

The Impact of Regulation and Competition on the Migration from Old to New Communications Infrastructure: Recent Evidence from European Incumbents and Entrants

Wolfgang Briglauer, ZEW Mannheim 5th SEEK Conference, October 8-9, 2015

Motivation

• Why is traditional copper-based broadband not "enough"?

- new services: HD-TV, streamed video on demand, 3D applications/3D-TV, social networks, cloud computing, live video-conferences, etc
- constantly increasing bandwidth demand (mobile apps, ...)
- Positive impact of broadband deployment on economic growth / employment
 - e.g. Röller/Waverman (2001), OECD (2009), Czernich et al. (2011)
- Digital Agenda Europe (DAE): all Europeans should have access to internet speeds > 30 Mbps by 2020

=> 100% coverage with fast broadband infrastructure

- o But,
 - high investment of fibre technology ("Next generation networks"
 - NGN) and high risks for infrastructure operators
 - controversial discussion on the role of regulatory policies / competition

Research questions

• What is the impact / role of

- ex ante broadband access regulations / service-based (s-b) competition on NGN investment?
- infrastructure-based competition / existing broadband infrastructures on NGN investment?

○ [Investment ≠ welfare, but

- positive externalities not captured in the markets
- real NGN investment data but we re-estimate models with NGN penetration data (output-related /closer to welfare)]

Empirical evidence: Related & recent literature

- Impact of regulation & s-b competition on NGN investment/penetration
 - Wallsten/Hausladen (2009, RNE): negative impact of unbundling on NGN lines
 - EU penetration data from an early stage (2002 to 2007)
 - Briglauer et al. (2013, IEP): s-b competition has negative impact on NGN deployment
 - NGN investment data for EU27 (2005 to 2011)
 - Briglauer (2014, JRE): broadband access regulation has negative impact on NGA penetration
 - NGN penetration data for EU27 (2004 to 2012)
 - Bacache et al. (2014, RIO): no support migration from unbundling to NGN deployment
 - NGN penetration data for European countries (2002 to 2010)

Empirical evidence: Related & previous literature

• Impact of regulation & s-b competition on broadband investment

- Cambini/Jiang (2009, TELPOL)
 - survey older literature and find *"most of the evidence shows that local loop* unbundling ... discourages both ILECs and CLECs from investing in networks"
- Grajek/Röller (2011, JLE): negative relationship between regulation and total telecommunications investment
 - very broad measure of investment

• Summarizing,

- s-b competition / access regulations are negatively related to NGN investment / penetration
- finding in line with majority of previous broadband literature
- finding in line with the economics of NGN

Regulation: Preliminary remarks

Controversial questions

- should emerging NGN be subjected to sector-specific regulations? (regulatory holidays or potential threat of a new and more intense "bottleneck" monopoly)
- what is the impact of current broadband access regulations on NGN investment?

• How to measure regulation?

- Access charges: unbundling prices
- Regulatory intensity: formal regulation indices such as OECD or Polynomics (Grajek/Röller, 2011)
- Regulatory effectiveness: s-b competiton which combines regulation and market outcome (Bacache et al., 2014; Briglauer et al., 2013)
 - hinges directly on ex ante access regulations

• Theory predicts opposing effects of regulation on investment

Intramodal Competition

Replacement effect (Arrows, 1962) wrt 1stGen infrastructure

- 2ndGen NGN investments cannibalize rents on conventional 1stGen broadband services
 - copper-based infrastructure ("legacy")
 - coax cable-based infrastructure (CATV)

• Switching costs wrt 1stGen services

- Conventional broadband services enjoy broad consumer acceptance in most EU states =>switching costs hinder migration to NGN services
- if consumers are largely content with services offered via 1stGen broadband infrastructure or incremental benefits of new services are not transparent enough

Intermodal competition

- *fixed-mobile substitution:* most important source of intermodal competition
 - narrowband
 - broadband
 - [high-speed broadband (LTE)]
- Schmutzler (2010/2011): there is no clear prediction at the micro-level
 - investments can be increasing or decreasing functions of competition
 - inverse U-shaped relation is not necessarily more likely than U-shaped relation

Dynamics: adjustment process

• Gradual NGN investment => partial adjustment

- nature of cost factors implies a gradual (partial) adjustment process towards a long-run optimal infrastructure stock
- operators do not/cannot immediately adjust infrastructure to changing market conditions
 - partial adjustment due to technical and legal reasons (rights of way, planning, capital requirements, institutional rigidities, contractual obligations (house owners, ...)
 - increasing marginal costs in NGA deployment (low cost areas ("low hanging fruits") first)
 - allows to distinguish long run and short run effects (DAE)

