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1 Introduction

This paper studies the persistence of innovation in Dutch manufacturing using
three waves of the Community Innovation Survey (henceforth CIS), pertaining
to the period 1994-2000. More specifically, we attempt to answer two questions.
First, does being successful in past innovation activities increase the probability
of being successful in current innovation activities? Secondly, given that one is a
multi-period innovator, does past return to innovation guarantee higher current
return to innovation? In other words, this study analyzes the extent to which
the production of innovations is subject to “dynamic economies of scales”, or
whether “success breeds success”.

The persistence of innovation is shown to be an important feature of the
knowledge economy. It is very often associated with economic performance and
survival of firms in the knowledge economy. Thus, various theoretical models
have attempted to make predictions regarding the persistence of innovation.
Four strands of the literature are considered in this study, namely: the linear

model, the financial constraints approach, the strategic considerations and the

learning-by-doing models. The linear model explains that persistence in inno-
vation output coincides with persistence in innovation input, i.e. innovation
is persistent only if R&D is. The financial constraints model states that, if a
firm faces R&D funding problems, past innovation profits help to fund current
innovative projects. The strategic considerations models states that, firms with
different market power have different incentives to innovate, hence persistence
of innovation is different. The idea of the last model is that, knowledge that has
been used to produce past innovations can also be used to produce current inno-
vations. The depreciation rate of innovative abilities may be very small. These
theoretical models are tested empirically and help us answer our two questions.

As for empirical studies on the persistence of innovation, our analysis departs
from them. Indeed, the majority of these studies use patent data to analyze
persistence in innovation activities. Almost all these studies conclude alike:
there is very little evidence of persistence in innovation. For instance, Geroski
et al. (1997) use a duration dependence Weibull model to conclude that very
few innovative UK firms are persistently innovative. Their result is robust to
the type of data used in their study, i.e. patent versus major innovations data.
Using a somewhat different approach, Malerba and Orsenigo (1999) also find
that very few innovative firms do so persistently. A rather different result by
Cefis (2003) is that, in general there is little evidence of persistence of innovation,
but strong evidence among major innovators. A patent study on the persistence
of innovation that is worth noting, because of a completely different result, is
the one by Crépon and Duguet (1997). They estimate a dynamic count panel
data using generalized method of moments (GMM) techniques to conclude that
the persistence of innovation among R&D performers is very strong, as captured
by the effects of past patents on current patents.

All the empirical studies previously mentioned have a common drawback:
the type of the data used to measure innovation, namely patent. The term
“persistence of innovation” may be misleading, since patent is rather a poor
measure of innovation (see Griliches (1990) for more details). Secondly, using
patent data is very demanding for persistence to be strong. Indeed, in order for
a firm to be accounted for in a proper manner in the patent data set, it has to be
the first to apply for a patent. In order words, when analyzing the persistence
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of innovation using patent data, one is unwittingly analyzing the persistence of
“winning the patent race” (Duguet and Monjon (2002)). So, it is not surprising
that innovation persistence is so weak, because firms are unlikely to always
win the patent race, instead it happens to them once in a while. They also
explain that, when using major innovations data, like in Geroski et al. (1997)
one is also running into the market leader problem. Firms that implement these
innovations are supposed to be the market leaders, and persistence in innovation
is likely to be weak for the same reasons mentioned earlier.

Like Duguet and Monjon (2002), this study makes use of innovation survey
data which consider innovation at the firm level, without mentioning the firm
patent or market leadership status. But unlike Duguet and Monjon (2002), this
study examines persistence in a “true state dependence” panel data framework
accounting for unobserved individual-specific effects.

More specifically, we estimate two dynamic models controlling for individual
effects. First, we estimate a dynamic probit model to investigate the extent
to which being successful in past innovative activities affects the probability of
being successful in current innovative activities, controlling for firms’ charac-
teristics. Secondly, we estimate a dynamic linear model, where the return to
current innovation is explained by the return to past innovation and current in-
novation inputs. In this latter case, different specifications are used, according
to the theoretical models underlined previously. We find that, when control-
ling for unobserved heterogeneity between firms, the persistence in innovative
achievement vanishes. Past innovation achievement increases the probability
of achieving current innovation only through unobserved effects that are corre-
lated over time, what Heckman (1981c) calls spurious state dependence. How-
ever, among the multi-period innovators, even after controlling for unobserved
differences between firms, we find strong persistence in innovation profits.

