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Abstract:  
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1. Introduction 

Back in October 2000, joining the celebration for Richard Nelson’s seventieth birthday in New York, 

Keith Pavitt asked his audience the following question: What can the rest of the world learn from US 

theory and practice regarding public policies to support basic research? And what they should not 

learn?1  

Among Pavitt’s many concerns stood prominently what he called “the newly acquired role of US 

universities in inventive activities”, and the fascination it exerted on many European policy-makers. 

Looking back at the university patent explosion of the last twenty years, Pavitt warned explicitly to 

use caution before extending recent US policy provisions (such as the Bayh-Dole Act) to different 

national contexts, in the absence of international comparisons and a detailed assessment of each 

country’s specificities2.   

That warning, recently reiterated by Mowery and Sampat (2004), is still valid. To date, only a recent 

OECD report has collected cross-section data for quite a few countries, and such data are limited to 

one year of observation, and to patents owned directly by universities and public labs3. Only a few 

national studies have extended the analysis to patented inventions by academic scientists, but owned 

by business companies, as a result of sponsored academic research4.  

In this paper we pick up Pavitt’s research suggestion and explore in depth the Italian case. Besides 

providing original data, we contribute to the general debate on whether pushing university faculty to 

patent the results of their research lead to genuine technology transfer efforts, or to a diversion from 

fundamental research to shorter-term, less general targets5. In order to shed light on the existence of a 

possible trade-off, we investigate the relationship between patenting and the academic researchers’ 

core activity, namely the publication of scientific papers on refereed journals. 

Our effort is based upon a dataset containing all the patent applications from Italian academic 

inventors addressed to the European Patent Office, from 1978 to 1999; and on a dataset on 

                                                           
1 Pavitt’s contribution has then been published as Pavitt (2001) 
2 As a proof that Pavitt’s concerns regarding  the influence of the US example were not unfounded,  one can easily take 
the recent wave of policy measures aimed at increasing university-industry technology transfer via the creation of clear-
cut IPRs over the results of public funded research (OECD, 2003).  
3 See OECD (2003). For a comparison of France, Italy and Spain, see also Cesaroni and Piccaluga (2003).  
4 See Meyer (2003) and Meyer et al. (2003), for the case of Finland, Carayol (2004) for a large French university, and 
Saragossi and van Pottelsberghe (2003) for Belgium. Gittelman (2002) compares the contribution of academic scientists 
to biotech patents in the US and France also on the basis of information on inventors. 
5 By “genuine technology transfer effort” we mean here an additional research effort aimed at developing promising 
inventions already obtained, as “proofs of concept” or “prototypes”, by curiosity-driven, publication-oriented research 
(that is, “normal” academic science). US legislators passing the Bayh-Dole Act aimed precisely at creating the right 
system of incentives to solicit that effort, under the presumption that its absence was undermining the more general goal 
of promoting innovation by funding science (Jensen and Thursby, 2001; on why that presumption was possibly wrong 
see Colyvas et al., 2002). The same presumption seems nowadays to underline the EU policy-makers who believe in the 
existence of a “European Paradox”, that is of a strong European science base, not coupled to effective technology transfer 
means (Dosi, Llerena and Sylos-Labini, 2005). 
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publications authored by those academic inventors and a matched sample of academic scientists with 

no patents in their CV. In particular, we aim at checking whether more productive scientists are more 

or less prone to patenting, and whether the orientation towards basic research is at odds with or 

favours patenting. We are also interested in understanding whether the relationship between 

publishing and patenting varies across disciplines, and between university-owned and business-

owned patents; and whether research co-operation with industry is a pre-requisite for patenting. 

In section 2 we discuss the existing literature on academic patenting and put forward a few testable 

hypotheses on its relationship to scientific research and publishing. In sections 3 and 4 we present 

our model and data, while in section 5 we report results of our analysis. Section 6 concludes. 

2. Patenting and publishing: complementarities and trade-offs 

The relationship between patenting and publishing may be investigated at two different levels, one 

which refers to the dissemination of research results, the other to the research objectives pursued by 

scientists. Scientists’ individual productivity may also explain cross-scientist differences in both the 

publishing and the patenting activity levels. 

In a companion paper, we explore the effects of patenting on academic scientists’ subsequent 

publication record (Breschi et al., 2005). Here we are interested in the opposite causality link, namely 

how a scientist’s publication record may explain her propensity to patent. 

We assume publishing to be a routine activity for academic scientists, which occurs much more 

frequently than patenting (as indeed suggested by all available data6). Although any scientist may 

have a “dry” spell, during which she does not publish any paper, patents are so rare compared to 

publications that we may consider them as “discrete events” punctuating an ongoing publishing 

activity. This also suggests that we can measure a scientist’s “productivity” first and foremost in 

terms of publications per year, and discuss whether and how patenting events affect productivity 

levels. 

2.1 Patenting and publishing as dissemination means 

At the dissemination level, we explore whether scientific papers and patents are complementary or 

alternative means for the diffusion of research results. Even if both of them put a prize on keeping 

research results secret for a while (until the submission of a scientific paper to a journal or 

conference, or the application for a patent), they lead to very different disclosure rules and attitudes 

towards cooperation. The priority reward system encourages scientists to disclose fully their research 

achievements, via the publication of data, intense codification efforts (neat theorizing and 
                                                           
6 See Breschi et al. (2005), Markiewitz and DiMinin (2004), Murray and Stern (2005), Stephan et al. (2004). 
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establishment of clear experimental routines), teaching duties, and repeated interaction/discussion 

with peers (Merton, 1973; Dasgupta and David, 1994). The IPR-based system, on the contrary, may 

encourage incomplete and selective disclosure. Patent-intensive firms rely heavily on secrecy to 

appropriate the returns from non-patentable knowledge assets, many of which are produced or 

acquired along the development phase of a patented invention (Cohen et al., 2000). As long as 

secrecy complements patenting, academic scientists who are more committed to patent-oriented 

research may find it difficult to publish all of their research results7.  

At a more practical level, commitment to patenting may push academic inventors to delay the 

publication of their research results, since placing them in the public domain before filing for a patent 

would go against the novelty requirement as defined by most patent offices8. 

Commitment to secrecy on patent-related issues and publication delay may both result in a 

productivity slowdown before (and after) the patenting date (hypothesis 1). This effect ought to be 

stronger for patents owned by business companies, as long as they result from industry-sponsored 

research; in these circumstances, in fact, it is often the case that scientists hand over their IPRs to the 

sponsor as part of the contract, and accept to follow the sponsor’s guidelines in terms of contents and 

timing of their publications. 

2.2 Objectives of scientific research 

At the research objectives level, propositions on the relationship between publishing and patenting 

derive from more fundamental visions of the relationship between science and technology. 

