Choose the Neighbor Before the House: Agglomeration Externalities in UK Science Parks

Christian Helmers

Santa Clara University

October 9, 2015

Definition: Science Park

 '[...] a cluster of knowledge-based businesses, where support and advice are supplied to assist in the growth of the companies. In most instances, Science Parks are associated with a centre of technology such as a university or research institute' (UK Science Park association)

Definition: Science Park

- '[...] a cluster of knowledge-based businesses, where support and advice are supplied to assist in the growth of the companies. In most instances, Science Parks are associated with a centre of technology such as a university or research institute' (UK Science Park association)
- 'property-based organizations with identifiable administrative centers focused on the mission of business acceleration through knowledge agglomeration and resource sharing.' (Phan et al., 2003: 166)

Definition: Science Park

- '[...] a cluster of knowledge-based businesses, where support and advice are supplied to assist in the growth of the companies. In most instances, Science Parks are associated with a centre of technology such as a university or research institute' (UK Science Park association)
- 'property-based organizations with identifiable administrative centers focused on the mission of business acceleration through knowledge agglomeration and resource sharing.' (Phan et al., 2003: 166)
- Different from incubators well-established firms are welcome

Overview

Do agglomeration externalities arise from the clustering of firms in the same industry?

- Do agglomeration externalities arise from the clustering of firms in the same industry?
- Do firms in science parks benefit from agglomeration externalities?

- Do agglomeration externalities arise from the clustering of firms in the same industry?
- Do firms in science parks benefit from agglomeration externalities?
- ▷ What is the ideal composition of firms in a science park?

- Do agglomeration externalities arise from the clustering of firms in the same industry?
- Do firms in science parks benefit from agglomeration externalities?
- ▷ What is the ideal composition of firms in a science park?
- Contribution: Investigate presence of knowledge spillovers and effect on patenting among firms in 2 UK science parks

- Do agglomeration externalities arise from the clustering of firms in the same industry?
- Do firms in science parks benefit from agglomeration externalities?
- ▷ What is the ideal composition of firms in a science park?
- Contribution: Investigate presence of knowledge spillovers and effect on patenting among firms in 2 UK science parks
- Findings: Positive externalities between firms within the same relatively narrow industry

- Do agglomeration externalities arise from the clustering of firms in the same industry?
- Do firms in science parks benefit from agglomeration externalities?
- ▷ What is the ideal composition of firms in a science park?
- Contribution: Investigate presence of knowledge spillovers and effect on patenting among firms in 2 UK science parks
- Findings: Positive externalities between firms within the same relatively narrow industry
- Potential policy implications: Choose firms with similar activities - build specialized science parks

 Firm clusters are old & well-known phenomenon - Industrial Revolution in UK, Silicon Valley, Boston's Route 128

- Firm clusters are old & well-known phenomenon Industrial Revolution in UK, Silicon Valley, Boston's Route 128
- Clusters generate some form of agglomeration externalities

- Firm clusters are old & well-known phenomenon Industrial Revolution in UK, Silicon Valley, Boston's Route 128
- Clusters generate some form of agglomeration externalities
 Firms within the cluster are more productive and innovative

- Firm clusters are old & well-known phenomenon Industrial Revolution in UK, Silicon Valley, Boston's Route 128
- Clusters generate some form of agglomeration externalities
 Firms within the cluster are more productive and innovative
- ► In UK:

- Firm clusters are old & well-known phenomenon Industrial Revolution in UK, Silicon Valley, Boston's Route 128
- Clusters generate some form of agglomeration externalities
 Firms within the cluster are more productive and innovative
- ► In UK:

1) Low-tech manufacturing industries, such as textiles, ceramics, and cutlery, are geographically concentrated rather than high-tech industries (Devereux et al., 2004)

2) Positive correlation between productivity and agglomeration of economic activity at NUTS3-level (Rice et al., 2006)