We explain the motivation for our analysis in Section 2, then the dynamic
models we study are described in Section 3. The estimation procedures are
explained in Section 4, we then briefly describe the data used to implement our
models in Section 5. In Section 6 we present the results, and summarize and
conclude in Section 7.

2 Motivation

The starting point of this study is the analysis by (Duguet and Monjon (2002)),
or more precisely, the theoretical models mentioned in their analysis. The pre-
dictions made by these models are explained earlier in this study, and this
section explains how they can be tested.

The linear model describes a simple relationship between firms’ R&D expen-
ditures and their innovations. Hence, consecutive innovations are explained by
continuously-undertaken R&D, and are not linked to each other. Empirically
speaking, the linear model is tested by specifying a relationship between cur-
rent innovation output, and past innovation output and R&D indicators. If the
linear model holds, once we control for R&D, past innovation should not affect
current innovation, meaning that innovation is persistent only through R&D.

The financial constraints model gives also an explanation of the persistence
of innovation. If the financial markets are imperfect, firms may face R&D
funding problems. Then, an incentive to innovate is to make profits that help
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funding future innovative activities. To test this model empirically, we have to
specify a relationship between current innovation output, and past innovation
output controlling for both R&D expenditures and variables that reflect access
to finance. The size of firms and received subsidies can be used to reflect access
to finance. In order for this model to hold, once R&D and access to finance
are controlled for, past innovation should not affect current innovation. If past
innovation does influence current innovation, one should find other reasons why
there is persistence in the innovation process.

The other two theoretical models that motivate the specifications of our re-
gressions are the strategic considerations and the learning-by-doing models. In
short, the first one states that, firms with different market power have different
incentives to innovate. So, a market share variable should be controlled for in
order to test empirically the model. If past innovation output, i.e. past inno-
vation return affect current innovation return, after controlling for the above
mentioned variables and market share, then again other reasons for the persis-
tence in innovation should be found. The learning-by-doing model is the final
step in specifying our regression in this study. The idea is that past innovation
abilities do not immediately become obsolete, instead they are used to produce
current and even future innovations. This last model motivates a relationship
between current innovation output, and past innovation output controlling for
R&D variables, access to finance variables, market power and variables reflecting
technological opportunities and demand-pull.

Ideally, the above models can be tested using a relationship between current
innovation output, and past innovation output and innovation input. They
require innovation input to be available for not only firms that do innovate, but
also for firms that do not innovate. For instance, one could use a dynamic probit
model, where innovation output is a binary variable indicating whether or not a
firm is an innovator. In this study, however, unlike Duguet and Monjon (2002),
we cannot test the exact theoretical models we mention earlier. The reason is
that, innovation activities, e.g. R&D expenditures, are available only for firms
that do innovate. The only variables that we can use for both innovators and
non-innovators are firms’ characteristics like size and the type of industries they
belong to.

Our approach is the following. We estimate a dynamic probit model to
investigate whether dynamics is present or not, controlling for individual effects
that capture unobserved heterogeneity between firms. The explanatory variables
included in this model are firms’ characteristics that are available for both types
of firms, as explained earlier. So, the first research question is the persistence in
innovative behavior, once we control for firms’ characteristics and unobserved
heterogeneity. We then estimate a dynamic innovation output/input regression,
where the theoretical models we describe above help us specify our relationship.
The measure of innovation output we use is the percentage in total sales of
innovative sales, the latter being those sales that are from new or improved
products at the firm level. In order to use the full set of explanatory variables
as suggested by the theoretical models, a sample of multi-period innovators has
to be used. In order words, we investigate the persistence of the return to
innovation for firms that already have a persistent innovative behavior.

The two dynamic models are explained in the next section.
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3 Dynamic models

This section describes the dynamic models used to answer our two research
questions, namely the persistence in innovative behavior and of the return to
innovation. The first question requires us to specify a dynamic probit equation,
while the second one is answered by a dynamic linear model. The models are
described as follows.