A common concern regards the contents of academic enquiry, which could be diverted from “basic” 

towards “applied” research. While the former can be portrayed as the unconstrained exploration of 

nature and theory, the latter’s objectives are limited by the need to achieve results with some degree 

of “industrial applicability”, a crucial pre-requisite for patent applications to be successful. Lack of 

commitment toward basic research may result either in a lower rate of publications in refereed 

academic journals, or in less ambitious publications, with a lower impact on the progress of both 

science and technology. Although never modelled theoretically, the possible existence of a basic-

                                                           
7 An additional issue relates to patenting of so-called research tools, such as scientific instruments, genetic sequences, and 
other seminal results. Exclusive licensing and fragmented IPR property over these kind of inventions may prevent 
research teams with lesser means from accessing to new research fields, or scare off scientists with fears of infringing 
some hidden patent. On this point, see the classic paper by Heller and Eisenberg (1998), and the more recent empirical 
work by Murray and Stern (2005) and Sampat (2005). 
8 In principle, the publication delay may be mitigated by the so-called “grace period” rule, as in the US and Japan. The 
rule allows academic researchers to publish in advance their soon-to-be-patented inventions, as long as the publication 
occurs not too early (6 to 12 months before the patent application date). However, the European Patent Office does not 
allow for any grace period, so that any firm or inventor applying for a US or Japanese patent, but foreseeing to extend it 
to Europe, cannot exploit the rule (Kneller, 2001). 
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applied science trade-off has been a long-standing concern of both policy-makers and scientists 

(Bok, 2003). 

Alternatively, it has been proposed that close contacts between academic scientists and industry may 

be beneficial to basic research. The history of science-technology relationships is punctuated by 

close contacts between university and industry, which have provided scientists with financial 

resources and free access to expensive scientific instruments, as well as with “focussed” research 

questions, data, and technical expertise. Answers to research questions raised by technology may be 

at the same time economically valuable and scientifically relevant, up to the point of opening up new 

research avenues and disciplines9.  

One further argument suggests that R&D-oriented business companies, especially those active in 

science-based technologies, are as responsive as academic institutions to scientists’ publications. 

Their R&D staff screen academic publications routinely, publish actively, and participate to 

conferences and workshops, thus joining the academic community, and sharing its judgements on 

individual scientists’ reputation (Hicks and Katz, 1996; for a survey: Iversen and Kaloudis, 1999). It 

follows that any academic scientist wishing to access the financial and cognitive resources of large 

business companies does not give up her publication activity, but on the contrary keeps it up at high 

levels. 

The two alternative visions of science and technology links suggest opposite hypothesis to be tested.  

Were the “basic-applied” trade-off argument correct, there would be one more reason to observe a 

productivity slowdown before the patenting date, possibly more visible for publications in journals 

devoted to basic science, as opposed to applied research and technology (hypothesis 2). 

Arguments stressing the complementarities between basic science and applied research may on the 

contrary suggest that patenting go along with an increase in the productivity of academic inventors, 

some of which we may expect to observe even before the patenting event (hypothesis 3). A long 

record of scientific cooperation with industry should also increase the probability of patenting; to the 

extent that this cooperation has brought the scientists in touch with focussed research questions and 

data sources, we should observe this effect for both patents owned by industry as a result of recently 

sponsored research, and for patents held by the scientist herself or her university (hypothesis 3a)10. 

If, on the contrary, accessing industry’s financial resources is the key component of the 

complementarity link, we may expect these positive effects to be stronger for business-owned patents 

(hypothesis 3b).  

                                                           
9 The classic reference on “cognitive” resources is Rosenberg, 1982, ch. 8 (see also Rosenberg, 1990). For some more 
recent empirical evidence, see Mansfield (1995, 1998) and Siegel et al. (2003) 
10 On the role of co-authorship of scientific papers by academic and industrial researchers  
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In addition, if academic reputation matters for gaining support from industry, we may also expect a 

positive relationship between a scientist’s publication record over the years and her chances to 

produce a business-owned patent (hypothesis 3c). Individual productivity may also produce an effect 

similar to this (better scientists publish more, and occasionally patent, too), but in this case the effect 

would not be confined to business-owned patents (hypothesis 4). 

2.3 Controlling for environmental factors 

The probability to observe two equally productive scientists engaged in patenting may also be 

affected by environmental factors. Gittelman (2002) suggests that the differences between the US 

and France in university patenting may be largely explained by institutional factors (such as 

administrative rules on faculty’s involvement in start-up companies) and cultural ones (ethical norms 

on the legitimacy of profit motives in science). The latter are also called in by Feldman and 

Desrochers (2004) to explain the lower patenting propensity of scientists at Johns Hopkins 

University, compared to institutions of equivalent scientific pre-eminence in the US. Due to data 

limitation we can control for just a few of these factors.  

We are also interested in understanding whether the relationship between publishing and patenting 

varies across disciplines, and between university-owned and business-owned patents. We expect the 

probability to observe a positive relationship between publishing and patenting to be higher in 

scientific fields wherein basic research is more readily exploitable by industry (the classical example 

is molecular biology). 

3. Model specification  

We explore the relationship between publication activity and patenting by estimating the patenting 

hazard rate of our subjects, that is the probability that a professor will patent in the current year, 

conditional upon not having patented so far (the time unit is the year). This is consistent with 

viewing patents as “discrete events” punctuating scientists’ publishing activity, which we regard as 

academic researchers’ “routine” activity. 

As we do not have any a priori hypothesis on the functional form of the hazard function, we choose 

to apply the Cox semiparametric approach, which does not impose any specification on the baseline 

hazard function (that is, on the relationship between time and the probability of the event to occur; 

Kalbfleisch and Prentice, 2002). This means adopting a proportional hazard model such as: 

 )exp()()|( 0 iiii xthxth β=  (1) 
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where h(ti|xi) is the hazard rate at time t for professor i, conditional upon a set of covariates xi, which 

include both time-invariant characteristics of the professor (such as her gender) and time-varying 

ones (such as all variables related to the number of publications). 

Following the discussion in section 2, we propose the following basic specification: 

)__
exp()()|(

543

210

iii

iiiii

ControlsfactorstalEnvironmencontactsIndustry
onty_variatiProductivityProductivithxth
βββ

ββ
+++

++=
 (2) 

where Productivity refers to professor i’s publication record per year up to time t, 

Productivity_variation refers to her more recent publication record (deviations from average 

publication record at time t and/or immediately before t), and Industry_contacts refers to any 

evidence of  professor i’s past cooperation with industry. Environmental factors are those listed in 

section 2.3; control variables will include i’s gender and age.  

Following the discussion in section 2, Table 1 list the expected signs of the explanatory variables. 

 

{TABLE 1 HERE} 

 

We first estimate the hazard function for a single patenting event, that is we choose professors as the 

subjects of our exercise and let them in our sample at the latest between the starting year of their 

career11 and 1978 (the opening year of the EPO, European Patent Office). Academic inventors exit 

the sample when they sign their first patent, while observations on non-inventors result truncated in 

199912. In other words, we assume professors to be at risk of patenting only from the opening of EPO 

in 1978, or from when they start their career (if later); and not be anymore at risk once they sign their 

first patent. Time “at risk” runs from the entry in the sample13.  