• Overall, we expect gradual adjustment / only limited persistence

DATA EMPIRICAL SPECIFICATION RESULTS

Data

We employ yearly data on EU27 member states from 2004/5-2012/13

Control Infrastructure Dependent Regulatory variables variable Competition variables **Demand side:** Intermodal s-b compet.: Broadand competition: Share of **Real NGN** lines/penetration Share of total number regulated business applications investment of mobile lines to the broadband lines Internet usage; Log of total number of fixed GDP pc; education; (= unbundlingnumber of lines ICT affinity of pop. bitstream, resale) NGN lines to total retail Intramodal (FTTC/B/H/+ Cost side: broadband lines competition: Share of urban DOCSIS3.0) Fixed legacy / coax population; deployed household structure; infrastucture of Access charge: ("homes labour and / incumbent/entrant Unbundling price construction costs / passed"): (replacement eff.) wage; interest rate Ln(NGN total) **Fixed effects: Robustness var:** Control for many **Polynomics** time-invar. cost, demand and Broaband index institutional factors

Data sources: FTTH Council/IDATE, EIU, EUROSTAT/COCOM, EUROMONITOR, EU Progress Report, ITU, IMF, ECB, WB

Econometric specification: Total NGA investment

 $\ln(NGN _ total_{jit}) =$

 $\alpha_{0}^{total} + \beta_{1} sbc_{b} bb_{i(t-1)} + \beta_{2} price_{ull_{i(t-1)}} + \beta_{3} fms_{i(t-1)} + \beta_{4} fms_{i(t-1)}^{2} + \beta_{5} cable_{i(t-1)} + \beta_{6} cable_{i(t-1)}^{2} + \beta_{7} legacy_{i(t-1)} + \beta_{8} bb_{lines_{w_{i(t-1)}}} + \beta_{6} cable_{i(t-1)}^{2} + \beta_{6} cabl$

 $\beta_9 \ln(bb_lines)_{i(t-1)} + \gamma' \mathbf{Z}_{i(t-1)} + \theta_i + \lambda_t + \alpha_1 \ln(NGN_total_{ji(t-1)}) + \varepsilon_{jit}$

I, Ej = I (incumbent), E (Group of entrants) $\lambda_{t:}$ Time-specific fixed effects θ_i :Individual fixed effects $Z_{i(t-1)}$:Vector of demand and cost controls

Dynamic model:

Identification/Endogeneity – GMM+LSDVC

• Dynamic panel GMM estimators

- GMM-DIFF (Arellano and Bond (1991)) estimator
 - controls for the dynamic bias and provides sufficient internal instruments (T = 9) for all potentially endogenous variables

• Bias-corrected fixed-effects estimator

- LSDVC estimator (Bruno (2005)) for robustness checks
 - designed for unbalanced panels and equations with lagged dependent variable when n is small (N = 27)
 - estimator, however, requires strict exogeneity of regressors, but
 - period and fixed effects (no omitted time-invariant vars)
 - large number of controls (to reduce bias due to time-variant heterogeneity)
 - explanatory variables are lagged once (predetermined vars)
 - lagged dependent controls for serial correlation (dynamically complete)

Estimation results for GMM models without controls, constant and year dummies Dep.var.: *In(NGN_total)* in regr. (1-5), *In(NGN_total_w)* in regr. (6)