3.1 Dynamic probit

Let dit be an observed binary variable with values 1 if firm i innovates at period
t, and 0 otherwise. Let the decision to innovate be a latent function of past
innovative achievement, the firm’s characteristics and unobserved heterogeneity.
Formally, the model reads:

dit = 1 [ρdi,t−1 + δ′wit + ηi + uit > 0] , t = 1, ...T ; i = 1, ...N, (1)

where di,t−1 is a binary variable indicating whether firm i achieved at least one
innovation in the past, wit is the vector of regressors, mainly firm’s i character-
istics at period t, ηi and uit are the individual-specific and idiosyncratic error
terms, ρ is a scalar and δ a vector of parameters to be estimated. The ex-
pression in square brackets reflects the incentive to innovate, and an innovation
is achieved if the incentive is high enough or crosses a certain threshold. The
innovative behavior is persistent if past innovation achievement increases the
probability to achieve a current innovation. Technically, a statistically signifi-
cant estimated parameter ρ would explain persistence in the innovative behavior.
However, a significant ρ may have another interpretation. If firms have differ-
ent unobserved variables that influence the probability to innovate, and if these
variables are correlated over time and are not (or improperly) controlled for,
then past achievement in innovation may seem to influence current innovation
achievement. This is what Heckman (1981a, 1981c) calls pure state depen-

dence versus spurious state dependence. In our case, a pure state dependence
would correspond to a true persistence in the innovative behavior, while a spu-
rious state dependence would correspond to a persistence in innovative behavior
through a correlation over time of unobserved variables. This is a bit similar to
the idea of persistence in the theoretical linear model discussed earlier. The only
exception is that, the theoretical linear model predicts persistence in innovation
through the persistence or correlation over time of observed variables, namely,
the ones pertaining to R&D, while spurious state dependence predicts persis-
tence in innovation through the correlation over time of unobserved variables.

So, unlike Duguet and Monjon (2002), we attempt to account for both dy-
namic and unobserved heterogeneity in Eq. (1). We now turn to the specifica-
tion of the dynamic linear model.

3.2 Dynamic linear model

Let yit be the innovation output, as measured by the share of innovative sales,
of firm i at period t. Investigating the effect of past return on current return to
innovation leads us to write:

yit = γyi,t−1 + β′xit + αi + εit, t = 1, ...T ; i = 1, ...N, (2)

5



where γ and β are respectively a scalar and a vector of parameters to be es-
timated, xit a vector of regressors that are chosen according to the theoretical
models we discuss earlier, and αi and εit are the individual-specific and idiosyn-
cratic error terms. This equation is estimated conditional on the fact that firm
i is a multi-period innovator, for the reasons we explained earlier in the study.
Hence, Eq. (2) studies the persistence in the innovation return for multi-period
innovators. This approach is similar to the analysis by Crépon and Duguet
(1997) who study the persistence in patenting for R&D performers. Patent is
replaced in this study by the share of innovative sales.

We now discuss the estimation procedures of our dynamic models.

4 Estimation

This section addresses the issue of estimating dynamic models accounting for
unobserved heterogeneity. We start by discussing this issue for the dynamic
probit and then turn to the dynamic linear model.

4.1 Dynamic probit

When estimating discrete choice panel data models, an often-encountered diffi-
culty is the individual effects term. In static fixed-effects logit models, a way to
handle the “incidental parameters problem”, is to maximize a likelihood func-

tion conditional on a sufficient statistic which is shown to be si = di = 1
T

T
∑

t=1
dit.

However, the conditional probability of di1,...,diT is degenerate if si = 0 or
si = 1, meaning that individuals that remain in the same state over time are
discarded when a fixed-effects logit model is used. This model is not applicable
to our case, because we would model the probability of switching from the non-
innovative state to the innovative state and vice-versa, while we would ignore
firms that always or never innovate. Another reason why the fixed-effects logit
model is not used in this study, is because it does not allow us to control for
technological opportunities via industry dummies, which are constant or show
very little variation over time. So, a random-effects approach is considered in
this study, the specification of which is described later.

Another difficulty encountered in discrete choice panel data models, when
dynamic is involved, is the “initial conditions” problem. In the literature, two
assumptions are often made about the initial conditions: 1) the initial condi-
tions are exogenous, or 2) the process is assumed to be in equilibrium. Neither
assumption is satisfactory (Hsiao (2003)), and a proper way to treat the initial
conditions has to be found. Heckman (1981b) and Wooldridge (2002) describe
two approaches to handle the problem. We follow their approach.

