

Innovation Expenditures over the Business Cycle and Innovation Performance

Martin Hud^{a,b} & Christian Rammer^a

^a ZEW Centre for European Economic Research, Mannheim (Germany) ^b Maastricht University (The Netherlands)

SEEK Conference, ZEW, October 9, 2015

October 9, 2015

ZERW Zentrum für Europäische Wittschaftsförschang Grieft

Introduction

- Economic crisis of 2008 / 2009 in Germany
 - Germany's GDP declined by 5.5% in 2009
 - Detrimental effects on German firms' performance …
 - > 77% of the firms stated an at least slight decrease in sales or profits
 - > Almost 50% of the firms laid off at least some of their employees
 - Almost 40% increased short-term employment
 - ... and on their R&D / innovation activities (Rammer, 2011)
 - Among the innovators, 36% stated to have cut their innovation expenditures due to the crisis
 - Overall, innovation expenditures of German firms dropped by almost 9%
 - But: Among innovators, 55% stated additional innovation activities as a crisis strategy

Introduction

• Consequences?

- R&D / Innovation activities are a key contributor to sustained company success (Crépon et al. 1998; Aghion and Howitt, 1998)
- From a macroeconomic point of view, reducing these activities can hamper knowledge creation and hence an economy's productivity growth
- From a firm perspective, stopping or downscaling innovation projects harms innovation success, thus firm performance

• Open questions

- Can a crisis-related expansion of innovation activities increase post-crisis innovation success?
- Is there a difference of that relationship if focussing on other business cycle periods?
- The answers basically depend on the measures for innovation success and for the business cycle

www.zew.de · www.zew.eu

ZEW Zentrum für Europäische Wittschaftsförschung GmbH

Literature

- Business cycle effects of R&D / innovation activities:
 - Pro-cyclicality: Schmookler (1966), Shleifer (1986), Hall (1992), Himmelberg and Petersen (1994), Barlevy (2007), Ouyang (2011)
 - Counter-cyclicality: Gali and Hammour (1991), Aghion and Saint-Paul (1998), Brockhoff and Pearson (1998)
 - Mixed: Saint-Paul (1993), Aghion et al. (2010, 2012), Bovha-Padilla et al. (2009); López-Garcia et al. (2012)
- Productivity of R&D / returns to R&D
 - Extensive literature overview on that in Hall et al. (2009)
 - Market value: literature overviews by Hall (2000); Czarnitzki et al. (2006); Grandi et al. (2009)
- Literature addressing innovation success and the business cycle?

October 9, 2015

ZEW Zentrum für Europäische wirschaftdränscharg GmoH

Research questions

- 1. During stable economic conditions, does a positive adjustment in the level of innovation activities translate into short-term innovation success?
 - During growth periods, firms will attempt to maintain an optimal level of innovation activities
 - This allows them to steadily fill their pipelines of new products and keep pace with technological change
 - Effective strategy?
- 2. Does that relationship basically hold during an economic crisis, is that effect even stronger?
 - Short-term fluctuations in the business environment may make it difficult to achieve the optimal innovation path
 - Recession periods call for cost-cuts, which impedes maintaining (approaching) the optimal level and potentially deteriorates the quality of the innovations
 - Therefore, we expect those firms to be more successful that positively adjusted their innovation expenditures during the crisis

ZEW Zentrum für Europäische wirtschaftdräschung GmöH

Research questions

- 3. Independent of the economic condition, will more ambitious innovation projects induce higher innovation success?
 - The more ambitious an innovation project is the more difficult, costly and timeconsuming it will be to solve technological challenges
 - If properly finalised and introduced on the market it should promise to be successful, on average
 - Cutting the budgets for those projects will may lead to a weaker performance than for less ambitious projects

• Fixed Effects estimation of:

$$\begin{split} IS_{ij,t+1} &= \beta_0 + \beta_1 II_{i,t-1} + \beta_2 \Delta II_{i,t|t-1} * HG_{t|t-1} + \beta_3 \Delta II_{i,t|t-1} * MG_{t|t-1} \\ &+ \beta_4 \Delta II_{i,t|t-1} * LG_{t|t-1} + \beta_5 X_{i,t} + \mu_{i,t} \end{split}$$

- Estimations are restricted to product innovating firms
- As a robsutness check, RE Tobit model is estimated
- > Drawback: RE requires α_i to be independent of $X_{i,t}$
- > Mundlak (1978) allows for $Corr(\alpha_i, X_{i,t}) \neq 0$
- Therefore, we also include the individual time-means of the time-variant variables
- Business cycle indicators?
 - Heterogeneity between macro-economic growth (GDP) and industry-level growth

October 9, 2015

Figure 1 – Real GDP growth (in percent)

Figure 2 – Industry-level sales growth (in percent)

Table 1 – Business cycle indicators (in percent)

	Industry-leve	GDP growth		
Thresholds:	Strict (10%; 90%)	Tolerant (25%; 75%)		
High growth	>= 16.5	>= 10	>= 3	
Medium growth	>= -12.7 & < 16.5	>= -1.4 & < 10	>= 0 & < 3	
Low growth	<-12.7	< -1.4	< 0	

Data

□ Databases:

- Mannheim Innovation Panel (MIP)
 - ➢ We cover the years 2006-2012
- Federal Statistical Office of Germany
- Creditreform

Variables:

- Explanatory variables
 - Intensity_t-1: one-year lag of innovation intensity (innovation expenditures / firm-level sales)
 - D_intensity_t|t-1: change in innovation intensity between t and t-1
 - We take the values for the respective growth periods: high growth, medium growth and low growth

Data

□ Variables:

Controls

- Continuous:firm-level sales growth (Salesgrowth), credit rating (Credrat), firm age (Age) and firm age squared (Age^2), capital intensity (Capitalint)
- Binary: part of a group (Group), process innovator (Pc), exporting firm (Export), R&D activities occasionally or continuously conducted (RnD), employee (size) dummies, time dummies, year dummies
- Others: for the Mundlak approach time-means of the time-varying variables are also included
- Outcome variables
 - new: sales share of new products
 - market: sales share of market novelties
 - imit: sales share of product imitations

Results

Table 2 – Effect of a change in innovation expenditures on innovation success considerung the business cycle, FE model

Thresholds:	10%;90%			25%;75%			GDP-growth		
Sales share of:	new	market	imit	new	market	imit	new	market	imit
Intensity_t-1	0.041 (0.066)	0.027 (0.059)	0.014 (0.064)	0.053 (0.067)	0.045 (0.067)	0.008 (0.068)	0.059 (0.066)	0.036 (0.062)	0.022 (0.064)
D_intensity_t t-1 during:									
High growth	0.020	0.092	-0.072 (0.069)	0.115	0.188** (0.080)	-0.073 (0.061)	0.104 *	0.084 ** (0.036)	0.020
Medium growth	0.121***	0.098***	0.023	0.109**	0.074**	0.035	0.112*	0.108**	0.003
	(0.046)	(0.029)	(0.037)	(0.046)	(0.030)	(0.035)	(0.064)	(0.053)	(0.036)
Low growth	0.024	0.051	-0.027	0.113	0.094	0.018	0.159	0.131*	0.028
	(0.109)	(0.069)	(0.117)	(0.095)	(0.063)	(0.103)	(0.112)	(0.075)	(0.109)

Results

Table 3 – Robustness check – RE Tobit model

Thresholds:	10%;90%			25%;75%			GDP-growth		
Sales share of:	new	market	imit	new	market	imit	new	market	imit
High growth	-0.038	0.249**	-0.118	0.073	0.300***	-0.090	0.057	0.101***	0.009
	(0.108)	(0.124)	(0.114)	(0.070)	(0.064)	(0.076)	(0.045)	(0.039)	(0.048)
Medium growth	0.072*	0.117***	-0.015	0.065	0.083**	0.000	0.094	0.127***	-0.010
	(0.041)	(0.035)	(0.044)	(0.044)	(0.038)	(0.047)	(0.059)	(0.049)	(0.064)
Low growth	-0.052	0.180	-0.125	-0.047	0.144*	-0.118	0.028	0.190**	-0.058
	(0.126)	(0.116)	(0.135)	(0.083)	(0.075)	(0.088)	(0.099)	(0.092)	(0.105)
Individual heterogeneity:									
M_intensity_t-1	0.335***	0.181**	0.254***	0.349***	0.173**	0.260***	0.317***	0.183**	0.222**
	(0.087)	(0.076)	(0.090)	(0.087)	(0.076)	(0.091)	(0.086)	(0.075)	(0.089)
M_High	0.144**	0.162***	-0.107	0.137**	0.153***	-0.081	0.158***	0.138***	-0.005
	(0.062)	(0.049)	(0.104)	(0.060)	(0.048)	(0.082)	(0.056)	(0.045)	(0.061)
M_Medium	0.199**	0.034	0.179**	0.244**	0.125	0.151	0.298*	0.305**	-0.002
	(0.090)	(0.076)	(0.090)	(0.113)	(0.095)	(0.112)	(0.180)	(0.145)	(0.177)
M_low	0.525*	0.124	0.435	0.428**	-0.114	0.477***	0.289	-0.195	0.356
	(0.316)	(0.275)	(0.313)	(0.175)	(0.154)	(0.178)	(0.214)	(0.192)	(0.220)

Findings

- Findings and concluding remarks
 - Expansive innovation budgeting increase short-term innovation success during highgrowth and medium-growth periods
 - > A positive adjustment effect could be found for more ambitious innovations
 - No effect could be found if the business cycle is measured on an industry-level, though weakly significant in the robustness check
 - Neglecting the industry perspective, our results suggest that increasing innovation expenditures increase the short-term post-crisis innovation success
 - This effect is even strongest for the crisis period
 - Conditioned on the fact that not all industries have been affected by the crisis, a crisisrelated adjustment of innovation expenditures seems not to be an effective way to boost short-term innovation performance
 - > The industry level only represents a firm's primary sales market
 - The macro-level additionally considers changes in labour, capital and supply markets
 - Measured on an industry level, the opp. costs of innovative efforts may not be low enough to benfit from an adjustment; but it seems to be so on the macro-level

Thank you for your attention!

Contact:

hud@zew.de

October 9, 2015

Innovation Expenditures over the Business Cycle and Innovation Performance