

Fakultät für Betriebswirtschaft Munich School of Management

Inside the Digital Economy: Digitization and Firm Organization

Tobias Kretschmer ISTO, LMU Munich

Overcoming the Crisis: How to Foster Innovation and Entrepreneurship in a Diverging European Economy? ZEW Mannheim, 09/10/15

1. Information and communication technologies and economic growth

- 2. How can ICT affect organization(s)?
- 3. Some evidence on the interaction of ICT and organization
 - Cloud readiness across industries
 - Competitive pressure and the adoption of complementary innovations
- 4. Ongoing work on ICT and organization
- 5. Summary and a research agenda

<mark>∙∗≛</mark>⊶ISTO

ICT accounts for a large share of US productivity growth

Source: Jorgenson (2008)

ICT output elasticities are around .06 and rising over time

$lnY_{it} = \alpha lnK_{nICT,it} + \beta lnK_{ICT,it} + \gamma lnL_{it} + controls_{it} + \epsilon_{it}$

Source: Cardona/Kretschmer/Strobel (2013). Observations from 28 papers weighted by within-study variance.

Specific technologies (e.g. Broadband) contribute massively to economic growth

Counterfactual GDP/capita in Germany (if Germany had had a 10% higher BB penetration in 2003)

Source: Czernich/Falck/Kretschmer/Wößmann (2011). Counterfactual analysis of crosscountry growth regressions

ICT as a General Purpose Technology

ICT is efficiency enhancing in many production processes (diffuses widely).

ICT triggers complementary changes and innovations.

ICT improves over time, while the cost of usage declines.

Source: Adapted from Bresnahan and Trajtenberg (1995)

1. Information and Communication Technologies and Economic Growth

- ICT credited with contributing significantly to recent growth periods.
 - ICT-producing and ICT-using industries benefit from spread and improvement of ICT.
- Increase in output through ICT investment increases over time.
 - A 10% increase in ICT investment leads to .6% increase in growth.
- Some technologies may have an even bigger impact.
 - E.g. 10% higher broadband penetration leads to .9-1.5% higher GDP growth.
- So why do some technologies have such a large impact?
 - Have some General Purpose Technology (GPT) characteristics.
 - → Could firm organization be a complementary factor to fully "unlock" ICT?

1. ICT and economic growth

- 3. Some evidence on the interaction of ICT and organization
 - Cloud readiness across industries
 - Competitive pressure and the adoption of complementary innovations
- 4. Ongoing work on ICT and organization
- 5. Summary and a research agenda

- Reduce marginal cost of existing processes (process innovation)
- Enable new, previously not viable processes (drastic process innovation)
- Facilitate better match of consumer preferences (product innovation)
- Create opportunities through linking information across independent actors

- Reduce marginal cost of existing processes (process innovation)
 - HR processes cost per employee decreases, esp. in commission-based professions
 - Continuous improvement programs registering improvements online reduces cost per suggestion
- Enable new, previously not viable processes (drastic process innovation)
- Facilitate better match of consumer preferences (product innovation)
- Create opportunities through linking information across independent actors

- Reduce marginal cost of existing processes (process innovation)
 - HR processes cost per employee decreases, esp. in commission-based professions
 - Continuous improvement programs registering improvements online reduces cost per suggestion
- Enable new, previously not viable processes (drastic process innovation)
 - Micropayments/-credits reduce transaction cost to facilitate new markets
 - Videoconferencing distributed innovation teams
- Facilitate better match of consumer preferences (product innovation)
- Create opportunities through linking information across independent actors

- Reduce marginal cost of existing processes (process innovation)
 - HR processes cost per employee decreases, esp. in commission-based professions
 - Continuous improvement programs registering improvements online reduces cost per suggestion
- Enable new, previously not viable processes (drastic process innovation)
 - Micropayments/-credits reduce transaction cost to facilitate new markets
 - Videoconferencing distributed innovation teams
- Facilitate better match of consumer preferences (product innovation)
 - Configurator websites allow customers to configure their ideal product
 - "Freemium" business models second-degree price discrimination & network effects
- Create opportunities through linking information across independent actors