4.1.1 The Heckman approach

The random-effects approach that we follow in this study is specified as follows:
ηi is normally distributed with mean 0 and standard deviation ση, uit follows a
standard normal distribution for all t.

Heckman (1981b) suggests that the initial conditions be approximated by a
probit model

di0 = 1[θ′wi0 + ληi + ui0 > 0]. (3)
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wi0 is the vector of regressors that affect the probability to innovate at the
“initial” period, ui0 the error term at the initial period, θ and λ are respectively
the vector of parameters and a scalar to be estimated.1 The latter captures the
dependence between the initial values and the individual effects. If we denote
ςi0 = ληi + ui0 the error term in Eq. (3), the correlation term between ςi0

and ηi denoted corr(ςi0, ηi) can be written as corr(ςi0, ηi) =
λση

σςi0
(Heckman

(1981b)), where σςi0
is the standard deviation of the error term of the initial

probit equation.
Once the initial conditions problem is handled, the model, as specified in

Eqs. (1) and (3), can be estimated by maximum likelihood. The contribution
of one individual to the likelihood is written as

LHi(di0, di1..., diT |di,t−1,wit) =

∫ ∞

−∞

T
∏

t=1

Φ [(2dit − 1) (ρdi,t−1 + δ′wit + ηi)]×

Φ [(2di0 − 1) (θ′wi0 + ληi)]
1

ση

φ

(

ηi

ση

)

dηi. (4)

4.1.2 The Wooldridge approach

Another approach to handle the initial conditions problem is suggested by
Wooldridge (2002). Instead of specifying or approximating (Heckman (1981b))
the distribution of the initial outcome given the individual effects, Wooldridge
suggests specifying the distribution of the individual effects given the initial
outcome. So, the joint distribution of all outcomes in Eq. (4) becomes a dis-
tribution of the outcomes starting form t = 1, given the initial outcome di0.

Wooldridge’s suggestion is to write the individual effects as

ηi = b0 + b1di0 + b′
2zi + ai, (5)

with ai → N(0, σa), z′i = (z′i1, ...z
′
iT ), and b0, b1 and b′

2 are respectively scalars
and a vector of parameters to be estimated. The distribution of the individual
effects conditional on the initial outcome is then normal with mean b0 + b1di0 +
b′

2zi and standard deviation σa. The likelihood function for one individual can
then be written as

LWi(di1..., diT |di0, di,t−1,wit) =

∫ ∞

−∞

T
∏

t=1

Φ[(2dit − 1) (ρdi,t−1 + δ′wit + b0 + b1di0

+ b′
2zi + ai)]

1

σa

φ

(

ai

σa

)

dai. (6)

While the Heckman approach is shown to perform quite well in Monte Carlo
studies, the Wooldridge approach is more computationally attractive.2 We now
turn to the estimation of the dynamic linear model.

1In order for θ′ to be identified, at least one regressor in wi0 should not be in wit.
2While the likelihood expression in Eq. (6) has the same struture as the likelihood of the

standard random-effects probit model, the initial out come is not treated as independent of
the individual effects. The dependence is captured by the scalar b1.
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4.2 Dynamic linear model

To estimate the dynamic linear model, we adopt a random-effects approach, as
described in Anderson and Hsiao (1981, 1982). One reason is the one mentioned
previously in the study, i.e., it allows us to estimate the effects of technological
opportunities as captured by industry dummies, while a GMM approach would
difference out these effects. We estimate the model by maximum likelihood and
make the following assumptions: αi and εit are normally distributed and

Eαi = Eεit = 0,

Eαix
′
it = 0′, Eαiεit = 0

Eαiαj =

{

σ2
α if i = j

0 otherwise

Eεitεjs =

{

σ2
ε if i = j, t = s

0 otherwise.

