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Abstract 
The topic of convergence is at the heart of a wide-ranging debate in the growth literature, and 
empirical studies of convergence differ widely in their theoretical backgrounds, empirical specifi-
cations and in their treatment of cross-sectional heterogeneity. Despite these differences, a rate of 
convergence of about 2% has been found under a variety of different conditions, resulting in the 
widespread belief that the rate of convergence is a natural constant. We use meta-analysis to 
investigate whether there is substance to the ‘myth’ of the 2% convergence rate, and to assess several 
unresolved issues of interpretation and estimation. Our dataset contains approximately 600 estimates 
taken from a random sample of empirical growth studies published in peer-reviewed journals. The 
results indicate that it is misleading to speak of a natural convergence rate since estimates of different 
growth regressions come from different populations, and we find that correcting for the bias resulting 
from unobserved heterogeneity in technology levels leads to higher estimates of the rate of 
convergence. We also find that correcting for endogeneity of the explanatory variables has a 
substantial effect on the estimates, and that measures of financial and fiscal development are 
important determinants of long-run differences in per-capita income levels. We show that although 
the odds of a study being published is not uniform for studies with different p-values, publication bias 
has no significant effect on the conclusions of the analysis. 
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1.  Introduction: the legendary two percent 

 

The notion of convergence has been at the heart of a wide-ranging debate in the growth 

literature for some time. Excellent surveys are Temple (1999), Durlauf and Quah (1999), and 

Islam (2003). Intuitively, the term ‘convergence’ suggests a process whereby poor countries 

catch up to richer ones in terms of income levels. The convergence literature is therefore 

concerned with an issue of vital importance in economics: it deals with the distribution of 

riches across the world and its evolution over time. Arguably, this explains the sizeable 

efforts that the economic profession has devoted to the empirical study of convergence.  

Empirical papers in the literature initially set out to investigate the convergence process 

using growth regressions, with the level of initial income as the pivotal explanatory variable. 

A negative correlation between growth and initial income implies a tendency for poor 

countries to catch up (Baumol, 1986). The convergence concept associated with these 

regressions is known as β-convergence. Over the years, an avalanche of empirical cross-

sectional convergence studies dealing with economic growth differentials across countries or 

regions appeared, giving rise to the overall impression that a two-percent rate of convergence 

is almost ubiquitous. It is occasionally suggested that the convergence literature has 

discovered a new ‘natural constant’ (Sala-i-Martin, 1996).1  

A slightly different but closely related literature deals with the distributional dynamics of 

per-capita income levels, and focuses on the cross-sectional dispersion of per capita income 

across countries or regions, and its evolution over time (Quah, 1993). Here, the key concept 

is σ-convergence, where σ stands for the variation in the cross-sectional distribution of per 

capita income, measured either by the standard deviation of the distribution or the coefficient 

of variation. The concepts of β- and σ-convergence are strongly related, and it has been 
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shown that β-convergence is a necessary, though not a sufficient condition for the reduction 

in the dispersion of per-capita income over time.2  

In this paper, we complement the excellent qualitative surveys of the convergence 

literature by providing a quantitative, statistical analysis of the empirical estimates of the rate 

of convergence recorded in the literature. Specifically, we address several unresolved issues 

of interpretation and estimation using a multivariate statistical technique known as meta-

analysis (see Stanley, 2001, for an introduction). Meta-analysis constitutes a set of statistical 

techniques that can be used to compare and/or combine outcomes of different studies with 

similar characteristics, or, alternatively, with different characteristics that can be controlled 

for. Although each individual study may give a good indication of the sampling uncertainty 

of the convergence rate, meta-analysis opens up the possibility of investigating the relevance 

of non-sampling issues such as research design, model specification and estimation 

technique, which are usually relatively constant within a study (Hedges, 1997). This can be 

accomplished by including non-sampling characteristics as moderator or predictor variables 

in a meta-regression model. An obvious advantage of a meta-regression framework is the 

multivariate set-up that allows for an assessment of the ‘true’ convergence rate, concurrently 

accounting for differences within and between studies.  

Meta-analysis was originally developed in psychology, and later on extended to fields 

such as biomedicine and experimental behavioral sciences, specifically education, but is now 

increasingly used in economics as well (see Card and Krueger, 1995; Smith and Huang, 

1995; Ashenfelter et al., 1999; Görg and Strobl, 2001; Dalhuisen et al., 2003; Nijkamp and 

Poot, 2004, for recent applications of meta-analysis). Our study is not the first published 

paper to employ meta-analysis to analyze the income convergence literature. Dobson et al. 

(2003) use meta-regression techniques to assess the effect of study characteristics on the size 

of the estimated rate of convergence, using a sample of published and unpublished studies. 
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We extend their analysis in several ways. First, we employ a random sampling technique to 

sample studies from the voluminous literature of convergence studies. Our sampling strategy 

guarantees an objective and representative selection of studies for an application where 

incorporating all available evidence is not feasible due to the size of the literature. Second, in 

our meta-regression analysis we consider a wider set of variables potentially accounting for 

the observed variation in estimated speeds of convergence, and the selection of variables is 

firmly rooted in theory.  Third, our sample contains over 600 estimates as compared to the 

214 observations used in Dobson et al. (2003). Finally, we more fully exploit the variety of 

statistical techniques available for meta-analysis, including an extensive descriptive 

exploratory analysis. We also include information on the precision of the original estimates 

by weighting the original estimates in the meta-regression, so that more precise estimates are 

given more weight. Finally, we provide several tests for the presence of publication bias, and 

correct for its occurrence in a multivariate regression setting. 

Given the broadness of the empirical economic growth literature we restrict the sampling 

of studies to a specific domain. We only consider studies employing the concept of 

β−convergence in a cross-country or panel data setting using growth or the initial level of 

income per capita as dependent variables.3 As a result, we do not consider studies focusing 

on the distribution of per capita income, pure time-series studies, studies analyzing local or 

club-convergence, and studies using total factor productivity as the dependent variable. We 

acknowledge that these approaches are related (see Islam, 2003; George et al., 2003), but the 

domain restriction guarantees that the population of studies is sufficiently homogeneous to be 

comparable.4  

The remainder of this paper is structured as follows. Section 2 shows how frequently used 

empirical models in the empirical convergence literature are related to theories of economic 

growth, and how theories have been translated into empirical models that can be estimated. 
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Section 3 describes the sampling of studies and the key characteristics of our meta-database, 

and provides several pooled estimates of the rate of convergence utilizing different 

assumptions about the underlying population effect and publication bias. Section 4 discusses 

the meta-regression results using differing assumptions regarding heterogeneity, dependence 

and publication bias. Section 5 concludes. 

 

2.  Convergence: from theory to empirics 

 

The parameter of interest in empirical convergence studies modeling economic growth as a 

function of initial income and possibly a set of conditioning variables is the estimated 

coefficient of the income level at the beginning of the growth period. A negative coefficient 

indicates that poor countries on average grow faster than richer ones, which not necessarily 

implies a shrinking distribution of per-capita income because unexpected disturbances can 

take a country above or below its growth path. A crucial point, however, is that such 

inferences can be drawn without explicit reference to a specific theoretical growth model. In 

order to clarify the issues surrounding the interpretation of the estimated rate of convergence, 

we next discuss the links between empirical research and theoretical studies of economic 

growth. We also dwell upon several operational issues, such as the specification of 

differences in technology and the definition of steady states. 

 

2.1 Theoretical background 

 

A natural starting point for a theoretical discussion of economic growth is the neoclassical 

growth model developed by Solow (1956) and Swan (1956). The key assertion of this model 

is the existence of a unique balanced growth equilibrium, a result due to placing a number of 



restrictions on the characteristics of the production function. The two key-restrictions are 

diminishing returns to scale with respect to reproducible factors (capital) and a constant and 

exogenous rate of Harrod-neutral (labor augmenting) technological progress.  

In the steady state, both capital and output per worker grow at the constant exogenous rate 

of technological progress. Denoting total output Y, physical capital K, labor augmenting 

technology A and the size of the labor force L, we can define a Cobb-Douglas production 

function given by: 

 

 , (1) αα −= 1)(LAKY

 

with 10 << α  for the share of output paid to the owners of capital, which satisfies the above 

conditions. 

Savings can be a constant fraction )1,0(∈s  of income, as in the Solow model, or be 

determined by a consumer optimization problem, as in the Ramsey model. In both cases, a 

unique balanced growth equilibrium:  
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=== , (2) 

 

exists, where  and  are expressed in per-capita form, and g is the growth 

rate of technology. 