We then proceed to check whether our results hold for repeated patenting events. In this case, the 

professors enter our sample first in 1978 (or when they start their career, if later) and never exit, as 

they are always at risk of patenting; however, after any patent the time “at risk” re-starts from 1, as 

we assume each patenting event to be distinct from the previous one. Technically, this means 

                                                           
11 For our definition of “start” of a professor’s career see section 4.3 below 
12 Since we do not commit to any functional form for h(.), we are not forced to assume that non-inventors will eventually 
patent (or never patent) after the truncation. 
13 This means that we assume no left truncation in our data, as 1978 is the earliest possible entry year for all our 
professors, no matter whether they started their career before then. In other words, we disregard all patents taken at 
national offices before the opening of EPO as a relevant event for our analysis (none of our professors signed any US 
patent before 1978). We justify this treatment of our data by observing that very few professors have more than one 
patent, so the risk of ignoring some previous patenting activity is low; and that the equivalent of a EPO patent before 
1978 should be not just any national patent, but a patent extended to all the most important EPO countries, which makes 
the risk of ignoring it even smaller. 
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assuming that any professor with n>1 patents will enter our analysis as (n+1) distinct subjects, each 

observed from time 1 onward. As we expect the recurrence times of all events concerning the same 

professor to be highly correlated (in fact, they are not independent observations), we allow for 

professor-specific random effects (frailty model; Lancaster, 1979). In other words, we assume the 

hazard function for all mi observations referred to professor i to be: 

 )exp()(),|( 0 ijijiiijij xthxth βαα =      with j=1…mi (3) 

where αi is a parameter common to all observations, and xij are specified as in equation (2). As we do 

not have any a priori on the probability density function of αi , we simply adopt the Gamma 

specification built in STATA, the software package we used for our analysis. Estimates of the hazard 

function under the assumption of a Gamma-distributed frailty parameter include an estimate of the 

distribution variance (θ), upon which all standard errors of the parameters for the covariates are 

conditional. The “frailty” assumption, that is the assumption of random effects at the professor level, 

is not rejected as long as  θ ≠ 0. 

We finally check our results for a sample limited to the academic inventors only, for a number of 

which we know both when they  started their academic career and whether they hold a PhD. 

4. Data 

The core data of this paper come from the EP-INV database, which contains all patent applications to 

the European Patent Office (EPO) that designate at least one inventor with an Italian address, from 

1978 to early 1999. The EP-INV database contains information on 30243 inventors and 38868 patent 

applications. 

Little more than 1400 of these applications come from 919 “academic inventors”, namely university 

researchers and professors who appear both as designated inventors in the EP-INV dataset and in the 

complete list of academic staff of science and engineering departments on active duty in year 2000 

(27844 full professors, associate professors, or assistant professor) provided to us by MIUR, the 

Italian Ministry of Education and Research. For a full description of the matching methodology and 

contents of the dataset, see Balconi et al. (2004). 

In this paper we focus on a few disciplines with a very high share of academic inventors over the 

total number of professors. These can be found in fields such as Chemical Engineering (e.g. 

technology of materials, such as macromolecular compounds), Biology, Pharmacology, and 

Electronics (including Telecommunications), for a total of 301 academic inventors and 552 patents 

(table 2). Many patents are the result of teamwork, with academic and non-academic inventors 
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working together. As for the distribution of patents over time, 75 of them date back to 1979-1985, 

while the others are quite uniformly distributed over the remaining years. Most of the selected 

inventors are full professors, born between 1940 and 1960 (more details in Breschi et al., 2005). 

 

{TABLE 2 HERE} 

 

A control sample was then built, by matching each academic inventor to a professor in the same 

discipline, with the same academic ranking, and of a similar age14. Each academic inventor was 

matched to a colleague never designated as inventor in patents applied for either at EPO or the US 

Patent and Trademark Office15. When possible, controls were chosen among the academic inventors’ 

department colleagues or from university of similar size and importance, or from the same region. 

We decided not to adopt stricter matching rules at the level of university/department (such as 

choosing controls only from the same departments of the inventors), as they would have greatly 

reduced the sample. For the same reason, we did not match our data on the basis of gender. The rules 

we followed for matching inventors and controls at the university level provide satisfactory results: 

as far as summary statistics of university size are concerned, we do not find systematic differences 

between inventors and controls (see table A2 in the Appendix)16. 

4.1 Patent data 

All the patents included in our sample pre-date the most recent changes in the Italian IPR legislation 

concerning academic research, as well as the introduction of IPR regulations and patent offices in the 

majority of  Italian universities. As such, they were mostly the result of ad hoc arrangements 

between the inventors and the university administrations, which used to be quite alien to IPR matters.  

The most common arrangements left the IPRs over sponsored research entirely in the sponsors’ 

hands (whether public or private). For inventions originated from research funded with general 

university grants, the university usually paid the necessary fees and retained property, but it was up 

to the professor to disclose her results and to convince a reluctant administration to engage in the 

                                                           
14 The choice of discipline, rank, and age as matching variables follow the best-established results of quantitative studies 
in the sociology of science (e.g. Long et al., 1993). 
15 For academic inventors born in between 1950 and 1970, we allowed for no more than 5 years of age difference with 
the controls. For professors born before 1950 the maximum age difference was 7 years. For academic inventors born 
after 1970 (just one) the maximum age difference reduced to 3 years. Exceptionally (no more than 10 cases) we matched 
a full professor (inventor) with an associate professor (control), or an associate professor with an assistant professor; in 
these cases the age criteria were stricter (maximum age difference: 3 and 5 years, respectively). 
16 On how university and department affiliations may affect scientific productivity, see Allison and Long (1987, 1990). 
The Italian evaluation system of academic activities does not rank systematically universities and departments according 
to the quality of their research. In the absence of better measures, we can measure the university size with the total 
number of professors (in hard science). 
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patenting process (quite a different situation from now, when more and more university 

administrations “chase” for patentable inventions among the faculty ranks)17. 

The distribution of patents across academic inventors is highly skewed; most professors have signed 

only one patent, and very few more than five (table 3). Most patents belong to business companies, 

as a result of contractual funding, with little meaningful differences across fields, with the exception 

of Biology, which records a higher number of both individual and university-owned patents (table 4). 

We cannot be sure that all academic inventors signed their patents when they were already working 

in a university: some patents may be the outcome of former jobs as industrial researchers or 

employees of large public labs. However, we suspect these patents to be very few, as Italian 

professors usually start pursuing the academic career right after graduating.  

 

{TABLE 3 HERE} 

 

As for IPRs over public-funded, targeted research, in principle these belong to the sponsors (most 

often the MIUR ministry, the National Research Council, and, in the past, ENEA, the National 

Agency for Alternative Energy). However, until recently, the decision to take the first step towards 

patenting was usually left to individual grant recipients. This explains why they are relatively few. 

 

{TABLE 4 HERE} 

 

A similar explanation applies to the scarcity of patents owned by the universities: until recently, 

universities decided to take care of the application procedure and expenses to reward, often 

symbolically, some brilliant researcher, rather than as the outcome of a consistent exploitation 

strategy. It also happened that many professors took the shortcut of patenting at their own expenses 

and in their own name: this explains the presence of a few inventors’ own patents18. Finally, some 

“Open Science” patents come from international collaborations, and are owned or co-owned by US 

and European universities or consortia. 