As in the dynamic probit, the initial outcome is also of great issue in the dynamic
linear model. The idea is the same as before, we have to specify a relationship
between the initial outcome and the individual effects. Following Anderson
and Hsiao (1981, 1982), the initial outcome is assumed to be random and
correlated with the individual effects. The intuition is that, the initial outcome
affects all future outcomes through its correlation with the individual effects.
The initial outcome is then assumed to be normally distributed with mean µyi0

and standard deviation σyi0
. Furthermore, the covariance between the initial

outcome and the individual effects is denoted by τσ2
yi0

, and the parameters µyi0
,

σyi0
and τ are to be estimated. The likelihood function, taking into account the

joint distribution of all outcomes starting from t = 0, is given by

L = (2π)−
NT
2 (σ2

ε)−
N(T−1)

2 (σ2
ε + Tc)−

N
2

× exp

{

−
1

2σ2
ε

N
∑

i=1

T
∑

t=1

[yit − γyi,t−1 − β′xit − τ(yi0 − µyi0
)]2 (7)

+
c

2σ2
ε(σ2

ε + Tc)

N
∑

i=1

{

T
∑

t=1

[yit − γyi,t−1 − β′xit − τ(yi0 − µyi0
)]

}2






× (2π)−
N
2 (σ2

yi0
)−

N
2 exp

{

−
1

2σ2
yi0

N
∑

i=1

(yi0 − µyi0
)2

}

,

where c = σ2
α − τ2σ2

yi0
. The likelihood function in Eq.(7) is the product of a

likelihood taking account of the joint density of the outcomes starting from t = 1
conditional on the initial outcome, and the likelihood of the marginal density of
the initial outcome.

We explain in the next section the data used to implement our models.

5 Data

In order to implement our models, three waves of the Dutch CIS, pertaining to
the periods 1994-1996, 1996-1998 and 1998-2000, are used. The sample consists
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of Dutch manufacturing firms, with at least 10 employees , that existed in 1994
and survived until 2000. We form our panel using firms that took part in the
three innovation surveys (balanced panel).

The variables used in our regressions are described as follows. The dependent
variable used in the probit model indicates whether or not a firm is a techno-
logical product and/or process innovator; and the one used in the regression
is the percentage in total sales of innovative sales. In order to make the latter
variable lie within the real number interval, a logit transformation is considered.
As explanatory variables of the probit model, firms’ characteristics like size and
the industry they belong to are included. The variable size is measured by the
number of employees, in natural logarithm, and the industry in which a firm
operates is given by the Dutch standard industrial classification (SBI 1993). As
for the regression’s explanatory variables, they are included according to the
theoretical models discussed above. Besides size and industry dummies, three
R&D variables, an access-to-finance variable, market share, and two variables
used as proxies for demand pull and technology push are used. More details on
data collection, the construction of the variables and descriptive statistics for
each industry in the three innovation surveys can be found in Raymond et al.
(2004).

The empirical results are discussed in the next section.

6 Empirical results

We start by discussing the persistence in innovation achievement (dynamic pro-
bit) and then turn to the persistence in the return to innovation (dynamic linear
model).

6.1 Persistence in innovation achievement

An interesting point that is worth noting is that both the Heckman and the
Wooldridge approaches show similar results in terms of the sign and significance
of the variables. Innovation achievement of a firm at a certain period of time
depends strongly and significantly on its size, as measured by the number of
employees. This confirms the result of a positive and significant effect of size on
the probability to innovate in cross-sectional studies (see Table 11 of Raymond et
al. (2004)). Market share, which reflects the differences in innovative incentive
of firms, according to the strategic considerations theory, does not seem to
influence the probability to innovate. But, we could imagine that larger firms
have larger market shares, so that the two variables are correlated, and that the
significant effect of one variable lessens the significance of the other variable.
Other things being equal, the probability to achieve an innovation is higher
in the chemical industry. Tables (1) and (2) also show that innovate at the
“initial” period influences strongly, positively and significantly the probability
to innovate at a certain period of time. This influence is either direct, as shown
in Table (1), or indirect through “initial” regressors or through the correlation
term between the initial outcome and the individual-specific term (Table (2)).