- Firm clusters are old & well-known phenomenon Industrial Revolution in UK, Silicon Valley, Boston's Route 128
- Clusters generate some form of agglomeration externalities
 Firms within the cluster are more productive and innovative
- ► In UK:

1) Low-tech manufacturing industries, such as textiles, ceramics, and cutlery, are geographically concentrated rather than high-tech industries (Devereux et al., 2004)

2) Positive correlation between productivity and agglomeration of economic activity at NUTS3-level (Rice et al., 2006)

Policy intervention: science parks

Science Parks

• Science Park Formula to create high-tech hubs:

- Science Park Formula to create high-tech hubs:
- Pick your preferred location, preferably in geographical proximity to a university

- Science Park Formula to create high-tech hubs:
- Pick your preferred location, preferably in geographical proximity to a university
- Build some real estate to accommodate companies

- Science Park Formula to create high-tech hubs:
- Pick your preferred location, preferably in geographical proximity to a university
- Build some real estate to accommodate companies
- Offer financial support in form of subsidies or tax breaks

- Science Park Formula to create high-tech hubs:
- Pick your preferred location, preferably in geographical proximity to a university
- Build some real estate to accommodate companies
- Offer financial support in form of subsidies or tax breaks
- ▷ Best entrepreneurs will come and innovation and its successful commercialization will happen.

- Science Park Formula to create high-tech hubs:
- Pick your preferred location, preferably in geographical proximity to a university
- Build some real estate to accommodate companies
- Offer financial support in form of subsidies or tax breaks
- ▷ Best entrepreneurs will come and innovation and its successful commercialization will happen.

- Science Park Formula to create high-tech hubs:
- Pick your preferred location, preferably in geographical proximity to a university
- Build some real estate to accommodate companies
- Offer financial support in form of subsidies or tax breaks
- Best entrepreneurs will come and innovation and its successful commercialization will happen.
- \triangleright Is it that straightforward?

Science Parks

 Tremendous increase in the number of science parks in the UK and worldwide

- Tremendous increase in the number of science parks in the UK and worldwide
- ► In UK: first two science parks were opened in 1973

- Tremendous increase in the number of science parks in the UK and worldwide
- ► In UK: first two science parks were opened in 1973
- 1983: 7 parks in operation; 38 by 1989; 46 by 1999; 81 by 2002; and 85 in 2010 (out of which 72 85% are directly linked to a university or public research institution)

- Tremendous increase in the number of science parks in the UK and worldwide
- ► In UK: first two science parks were opened in 1973
- 1983: 7 parks in operation; 38 by 1989; 46 by 1999; 81 by 2002; and 85 in 2010 (out of which 72 85% are directly linked to a university or public research institution)
- Total of 3,800 people employed in science parks in 1985; 16,587 in 1992; 76,603 in 2008

- Tremendous increase in the number of science parks in the UK and worldwide
- ► In UK: first two science parks were opened in 1973
- 1983: 7 parks in operation; 38 by 1989; 46 by 1999; 81 by 2002; and 85 in 2010 (out of which 72 85% are directly linked to a university or public research institution)
- Total of 3,800 people employed in science parks in 1985; 16,587 in 1992; 76,603 in 2008
- Nearly entire existing literature case-study based quantitative research embryonic

▷ Does similarity of firms generate knowledge spillovers?

- ▷ Does similarity of firms generate knowledge spillovers?
- Collect 8-year panel on all firms in 2 UK science parks

- ▷ Does similarity of firms generate knowledge spillovers?
- Collect 8-year panel on all firms in 2 UK science parks
- Estimate model of 'peer' interaction

- ▷ Does similarity of firms generate knowledge spillovers?
- Collect 8-year panel on all firms in 2 UK science parks
- Estimate model of 'peer' interaction
- Four main empirical challenges
 - Unit of analysis
 - Definition of firms' similarity
 - Identification of peer effects
 - Peer vs correlated effects