Table A3 in the Appendix lists the most important applicants as well as the ownership concentration 

ratios, by field. More than one third of the patents in the Electronics and Telecom field are in the 

hands of ST Microelectronics, the largest semiconductor company in Italy and one of the very few 

                                                           
17 On the recent wave of reforms and its effects, see Baldini et al. (2005) 
18 Inventors’ own patents, however, are less than suggested by table 3. In fact, whenever an “individual” patent results 
from teamwork, all co-inventors figure as co-applicants. 
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large hi-tech companies in Italy19. As for the other fields, ownership is so sparse that the National 

Research Council (CNR) and the University of Rome, despite holding very few patents, turn out to 

be ranked highly among patent applicants.  

It should be noticed that, in a few cases, the CNR and the universities enter table A4 as co-applicants 

along with business companies, as a result of public-funded co-operative research projects. In this 

case we assign the patent to the “business” category. 

4.2 Publication data 

For academic inventors and their controls we collected scientific publications from the 2003 web 

edition of the ISI Science Citation Index (SCI), starting from articles published in 1975. 

As a proxy for Productivity (see section 3), for each professor we compute the average number of 

publications at each point in time, as the stock of publications divided by the years of activity. 

Calculating the number of years of activity requires setting a starting date for a professor’s career. In 

the absence of information on either the graduation year or the first year as assistant professor, we set 

the starting date as the minimum between the 30th birth-year and the first year of publication activity. 

This choice will possibly lead to overestimating the publication activity of professors with no papers 

in the early stages of their career, as those years may be dropped from our analysis. This possibility 

is most likely to occur for non-inventors, who record a higher number of zero-publication years (see 

figure 1) and appear in general to be less productive than inventors (table 5). As we will find (section 

4) that AVG_PUB indeed is most often positively related to patenting, we conclude that this 

measurement problem does not undermine our conclusions. 

 

{FIGURE 1 HERE} 

{TABLE 5 HERE} 

For a subset of 139 academic inventors, additional data are available on their graduation year (which 

allows to set a more precise entry date in our longitudinal dataset) and on whether they hold a PhD, 

and when it was completed (from which we build a PHD dummy which takes value 1 from the PhD 

grant year onward). When limiting our analysis to academic inventors we will make use of these 

more precise pieces of information. 

                                                           
19 In particular, ST Microelectronics has a long cooperation record with, among others, some researchers from the 
Department of Electronic Engineering of the University of Pavia (Balconi, Borghini and Moisello, 2003). The 
multinational group ENI plays a similar role in Chemical Engineering, although it has not close relationships with a 
single university. 
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As a proxy for Productivity_Variation (see section 3), we compute it as the difference between the 

yearly scientific production of a professor, and his current Productivity value. We also compute its 

lagged value. 

Information on a professor’s research targets (basic vs. applied) come from a reclassification, 

produced by CHI Research, of about 90% ISI-recorded journals (Hamilton, 2003). Journals are 

assigned a score from 1 to 4 on the basis of their contents and scientific field, with score 1 for the 

most applied kind of research and score 4 for the most basic20. We calculate Productivity_(Basic) 

and Productivity_Variation_(Basic) as the equivalents of Productivity and Productivity_Variation for 

the journals with score 3 and 4.  

Finally, in order to assess the extent of pre-existing research co-operation between academic 

researchers and industry, we have calculated Industry_Contacts: for each in point in time, it 

represents the share of cumulated publications co-authored by each professor with industrial 

researchers affiliated to companies with at least one EPO patent application (not just Italian ones, but 

worldwide). Information on the affiliation of professors’ co-authors come again from ISI-Web of 

Science, while information on worldwide patent applications to EPO come from the K4I dataset on 

EPO patents (K4I, 2005). 

4.3 Institutional and personal data  

Most information on individual professors and their institutions come directly from the MIUR list, 

which contains the professors’ date of birth, as well as their discipline, affiliation, and academic 

ranking (assistant professor, associate professor, and full professor).  

Disciplines are defined according to a classification created for administrative purposes. This 

classification is very detailed and allows some compression into broader categories, which we refer 

to as “fields” (see table A1 in the Appendix)21. It is hardly common for a professor to change 

                                                           
20 The classification distinguishes between biomedical fields and all the other disciplines. In the first case, the scores 

correspond to the following definitions of the journals’ contents: 
 l = "clinical observation" (eg. Journal of the American Medical Association) 
 2 = "clinical observation and investigation" (eg New England J. of Medicine) 
 3 = "clinical investigation" (eg Journal of Clinical Investigation) 
 4 = "basic biomedical research" (eg Journal of Biological Chemistry) 
In the second case the correspondence is: 
 l = "applied technology" (eg Dyes and Pigments) 
 2 = "engineering science -technological science" (Journal of AOAC International) 
 3 = "applied research -targeted basic research" (Analytical Chemistry) 
 4 = "basic scientific research" (J. of the American Chemical Society) 

21 The MIUR list includes only those professors and researchers with tenured position (from now on, we will refer to 
them simply as “professors”). Thus our data miss fixed-term appointees who, at the time, had been working in one or 
more universities for one or more years, as well as all the PhD students, post-doc fellows, and technicians. In the current 
Italian system, assistant professor (called “researcher”) and associate professor positions, despite being only the first two 
steps of the academic career, are not offered as fixed-term appointments, but as tenured ones. The main differences with 
the position of full professor lie in wage and administrative power. 
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discipline over his career, and when this happens, movements can be safely assumed to occur within 

the same field.  

Affiliation refers to the university employing professors in year 2000. For each university we 

calculate Faculty_Size as the number of professors in hard sciences in year 2000; we expect larger 

university to be better equipped in dealing with technology transfer issues, as they may have some 

administrative staff devoted to manage intellectual property rights.  

In the absence of longitudinal data we will make use of Faculty_Size as a control variable throughout 

our analysis, for all years comprised between 1978 and 1999. We justify this use of our data by 

pointing out that academic mobility is a very limited phenomenon in Italy, and it is often confined to 

the very early stages of a professor’s career. As for the absolute size of university faculties, this has 

increased greatly over the years, but the same cannot be said of relative size: public universities in 

Milan, Rome, and a few other large cities have remained the dominant institutions despite all 

changes. We assume our variables to capture effectively the effects on academic patenting of 

university size ranking, and to influence positively the propensity of a professor to sign a patent as 

inventor. 

Other control variables we obtain from the MIUR list are the Age and Gender of professors (=1 for 

women professors).  

By combining our patent data and information on affiliation (in 2000), we have produced two 

additional control variables: Department_Inventors, which measures the percentage of inventors 

among each professor’s colleagues (in the same university and field), at each point in time; 

University_Patents, which measures the stock of patents held by each professor’s university at each 

point in time. We expect both of them to influence positively a professor’s propensity to sign a patent 

as inventor. 