The most interesting result shown by Tables (1) and (2) is the following.
Once we account for unobserved heterogeneity, as captured by the standard de-
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viations ση and σa the persistence in innovation achievement vanishes.3 This
result contradicts the result by Duguet and Monjon (2002) who claim that, the
lack of persistence in innovation, that is usually found in empirical studies, is due
to the type of the data used to measure innovation. They indeed find a strong
evidence of innovation, in the sense that past innovation achievement strongly
influences current innovation achievement. However, they do not control for
unobserved differences that may exist between firms. The result of strong per-
sistence in innovation that they find in their study, is in fact a strong persistence
in unobserved differences between firms, what Heckman (1981c) calls spurious
state dependence. Indeed, we find that there is significant unobserved differ-
ences between firms, as shown by the highly-significant standard deviations ση

and σa. When these differences are correlated over time and are not accounted
for, the effect of past innovation achievement is overstated (which is probably
the case in Duguet and Monjon (2002)). A chi-square test, (which is not re-

ported in the tables) of no correlation of unobserved differences, i.e.
σ2

η

σ2
η+1 = 0,

or
σ2

a

σ2
a+1 = 0 is clearly rejected.4

We now discuss the results on the persistence of the return to innovation for
multi-period innovators.

6.2 Persistence of the return to innovation

This section presents the empirical results when implementing the theoretical
models discussed in Section (2). We start by testing the linear model, which
states that, if there is persistence in innovation, it is due to persistence in R&D
activities. The theoretical linear model, as considered in this study, is slightly
different from the linear model considered in Duguet and Monjon (2002). In our
analysis, the question is that, given that a firm is a multi-period innovator, what
guarantees the firm higher return to innovation as time goes by, especially does
its past return to innovation affect its current return? In this context, the linear

model holds if the persistence in innovation return is due to the persistence
R&D activities. Table (3) shows that, ceteris paribus, multi-period innovators
that do perform R&D, and that do so on a continuous basis have higher return
to innovation. The more money they spend in R&D activities, the higher their
return to innovation, other things being equal. However, the effect of past
return on current return remains strongly significant, indicating that there may
be other factors influencing the persistence of the return to innovation. The
theoretical linear model is then only partially supported.

We then include additional regressors according to the financial constraints

(Table (4) and the strategic considerations (Table (5) models. Past innovation
return remains statistically strongly significant, while neither variable of the
former model nor variable of the latter is significant. The persistence in the

3Actually, we have also implemented a dynamic probit model without accounting for unob-
served heterogeneity. We found then a strongly significant and positive effect of past innovation
achievement on current innovation achievement.

4In fact, we could have estimated two more general models, namely a first-order Markov
process, or a state-dependent model with stationary intertemporal covariance matrix (SICM)
(Heckman 1981a, 1981c). But, the error-component formulation, which is a special case of the
SICM model rejects already the “true” persistence of innovation. We then expect the other
two models to reject the “true state dependence as well.
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innovation return is not explained by easier access to finance or higher market
power.

Finally, two additional variables, namely demand pull and technology push
are included leading us to a learning-by-doing model. The effect of past innova-
tion return on current innovation return remains highly significant. Furthermore,
demand pull has a highly significant effect on the return to innovation, the effect
of technology push is lesser.

Table (6) suggests that, among the multi-period innovators, the return to
innovation is strongly significant, even after controlling for unobserved hetero-
geneity, as captured by σα. There are various reasons for this. First, this
persistence is partly explained by a persistence in R&D activities. However,
this is not the only reason, as suggested by the linear model, a learning-by-doing

explanation can be found as well. Indeed, the effect of R&D activities on the
persistence of innovation return lessens when demand pull and technology push
are included in the model. So, a second reason, learning-by-doing, is that past
knowledge that allowed firms to innovate and generate past profits is used to
produce current innovation and make current profits. We can even say that, an
innovation that generated profit in the past, say 3 years ago, is not immediately
obsolete and continues to generate profit. A third explanation in the persis-
tence of return to innovation is that of demand pull, which in fact is closely
related to the second explanation. In our analysis, demand pull is constructed
as a variable that measures the inclination of a firm to ‘open up new markets’,
‘extend product range’ or ‘replace products phased out’. Past innovative prod-
ucts, through the profits they generated, can “show the way” how to achieve
the objectives mentioned above and generate new profits.

7 Conclusion

This paper shows that, when estimating the dynamics of innovative behavior
in Dutch manufacturing and accounting for unobserved heterogeneity, being
successful in the past innovation does not increase the probability to innovate
in the future. There is no true state dependence in the innovative behavior in
Dutch manufacturing. The only persistence in innovative behavior that occurs
is through unobserved effects that are correlated over time and that affect the
probability to innovate. There is spurious state dependence in the innovative
behavior of firms in Dutch manufacturing.