LYy /= LKk /=

In addition to having identical balanced growth equilibria, the Solow and Ramsey models 

also have identical implications for the transition towards the steady state. Denoting 

 and ALYy /~ = ALKk /~
=  as output and capital per efficiency unit of labor, a Taylor 
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expansion in k~log  around the steady state *~k  results in: 

 

 ( kk )
k
k ~log~log~
~

* −= λ , (3) 

 

for both the Solow and the Ramsey models. The implication therefore is that the growth rate 

of capital per efficiency unit of labor k~  is proportional to the distance between its current 

value and the steady state. 

Although the interpretation of λ  as the rate of convergence to the steady state is the same 

in both models, the variable itself is a function of different parameters. In the Solow model it 

is given by ))(1( δαλ ++−≈ gn , where  is the rate of labor force growth, and n δ  the 

depreciation rate. In the Ramsey model, the convergence rate λ  is a function of both 

technology and preference parameters, such as the rate of inter-temporal substitution, and the 

rate of time preference. 

Solving the differential equation (4), and using the Cobb-Douglas function expressed in 

intensive form as , we arrive at: αky ~~ =

 

 ( ) )0(~log~log1)(~log * yeyety tt λλ −− +−= . (4) 

 

In order to see how equation (4) can be converted into an empirically testable form, one 

should note that the available data are defined in terms of per capita income, or Ayy ~= . 

Substituting into equation (4), and subsequent rearranging, gives: 

 

 ( ) ( ) ( ) *~ln1)0(ln1)0(ln1)0(log)(log yeyegtAeyty ttt λλλ −−− −+−−+−=− . (5) 
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The key proposition of the neoclassical growth model is convergence within an economy 

rather than across economies. This fundamental characteristic of neoclassical growth theory 

notwithstanding, the majority of papers in the empirical growth literature have estimated a 

cross-sectional version of the model. Assuming that the initial level and the growth rate of 

technology are constant across countries, and x  represents a vector containing the 

determinants of the steady state, equation (5) can be expressed as: 

 

 γβξ xyyty ′++=− )0(ln)0(log)(log , (6) 

 

where ξ  is a constant. The stochastic form of this equation is then typically estimated using 

simple ordinary least squares (OLS). However, for this approach to be valid, several strong 

assumptions have to be made. During the last two decades, the literature has been working on 

relaxing these assumptions, and this has resulted in a plethora of approaches to estimate the 

rate of convergence. In the remainder of this section, we discuss several of the issues 

involved in transforming equation (5) into an operational empirical model, since this is one of 

the main sources of heterogeneity across studies.  

 

2.2 Treatment of technology  

 

In traditional neoclassical inspired approaches to empirical convergence, both the initial level 

of technology and its subsequent growth rate are assumed constant and identical for all 

countries, apart from random variation in initial technology that is subsumed in the error term 

(see Mankiw et al., 1992). Specifically, it is assumed that the initial level of technology has a 

fixed and a normally distributed random component: 
 8



 , (7) ),0(N~with)0( 2σεε iii aA +=

 

where the subscript i refers to the country. This is a rather strict assumption allowing for the 

estimation of equation (7) with OLS. 

Extensions of the Mankiw et al. (1992) approach have moved from a cross-section to a 

panel-data setting in order to relax the assumption of identical technologies and to allow for 

country-specific differences in the level of technology by means of fixed or random effects 

(see, for example, Islam, 1995). There is some discussion in the literature as to which type of 

estimator is more appropriate in the presence of endogeneity and omitted variable bias. The 

fixed effects model (FEM) allows for individual effects, but the estimator is inconsistent in 

the presence of endogeneity. The random effects model (REM) is not appropriate if the initial 

level of technology A(0) is correlated with other explanatory variables, for instance, with the 

savings and population growth rates. Other variants, such as seemingly unrelated regression 

(SUR) estimation, allow for individual constants and correlated error terms, and the minimum 

distance (Chamberlain 1982, 1983) and general method of moments (GMM) methods, allow 

for both individual effects and endogeneity of the explanatory variables. 

Another issue centers on panel data estimates capturing short-run effects (for example, 

business cycles) versus cross-sectional estimates depicting long-run transitional dynamics. 

Typically, panel data observations are five-year averages, whereas cross-sectional 

observations are 25-year averages, or even longer in more recent applications. The empirical 

equation used to estimate the rate of convergence is derived from the neoclassical models 

using a first-order Taylor expansion. In a strict sense, this approximation is only valid in the 

neighborhood of the steady state. It is therefore difficult to defend the use of this equation to 

estimate a model using 25, 50 or even 100-year averages.  

Apart from the level of technology varying across countries, it may also be that its growth 
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rate differs across countries. Lee et al. (1997) allow for such variation, and find a 

substantially higher estimate of the rate of convergence.  

This discussion of the treatment of technology implies that potential heterogeneity in 

estimates of the rate of convergence within the convergence literature may be related to 

differences in the way technology is treated. In an operational sense, this yields a series of 

moderator variables to be considered in a meta-regression framework (see Section 4). 

Specifically, we investigate whether differences in the type estimator employed in the 

primary studies, the data characteristics (cross-section vs. pooled data), and the periodical 

frequency of the data affect the estimates of the rate of convergence obtained. 

 

2.3 Definition of the steady state 

 

Another important potential source of heterogeneity deals with the definition of the steady 

state per-capita income level . The simplest identifying assumption amounts to steady 

states being identical, and this may very well be appropriate in studies considering 

convergence of states or regions within a country (for example, Barro and Sala-i-Martin, 

1992). In terms of equation (6), convergence in per-capita income levels implies the term 

)( *y

γx′  

is constant, and that the coefficient of initial income should be negative for convergence to 

occur. This concept is known in the literature as absolute or unconditional convergence.5 The 

evidence on unconditional convergence is mixed. Negative estimates of β  in unconditional 

convergence regressions have only been found for relatively homogenous samples such as 

OECD countries (for example, Baumol, 1986).  

The lack of evidence on unconditional convergence has prompted a wave of conditional 
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convergence models in which steady states are allowed to differ across countries. In the 

simple Solow model, the steady state is given by: 

 

 
α

α

δ

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=
1

*

gn
sy . (8) 

 

Mankiw et al. (1992) extend the Solow model to allow for two forms of capital, viz. physical 

and human capital. The steady state income level is then a function of the rates of investment 

in human and physical capital, the human and physical capital income shares, and the 

respective depreciation rates. If the rates of technological progress and depreciation are 

assumed to be the same across countries, the steady state can be uniquely defined in terms of 

the savings rate in physical and human capital and the population growth rate. This is the 

approach taken in the seminal Mankiw et al. (1992) paper. The dynamics of the Solow model 

imply that a country grows faster the further away it is from its steady state. Empirical 

conditional convergence results appear to support this notion in the sense that after 

controlling for steady state differences (in population growth, savings and human capital 

accumulation rates), poor countries grow faster than richer ones (for example, Mankiw et al., 

1992; Barro and Sala-i-Martin, 1995). 

An alternative to this theory-based approach to conditional convergence is the less formal 

data-driven approach of, amongst others, Kormendi and Meguire (1985), Grier and Tullock 

(1989) and Barro (1991). In this approach, extensive datasets are constructed, containing a 

host of variables potentially affecting economic growth. They are subsequently used to 

simply ‘try out’ regressions without a clear link to theory. These approaches are often 

criticized for testing without theorizing and for generating at best very restricted robust 

results (see, for example, Levine and Renelt, 1992; Sala-i-Martin, 1997; Florax et al., 2002; 
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Temple, 2003; Sala-i-Martin et al., 2004). Arguably, they can also be seen as attempts to 

investigate the empirical relevance of factors brought up in new endogenous growth theories 

(see Barro and Sala-i-Martin, 1995; Aghion and Howitt, 1998, for surveys). As such, they 

may result in better parameterizations of steady states as well as contribute to limiting the 

disturbing impact of omitted variables. The latter can also be achieved by restricting the 

sample to countries or regions that are similar in terms of technology and institutions (see 

Barro and Sala-i-Martin, 1995). 