Regression nr.	(1)	(2)	(3)	(4)	(5)	(6)		
	Full_total	Full_total	Final_	Full_i	Final_i_	Final_		
		_r	total	_ull_price	ull_price	total_w		
Dep. var. _{ji(t-1)}	0.3751***	0.4025***	0.4142***	0.3801***	0.2234***	0.3299***		
	(8.27)	(9.52)	(9.80)	(8.20)	(4.37)	(8.14)		
sbc_bb _{i(t-1)}	-1.5719**		-1.5665*	-3.5791***	-5.3002***	-3.0296**		
	(-2.03)		(-1.94)	(-3.84)	(-3.92)	(-2.56)		
price_ull _{i(t-1)}	0.0054	0.0014	-0.0489	-0.0235	-0.0910	-0.0056		
	(0.09)	(0.02)	(-0.87)	(-0.35)	(-1.16)	(-0.08)		
i_ull_price_sh _{i(t-1)}				0.2962**	0.6463**			
				(1.96)	(2.40)			
rdi_bb _{i(t-3)}		-1.9096***						
		(-2.86)						
fms _{i(t-1)}	-1.3152*	-1.1435	-1.4573*	-0.8434	-1.2543	-1.3004		
	(-1.71)	(-1.57)	(-1.93)	(-1.09)	(-1.22)	(-1.18)		
fms² _{i(t-1)}	0.0666	0.0632	0.0794	0.0380	0.0844	0.0871		
	(1.36)	(1.35)	(1.57)	(0.75)	(1.29)	(1.28)		
cable _{i(t-1)}	-6.4695	-7.2950*	2.7985*	-5.9891		1.3004		
	(-1.40)	(-1.67)	(1.72)	(-1.47)		(0.60)		
cable² _{i(t-1)}	8.5428***	8.3089***		7.5080***				
	(3.15)	(3.16)		(3.11)				
legacy _{i(t-1)}	-0.1399**	-0.1013*	-0.1491***	-0.1291**		-0.1590**		
	(-2.26)	(-1.89)	(-3.08)	(-2.21)		(-2.12)		
bb_lines_w _{i(t-1)}	-21.09***	-18.116***	-19.553***	-23.4043***	-29.380***	-17.5572***		
	(-3.89)	(-4.27)	(-3.46)	(-3.81)	(-3.91)	(-3.34)		
In(bb_lines) _{i(t-1)}	1.2984***	1.2870***	0.8152**	1.1001***	0.8943*	0.7881*		
	(5.60)	(5.78)	(2.40)	(5.05)	(1.77)	(1.95)		
chi ²	2.637e+10	7.09e+09	8495.8089	3.884e+09	1896.1466	813389.1		
AR(1) test	-3.8475	-3.8177	-3.8319	-3.6708	-3.6144	-3.3066		
AR(2) test	-0.9840	0.0485	-1.1719	-0.7824	-1.2130	-1.2540		
Hansen test (p-value)	(1.000)	(1.000)	(1.000)	(1.000)	(1.000)	(1.000)		
#Observations	428	428	428	428	428	428		
Robust t statistics in parentheses; * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$								

Estimation results for LSDVC and GMM models without controls, constant and year dummies Dep.var.: *In(NGN_total)* in regr. (1-3), *In(NGN_adop)* in regr. (4-5)

www.zew.de · www.zew.eu

Regression nr.	(1)	(2)	(3)	(4)	(5)
	Full_LSDVC	Full_i_LSDVC	Final_LSDVC	Full_adop_GMM	Full_adop_r_GMM
Dep. var. _{ji(t-1)}	0.5593***	0.5513***	0.5752***	0.3378***	0.3632***
	(13.03)	(12.86)	(14.12)	(4.33)	(3.94)
Dep. var. _{ji(t-2)}				-0.0239	-0.0543
				(-0.64)	(-1.44)
sbc_bb _{i(t-1)}	-2.3861*	-3.8625**	-2.3495*	-2.3110**	-2.4204**
	(-1.93)	(-2.51)	(-1.88)	(-2.27)	(-2.06)
price_ull _{i(t-1)}	-0.0182	-0.0502	-0.0207		0.0153
	(-0.40)	(-1.06)	(-0.48)		(0.34)
i_ull_price_sh _{i(t-1)}		0.3112*			
		(1.77)			
rdi_bb _{i(t-3)}					-0.0007
					(-0.00)
fms _{i(t-1)}	-0.4770	-0.3395	-0.5590	-1.4494***	-0.8625
	(-0.64)	(-0.44)	(-0.78)	(-2.66)	(-1.38)
fms² _{i(t-1)}	0.0048	0.0006	0.0136	0.0629**	0.0258
	(0.09)	(0.01)	(0.26)	(2.10)	(0.71)
cable _{i(t-1)}	-6.3010**	-4.9659	-6.5407**	1.9997	-2.4592
	(-2.06)	(-1.59)	(-2.46)	(1.06)	(-0.60)
cable² _{i(t-1)}	8.6867***	7.5363***	9.3140***		4.9203*
	(3.44)	(2.95)	(3.92)		(1.65)
legacy _{i(t-1)}	-0.1629***	-0.1523***	-0.1590***	-0.0694	-0.0444
	(-2.83)	(-2.60)	(-2.93)	(-1.42)	(-0.83)
bb_lines_w _{i(t-1)}	-14.1515**	-15.0065**	-11.5538**	-10.3747*	-14.6078***
	(-2.45)	(-2.56)	(-2.46)	(-1.94)	(-2.65)
In(bb_lines) _{i(t-1)}	1.6169***	1.1272*	1.5364***	0.4257	0.7765*
	(2.96)	(1.92)	(4.55)	(1.14)	(1.67)
chi ²				799.5048	729.7756
AR(1) test				-1.6815	-1.8673
AR(2) test				-1.4311	-1.2170
Hansen test (p-value)	100	100	100	(1.000)	(1.000)
#Ubservations	480	480	480	422	422