- ▷ Does similarity of firms generate knowledge spillovers?
- Collect 8-year panel on all firms in 2 UK science parks
- Estimate model of 'peer' interaction
- Four main empirical challenges
 - Unit of analysis
 - Definition of firms' similarity
 - Identification of peer effects
 - Peer vs correlated effects

- Identification

Identification

• Unit of analysis: All firms in science park

- Identification

Identification

- Unit of analysis: All firms in science park
- Definition of firms' similarity: SIC code

- Identification

Identification

- Unit of analysis: All firms in science park
- Definition of firms' similarity: SIC code
- ► Identification of peer effects: Exploit network heterogeneity
Choose the Neighbor Before the House: Agglomeration Externalities in UK Science Parks

- Identification

Identification

- Unit of analysis: All firms in science park
- Definition of firms' similarity: SIC code
- ► Identification of peer effects: Exploit network heterogeneity
- Peer vs correlated effects: Network fixed effects, selection rule & handwaiving...

- Identification

Identification of Peer Effects: intuition

 Identification of peer effects through heterogeneity across firms in their relative position in network

Identification of Peer Effects: intuition

$$g = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

 Identification of peer effects through heterogeneity across firms in their relative position in network Choose the Neighbor Before the House: Agglomeration Externalities in UK Science Parks

Network position

 Identification of peer effects through heterogeneity across firms in their relative position in network

- Identification of peer effects through heterogeneity across firms in their relative position in network
- ► How to measure a firm's network position?

- Identification of peer effects through heterogeneity across firms in their relative position in network
- How to measure a firm's network position?
- ▷ **Degree**: number of direct links:

$$d_i(g) = \#\{j : g_{ji} = 1\} = \#N_i(g) \tag{1}$$

- Identification of peer effects through heterogeneity across firms in their relative position in network
- ► How to measure a firm's network position?
- ▷ **Degree**: number of direct links:

$$d_i(g) = \#\{j : g_{ji} = 1\} = \#N_i(g) \tag{1}$$

- Example:
- ▷ Black triangles: $d_i(g) = 2$
- ▷ Yellow pentagons: $d_i(g) = 3$
- \triangleright Grey square: $d_i(g) = 5$

Peer effects: node *i*'s own centrality depends on its neighbors' centrality, which depends on node *i*'s centrality...

- Peer effects: node i's own centrality depends on its neighbors' centrality, which depends on node i's centrality...
- **Bonacich centrality** (1987):

$$Bonacich(g,b) = (\mathbf{I} - bg)^{-1}bg\mathbf{1}$$

- Peer effects: node i's own centrality depends on its neighbors' centrality, which depends on node i's centrality...
- **Bonacich centrality** (1987):

$$Bonacich(g,b) = (\mathbf{I} - bg)^{-1}bg\mathbf{1}$$

Bonacich centrality counts for each node in a given network the total number of direct and indirect paths of any length in the network stemming from that node where paths are weighted using a geometrically decaying factor.

- Peer effects: node i's own centrality depends on its neighbors' centrality, which depends on node i's centrality...
- **Bonacich centrality** (1987):

$$Bonacich(g,b) = (\mathbf{I} - bg)^{-1}bg\mathbf{1}$$

- Bonacich centrality counts for each node in a given network the total number of direct and indirect paths of any length in the network stemming from that node where paths are weighted using a geometrically decaying factor.
- ► Why Bonacich centrality?

- Peer effects: node i's own centrality depends on its neighbors' centrality, which depends on node i's centrality...
- **Bonacich centrality** (1987):

$$Bonacich(g,b) = (\mathbf{I} - bg)^{-1}bg\mathbf{1}$$

- Bonacich centrality counts for each node in a given network the total number of direct and indirect paths of any length in the network stemming from that node where paths are weighted using a geometrically decaying factor.
- ► Why Bonacich centrality?
- Calvó-Armengol et al. (2009) show why

Empirical Approach — Identification

Empirical specification (Spatial Error Model)

$$y_i^* = \sum_{m=1}^M \beta^m x_i^m + e_i$$
 (2)

$$e_i = \mu \sum_{j=1}^n g_{ij} + b \sum_{j=1}^n g_{ij} e_j + u_i$$
(3)

where $u \sim N(0, \sigma^2 I)$.