Table 6 provides summary statistics for all the explanatory variables 

 

{TABLE 6 HERE} 

5. Results 

Table 7 reports our estimates for the coefficients of the single-event hazard function. Equations 1 and 

2 are based upon all patents, whether owned by business companies or “Open Science” institutes22; 

                                                           
22 We also add to this category the few patents assigned to individual inventors, as they do not originate from ties with 
industry and are most likely to result from some tacit arrangement between the academic inventor and her university’s 
administration 
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they differ only in the way field dummies are entered (we will come back to this below). Equation 3 

also refers to all patents, but publication data refer only to basic-science publications. Equations 4-5 

and 6-7 refer to business companies’ and “Open Science” patents, respectively. These equations 

include an additional dummy variable (Inventor_status), which takes value 1 for all inventors, 

starting on the year of their first patent. It controls for the possibility that some inventors with 

Business patents may also patent for an Open Science institution (or vice versa), and that one 

patenting experience may affect the hazard rate for the other one. Its lack of significance reflect the 

low number (18) of academic inventors with both kinds of patents. 

 

{TABLE 7 HERE} 

All equations suggest a positive association between patenting and publishing. First of all, we notice 

the positive and significant coefficient of Productivity_Variationt-1, which implies that the hazard 

rate increases of about 11-13% with any additional paper published with the respect to a professor’s 

average. It would be inappropriate to assign to this estimate a causal interpretation; however, it 

suggests that patenting and publishing are not alternative activities, and that patenting does not 

impose any significant publication delay to academic inventors23. 

This result goes against hypothesis 1 and 2, as it suggests that patenting and publishing are not 

alternative diffusion means, and that academic patenting does not imply a diversion of the scientist’s 

effort away from basic research. Rather, there seems to be some degree of complementarity between 

basic research and patenting, as confirmed by Equation (3) in the table, which considers only 

publications on journals more oriented to basic science [Productivity_Variation_(Basic)t-1], and finds 

again a positive coefficient. (Notice that this result is entirely due to Open Science patents (equation 

7), as the coefficient of Productivity_Variation_(Basic)t-1is not significantly different from zero.) 

However, these results are not yet sufficient to shed light on the reasons for the patenting-publishing 

complementarity, that is to distinguish between hypotheses 3a, 3b, 3c, and between hypotheses 3c 

and 4. 

In order to pursue this line of enquiry, we observe the coefficient of Productivity, which is positive 

and quite large. According to equation (1),  by adding one paper to a professor’s average productivity 

we obtain a 12% increase of the patenting hazard ratio. The impact of this variable does not change 

much when considering business patents as opposed to Open Science ones (equations 4 and 6). This 

suggests that it is more likely to capture a “productivity effect” at the individual level (as in 

                                                           
23 We also tested Productivity_Variationt-2, but it never appears significant 
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hypothesis 4) rather than the effect of academic reputation on the chances to patent with industry (as 

in hypothesis 3c).  

In equation (1), the value of the Industry_Contacts coefficient implies that a 1% increase in the stock 

of publications co-authored with industrial researchers (whose employers have at least one EPO 

patent) increases the hazard rate of about 4%. However, the effect holds only for academic inventors 

patenting with business companies (compare equations 4 and 6), which confirms hypothesis 3a: past 

cooperation with industry affects future chances of further contacts with industry24. 

In equation (1) none of the field dummies appears significant (pharmaceutical is the reference case). 

This excludes a direct effect of a professor’s scientific field on the hazard rate. However, we tested 

for indirect effects, by interacting the field dummies with all the publication-related covariates. 

Neither the interactions with Productivity_Variation nor those with Productivity appear to be 

significant. On the contrary, scientific fields affect significantly the impact of  Industry_Contacts on 

the hazard  rate. Equation (5) suggests that the highest effect is recorded in the Pharmaceutical field, 

and the lowest in the Chemical field. 

The field dummy for Biology appears to be significant for the Open Science patents (equations 6-7). 

This reflects the uneven distribution of patents between the Business and Open Science category, 

with the latter hosting a larger proportion of patents by Biology professors. This may also explain 

why  Productivity_Variation_(Basic)t-1 has a significant coefficient only for Open Science patents, as 

publications in molecular biology may at the same time refer to fundamental discoveries, and lead to 

patenting (a joint occurrence much less likely, in Chemical engineering). 

All together, these results suggest that complementarity between patenting and publishing is largely 

due to individual productivity effects (as in hypothesis 4) and, for business patents, to the industry’s 

support of scientific research (as in hypothesis 3b). Evidence on hypotheses 3a (industry provides 

knowledge assets) and 3c (academic reputation may be spent with industry) is less conclusive (see 

table 8).  

 

{TABLE 8 HERE} 

 

The control variables also provide some interesting results. No age effects are observed, while a 

gender effect is detectable, with the disadvantage of women totally confined to Business patents. 

                                                           
24 This effect may be stronger than it looks at first sight: publications are count data, and one or two publications more 
with industrial co-authors may mean much more than a mere 1% increase in Industry_Contacts (for example, a mere 5% 
increase in Industry_Contacts means a 19% increase of the hazard rate). 
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Many studies in the sociology of science have pointed out a negative gender effect on scientific 

productivity. What we have here is an additional gender effect on the probability of patenting with 

industry: women may be less likely to patent not only because they have a lower publication record 

(Long at al., 1993), but also  because they are at a disadvantage in getting support from industry. 

At the level of institution, the share of academic inventors over the total number of a professor’s 

department colleagues (Industry_Contacts), exerts some positive effect on the hazard rate, albeit a 

very limited one (a 50% higher share of academic inventors in the department means only  a 1,5% 

increase of the hazard ratio). Once again, the effect is detectable for business-owned patents only. No 

other variables at the institution level is significant. 

In table 9 we check for the robustness of our results by considering multiple events, that is by  

modelling the hazard rate for both the first patents and the following ones25. 

A few differences appear from table 7. The coefficient for Productivity_Variationt-1 for Business 

patents is no more significant. This may be due to the fact that multiple Business patents are more 

frequent than Open science ones, and most often appear at a very short time distance (usually at no 

more than 1 or two years of distance). Exploration of the data suggest that in these cases no further 

increases of publication activity occurs after the first patent. 

We also notice that the coefficient for Productivity is much higher for Open Science patents. The 

causes of this result are unclear. It may suggest a selection bias affecting university patents: due to 

the reluctance of universities and the other public research institute to engage in patenting, only the 

most highly reputed scientists may convince their administration to pursue patenting.  

 

{TABLE 9 HERE} 

 

Finally, table 10 reproduces equation (1) of table 9 only for a subset of 134 academic inventors, 

whose BA and PhD graduation years we recovered through interviews. The exclusion of the non-

inventors gives much more weight, in the regression, to patenting events beyond the first one.  

The role of Productivity is confirmed, but the time structure of Productivity_Variation looks 

somehow altered, as it is now the coefficient for current publications to affect significantly the 

hazard rate.  