Robust t statistics in parentheses; * *p* < 0.10, ** *p* < 0.05, *** *p* < 0.01

Summary and conclusions

- **s-b competition** variable is significantly **negative throughout**
 - => more intense s-b competition has substantially negative impact on NGA investment
 - confirmed by unbundling access charge and robustness variable
 - => deregulatory approaches towards 1st and 2nd Gen infrastructure appear to stimulate NGA investment
- wrt the replacement effect we find strong evidence that existing legacy infrastructure of incumbents exerts a negative effect on NGA investment
- Fixed-mobile substitution and switching costs further hinder migration to NGA services
- There is clear evidence for an autonomous growth process towards a long-run equilibrium infrastructure stock

THANK YOU FOR YOUR ATTENTION!

APPENDIX

Relevant FTTx deplyoment scenarios

- Main broadband technology today in Europe: xDSL via copper wire (and coax) lines with bandwidths from 8 to 25 Mbit/s
- Next Generation Access Networks:
 - VDSL/FTTC: "fibre to the curb" copper wires from the curb to the household: bandwidth up to 50 Mbit/s
 - FTTB: "fibre to the building" only inhouse-wiring by copper wires: speeds up to 100 Mbit/s
 - FTTH: "fibre to the home" nearly unlimited bandwidth, today up to 1 Gbit/s

Figure 1. Different NGA scenarios

Modeling the invest dynamics – partial adjustment

- Partial adjustment = lagged dep + adjustment equation (ADL 1,0)
- o long-run optimal infrastructure (equilibrium) stock is given by:

$$Fttx_{it}^{*} = X_{it}\beta' + \theta_i + \varepsilon_{it}$$

 \circ adjustment process towards this stock is:

$$Fttx_{it} - Fttx_{i,t-1} = \alpha'(Fttx^{*}_{it} - Fttx_{i,t-1}) + \mu_{it}$$

o substituting yields estimating equation (short run relationship):

$$Fttx_{it} = \alpha Fttx_{i,t-1} + X_{it}\beta + \alpha'\theta_i + u_{it}$$

$$\alpha = 1 - \alpha'; \quad \beta = \alpha'\beta'; \quad u = \alpha'\varepsilon; \quad 0 < \alpha < 1$$

Summary statistics

Variable	Obs	Mean	Std. Dev.	Min	Max
NGN_total	270	2072843	4706856	1	3.75e+07
In(NGN_total)	270	10.63032	5.608084	0	17.43946
NGN_total_w	270	.1315215	.1648317	1.21e-08	.7351943
In(NGN_total_w)	247	-5.789674	5.302496	-18.22869	4238326
NGN_adop	270	316400.6	668623.5	1	5144100
In(NGN_adop)	270	9.32781	4.685692	0	15.45336
bb_lines	267	3723236	5769546	13738	2.80e+07
bb_lines_w	267	.1904645	.0973223	.0023487	.4044925
cable	254	.2157732	.1649066	0	1
sbc_bb	239	.194315	.197063	0	.9705678
price_ull	239	11.72037	4.383839	5.34	42
ms_ull	239	.1014437	.1406279	0	.6772212
i_ull_price_sh	254	1.112611	1.496397	0	7.07019
legacy	243	40.88424	12.98943	15.98503	66.38055
fms	269	3.375306	1.669958	1.2819	10.9396
rdi_bb	243	.6995885	.322663	0	1
bus_use_lan	270	.7118741	.1566787	.231	.996
int_user	270	.6368203	.1846024	.1500006	.951
edu	243	68.96461	13.13021	26	86.6
gdp_pc_ppp	243	29783.69	13548.51	8730.803	89055.8
mdwell_perm	243	161.4842	134.003	12.54	913.39
wage	269	11.06208	7.875111	.8	38.7
labcost_con	243	95.7	14.85244	39.8	134.7
urban	270	72.43043	11.89043	49.4118	97.4945