Empirical Approach — Identification

Empirical specification (Spatial Error Model)

$$y_i^* = \sum_{m=1}^M \beta^m x_i^m + e_i$$
 (2)

$$e_i = \mu \sum_{j=1}^n g_{ij} + b \sum_{j=1}^n g_{ij} e_j + u_i$$
(3)

where $u \sim N(0, \sigma^2 I)$.

In matrix notation

$$Y = X\beta + e \tag{4}$$

$$e = \mu g \mathbf{1} + b g e + u \tag{5}$$

Apply spatial Cochrane-Orcutt transformation:

$$Y - X\beta = \mu g \mathbf{1} + bg e + u$$
$$\iff Y = bg Y + X\beta - bg X\beta + \mu g \mathbf{1} + u$$

Choose the Neighbor Before the House: Agglomeration Externalities in UK Science Parks L Identification

Empirical Approach — Identification (Bramoullé et al., 2009)

Apply spatial Cochrane-Orcutt transformation:

$$Y - X\beta = \mu g \mathbf{1} + bg e + u$$
$$\iff Y = bg Y + X\beta - bg X\beta + \mu g \mathbf{1} + u$$

• Identified if parameters β , μ and b uniquely define reduced form

$$Y = (I - bg)^{-1}X\beta + (I - bg)^{-1}b\beta gX + (I - bg)^{-1}\mu g\mathbf{1} + (I - bg)^{-1}u$$

Apply spatial Cochrane-Orcutt transformation:

$$Y - X\beta = \mu g \mathbf{1} + bg e + u$$
$$\iff Y = bg Y + X\beta - bg X\beta + \mu g \mathbf{1} + u$$

• Identified if parameters β , μ and b uniquely define reduced form

$$Y = (I - bg)^{-1}X\beta + (I - bg)^{-1}b\beta gX + (I - bg)^{-1}\mu g\mathbf{1} + (I - bg)^{-1}u$$

► Peer effects identified through heterogeneity across firms in terms of their degree centrality, adjacency matrix **not** idempotent and satisfies the condition $\frac{g_i^2}{g_i} \neq \frac{g_j^2}{g_j}$

Apply spatial Cochrane-Orcutt transformation:

$$Y - X\beta = \mu g \mathbf{1} + bg e + u$$
$$\iff Y = bg Y + X\beta - bg X\beta + \mu g \mathbf{1} + u$$

• Identified if parameters β , μ and b uniquely define reduced form

$$Y = (I - bg)^{-1}X\beta + (I - bg)^{-1}b\beta gX + (I - bg)^{-1}\mu g\mathbf{1} + (I - bg)^{-1}u$$

- ▶ Peer effects identified through heterogeneity across firms in terms of their degree centrality, adjacency matrix **not** idempotent and satisfies the condition $\frac{g_i^2}{g_i} \neq \frac{g_j^2}{g_j}$
- Estimate as spatial error model

Apply spatial Cochrane-Orcutt transformation:

$$Y - X\beta = \mu g \mathbf{1} + bg e + u$$
$$\iff Y = bg Y + X\beta - bg X\beta + \mu g \mathbf{1} + u$$

• Identified if parameters β , μ and b uniquely define reduced form

$$Y = (I - bg)^{-1}X\beta + (I - bg)^{-1}b\beta gX + (I - bg)^{-1}\mu g\mathbf{1} + (I - bg)^{-1}u$$

- ▶ Peer effects identified through heterogeneity across firms in terms of their degree centrality, adjacency matrix **not** idempotent and satisfies the condition $\frac{g_i^2}{g_i} \neq \frac{g_j^2}{g_j}$
- Estimate as spatial error model
- Structural justification for spatial error specification!