Apart from omitted variable bias, endogeneity of the regressors has been identified as a 

major concern, because it renders the OLS estimator biased and inconsistent. Cho (1996) 

convincingly argues that this is problematic for the Solow variables, population growth and 

the savings rate. However, many variables are potentially endogenous, even to the extent that 

Caselli et al. (1996) observe that: “[A]t a more abstract level, we wonder whether the very 

notion of exogenous variables is at all useful in a growth framework (the only exception is 

perhaps the morphological structure of a country’s geography)”. Barro and Lee (1993), and 

Barro and Sala-i-Martin (1995) address the endogeneity issue by estimating a system of 

stacked equations, using lagged values of the explanatory variables as instruments, while 

Caselli et al. (1996), Hoeffler (2002) and others use a GMM estimator. 

On the basis of the above, we once again identify a series of factors that may create 

heterogeneity in the empirical convergence literature. Specifically, we analyze the effects of 

including different sets of explanatory variables in the vector x, because omitted variable bias 

may be important when the specification is restricted to only a few variables, but also because 

the convergence rates estimated using different model specifications may, strictly speaking, 

be measuring different population parameters. The issue of endogeneity can be analyzed by 

specifying the type of estimator used in each primary study, and we also consider the effect 
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of restricting the sample to countries or regions that are similar in the sense that they may 

share the same steady state characteristics. 

 

 

3. Literature sampling and combining estimates 

 

The empirical literature on convergence is large and rapidly expanding. On the one hand, this 

makes it prohibitive to sample all studies at a reasonable cost. On the other, it necessitates 

applying set, a priori rules for sampling in order to safeguard the representative nature of the 

sample of studies.  

We utilized the following sampling criteria. First, we searched the EconLit database for 

empirical studies on economic growth. Subsequently, we reduced the sample by considering 

only articles published in journals and in the English language, and excluded studies focusing 

exclusively on the time-series dimension, those using a growth accounting method, or 

employing total factor productivity (TFP) as the dependent variable.6 The total number of 

studies left after applying these criteria was 1,650. As a final step, we randomly selected 

studies to be included in the meta-analysis from this listing of studies until the results of the 

meta-analysis were robust to including additional observations.7  

For each reported regression in the primary studies, we recorded an estimate of the rate of 

convergence and its associated standard error. In addition, we recorded publication details, 

characteristics of the original dataset such as the number of cross-sectional and temporal 

units, the level of aggregation (countries or regions), whether or not purchasing power parity 

(PPP) exchange rates were used and their source, the initial year of the sample and the 

number of observations, and regression characteristics such as the type of estimator, and the 

type and number of conditioning variables included in the regression. The total number of 
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observations in our database is 619, each corresponding to a regression, provided by 48 

separate studies.8 An overview of the studies is given in Table 1, showing that with the 

exception of Taylor (1999) all studies provide multiple estimates, ranging from 2 to 54 per 

study. The average convergence rate is 4.3 percent, implying a half-life (i.e., the time span 

needed to cover half the distance to the steady state) of 16 years, and on average the rate of 

convergence ranges from 1.4 to 8.3 percent. 

 

< Table 1 around here > 

 

Figure 1 graphically provides descriptive statistics for the studies in our sample, including 

the mean, median and standard deviation of the rate of convergence reported in each case. It 

also shows that most studies have a fairly homogeneous within-study distribution of 

estimates. Except for Henisz (2000), Savvides (1995), Abrams et al. (1999) and Arena et al. 

(2000) the mean and median estimates are fairly close, implying the within-study distribution 

is not skewed, and the within-study variance of the estimates is reasonably small. 

 

< Figures 1 and 2 around here > 

 

Figure 2 presents the same data from a slightly different perspective. It shows a histogram 

of the convergence rates as a fraction of the total meta-sample (n = 610). A small proportion 

of the estimates is negative, and there are a few (positive) outliers; approximately 9 percent of 

the estimated rates of convergence exceed 10 percent, implying a half-life of less than 7 

years. A substantial number of observations is clustered around a convergence rate of two 

percent; the proportion of estimates that lies between a convergence rate of 1 and 3 percent is 

close to one third.  



 

Apart from information on the effect sizes, it is also desirable for the meta-analysis to 

take into account the fact that the standard errors of the respective estimates are different, 

among other things because the sample sizes of the primary studies differ. We can recover 

estimates of the rate of convergence and their associated standard errors from almost any 

regression of growth on the logarithm of initial income. Consider the following general 

model: 

 

 ititittitiit xyyy εμηγβα ττ +++′++=− −− ,, lnlnln , (9) 

 

where  is a vector of explanatory variables, itx tη  a time-specific effect, iμ  a country specific 

effect, and itε  an error term that varies across countries and periods. A regression of this 

form will yield an estimate , and a corresponding estimated standard error β̂ βσ̂ . The 

coefficient β  and our variable of interest, the rate of convergence λ , are related via:  

 

 ( )te λβ −−−= 1 . (10) 

 

Estimates for the convergence rate  can therefore be obtained as:  λ̂

 

 ( )
τ

βλ
ˆ1lnˆ +

−= , (11) 

 

and the estimated standard error λσ̂  can be approximated by: 
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) ( βτ

σ
σ β

λ ˆ1

ˆ
ˆ

+
= , (12) 

 

where τ is the length of one time period.9 In our meta-analysis, we consider estimates of 

convergence rates and their associated standard error obtained directly using a non-linear 

estimation method, as well as those obtained through the transformations defined in equations 

(11) and (12).  

 

3.1 Pooling estimates 

 

We continue describing the characteristics of our data-set by using different methods to 

combine study estimates. In doing so, the estimated standard errors are taken into account 

since they provide a measure of their precision. There are two common ways of combining 

study estimates, using either a ‘fixed’ or a ‘random effects’ estimator. The fixed effects 

method, also known as the inverse variance-weighted method, assigns to each estimate a 

weight inversely proportional to its variance. The crucial assumption of the fixed effects 

method is that all studies measure the same underlying population effect. The random effects 

method assumes that the studies are a random sample from a larger population of studies, and 

that the population effect sizes are randomly distributed around a population mean. The 

weights in this case are the reciprocal of the sum of the between and within study variances 

(see also Section 4).10  

We calculate pooled estimates of the rate of convergence for our sample of 610 

regressions. The pooled fixed effect estimate of the rate of convergence is 0.2 percent per 

year. The random effects estimate is 2.4 percent per year. Both estimates are significantly 

different from zero with a p-value < 0.001. The assumption of the fixed effect method that 
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there is one population effect size (one ‘true’ rate of convergence) is rather unrealistic given 

that we are combining estimates of studies with widely varying characteristics, and the rate of 

convergence is an average across different samples of countries and regions. Furthermore, 

both estimators assume that the observations are independent, which is probably reasonable if 

single measurements are taken from each primary study, but it is quite unlikely when 

multiple measurements are taken.11 The estimators are therefore not efficient, but Bijmolt and 

Pieters (2001) show that using multiple measurements is to be preferred in terms of detecting 

the ‘true’ underlying population effect size.12 Figure 3 shows a forest plot of the individual 

and pooled estimates using the random effects model. It is obvious that the results of 

Haveman and Netz (2001), Abrams et al. (1999), Dixon et al. (2001) and Arena et al. (2000) 

are furthest off the pooled estimate and especially the latter has a rather wide confidence 

interval.13

 

< Figures 3 and 4 about here > 

 

3.2 Publication bias 

 

A pivotal issue in meta-analysis is whether the meta-sample is subject to publication bias, 

implying a tendency for published papers to exhibit statistically significant results for the 

main variable of interest. This phenomenon may occur either because of self-censoring by 

authors or because editors of journals make publication decisions partly on the basis of 

statistical significance levels. One of the advantages of meta-analysis over a conventional 

literature review is precisely that its quantitative nature allows for testing and correcting for 

publication bias. Various tests have been developed although some of them have been shown 

not to be overly powerful in detecting publication bias (see Macaskill et al., 2001). We 
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proceed by using a test based on a visual representation known as the funnel plot, due to 

Egger et al. (1997). The funnel plot, presented in Figure 4, gives the convergence rate on the 

horizontal axis and its precision (as defined by the standard error) on the vertical axis. Figure 

4 shows that as compared to statistical expectations, there is an apparent overrepresentation 

of studies showing convergence rather than divergence. Specifically, in view of the mean of 2 

percent, there is an obvious imbalance between the occurrence of very large positive 

convergence rates and hardly any estimated rates that are smaller than zero. 