- Reduce marginal cost of existing processes (process innovation)
 - HR processes cost per employee decreases, esp. in commission-based professions
 - Continuous improvement programs registering improvements online reduces cost per suggestion
- Enable new, previously not viable processes (drastic process innovation)
 - Micropayments/-credits reduce transaction cost to facilitate new markets
 - Videoconferencing distributed innovation teams
- Facilitate better match of consumer preferences (product innovation)
 - Configurator websites allow customers to configure their ideal product
 - "Freemium" business models second-degree price discrimination & network effects
- Create opportunities through linking information across independent actors
 - Digital health creates web of previously separate information to improve care and reduce cost
 - "Sharing economy" Uber, AirBnB, Kickstarter etc. link many independent agents on both sides

- 1. ICT and economic growth
- 2. How can ICT affect organization(s)?
- 3. Some evidence on the interaction of ICT and organization
 - Cloud readiness across industries
 - Competitive pressure and the adoption of complementary innovations
- 4. Ongoing work on ICT and organization
- 5. Summary and a research agenda

- Cloud readiness across industries (Candel Haug/Kretschmer/Strobel, forthcoming, Telecoms Policy)
 - Firm adoption of cloud-like infrastructure differs widely across industries

- Cloud readiness across industries (Candel Haug/Kretschmer/Strobel, forthcoming, Telecoms Policy)
 - Firm adoption of cloud-like infrastructure differs widely across industries
 - Cloud-ready firms are more productive than their industry peers

Source: Harte Hanks, ORBIS, authors' own calculations.

Sample: Productivity sample. Pooled from 2000 to 2007.

Notes: Mean differences between Y/L of cloud adaptive and Y/L of non-cloud adaptive observations are significant at the 1%-level except for Metal and Machinery.

- Cloud readiness across industries (Candel Haug/Kretschmer/Strobel, forthcoming, Telecoms Policy)
 - Firm adoption of cloud-like infrastructure differs widely across industries
 - Cloud-ready firms are more productive than their industry peers
 - However, adoption is not fastest in industries where the productivity gap is largest

as their mean differences are insignificant.

- Cloud readiness across industries (Candel Haug/Kretschmer/Strobel, forthcoming, Telecoms Policy)
 - Firm adoption of cloud-like infrastructure differs widely across industries
 - Cloud-ready firms are more productive than their industry peers
 - However, adoption is not fastest in industries where the productivity gap is largest
 - ➔ Organizational factors could faciliate or hinder the adoption of cloud-like infrastructures
 - ➔ ICT alone is not a driver of growth, it has to be faciliated by the "right" organizational form

- Competitive Pressure and the Adoption of Complementary Innovations (Kretschmer/Miravete/Pernias, AER 2012)
 - Considers a single country-industry (French car dealers)
 - Utilizes a change in regulation for car manufacturers to intensify competition among dealers across territories
 - Tracks adoption of two enterprise software packages: HR and Applications development software
 - Finds that firms grow (i.e. increase scale of operations) upon liberalization and
 - ...increasingly adopt more App development software,
 - ...which in turn triggers less HR adoption
 - ➔ Scale and some types of enterprise software go together, while different types of software are often substitutes
 - → Supports the view that ICT is an integral part of the firm's organizational structure

- 1. ICT and economic growth
- 2. How can ICT affect organization(s)?
- 3. Some evidence on the interaction of ICT and organization
 - Cloud readiness across industries
 - Competitive pressure and the adoption of complementary innovations
- 4. Ongoing work on ICT and organization
- 5. Summary and a research agenda