Choose the Neighbor Before the House: Agglomeration Externalities in UK Science Parks \bigsqcup_{Data}

Science Parks

Cambridge Science Park (CSP):

- Cambridge Science Park (CSP):
 - Oldest science park in UK (1973)

- Cambridge Science Park (CSP):
 - Oldest science park in UK (1973)
 - ► Fully owned and managed by Trinity College, Cambridge

- Cambridge Science Park (CSP):
 - Oldest science park in UK (1973)
 - Fully owned and managed by Trinity College, Cambridge
 - ▶ 1,566,000 sq ft in lettable space

- Cambridge Science Park (CSP):
 - Oldest science park in UK (1973)
 - Fully owned and managed by Trinity College, Cambridge
 - ▶ 1,566,000 sq ft in lettable space
- St. John's Innovation Centre (SJC):

- Cambridge Science Park (CSP):
 - Oldest science park in UK (1973)
 - Fully owned and managed by Trinity College, Cambridge
 - ▶ 1,566,000 sq ft in lettable space
- St. John's Innovation Centre (SJC):
 - Among oldest science parks in UK (1987)

- Cambridge Science Park (CSP):
 - Oldest science park in UK (1973)
 - Fully owned and managed by Trinity College, Cambridge
 - ▶ 1,566,000 sq ft in lettable space
- ► St. John's Innovation Centre (SJC):
 - Among oldest science parks in UK (1987)
 - Fully owned and managed by St John's College, Cambridge

- Cambridge Science Park (CSP):
 - Oldest science park in UK (1973)
 - Fully owned and managed by Trinity College, Cambridge
 - ▶ 1,566,000 sq ft in lettable space
- St. John's Innovation Centre (SJC):
 - Among oldest science parks in UK (1987)
 - ► Fully owned and managed by St John's College, Cambridge
 - ► 3,500 sq sq ft in lettable space

- Cambridge Science Park (CSP):
 - Oldest science park in UK (1973)
 - Fully owned and managed by Trinity College, Cambridge
 - ▶ 1,566,000 sq ft in lettable space
- St. John's Innovation Centre (SJC):
 - Among oldest science parks in UK (1987)
 - ► Fully owned and managed by St John's College, Cambridge
 - ► 3,500 sq sq ft in lettable space
- Not specialized in a certain area of business activity.

Choose the Neighbor Before the House: Agglomeration Externalities in UK Science Parks \bigsqcup_{Data}

Science Parks - CSP Map

Firm-level financial information and IP

- Main characteristics of data base used:
 - Covers population of UK firms over the period 2000-2007
 - ► Firm-specific characteristics (FAME & ICC) and information on IP (PATSTAT)
 - ▶ Result of matching FAME database and firm-level IP datasets

Firm-level financial information and IP

- Main characteristics of data base used:
 - Covers population of UK firms over the period 2000-2007
 - ► Firm-specific characteristics (FAME & ICC) and information on IP (PATSTAT)
 - ► Result of matching FAME database and firm-level IP datasets
- Serious Problem of item-nonresponse data not missing at random (e.g. 3% of firms report employment data)

Identification of tenants - 2 sources of information:

- Identification of tenants 2 sources of information:
 - 1. Use lists of tenant names provided on science parks' websites to match with FAME (based on name and postcode)

- Identification of tenants 2 sources of information:
 - 1. Use lists of tenant names provided on science parks' websites to match with FAME (based on name and postcode)
 - 2. Search FAME & ICC for firms located at science parks' addresses

- Identification of tenants 2 sources of information:
 - 1. Use lists of tenant names provided on science parks' websites to match with FAME (based on name and postcode)
 - 2. Search FAME & ICC for firms located at science parks' addresses
- Use information on changes in firms' registered addresses from ICC to determine period located in science park