Moreover, the results of studies with smaller sample sizes (and therefore larger standard 

errors) scatter more widely, as expected, but are clearly underrepresented. Egger et al. (1997) 

suggest a test of funnel asymmetry in which the standardized effect size is regressed against 

the standard error. The test consists of evaluating whether the estimate of the intercept differs 

significantly from zero, which is taken to be indicative of publication bias. The estimated 

intercept for our meta-sample is 4.24, with a t-statistic of 19.01, indicating the presence of 

publication bias.14 It has been suggested that the slope coefficient can provide a rough 

estimate of the effect size corrected for publication bias (see Sutton et al., 2000a). In our 

meta-sample this estimate is –0.2 percent, with a 95% confidence interval ranging from –0.28 

to –0.11. The evidence shown by the test and the funnel plot should, however, be interpreted 

with caution because it rests on a simple bivariate analysis and the effects may also be caused 

by other biases (see Egger et al., 1997; and Sterne et al., 2001, for a discussion).  

A method to correct for publication bias by combining estimates from the primary studies 

is due to Duval and Tweedie (2000a,b), who use a nonparametric ‘trim and fill’ method that 

estimates the number and outcomes of hypothetical studies that are missing due to 

publication bias, and adds the hypothetical study results to the meta-analysis so that in effect 

the symmetry in a funnel plot is recovered. The ‘trim and fill’ results for our meta-sample are 

very different depending on whether the fixed or random effects method is used to compute 



the combined estimates. The total number of observations (real and hypothetical) following 

the ‘trim and fill’ method is 901. When pooled these observations result in a convergence rate 

of –0.1 percent using fixed effects, or 0.3 percent using random effects, both with p-values < 

0.001. These results should be contrasted with pooled estimates of 0.2 percent (fixed effects) 

and 2.4 percent (random effects), both with p-values < 0.01, obtained using the traditional 

method that takes no account of publication bias. 

From the above results we infer the following preliminary conclusions. First, combining 

the estimated effect sizes attained in the empirical convergence literature by means of the 

fixed effects estimator is overly restrictive. This is not all that surprising, because the fixed 

effects estimate is simply an inverse-variance weighted average and the method assumes that 

there is a single, fixed underlying population effect size. This conclusion is also corroborated 

statistically by the results of the Q-test, which indicates the presence of heterogeneity.15 

Second, the random effects estimate provides some evidence to support the common 

perception that a ‘natural’ rate of convergence of about two percent exists. However, merely 

combining estimated convergence rates and assuming that all underlying differences are 

essentially unobservable and random is very restrictive as well. Specifically, some of the 

differences are easily observable (for example, the estimation method, sample, and 

conditioning variables used in the primary studies), and this information should be used in 

order to reach a more efficient and informative conclusion. We therefore proceed by 

specifying a meta-regression in which differences are at least partly treated as observable. 

Finally, the results also show that one should be aware of the potential impact of publication 

bias, although in order to reach a definitive conclusion it is necessary to apply a multivariate 

analysis, since the results of the publication bias tests could be driven by real underlying 

differences in the primary estimates. 
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4.  Meta-regression model 

 

We continue by presenting the results for a meta-regression specification with exogenous 

variables as indicated in Section 2 and described in more detail below. Before proceeding, 

however, we provide a detailed explanation of the different estimators that we apply.  

The first estimator, which is becoming increasingly popular in recent meta-analysis 

applications (for example, Smith and Kaoru, 1990; Boyle et al., 1994; and Görg and Strobl, 

2001), is the Huber-White estimator. This estimator simultaneously corrects for heteroskedas-

ticity and cluster autocorrelation (see Williams, 2000; Wooldridge, 2002, Section 13.8.2), and 

hence accounts for the multiple sampling data set-up by allowing for different variances and 

non-zero covariances for clusters of measurements coming from the same study. Arguably, 

however, the Huber-White estimator is rather restrictive in assuming that all differences 

across observations and studies are observable, and can entirely explain the empirical 

heterogeneity. In addition, the Huber-White estimator does not fully exploit all available 

information because it estimates the variance rather than taking it as given or recoverable 

from the primary studies. 

The latter can be remedied by using a multivariate version of the fixed or random effects 

meta-estimator that we already employed in the bivariate case in the preceding section. We 

consider n growth regressions, indexed by i (= 1, 2, …, n), and assume that deviations of the 

estimated convergence rate  from the true effect size iλ̂ iλ  are random:  
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where α  is a common factor, and  contains a set of design and data characteristics. We 

thus allow the true effect size and the precision of the estimated effect size  to vary across 

regressions. The term  is known as the within-variance, and is usually taken as given and 

derived from the original regression.

ix

2
iσ

2
iσ

16 Any remaining heterogeneity between estimates is 

either explainable by the observable differences modeled through the moderator variables 

contained in , or is random and normally distributed with mean zero and variance , the  

between-variance. If , the model is referred to as the fixed effects model, and it is 

assumed that all heterogeneity in the true effect size can be explained by differences in study 

characteristics.

ix 2τ

02 =τ

17 If the between-variance is not equal to zero, the model is a random effects 

model, which is usually referred to as a ‘mixed effects’ model because it contains observable 

‘fixed’ characteristics in  as well as a random unobservable component with mean zero and 

variance . The unknown variance can be estimated by an iterative (restricted) maximum 

likelihood process or, alternatively, using the empirical Bayes method, or a non-iterative 

moment-estimator (see Thompson and Sharp, 1999, for details). We use the iterative 

restricted maximum likelihood estimator with weights: 
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to obtain estimates for the regression coefficients and . 2τ̂

In comparison to the Huber-White estimator, the fixed effects model is equally restrictive 

in assuming that the observed empirical heterogeneity is perfectly observable. It does, 

however, incorporate information on the estimated standard errors of the original regressions, 

although it does assume that all observations, including multiple observations taken from the 
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same study, are independent. The mixed effects estimator relaxes the assumption of fixed 

population effect sizes, but does not allow for dependence among the errors either. The latter 

may imply that the fixed and mixed effects estimators are not the most efficient estimators, 

and inferences regarding statistical significance should therefore be drawn with caution. 

The last estimator we use builds on the mixed effects model but corrects for publication 

bias. The estimator for a simple univariate random effects model was developed in Hedges 

(1992), and later on extended to a mixed effects model in Vevea and Hedges (1995).18 The 

approach is based on assuming that there is a step function for different classes of p-values, 

and subsequently estimating a model in which the sampling probability of the first class of p-

values (for example, p < 0.01) is set to one, and the sampling probabilities for the other 

critical classes of p-values (such as, 0.01 < p < 0.05, 0.05 < p < 0.10, and p > 0.10) are 

estimated within the model. Intuitively one expects, in the case of publication bias, that the 

likelihood of sampling studies with increasing p-values will show a nonlinear decline, or in 

other words, studies with lower p-values are more likely to be published. The Hedges 

approach to modeling publication bias is based on weighted distribution theory, and the 

appropriate maximum likelihood estimator for a mixed effects model incorporating a step 

function as well as tests for publication bias are derived in Vevea and Hedges (1995). 

 

4.1 Empirical results 

 

Table 2 presents the results of the meta-regression model for the different estimators outlined 

above (Huber-White, fixed effects, mixed effects, and mixed effects with a step function). 

We use three classes of explanatory variables. One class deals with data characteristics, the 

second with estimation characteristics, and the third class refers to the inclusion of different 

conditioning variables in the primary studies. 
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< Table 2 about here > 

 

One of the most striking results in Table 2 is that the results of the Huber-White estimator 

results in relatively few significant moderator variables. A formal comparison of the Huber-

White estimator to the traditional fixed and random effects estimators is not yet available, but 

our results indicate that the Huber-White approach may not be very adequate because it does 

not utilize all available information (i.e., information on the precision of the estimates, as 

measured by the standard errors), and results in an overly conservative statistical assessment. 

It is well known that in the case where there is evidence of unobserved heterogeneity, the 

fixed effects estimator is insufficiently conservative (see Sutton et al., 2000a, pp. 83–84). 

Table 2 shows that the between-variance is relatively large, and should not be ignored. 

Hence, the fixed effects confidence intervals are likely to be too small.  

In the remaining part of this section we therefore focus on interpreting the results as 

provided by the mixed effects model. Before doing so, we note that the estimation results 

with and without correction for publication bias are very similar. However, a Likelihood 

Ratio test on the null hypothesis of no publication bias is rejected, indicating that at least one 

of the estimated sampling probabilities assigned to the p-value classes is not equal to unity. 19 

It is easily verified (with the results provided in Table 2) that none of the estimated 

coefficients of the different p-value classes is significantly different from unity, with the 

exception of the class 0.05 < p < 0.10, which is different from unity at the 1% significance 

level. 