 

                                                           
25 The Inventor_status dummy used in table 7 is here replaced by  Patent_Stockt-1, that is the number of patents signed by 
the inventor up to t-1. This variable affects only the hazard rate for Open Science patents. 
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{TABLE 10 HERE} 

 

The gender effect disappear, while the field dummies enter the regression in a different way (for ease 

of exposition, Biology is now the reference case). We first notice that both the dummies for 

Electronics and Pharmaceuticals affect the hazard rate directly, as a result of the higher number of 

multiple patents by academic inventors in the two fields. The field variable again interact with 

Industry_Contacts, but now it is the coauthorship within the field of Biology that seems to affect 

most the hazard rate (Chemicals is still the field whether coauthorship matters less). Finally, the field 

dummies interact with the PhD dummy: holding a PhD affects more heavily the hazard rate of 

Biology professors than of any other else. 

 

6. Discussion and conclusions 

Back in 1998, Keith Pavitt warned science and technology policy analysts not to rely on patent 

counts for measuring universities’ contribution to technical change. Academic research contribute to 

technology advancement in many more ways than just through patenting. Alongside with the training 

of young scientists, the publication and dissemination of research results stands out as universities’ 

key contribution to society. If patenting were to pose a threat to scientists’ publication activity, we 

should certainly recommend to avoid granting IPR protection to academic research results.   

Our results, however, suggest that no major trade-off exists between patenting and publishing: 

academic inventors do not publish less than their colleagues with no patents, not even right before 

the patenting event, and do not show any bias towards more applied, less basic science. If possible, 

our results indicate the opposite, that is the existence of a positive link, by which more productive 

professors are more likely to end up signing one or more patents. In this respect, our paper confirms 

the results obtained by Stephan et al. (2004) for the US case and Carayol (2004) for France, while are 

at odds with Agrawal’s and Henderson’s (2002) findings in their case study of MIT. 

We also find that professors who exhibit, in a given year, an higher-than-average productivity are 

more likely to patent in the following year, which suggests that patents are most often the by-product 

of a fertile research project. If confirmed, this interpretation may also suggest that professors manage 

to publish (some of) their research results even before patenting, thus avoiding too long a publication 

delay. This association between patenting and publishing in the short run is in line with findings by 

Azoulay et al. (2004), and Markiewitz and DiMinin (2004). As for the latter we find evidence (albeit 
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limited) of a weaker publishing-patenting association for business-owned patents as opposed to 

university-owned ones. 

Former scientific collaboration with industry, in the form of co-authored papers, affects the 

probability to patent with Business companies. Academic fields such as Biology and Pharmaceutical, 

whose research results are more directly exploitable by industry, are those for which the effect is 

stronger. This result is in line with the broader literature on the importance of university-industry 

scientific partnership in the Pharmaceutical industry, and more generally in the science-based 

technology fields (Cockburn and Henderson, 1998). 

An unforeseen result of our analysis point at an additional gender gap when it comes to patenting: 

women scientists, who have been often shown to be at a disadvantage in publication-based academic 

careers, suffer of additional difficulties when it comes to patent their research results with the support 

of industry. This is possibly due to women scientists’ disadvantage at getting support from business 

companies. 

As most of the patents signed by Italian academic inventors belong to industry, we cannot conclude 

that encouraging university patenting is advisable. In order to do so, we should first be reassured 

about the capability of university administrations to handle IPR issues wisely. Nor we can exclude 

that patenting inhibit cumulative research on published-and-patented research (as discussed in the 

Introduction). However, we can conclude that patenting does not seem to affect academic scientists’ 

research targets, nor to inhibit their propensity to publish their research results. Patents by academic 

inventors are just a by-product of good research. 
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TABLES AND FIGURES 
 
 

Table 1. Hypothesis to be tested and specification (expected signs) 
 Productivity 

 (β1) 
Prod. Variation 

(β2) 
Industry 

contacts (β3) 
 

HP1 (Alternative dissemination means) ? - ?  
 

HP2 (Basic-applied trade-off) ? - * ? (+) *  all journals or  “basic” 
journals 

HP3 (Basic-applied complementarity) ? + * ? *  all journals or  “basic” 
journals 

HP3a (Past cooperation with industry 
provides data/knowledge assets ) ? + +  

HP3b (Past cooperation with industry  
makes easier more sponsorship) ? +  + * *  only for business-

owned patents 
HP3c (Academic reputation eases patenting 

with industry) + * + + *   only for business-
owned patents 

HP4 (Individual productivity effect) + ? (+) ?  
 

 

 

 

Table 2. Italian university professors in 2000, selected fields  

Field 
Professors, active 

in 2000 
of which: Academic 
inventors, n. and (%)

Chemical eng. & Materials tech. 355 66 (18,5) 

Pharmacology 613 84 (13,7) 

Biology 1359 78 (5,7) 

Electronics & Telecom 630 73 (11,6) 

Total 2957 301 (10,2) 
Source: EP-INV-DOC database 

 

 

Table 3. Distribution (%) of academic inventors by n. of patents and field 
 n. of patents  
Fields 1 2-5 6+  

Chemical eng. & Materials tech. 60,9 32,8 6,3 100 

Pharmacology 63,1 28,6 8,3 100 

Biology 70,5 23,1 6,4 100 

Electronics&Telecom 56,2 31,5 12,3 100 

Total 62,9 28,8 8,3 100 
source: EP-INV-DOC database 
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Table 4. Ownership of academic inventors’ patents§ by type of applicant and field; n. of 
patents (and %) 

  Business Open Science 1 Individuals 2 

Chemical eng. &  Materials tech. 127 (76,0) 22 (13,2) 18 (10,8) 

Pharmacology 200 (75,2) 32 (12,0) 34 (12,8) 

Biology 88 (48,6) 57 (31,5) 36 (19,9) 

Electronics&Telecom 200 (78,1) 40 (15,6) 16 (6,3) 

Total 615 (70,7) 151 (17,4) 104 (11,9) 
 1 Universities, public labs and government agencies; both Italian and foreign.  
2  Same applicant’s and inventors’ names. 
§ Patents  owned by more than one applicant were counted more than once. 
source: EP-INV-DOC database 

 

 

Figure 1 - Distribution of publications per year, academic inventors vs controls; 1980-1999 
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Table 5. Publications per year, inventors vs controls, 1975-2003; by field 

 N Mean Std Median 
Inventors     
Chem.eng. & Materials tech. ** 63 2,0 1,75 1,5 
Pharmacology * 83 2,2 1,21 2,0 
Biology * 78 2,5 2,10 2,0 
Electronic&Telecom * 72 1,7 1,04 1,4 
All Fields 296 2,1 1,60 1,8 
Controls     
Chem.eng. & Materials tech.  63 1,3 1,10 1,1 
Pharmacology  83 1,7 1,11 1,6 
Biology 78 1,8 1,27 1,5 
Electronics&Telecom  72 1,3 1,18 1,0 
All Fields 296 1,6 1,28 1,3 
* - ** Inventor-control distribution difference significant at .90 - .95 (Kolmogorov-Smirnov test) 
(1)  Only professor aged 24-70 in current years 
source: elaborations on EP-INV-DOC database and ISI Science Citation Index 