- Identification of tenants 2 sources of information:
 - 1. Use lists of tenant names provided on science parks' websites to match with FAME (based on name and postcode)
 - 2. Search FAME & ICC for firms located at science parks' addresses
- Use information on changes in firms' registered addresses from ICC to determine period located in science park
- Identified 412 tenants
Identification of tenants

- Identification of tenants 2 sources of information:
 - 1. Use lists of tenant names provided on science parks' websites to match with FAME (based on name and postcode)
 - 2. Search FAME & ICC for firms located at science parks' addresses
- Use information on changes in firms' registered addresses from ICC to determine period located in science park
- Identified 412 tenants
- Regression sample 275 tenants

Tenant Firms - Entry & Exit from/to CSP & SJC

Year	# Tenants	# Entry	# Exit
(1)	(2)	(3)	(4)
2000	127	24	3
2001	170	46	27
2002	182	39	15
2003	199	32	23
2004	221	45	31
2005	230	40	28
2006	239	37	19
2007	266	46	23
# Firms	412	309	169

Tenant Firms - Degree Summary Statistics

	Network Density		Degree			
Year		Mean	Std.Dev.	Firms		
SIC 3 -digit						
2000	0.153	15.17	8.42	99		
2007	0.157	28.90	16.63	184		
SIC 2-digit						
2000	0.325	32.85	17.88	101		
2007	0.313	57.73	28.70	184		
SIC 1-digit						
2000	0.610	65.28	30.79	107		
2007	0.678	128.94	54.13	190		

Peer effect estimates

Dependent variable: In No. Patent Applications							
	(1)	(2)	(3)				
SIC 3-digit							
ln Degree (μ)	0.066***	0.092***	0.078***				
	(0.016)	(0.026)	(0.026)				
Peer effects (b)	0.163**	0.149**	0.162**				
	(0.064)	(0.067)	(0.067)				
SIC 2-digit							
ln Degree (μ)	0.049***	0.060**	0.055*				
	(0.017)	(0.030)	(0.030)				
Peer effects (b)	0.062	-0.041	-0.059				
	(0.097)	(0.108)	(0.109)				
SIC 1-digit							
ln Degree (μ)	0.040***	0.007	-0.008				
	(0.014)	(0.024)	(0.024)				
Peer effects (b)	0.197*	0.125	0.143				
	(0.107)	(0.116)	(0.114)				
Year dummies	YES	YES	YES				
Sector fixed effects	NO	YES	YES				
Contextual effects	YES	YES	YES				

Findings

What is the effect of the composition of tenant firms in two adjacent science parks in the UK, CSP and SJC, on inter-firm knowledge spillovers?

- What is the effect of the composition of tenant firms in two adjacent science parks in the UK, CSP and SJC, on inter-firm knowledge spillovers?
- Identification of peer effects by exploiting heterogeneity of firms' positions in network

- What is the effect of the composition of tenant firms in two adjacent science parks in the UK, CSP and SJC, on inter-firm knowledge spillovers?
- Identification of peer effects by exploiting heterogeneity of firms' positions in network
- Positive knowledge spillovers between firms within the same industries at the 3-digit SIC level (much less so at 2-digit level and none at 1-digit level)

- What is the effect of the composition of tenant firms in two adjacent science parks in the UK, CSP and SJC, on inter-firm knowledge spillovers?
- Identification of peer effects by exploiting heterogeneity of firms' positions in network
- Positive knowledge spillovers between firms within the same industries at the 3-digit SIC level (much less so at 2-digit level and none at 1-digit level)
- ▷ Evidence for presence of unobserved localized spillovers

- What is the effect of the composition of tenant firms in two adjacent science parks in the UK, CSP and SJC, on inter-firm knowledge spillovers?
- Identification of peer effects by exploiting heterogeneity of firms' positions in network
- Positive knowledge spillovers between firms within the same industries at the 3-digit SIC level (much less so at 2-digit level and none at 1-digit level)
- ▷ Evidence for presence of unobserved localized spillovers
- ▷ Let science parks specialize?