We therefore find no evidence of publication bias in the traditional sense of the term’s 

meaning (i.e., insignificant results are under-sampled), although we do find that the sampling 

probability does not follow a uniform distribution for all the p-value classes. In particular, 

observations with p-values between 5 and 10 percent are over-sampled.20 There could be 
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several explanations for this result. Different authors and editors may follow different 

‘publication’ rules, basing their submission or publication decisions on sample size, sample 

coverage, the standard deviation of the regression, or size and sign of the parameters. In 

addition, we have sampled studies with different primary variables of interest (for example, 

taxes, geography, or education). The decision to publish could be based on the significance 

level of these variables and not on the significance level of the estimated rate of convergence. 

Moreover, the decision to publish a study often depends on the sign, size and significance 

levels of previous studies, or of other regressions within the same study. A more in-depth 

analysis of the mechanisms driving publication bias is an interesting area for future research. 

For the moment, we conclude by noting that over-sampling of observations with p-values 

between 5 and 10 percent does not significantly affect the results of the meta-regression. 

 

4.2 Results for data characteristics 

 

The first set of variables included in the regressions is related to data characteristics. The 

variables ‘Summers and Heston,’ ‘Maddison’ and ‘Regional PPP × Regional aggregation’ 

refer to the source of the PPP-rates used in the primary study. The ‘Regional PPP × Regional 

Aggregation’ term refers to studies at the regional level that make use of data adjusted for 

regional price differences. The reference category is data based on market exchange rates. 

Our hypothesis is that the use of PPP-rates leads to higher estimates of the rate of 

convergence. The intuition is that, after controlling for the steady state, the coefficient of 

income measures how fast countries approach their steady state. The use of market exchange 

rates makes poor countries appear poorer than they actually are. After controlling for the 

steady state, it appears that countries are further away from the steady state than they really 

are, or in other words, that they are approaching it more slowly. Our hypothesis is supported 
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in the case of the mixed effects model, particularly for regional PPP rates. The coefficients 

for Summers and Heston and Maddison data are positive although not statistically significant. 

In the case of regional PPPs, their use raises the estimated rate of convergence by 1.9 

percentage points. 

We also investigate whether the use of regional data leads to different results. Our 

hypothesis is that regional data are more homogenous than cross-country data, particularly 

when it comes to the level and growth rate of technology. Omitted variable bias due to 

excluding a measure of technology from the original growth regression is expected to create a 

downward bias, since the coefficient of initial income is negative, and the effect of 

technology on growth is positive (for a discussion see Caselli et al., 1996). The empirical 

results appear to confirm this hypothesis: the use of regional data (expected to be more 

homogenous in terms of technology and other omitted variables such as institutions) leads to 

a rate of convergence that is, on average, 1.3 percentage points higher. 

 We have also included a constructed variable to measure the effect of using a relatively 

homogeneous sample. ‘Homogeneous’ is a dummy variable that equals one if the sample 

comprises the OECD-countries, a regional cross-country sample, or a regional sample (for 

example, the provinces of Spain or the prefectures of Japan). The coefficient is also positive 

and significant in this case; the use of a homogeneous sample leads to convergence rates that 

are, on average, 0.9 percentage points higher. 

 Finally, we included a dummy variable to record whether the dependent variable in the 

growth regressions is per-capita income or per-capita gross product, labeled ‘Per Capita 

Income.’ Some theoretical models have predicted different results due to migration, 

particularly for regional data sets. Our regressions indicate that this distinction does not lead 

to significantly different estimates of the rate of convergence. 
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4.3 Results for structure of the data 

 

The next set of variables included in the regressions is related to the dimensions and structure 

of the data. One hypothesis is that averaging over a larger number of countries (or regions) 

and time units leads to lower estimates of the rate of convergence. The reason is that it 

increases the heterogeneity in the sample, and therefore the likelihood of omitted variable 

bias. The regression results appear to confirm our hypothesis, although for the number of 

time units only and with a rather small effect of –0.1 percentage points. Surprisingly, the 

variable ‘Number of Observations’ has a positive coefficient in all the weighted regressions, 

but it is not significantly different from zero.  

 Another hypothesis concerns the total time span of the data. Use of data spanning a larger 

number of years (say, 50 to 100 years instead of the usual 25), could lead to higher estimates 

of the rate of convergence, since theory predicts that the rate of convergence decreases as a 

country approaches its steady state (for a discussion see Barro and Sala-i-Martin, 1995, p. 

53). The regression results, however, show that there is no significant difference. 

 We also included a variable to control for the initial year of the sample, labeled ‘Initial 

Year of the Sample,’ hypothesizing that convergence patterns may have changed over time. 

The coefficient is negative but not significantly different from zero. 

 Finally, we include two variables to measure the effects of short frequency on panel data 

estimates. The variable ‘Pooled Data’ measures the effect of simply breaking up the data into 

several shorter periods – regardless of type of estimator used; there are even some instances 

of OLS estimation. There is a rather large effect of shorter frequency on estimates of the rate 

of convergence. The interaction variable ‘Pooled Data × Length of Time Units’ measures the 

effect of increasing the length of the growth episode (in the case of pooled data) by one year.
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The coefficient in this case is negative and highly significant, perhaps capturing the effect of 

business cycles. 

 

4.4 Results for estimation characteristics 

 

This set of variables includes the type of estimator used, and whether the estimate was found 

directly using a non-linear method or indirectly through a transformation. We include the 

variable ‘Non-Linear Method’ in order to verify that our transformation of the coefficient of 

initial income does not systematically bias the estimates of the rate of convergence. As 

expected, the coefficient is not significantly different from zero. 

 The next group of variables is included to test some of the arguments advanced by 

different authors in the convergence debate. For instance, Caselli et al. (1996), Hoeffler 

(2002), and many others have shown that GMM estimation can correct for omitted variable 

bias (of country-specific effects) and endogeneity, both of which could bias the estimate of 

the rate of convergence downwards. Our results indicate that using GMM leads to estimates 

of the rate of convergence that are higher by 6.3 percentage points, a substantial difference. In 

a recent paper Bond et al. (2004) again challenge whether the traditional use of the GMM 

estimator is adequate. Their slightly altered version of the GMM estimator results in 

estimates that are much closer to the habitual two-percent rate. The use of the fixed effects 

estimator also leads to higher estimates of the rate of convergence, by 4.4 percentage points, 

whereas the use of the random effects estimator does not have a significant effect. 

 The use of the seemingly unrelated regression estimator (‘SUR’) can also be expected to 

correct for omitted variable bias, since it allows for country-specific constants, while 

allowing correlation in the error term. Our results indicate that the use of SUR leads to 

estimates that are 2.1 percentage points higher. The use of instrumental variables (‘IV’) 
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estimation raises the estimate of the rate of convergence by, on average, 1.0 percentage 

points, while the use of non-linear least squares (‘NLS’) has no discernable effect. 

 

4.5 Results for conditioning variables 

 

We include this last set of variables in order to test the arguments of the unconditional vs. 

conditional convergence controversy. The variables in this section refer to the explanatory 

variables included in the original regression. Although in many meta-analyses the 

specification of the conditioning variables is dealt with rather casually, the simulation 

experiments in Koetse et al. (2004) and Keef and Roberts (2004) show that for a meaningful 

and statistically unbiased comparison, it is crucial that the meta-specification contains a 

judicious account of the conditioning variables of the primary studies.21 Our reference 

category is the unconditional convergence model. 

 The variable ‘Standard Solow’ equals one if the Solow model variables (the savings and 

population growth rates) are included in the original regression, and zero otherwise. Our 

hypothesis is that inclusion of the Solow variables results in higher estimates of the rate of 

convergence, since they control (at least to some degree) for differences in steady state levels. 

The coefficient is positive and significant in all the regressions, and has a magnitude of 2.3 

percentage points. 

 The variables ‘Enrollment Rates’ and ‘Human Capital Stock’ are included to test the 

hypothesis that the steady state is partly determined by human capital (Mankiw et al., 1992), 

and our hypothesis is that the rate of convergence estimates are higher when human capital is 

included in the regression. The coefficients of both variables are, however, not statistically 

different from zero. 
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We base the categories of the other conditioning variables on the distinctions made in 

Levine and Renelt (1992), who study the robustness of coefficients in growth regressions. 