 
 
 
Table 6. Descriptive analysis 

Name Description Obs. Mean Std. Dev. Min Max 

Productivity j,t 
Professor j’s average number of publications per 
year, over his career up to year t 11482 1.31 1.24 0 13.4 

Productivity_Variation j,t 
Difference between professor j’s publications in 
year t and his current Productivity value 11482 0.47 1.58 -6.1 13.9 

Productivity _(Basic) j,t 
Professor j’s average number of publications per 
year, over his career up to year t, basic science 
journals only 

11482 0.96   1.10   0 13.0 

Productivity_Variation_(Basic) j,t 
Difference between professor j’s publications in 
year t and his current Productivity value, basic 
science journals only 

11482 0.34 1.30 -4.5 13.6 

Industry_Contatcsj,t 
Share of publication co-authored by professor j
with inventors from companies with at least one 
EPO patent, up to year t 

11482 0.09 0.03 0 1 

Age j,t Age of professors j in year t 11482 41.52 9.96    22 73 

Gender j Dummy variable equals 1 for woman professors 11482 0.21 0.41 0 1 

Department_Inventorsj,t 
Share of academic inventors over the total number 
of a professor j’s department colleagues in year t 11482 8.27 10.16   0   100 

University_Patents j,t 
Stock of patents held by professor j’s university a
in year t 11482 39.23 47.62 0 225 

Faculty_Size j 
N. of hard science professors in professor j’s 
university in year 2000 11482 893.19 520.35 18   2128 

  

  



 

 

Table 7 First patent (single event) – Estimated coefficients of the proportional hazard function (Cox  model) 
 All patents (1) Business company (2) Open Science institution (3) 
 (1) (2) (3) (4) (5) (6) (7) 

Productivity_Variation t 
-0,003 
(0,035) 

0,01 
(0,035) 

 -0,02 
(0,041)  

-0,06 
(0,059)  

Productivity_Variation t-1 
0,10 

      (0,035)*** 
0,10 

      (0,035)*** 
 0,07 

(0,040)*  
0,11 

  (0,056)*  

Productivity,t 
0,11 

    (0,051)** 
0,12 

    (0,049)** 
 0,13 

(0,056)**  
0,14 

  (0,077)*  

Productivity_Variation_(Basic) t   
0,03 

(0,038)  
0,02 

(0,044)  
0,04 

(0,068) 

Productivity_Variation_(Basic) t-1   
0,10 

(0,040)***  
0,07 

(0,047)  
0,17 

      (0,056)*** 

Productivity_(Basic) t   
0,09 

(0,057)  
0,10 

  (0,070)  
0,09 

(0,094) 

Age t 
-0,01 

(0,010) 
-0,01 

(0,010) 
-0,01 

(0,009) 
-0,01 

(0,010) 
-0,01 

(0,010) 
0,01 

(0,016) 
0,01 

(0,016) 

Gender 
-0,27 

   (0,165) 
-0,26 

   (0,160)* 
-0,29 

(0,156)* 
-0,54 

      (0,184)*** 
-0,57 

       (0,184)*** 
0,20 

(0,262) 
0,18 

(0,261) 

Industry_Contacts t 
2,53 

      (0,407)*** 
3,42 

      (0,254)*** 
3,33 

(0,253)*** 
4,05 

      (0,296)*** 
3,96 

       (0,297)*** 
0,92 

(0,762) 
0,87 

(0,758) 

Industry_Contacts t * Electronics   
-0,91 

     (0,416)** 
-0,62 

(0,405) 
-1,18 

      (0,417)*** 
-0,94 

    (0,421)**   

Industry_Contacts t * Chemical  
-8,52 

  (4,092) 
-5,78 

(3,938) 
-4,74 

  (3,627) 
-4,21 

 (3,498)   

Industry_Contacts t * Biology   
-1,33 

   (0,731)* 
-1,24 

(0,718)* 
-1,59 

    (0,773)** 
-1,52 

    (0,764)**   

Inventor_Status   
 -0,48 

(0,323) 
-0,38 

(0,317) 
-0,30 

(0,304) 
-0,24 

(0,758) 

Department_Inventors t 
0,03 

      (0,009)*** 
0,03 

      (0,008)*** 
0,03 

(0,008)*** 
0,03 

       (0,008)*** 
0,03 

      (0,008)*** 
0,01 

(0,010) 
0,01 

(0,010) 

University_Patents t 
0,001 

(0,002)  
 

    

Faculty_Size t 
-0,001 

(0,0001)  
 

    

Electronics dummy 
-0,03 

(0,172)  
 

  
0,45 

(0,334) 
0,58 

(0,336) 

Chemical dummy 
-0,05 

(0,176)     
0,12 

(0,432) 
0,16 

(0,369) 

Biology dummy 
0.01 

(0,163)     
0,87 

(0,293)*** 
0,91 

(0,282)*** 
Wald chi-sq 78,49 342,54 353,66 342,78 324,10 72,07 73,92 
Log-likelihood -1756,52 -1754,19 -1754,42 -1756,12 -1400,74 -572,84 -572,27 
*** 99% sign  ** 95%  * 90%     [Breslow method for ties / Std errors adjusted for clustering on inventor] 
(1) Obs. 9855 (592 subjects; 296 events) (2)  Obs. 10650 (592 subjects; 235 events) (3) Obs. 10650 (592 subjects;  94 events, including INDIVIDUAL patents) 



 

 

Table 8. Hypothesis to be tested and specification (expected signs) 
 Productivity Productivity 

Variation 
Industry 
contacts  

 

HP1 (Alternative dissemination means) ? - * ? *stronger effect for 
business patents 

HP2 (Basic-applied trade-off) ? - * ? (+) *  all journals / “basic” 
journals 

HP3 (Basic-applied complementarity) ?  + *  ?  
 

HP3a (Past cooperation with industry 
provides knowledge assets ) ?  + .  +  

HP3b (Past cooperation with industry  
makes easier more sponsorship) ?  + .   + *  *  only for business-

owned patents 
HP3c (Academic reputation eases patenting 

with industry)  + *  + .  ? *  only for business-
owned patents 

HP4 (Individual productivity effect)  +.  ? (+) ?  
 