However, we find evidence of strong persistence in the innovative return to
innovation among multi-period innovators. This persistence is partly explained
by persistence in R&D activities, but also by learning-by-doing and demand pull.
We find no evidence of the effects of access-to-finance and strategic constraints

variable, as captured by size, subsidies received and market share.
An explanation is as follows. In another cross-sectional study (Raymond et

al (2004)), we found that, other things being equal, smaller firms have higher
return to innovation. But, small firms are less likely to survive for longer periods,
or to take part in all the innovation surveys than larger firms. The effect of size
may be altered by this phenomenon. So, future research should investigate
whether our results are sensitive to attrition.

Because of the way the CIS is designed, we have estimated our dynamic linear
model conditional on being a multi-period innovator. The sample is somewhat
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reduced compared to a situation where non multi-period innovators are included
in the analysis. We could link the two equations by allowing that the error terms
in the probit and in the regression equations are correlated and estimate a tobit
type II, according to the terminology of Amemiya (1985), in a dynamic panel
data framework. The studies by Kyriazidou (1997, 2001) could be of guidance.
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A Appendix

Table 1: Dynamic random-effects probit estimates: the Wooldridge approach

Variable Coefficient (Std. Err.)

Current innovation achievement (dit)
Past innovation achievement (di,t−1) 0.11 (0.20)
Initial innovation achievement (di0) 1.23∗∗ (0.25)
Size 0.38∗∗ (0.11)
Market share -0.01 (0.08)
Chemicals 0.71∗∗ (0.22)
Electrical 0.48∗ (0.22)
Machinery & Equipment 0.52∗∗ (0.18)
Vehicle 0.29 (0.23)
Plastic 0.55∗ (0.28)
Products not elsewhere classified 0.40 (0.25)
Food and Tobacco 0.15 (0.19)
Metallic 0.32∗ (0.16)
Non-metallic 0.24 (0.28)
Textile 0.02 (0.30)
Intercept -2.32∗ (1.01)

σa 0.77∗∗ (0.17)

Number of firms 1722
Log-likelihood -848.82
χ2

(14) 183.87

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 2: Dynamic random-effects probit estimates: the Heckman approach

Variable Coefficient (Std. Err.)

Current innovation achievement (dit)
Past innovation achievement (di,t−1) 0.10 (0.20)
Size 0.44∗∗ (0.12)
Market share 0.00 (0.08)
Chemicals 0.95∗∗ (0.25)
Electrical 0.77∗∗ (0.25)
Machinery & Equipment 0.77∗∗ (0.21)
Vehicle 0.29 (0.23)
Plastic 0.84∗∗ (0.31)
Products not elsewhere classified 0.39 (0.25)
Food and Tobacco 0.26 (0.20)
Metallic 0.36∗ (0.17)
Non-metallic 0.23 (0.28)
Textile 0.01 (0.30)
Intercept -1.75† (0.99)

Initial innovation achievement (di0)
Size at period zero 0.26∗∗ (0.08)
Chemicals 0.76∗∗ (0.29)
Electrical 1.07∗∗ (0.33)
Machinery & Equipment 0.91∗∗ (0.27)
Plastic 1.03∗∗ (0.38)
Food and Tobacco 0.35 (0.26)
Metallic 0.15 (0.21)
Intercept -0.53 (0.36)

ση 0.99∗∗ (0.20)

corr(ςi0, ηi) 0.74∗∗ (0.04)

Number of firms 1722
Log-likelihood -1323.89
χ2

(13) 94.51

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 3: Dynamic linear random-effects estimates: the linear model

Variable Coefficient (Std. Err.)

Current share of innovative sales (yit)
Past share of innovative sales (yi,t−1) 0.17∗∗ (0.06)
Non-R&D performers -2.07∗∗ (0.75)
R&D intensities 0.28∗ (0.12)
Performing continuous R&D 0.93∗ (0.37)
Chemicals 1.03† (0.56)
Electrical 0.27 (0.60)
Machinery & Equipment 1.02† (0.54)
Plastic 0.24 (0.64)
Vehicle 1.31† (0.67)
Food and Tobacco 0.35 (0.59)
Metallic 0.08 (0.51)
Non-metallic -0.41 (0.78)
Products not elsewhere classified -0.03 (0.68)
Textile 0.17 (0.89)
Intercept -0.86 (0.81)

σα 1.36∗∗ (0.37)

σε 3.48∗∗ (0.14)

µyi0
-0.93∗∗ (0.20)

σyi0
4.32∗∗ (0.14)

corr(yi0, αi) 0.37∗∗ (0.11)

Number of firms 1347
Log-likelihood -3741.38
χ2

(14) 87.78

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 4: Dynamic linear random-effects estimates: the financial constraints

model

Variable Coefficient (Std. Err.)