The fiscal policy variables are related to taxes and government spending. Trade and price 

distortions include openness, tariffs, and the black market premium. The financial markets 

variables are related to financial market development, such as the market capitalization ratio 

(then value of listed shares divided by GDP), and the value traded ratio (total value of traded 

shares divided by GDP). The monetary indicators cover variables related to monetary policy, 

specifically inflation and the interest rate. Political indicators include coups and revolutions, 

civil war dummies and the democracy index. Social variables include health indicators, such 

as life expectancy, and demography variables. Sectoral composition refers to variables such 

as the number of people employed in agriculture or in manufacturing. Geography variables 

refer to variables such as latitude, landlocked dummies, distance to the nearest coast, and the 

average temperature.  

Apart from the Solow variables discussed above, the only other variables that 

systematically affect the estimated rate of convergence are the dummies related to fiscal and 

financial conditions. In both cases the effect of including them raises the estimate by 

approximately 1.7 percentage points. Our hypothesis is that sound fiscal and financial 

conditions contribute to the rate at which poor countries reach their development potential 

(their steady states), and the rate at which they catch up to more developed countries, perhaps 

through technology diffusion. 

Finally, the variable ‘Regional Dummies’ is included to measure the effect of using 

country, region and continent dummies to proxy for broad technology (and steady state) 

differences in cross-sectional data. Our hypothesis is that regional dummies serve part of the 

same purpose as country-fixed effects: they control for unobserved heterogeneity. We 

therefore anticipate a positive coefficient. The results indicate that including regional 
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dummies leads to higher estimates of the rate of convergence, in the order of 1.1 percentage 

points. 

 

5. Conclusions 

 

The aim of this paper is to analyze the results of the empirical literature on the rate of 

convergence, and investigate potential sources of heterogeneity in the estimates. We start by 

computing a pooled (or combined) estimate, and find a value close to a 2% rate of 

convergence using a model allowing for random differences across measurements. This result 

coincides with the legendary ‘natural constant’ of two percent suggested in the convergence 

literature. Our analysis shows as well, however, that the adjective ‘legendary’ should be 

interpreted as pointing to the ‘fabled’ status of the two percent rather than to the status of a 

popularly accepted ‘factual’. The rate of convergence varies systematically according to 

various observable differences between studies, even if one accounts for unobservable 

sources of variation and the potential impact of publication bias as well. 

 We use several weighted regression models to further explore the sources of between-

estimate heterogeneity. Control variables included in our analysis are partly motivated by 

theoretical differences in the literature, related to the treatment of technology, the difference 

between short-run effects and long-run transitional dynamics, and differences in modeling the 

steady state in conjunction with potential endogeneity of the regressors. The main control 

variables in our study allow for differences in data characteristics such as the source of PPP 

rates, the level of aggregation, the use of homogeneous samples, and structural characteristics 

such as the number of observations. Furthermore, we include the time span and frequency of 

the data, estimation characteristics such as the type of estimator and whether a non-linear
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method was used, and the type of explanatory variables included in the original regression to 

control for differences in the steady state. 

 We find that correcting for the omitted variable bias resulting from unobserved 

heterogeneity in technology levels leads to higher estimates of the rate of convergence. For 

example, the use of regional data (in which technology differences are less pronounced) leads 

to a 1.2 percentage point higher estimate of the rate of convergence. The use of a 

homogeneous sample of countries or regions leads to higher estimates in the order of 0.9 

percentage points. The inclusion of regional dummies to control for unobserved heterogeneity 

in cross-sectional samples increases the estimate by an average of 1.1 percentage points. The 

inclusion of explanatory variables to control for differences in the steady state or, 

alternatively, parameterize the unobserved level of technology, also leads to significantly 

different estimates of the rate of convergence. The use of estimators such as LSDV and 

GMM that control for country-specific effects has a substantial impact on estimates of the 

rate of convergence, of around 4.4 and 6.3 percentage points, respectively. We also find that 

correcting for endogeneity in the explanatory variables results in higher estimates, as argued 

by Cho (1996), and Caselli et al. (1996). 

 Finally, our analysis reveals that significant differences in convergence rates exist for 

models deviating from the standard unconditional convergence model. Specifically, models 

using a standard Solow specification as well as models incorporating fiscal and financial 

variables typically lead to convergence rates that are significantly higher than the legendary 

two-percent rate. 
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Notes

1  The assertion of a constant ‘natural rate of convergence’ of two percent does not preclude finding variation 
in empirical estimates. In a statistical sense, it implies that the estimates are drawn from a single population 
distribution with a mean of two percent. The differences in reported estimates are then solely due to 
estimation variance. The natural rate of convergence in a panel data setup is generally believed to be 
substantially higher at a level of 4–6 percent, among other things because a panel data setup allows for 
modeling (unobserved) technological differences across countries (Islam, 2003, pp. 325–326). Caselli et al. 
(1996) even report convergence rates as high as 10 percent for panel data studies. 

 
2  This can be illustrated using the concept of regression towards the mean (Galton’s fallacy). Galton noticed 

that the sons of exceptionally tall fathers tended to be shorter, or in other words that the sons of tall fathers 
tended to have a height that was closer to the population mean, and erroneously concluded that the 
distribution of heights was shrinking over time. The reason for Galton’s observation is that exceptionally 
tall fathers are outliers or rare occurrences, and it would therefore be extremely rare for their sons to also be 
outliers. Friedman (1992) applied Galton’s fallacy concept to the study of income convergence, by noting 
that in the presence of non-persistent random fluctuations in income, a regression of growth rate of income 
in period t on income in period t–1 would result in a negative coefficient, even in the absence of a shrinking 
variance. See also Bliss (1999) for an extensive discussion on the relevance of Galton’s fallacy for the study 
of income convergence.   

 
3  Strictly speaking there is some variation in the empirical operationalization of the dependent variable. Some 

studies use income; others use the gross product, and the standardization ranges from per worker, to per 
capita, and per person aged 25–65. 

 
4  This is not intended to suggest that combining, for instance, cross-section, time series, and panel data 

studies, or factor productivity and income/production studies is not feasible. Their combination would, 
however, require a careful account of the theoretical relationship between the different concepts, which 
should also be incorporated in the specification of the meta-regression equation. See Smith and Pattanayk 
(2002) for a similar line of reasoning with respect to non-market valuation. 

 
5  Note, however, that a negative estimate of β is possible even in the absence of any form of convergence, 

due to Galton’s fallacy of regression towards the mean. 
 
6  Today, EconLit contains references to articles in over 750 journals. Its history goes back to 1969 when it 

contained references to 182 periodicals. Less than three percent of the articles are in a foreign language 
(meaning other than English). See http://www.econlit.org, for details. In the search we used the search 
string ‘growth’ and/or ‘convergence’ not ‘ARCH, GARCH, Markov, …’ 

  
7 In order to ensure that we obtain a random sample of studies, we first assign a unique id to each study, 

based on an alphabetical ordering by author, year and title. Subsequently, we generate a series of random 
numbers in Stata 8 using the command uniform(), which returns uniformly distributed pseudo-random 
numbers on the interval [0,1). Finally, we order the study id series according to the random series, and we 
follow this new ordering in selecting the studies to be included, starting with the first one.  
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8  In subsequent analyses we discarded nine observations for which the estimated coefficient of initial income 

is smaller than –1, because in those cases we cannot recover the rate of convergence; see equation (11) in 
the main text. Estimates smaller than –1 imply that there is leapfrogging in the distribution, so that the rate 
of convergence becomes undefined. Note that this is different from divergence, which occurs when the 
estimated value of initial income is greater than zero, implying that the rate of convergence is negative. 

 
9  See the Appendix for the derivation of equation (12). 
 
10  We note that the meaning of the adjectives ‘fixed’ and ‘random’ in the meta-analysis literature is very 

different from the usual interpretation for panel data models in standard econometrics, because they refer to 
assumptions about the underlying population effect size (see Hedges and Olkin, 1985 and Sutton et al., 
2000a, for details). In standard econometric terms, the fixed effects meta-estimator is equivalent to the 
weighted least squares estimator using the estimated variances (derived in the primary studies) as weights 
and re-scaling the standard errors of the meta-regression by means of the square root of the residual 
variance. The random effects estimator is akin to a random coefficient model in which the within- and 
between-study variances are used as weights (see Florax and Poot, 2005, for details). Thompson and Sharp 
(1999) provide an excellent overview of various estimators that allow for random effects variation.    