NB Cells marked with    .    refers to positive test results  
 
 

Table 9 All patents (multiple events) – Estimated coefficients of the proportional hazard function (Cox  model),  
by applicant type 

 All applicants (1)  Business companies (2)  Open Science inst.(3) 

Productivity_Variation t 
0,02 

(0,022) 
-0,001 
(0,025) 

0,06 
(0,037) 

Productivity_Variation t-1 
0,05 

    (0,022)** 
0,04 

(0,025) 
0,07 

  (0,038)* 

Productivity,t 
0,13 

     (0,037)*** 
0,12 

    (0,046)*** 
0,36 

    (0,107)*** 

Age t 
-0,01 

(0,006) 
-0,01 

(0,008) 
-0,01 

(0,015) 

Gender 
-0,39 

     (0,145)*** 
-0,71 

    (0,193)*** 
0,15 

(0,348) 

Industry_Contacts t 
1,89 

(0,668)*** 
2,51 

(0,813)*** 
-1,14 

(2,501) 

Industry_Contacts t * Electronics  
0,64 

  (0,80) 
-0,11 

    (0,977) 
-2,64 

(3,849) 

Industry_Contacts t * Chemical 
-1,67 

     (1,059) 
-2,62 

    (1,175)*** 
-24,3 

(14,09) 

Industry_Contacts t * Biology  
-0,03 

(0,916) 
-0,61 

(1,113) 
4,33 

(3,102) 

Patent_stock t 
0,03 

   (0,015)** 
0,02 

(0,016) 
0,07 

   (0,034)** 

Department_Inventors t 
0,02 

    (0,004)*** 
0,03 

    (0,005)*** 
0,02 

(0,010)* 

University_Patents t 
0,003 

  (0,001)*** 
0,004 

  (0,001)*** 
-0,001 
(0,003) 

Faculty_Size t 
-0,0001 
(0,000) 

-0,0002 
 (0,000) 

0,0006 
   (0,001)** 

Theta 
0,35 

       (0,140)*** 
1,09 

      (0,262)*** 
6,83 

       (1,522)*** 
Wald chi-sq 190,86 130,88 60,46 
Log-likelihood -3495,39 -2929,44 -965,07 
N. of subjects 1143 1144 1147 
N. of failures 561 472 163 
N. of obs. 11482 11482 11482 
N. of groups 592 592 592 

*** 99% sign  ** 95%  * 90% 
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Table 10. All patents (multiple events) – Estimated coefficients of the 

proportional hazard function (Cox  model); inventors only 

Productivity_Variation t 
0,05 

   (0,025)** 

Productivity_Variation t-1 
0,01 

(0,028) 

Productivity,t 
0,06 

    (0,028)** 

Industry_Contacts t 
4,86 

     (1,517)*** 

Industry_Contacts t * Electronics  
-3,36 

  (1,531)** 

Industry_Contacts t * Chemical 
-5,90 

  (4,290) 

Industry_Contacts t * Pharma  
-4,58 

    (1,684)** 

PhD 
0,91 

      (0,1857)*** 

PhD* Electronics 
-0,84 

     (0,369)** 

PhD* Chemical 
-1,09 

       (0,386)*** 

PhD*  Pharma 
-0,86 

    (0,364)** 

Age t 
0,002 

(0,011) 

Gender 
-0,19 

(0,186) 

Patent_stock t 
0,02 

(0,027) 

Department_Inventors t 
0,02 

      (0,004)*** 

Electronics dummy 
0,82 

      (0,210)*** 

Chemical dummy 
0,43 

(0,219)** 

Pharma dummy 
0,55 

    (0,220)** 
Wald chi2(22) 209,11 
Log pseudo-likelihood -1236,05 
N. of subjects 384 
N. of failures 254 
N. of obs. 2541 

*** 99% sign  ** 95%  * 90% 
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APPENDIX 
 
 
 
 
Table A1. Disciplines (SSD) and fields; conversion table 
Bio-chemistry (E05A) Biology 
Molecular biology (E05B) Biology 
Applied biology (E06X) Biology 
Human physiology (E04B) Biology 
Materials science and technology (I14A) Chemical engineering & Materials technology 
Macromolecular compounds (I14B) Chemical engineering & Materials technology 
Applied physics-chemistry (I15A) Chemical engineering & Materials technology 
Chemical engineering (I15B) Chemical engineering & Materials technology 
Industrial chemistry (I15E) Chemical engineering & Materials technology 
Electronics (K01X) Electronics&Telecommunications 
Electromagnetic fields  (K02X) Electronics&Telecommunications 
Telecommunications  (K03X) Electronics&Telecommunications 
Pharmaceutical Chemistry (C07X) Pharmacology 
Applied Pharmacology  (C08X) Pharmacology 
 
 
 

 

Table A2. Institutional and personal variables, inventor vs. control sample year 2000 

 University size 1 
Weight of the discipline 

in the univ. 2 
University weight in the 

discipline 3 

 Controls Inventors Controls Inventors Controls Inventors 

Chemical eng. & Materials tech. 909 * 784 1,2 1,5 * 8,9 8,9 

Pharmacology 947 * 910 2,0 2,1 4,9 * 4,6 

Biology 896 * 869 2,6 3.0 * 3,9 4,0 * 

Electronics&Telecom 834 939 * 2,7 * 2,0 5,2 5,7 * 

All fields 898 * 879 2,0 2,2 * 5,5 5,6 * 
1 n. of professors in the university (all scientific discipline); avg values 
2 n. of professors in the discipline in the univ. / n. of professors in the university (%); avg values 
3 n. of professors in the discipline in the univ. / n. of professors in the discipline, all Italian univ. (%); avg values  
* Mean value significantly higher at .90 (t test) 
source: elaborations on EP-INV database and ISI Science Citation Index 

 

 
Table A3. Personal variables, inventor vs. control sample year 2000 

 Gender 1 Age2 
 Controls Inventors Controls Inventors 
Chemical eng. & Materials tech. 14 (22,2%) 9 (14,3%) 51.55 51.60 
Pharmacology 32 (38,6%) 27 (32,5%) 51.84 51.26 
Biology 29 (37,2%) 20 (25,6%) 50.83 50.79 
Electronics&Telecom 5  (6,9%) 2  (2,8%) 47.77 47.95 
All fields 80 (27,0%) 58 (19,6%) 50.52 50.40 

1 n. of females (and % of total professors in the discipline) 
2 avg values 
source: elaborations on EP-INV database and ISI Science Citation Index 
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Table A4. Top applicants of patents by academic inventors and patent 
concentration index, by field 

Field/Applicant 
n. of 

patents 
% over 

field 

Chemical eng. & Materials technology 
ENI Group 34 21,1
Montedison Group 16 9,9
Novartis AG 9 5,6
CNR (National Research Council) 9 5,6
Sisas Spa 8 5,0

Herfindhal index (1-100)  6,91

Pharmacology 
Mediolanum Farmaceutici 19 8,4
SkyePharma PLC 17 7,5
Pfizer 14 6,2
CNR (National Research Council) 11 4,8
Lisapharma 8 3,5

Herfindhal index (1-100)  2,96

Biology 
Istituto Angeletti 13 7,8
CNR (National Research Council) 11 6,6
MIUR (Ministry of Education & Research) 6 3,6

Herfindhal index (1-100)  2,13

Electronics&Telecom   
ST Microelectronics  91 37,4 
Optical Technologies 14 5,8 
Selenia industrie elettroniche 12 4,9 
Siemens AG 12 4,9 
Universita degli studi di Roma “La Sapienza” 11 4,5 

Herfindhal index (1-100)   15,55
NB. Patents owned by more than one applicant were counted more than once; total number of patents in 

this table >  actual  total number 
source: EP-INV database 

 