Current share of innovative sales (yit)
Past share of innovative sales (yi,t−1) 0.17∗∗ (0.06)
Non-R&D performers -1.84∗ (0.75)
R&D intensities 0.25∗ (0.12)
Performing continuous R&D 0.78∗ (0.38)
Size 0.14 (0.13)
Subsidies 0.47 (0.30)
Chemicals 0.87 (0.56)
Electrical 0.17 (0.60)
Machinery & Equipment 0.91† (0.54)
Plastic 0.11 (0.64)
Vehicle 1.18† (0.67)
Food and Tobacco 0.22 (0.59)
Metallic -0.01 (0.51)
Non-metallic -0.52 (0.78)
Products not elsewhere classified -0.10 (0.68)
Textile 0.22 (0.89)
Intercept -1.80† (1.02)

σα 1.33∗∗ (0.38)

σε 3.48∗∗ (0.14)

µyi0
-0.93∗∗ (0.20)

σyi0
4.32∗∗ (0.14)

corr(yi0, αi) 0.36∗∗ (0.12)

Number of firms 1347
Log-likelihood -3739.36
χ2

(16) 93.25

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 5: Dynamic linear random-effects estimates: the strategic considerations

model

Variable Coefficient (Std. Err.)

Current share of innovative sales (yit)
Past share of innovative sales (yi,t−1) 0.17∗∗ (0.06)
Non-R&D performers -2.01∗∗ (0.77)
R&D intensities 0.29∗ (0.12)
Performing continuous R&D 0.75∗ (0.38)
Size -0.24 (0.32)
Subsidies 0.45 (0.30)
Market share 0.34 (0.26)
Chemicals 0.99† (0.57)
Electrical 0.00 (0.62)
Machinery & Equipment 0.77 (0.55)
Plastic -0.39 (0.75)
Vehicle 1.06 (0.68)
Food and Tobacco 0.37 (0.60)
Metallic -0.02 (0.51)
Non-metallic -0.97 (0.85)
Products not elsewhere classified -0.55 (0.77)
Textile -0.44 (1.02)
Intercept 2.34 (3.30)

σα 1.34∗∗ (0.39)

σε 3.47∗∗ (0.14)

µyi0
-0.93∗∗ (0.20)

σyi0
4.32∗∗ (0.14)

corr(yi0, αi) 0.36∗∗ (0.11)

Number of firms 1347
Log-likelihood -3738.49
χ2

(17) 95.38

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 6: Dynamic linear random-effect estimates: the learning-by-doing model

Variable Coefficient (Std. Err.)

Current share of innovative sales (yit)
Past share of innovative sales (yi,t−1) 0.18∗∗ (0.06)
Non-R&D performers -1.59∗ (0.77)
R&D intensities 0.24∗ (0.12)
Performing continuous R&D 0.72† (0.38)
Size -0.30 (0.31)
Subsidies 0.34 (0.30)
Market share 0.34 (0.25)
Demand pull 1.00∗∗ (0.28)
Technology push 0.58† (0.31)
Chemicals 0.93† (0.56)
Electrical -0.18 (0.61)
Machinery & Equipment 0.73 (0.54)
Plastic -0.45 (0.74)
Vehicle 0.86 (0.67)
Food and Tobacco 0.24 (0.59)
Metallic -0.03 (0.50)
Non-metallic -1.21 (0.84)
Products not elsewhere classified -0.64 (0.75)
Textile -0.45 (1.01)
Intercept 1.81 (3.27)

σα 1.21∗∗ (0.44)

σε 3.47∗∗ (0.15)

µyi0
-0.93∗∗ (0.20)

σyi0
4.32∗∗ (0.14)

corr(yi0, αi) 0.35∗∗ (0.13)

Number of firms 1347
Log-likelihood -3729.76
χ2

(19) 115.97

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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