 
11  Some people would maintain that in this field of study the independence assumption may also be violated 

for single-sampling measurements, because many studies use the same underlying data (for example, the 
Summers and Heston database). 

 
12  Their conclusions should, however, be taken judiciously because their Monte Carlo simulation experiments 

are based on only two replications. In their experiments they use randomly sampled single measurements of 
each study as well as the within-study average and median. Given the relatively large number of studies in 
our meta-sample, using the average, the median or a randomly selected measurement of the primary studies 
is largely irrelevant, although small sample differences exist. 

  
13  All estimations are performed with Intercooled Stata 8.0, including user-written routines for meta-analysis 

provided by Stephen Sharp, Jonathan Sterne, Thomas J. Steichen and Roger Harbord. See the Stata website 
(http://www.stata.com) for details and references to the Stata Technical Bulletin. 

 
14  Similarly, for the sample with 48 observations the estimate for the constant is 3.26, with a t-value of 8.06. 

Several alternative tests are available. A regression of the effect size on the estimated standard errors (Card 
and Krueger, 1995) shows significant results as well (the coefficient for the standard errors variable is 1.72, 
with a standard error of 0.09 and a p-value of 0.00). The rank correlation suggested by Begg and Mazumdar 
(1994) uses the association between the standardized effect and the sampling variance, measured by 
Kendall’s tau, to detect publication bias. The latter does not indicate publication bias in our samples, but the 
test is not very powerful (see Macaskill et al., 2001, for simulation experiments). Detailed results for all 
tests are available upon request. 

 
15  The Q-test is given by: 
 

 
( )

2
1

1
1

2

12 ~ −
=

=

=∑
∑

∑
−= k

k

i
k

i i

k

i ii
ii

w

w
wQ χ

λ
λ , 

 
where k is the number of study results and wi the inverse estimated variance, and tests the null hypothesis 
that the true effect size is the same for all studies, versus the alternative hypothesis that at least one of the 
effect sizes differs from the remainder. Note that the test assumes independent study results, and it is 
therefore not fully adequate in the case of multiple sampling (see Sutton et al., 2000a, pp. 38–40, and Florax 
and Poot, 2005, for details). The Q-test results are highly significant in both the full dataset and in the 
restricted dataset using single sampling. Detailed results are available from the authors upon request. 

 
16  See Thompson and Sharp (1999) for estimators using slightly different assumptions. 
 
17  See footnote 10 for estimation details. 
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18  See Sutton et al. (2000b) for a useful overview of various techniques to modeling publication bias. Recent 

applications of the Hedges approach in economic meta-analyses include Ashenfelter et al. (1999) and 
Florax (2002). We would like to thank Hessel Oosterbeek for making available his Stata routine to estimate 
the publication bias model. 

 
19   The test statistic (–2 times the difference between the unrestricted and the restricted log likelihood) follows 

a χ2 distribution with 3 degrees of freedom. A bivariate version of the Hedges approach also rejects the null 
hypothesis of no publication bias at the 1% significance level. The bivariate estimate of the rate of 
convergence corrected for publication bias is 2.9 percent, with a confidence interval of 2.55 < λ < 3.20. 

 
20  The results of the Hedges publication bias approach crucially depend on the number of p-value classes used 

in the analysis, and on the cut-off points used to define these categories. Increasing the number of categories 
improves the fit of the unrestricted regression, resulting in a higher log likelihood for the unrestricted model 
(relative to the restricted model), and therefore increasing the size of the Likelihood Ratio test statistic. 
Choosing a larger number of categories also implies that the weighting function is smoother, with fewer 
‘kinks.’ However, these advantages have to be balanced against the difficulties in interpreting the results 
when the number of categories is large, particularly in interpreting the estimated sampling probabilities for 
the different p-value classes. The analysis presented in Table 2 therefore makes use of cut-off points based 
on the socially salient p-values of 0.01, 0.05 and 0.10. A sensitivity analysis indicates that the estimated 
coefficients of the meta-regression corrected for publication bias do not vary significantly when a larger 
number of p-value classes is used, although the Likelihood Ratio test for the presence of publication bias is 
no longer significant when the number of categories is 3, with cut-off points at 0.01 and 0.05 only. See also 
Hedges (1992) for an extended discussion on the choice of values for the discontinuities in the weight 
function.  

 
21  The simulation experiments in Koetse et al. (2004) show that the use of dummy variables to account for 

differences in the set of conditioning variables used in the underlying studies goes a long way towards 
removing bias in the meta-estimator. Keef and Roberts (2004) also point to a comparability problem for 
primary studies using different specifications, although their perspective is slightly different. They observe 
that for effect sizes scaled by a measure of variance to ensure a dimensionless metric of the effect size, a 
potential problem occurs. Since the variance becomes smaller the more conditioning variables a model 
comprises, the interpretation of differences between effect sizes across studies may be ambiguous. As such, 
this point is not relevant for our meta-analysis because the effect size, defined as the convergence rate in 
percents per year, is homogeneous across studied, and there is hence no need to scale it by its variance. 
However, the variance is used in determining the weights for the fixed and random (or mixed) effects 
estimator. As a result, measurements taken from primary studies with a ‘broader’ specification automati-
cally receive more weight, since the variance of these measurements is given by σ2(x΄x)–1, and the residual 
variance σ2 is smaller when the specification contains more conditioning variables. This is, however, not 
problematic since the chance of omitted variable bias occurring is smaller the ‘broader’ is the specification. 
Obviously, one does not know what the actual data-generating process is, and one may therefore be 
overcompensating. However, given that the inclusion of irrelevant conditioning variables does not have a 
detrimental effect on the properties of the estimator, the weighting process is in accordance with the quality 
of the estimates. See Koetse et al. (2004) for more details.   
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APPENDIX 

For a random variable X with mean Xμ  and variance , we can approximate the mean and 

variance of Y = g(X) using a first-order Taylor expansion of g about µ

2
Xσ

X (see, for example, 

Greene 2000, pp. 49–53): 

 

  )()()()( XXX gXgXgY μμμ ′−+≈=  (A1) 

 

Recalling that for a linear function bVaU += , the mean and variance are given by 

 and , we obtain )(E)(E VbaU += )(Var)(Var 2 VbU = )( XY g μμ ≈  and . 

Applying this result to  leads to 

( )( )222
XXY g μσσ ′≈

)log(XY = )log( XY μμ ≈  and . Correspon-

dingly, for the convergence rate given in equation (11), we approximate the mean as: 
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and its associated variance as: 
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from which the estimated standard error given in (12) follows directly. ■ 
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Table 1. Reference, number of estimates, convergence rate and implied half-life of the studies included in the 
meta-sample.a

