989.
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Figure 2: Fit n0,t for the USPTO cohort with linear model: v0 = 1.1.
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Figure 4: Fit of the distribution with non-linear model. Top: USPTO cohort v0 = 2.0,
α = 1.26. Bottom: EPO cohort v0 = 1.1, α = 1.3.
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with application year 1989, and the USA as a country of the first inventor.
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Figure 9: The distribution of USPTO patent class sizes. Patents granted from 1963-1999.
Fit: red solid line - LogNormal, black dash-dot line - Gamma.

Table 1: Fitting for the Distribution of Patent Class Sizes (NBER dataset, 3-digit) with
Lognormal and Gamma Distributions.

Parameters Lognormal Gamma
Symbol Estimate Symbol Estimate

Threshold θ 0 θ 0
Scale ζ -6.57174 σ 0.002175
Shape σ 1.221316 α 1.088043
Mean 0.00295
Std Dev 0.005475
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Table 2: Goodness-of-Fit Tests for the Distribution of Patent Class Sizes.

Test Lognormal Gamma
(Statistic) Statistic p Value Statistic p Value

Kolmogorov-Smirnov (D) 0.091486 < 0.010 0.0234421 < 0.001
Cramer-von Mises (W-Sq) 35.711508 < 0.005 1.6382987 < 0.001
Anderson-Darling (A-Sq) 204.837144 < 0.005 10.8396215 < 0.001

Table 3: Quantiles for for the Observed and Estimated Distributions of the Patent Class
Sizes.

Percent Observed Lognormal Gamma
1.0 0.00003 0.00008 0.00003
5.0 0.00014 0.00019 0.00015

10.0 0.00026 0.00029 0.00029
25.0 0.00073 0.00061 0.00074
50.0 0.00178 0.00140 0.00169
75.0 0.00326 0.00319 0.00328
90.0 0.00548 0.00669 0.00534
95.0 0.00717 0.01043 0.00688
99.0 0.00919 0.02398 0.01045
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