Study Number of 
estimates 

Convergence rateb Implied 
half-lifec

  Minimum Mean Maximum  

Abrams et al. (1999) 6 3.25 17.52 20.71 4
Amable (2000) 15 1.82 2.73 4.31 25
Arena et al. (2000) 6 20.45 47.40 65.59 1
Armstrong and Read (2002) 2 1.79 1.83 1.86 38
Azzoni (2001) 2 0.56 0.88 1.20 79
Barro and Sala-i-Martin (1992) 40 –2.85 2.08 11.30 33
Bellettini and Ceroni (2000) 26 0.52 2.99 6.36 23
Berthelemy and Varoudakis (1995) 2 1.49 3.29 5.09 21
Caselli et al. (1996) 13 0.59 6.22 13.50 11
Cashin (1995) 11 0.39 2.69 6.35 26
Cashin and Loayza (1995) 9 –2.20 0.13 4.33 553
Cho (1994) 9 –1.12 0.15 0.78 460
Cho (1996) 4 –0.49 –0.11 0.52 –652
Collender and Shaffer (2003) 6 1.84 5.12 9.69 14
Dixon et al. (2001) 6 11.42 11.54 11.78 6
Dobson and Ramlogan (2002) 54 –1.90 0.31 2.28 222
Fagerberg and Verspagen (1996) 19 –0.30 2.35 6.93 30
Gemmell (1996) 11 1.30 2.21 2.48 31
Good and Ma (1999) 12 0.01 1.01 2.31 69
Guillaumont et al. (1999) 8 0.66 0.89 1.11 78
Gylfason et al. (2001) 5 0.31 0.76 1.08 91
Haveman et al. (2001) 10 12.14 12.96 15.27 5
Henisz (2000) 12 1.13 5.78 27.73 12
Hultberg et al. (1999) 3 1.26 1.47 1.88 47
Jones (2002) 4 1.70 6.30 9.90 11
Judson and Orphanides (1999) 32 0.02 1.27 4.62 54
Kalaitzidakis et al. (2001) 10 3.29 6.96 12.38 10
Lensink (2001) 6 1.33 1.68 2.09 41
Lensink et al. (1999) 24 0.42 0.70 0.77 98
Levine and Zervos (1996) 6 0.72 1.08 1.60 64
Madden and Savage (2000) 19 1.34 4.02 20.43 17
Masters and McMillan (2001) 11 0.19 1.67 3.23 42
Miller and Tsoukis (2001) 12 0.01 1.88 11.39 37
Minier (1998) 10 –2.28 –0.50 1.61 –139
Murdoch and Sandler (2002) 4 0.55 0.56 0.59 123
O’Rourke (2000) 5 –0.29 1.39 5.79 50
Panizza (2002) 40 0.45 5.84 13.47 12
Park and Brat (1996) 4 1.51 2.02 3.21 34
Persson (1997) 52 –0.04 3.55 11.03 20
Ramey and Ramey (1995) 4 0.32 1.32 2.33 53
Rupasingha et al. (2002) 5 1.47 4.55 7.76 15
Savvides (1995) 8 1.31 11.34 28.93 6
Sheehey (1995) 6 0.60 0.72 0.86 96
Taylor (1999) 1 1.71 1.71 1.71 41
Temple (1998) 4 2.39 2.99 3.45 23
Tsangarides (2001) 45 –3.82 5.27 17.49 13
Weede and Kampf (2002) 14 1.15 5.12 8.32 14
Yamarik (2000) 2 2.56 2.77 2.99 25
  
Overalld 619 1.43 4.30 8.34 16
a An extended table detailing, among other things, the source of the data, the spatial scale, the type of estimator, 
and control variables included in the study is available on http://www.henridegroot.net. 
b In percentage points. 
c For the mean convergence rate. 
d Sum for the first column, average for the other columns. 
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Table 2. Results of the meta-regression estimation for different estimators.a 

Estimator Huber-White Fixed effects Mixed effectsb Mixed effects 
(corrected for 
publication 

bias) 
Constant –8.068      12.434*** 3.013 3.013 
 (50.011) (3.173) (15.425) (15.585) 
     
Significance     
p < 0.01 — — — 1.000 
          (fixed) 
0.01 < p < 0.05 — — — 1.318***

    (0.210) 
0.05 < p < 0.10 — — — 2.001***

    (0.347) 
p > 0.10 — — — 0.880***

    (0.123) 
     
Data characteristics     
Summers and Heston –0.789    1.241*** 0.124 0.130 
 (1.399) (0.059) (0.392) (0.396) 
Maddison data –0.317 –0.219 0.109 0.113 
 (2.306) (0.153) (0.894) (0.905) 
Regional PPP × Regional aggregation 9.877 0.594*** 1.847*** 1.835***

 (8.000) (0.084) (0.594) (0.600) 
Regional level of aggregation 6.246 –0.217*** 1.098* 1.124*

 (4.539) (0.078) (0.571) (0.578) 
Homogeneous sample 0.893    1.097*** 0.851** 0.848**

 (0.948) (0.063) (0.341) (0.344) 
Use of per capita income –5.016 0.492*** 0.602 0.611 
 (3.674) (0.090) (0.509) (0.514) 
     
Structure of the data     
Number of cross-sectional units† 0.000 –0.001*** –0.001 –0.001 
 (0.002) (0.000) (0.001) (0.001) 
Number of time units† –0.360 –0.098*** –0.125** –0.125*

 (0.218) (0.010) (0.064) (0.064) 
Number of observations† –0.001 0.001*** 0.001 0.001 
 (0.002) (0.000) (0.001) (0.001) 
Time span of the data† 0.010 0.012*** 0.008 0.008 
 (0.018) (0.002) (0.009) (0.010) 
Initial year of the sample† 0.004 –0.007*** –0.002 –0.002 
 (0.025) (0.002) (0.008) (0.008) 
Pooled data 7.821* 0.307*** 1.423*** 1.404***

 (4.455) (0.065) (0.533) (0.538) 
Pooled data × Length of time units† –0.570 –0.051*** –0.172*** –0.173***

 (0.356) (0.005) (0.0428) (0.043) 
     
Estimation characteristics     
Non-linear method –2.266 0.125 –1.027 –1.052 
 (2.153) (0.221) (1.208) (1.226) 
NLS 0.512 0.685*** 0.897 0.932 
 (1.982) (0.222) (1.240) (1.258) 
IV –0.218 0.244** 0.948** 0.952*

 (1.547) (0.108) (0.481) (0.489) 
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Table 2. Continued. 

Estimator Huber-White Fixed effects Mixed effectsb Mixed effects 
(corrected for 
publication 

bias) 
SUR  1.028  2.053*** 1.888* 1.946*

 (1.620) (0.213) (1.134) (1.151) 
Fixed Effects 3.754*    2.404*** 4.282*** 4.350***

  (2.139) (0.112) (0.507) (0.510) 
Random Effects –4.228 1.685*** –0.317 –0.275 
  (3.125) (0.256) (1.050) (1.1064) 
GMM 2.853    7.900*** 6.228*** 6.268***

 (2.998) (0.140) (0.537) (0.540) 
     
Conditioning variables      
Standard Solow 1.065    0.771** 2.082*** 2.114***

 (1.375) (0.061) (0.366) (0.373) 
Enrolment rates 1.274 0.388*** –0.365 –0.384 
 (1.131) (0.065) (0.363) (0.366) 
Human capital stock 2.322 –0.131** –0.213 –0.224 
 (1.601) (0.060) (0.378) (0.381) 
Fiscal –0.415  0.584*** 1.763*** 1.798***

 (1.762) (0.059) (0.398) (0.402) 
Trade –0.081 –0.099 0.017 0.046 
 (1.241) (0.072) (0.428) (0.432) 
Financial 2.703 1.112*** 1.567** 1.589**

 (2.220) (0.130) (0.651) (0.659) 
Monetary 0.595  0.637*** 0.225 0.230 
 (1.208) (0.065) (0.458) (0.464) 
Political –0.168 0.313*** –0.168 –0.164 
 (1.110) (0.043) (0.384) (0.387) 
Social –0.402 –0.066 0.346 0.331 
 (1.566) (0.048) (0.346) (0.349) 
Sectoral –1.698 –0.181*** –0.588 –0.603*

 (1.576) (0.067) (0.359) (0.363) 
Geography 1.853 0.017 0.016 –0.014 
 (2.067) (0.086) (0.477) (0.482) 
Regional dummies 0.608    1.864*** 1.090*** 1.090***

 (1.002) (0.061) (0.333) (0.336) 
     
τ   2.230*** 2.243***

   (0.084) (0.088) 
     
R2-adjustedc 0.43 0.66   
F-statistic 18.23*** 37.45***   
Root MSE 4.88        3.66   
Log-likelihood      –949.02      –937.77 
Observations        610        610        610          610 
a The results are provided with standard errors in parentheses. Statistical significance is indicated using ***, ** 
and * referring to the 1%, 5% and 10% level. The dependent variable is the average rate of convergence per year 
in percentage points. 
b The estimates for the mixed effects estimator have been generated using the routine provided by Oosterbeek 
(see footnote 18). 
c The R2 results in columns (1) and (2) are not directly comparable, in particular because the usual domain is not 
applicable in the case of the adapted weighted least squares estimator for the fixed effects model. 
† Continuous variables. All other variables are dummies. 
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Figure 1. Within-study mean (bar), median (black square) and standard deviation around the mean (error bar) of 

convergence rates in percents per year, ordered according to increasing magnitude of the within-study mean. 
Note: the numbers next to the references indicate the number of observations per study. 
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Figure 2. Histogram of estimated convergence rates (in percents per year) as a fraction of the meta-sample  
(n = 610). 
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Figure 3. Forest plot of 48 estimated convergence rates (in percents per year) with 95% confidence intervals 
based on random effects, including the pooled random effects estimate as a dashed vertical line. 
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Figure 4. Funnel plot of 610 estimated convergence rates (in percentage points per year); including the pooled 

fixed effects estimate (solid line) with a 95% confidence interval (dashed lines). 
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