4. Ongoing work on ICT and Organization

- Organizational Observatory @LMU Munich
- Telephone survey with the aim of capturing the Organization Design of German firms
 - Not simply surveying "standard" structural variables (hierarchy, org chart etc.), but get a theoretically grounded picture of how the firm "works"
 - Five elements of organization design, two dimensions:
 - Task allocation
 - Planning and controlling
 - Compensation and incentives
 - Information flows
 - Personnel management
 - → Centralization and Formalization for each dimension
 - For information flows, also ask use of ERP and production software (CAD/CAM)
 - Future surveys of ICT decisionmakers within the firm to get detailed view on ICT

4. Ongoing work on ICT and Organization

- Potential questions that can be addressed:
 - Can ICT support certain types of information flow (centralized, formalized)?
 - Are there "ambidextrous" ICT systems that can support different types of information exchange or are they substitutes?
 - Does ICT use lead or lag the type of information flow?
- Future plans:
 - Annual survey on org design and ICT use
 - Matching into other datasets, e.g. innovativeness, linked employer-employee data etc.
 - Making use of shocks over time for identification

- 1. ICT and economic growth
- 2. How can ICT affect organization(s)?
- 3. Some evidence on the interaction of ICT and organization
 - Cloud readiness across industries
 - Competitive pressure and the adoption of complementary innovations
- 4. Ongoing work on ICT and organization
- 5. Summary and a research agenda

5. Summary and a research agenda

ICT can offer a way out of this crisis (and future ones)

- The aggregate growth contribution of ICT is (very) high, suggesting that ICT may be a General Purpose Technology.
- GPT differ from conventional technologies in their complementarities and ability to affect many economic activities.
- The impact of ICT innovations is often determined by users. Much of the action happens there.
 To be classified as a GPT, ICT has to reach "unlikely" users.

5. Summary and a research agenda

Opening the black box of enterprise ICT

- We know quite a lot about ICT (and there is a good deal of data around, including here at ZEW!), but much less about organization design and both have to "fit" to generate most value.
- Industry- or firm-specific studies aimed at uncovering precise mechanisms and interdependencies have most potential for real insights.
- Longitudinal studies can shed light on the "driving" versus "facilitating" role of ICT.

THANK YOU! t.kretschmer@lmu.de

Broadband and Economic Growth: Motivation

- During the recent economic crisis, many governments initiated stimulus packages that emphasize investment in high speed internet and promote the roll-out of broadband networks.
- Possible channels through which high-speed internet may facilitate macroeconomic growth:
 - accelerate the distribution of ideas and information
 - foster competition for and development of new products and processes
 - facilitate the introduction of new working practices, entrepreneurship or job matching
- Counterfactual study looks at growth contributions in different countries

Extensive Diffusion of Broadband in Germany

Communication Infrastructure and Economic Development

- Röller and Waverman (AER 2001)
 - Analysis of the roll-out of the traditional telephone network
 - Positive effect of rate of telephone lines on GDP per head OECD average: 1/3 of annual growth attributed to telephone infrastructure
- Crandall, Lehr and Litan (2007); Gillett, Lehr, Osorio and Sirbu (2006)
 - Analyse the broadband development across U.S. states
 - Positive associations between broadband penetration and different economic outcome variables such as employment, wages, and housing prices.

Broadband Infrastructure and Economic Growth

- Aim: Isolate supply side effects from demand side effects and endogenous regulation
 - Reverse causality: Broadband infrastructure can be built in economically successful countries, so there might be correlation, but not causation
- Instrumental variable approach:
 - Roll-out of broadband networks takes place along the already existing voice-telephony and cable TV networks.
 - Geographic extent of the broadband network is bounded by the extent of the traditional communication networks.
 - Both networks were built for other purposes and finished before broadband diffusion started.

Country Sample

- Complete data available for panel of 20 OECD countries
 - Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Japan, Netherlands, New Zealand, Norway, Sweden, Switzerland, UK, USA
 - 5 additional countries in models without controls for investment and education:

Czech Republic, Italy, Portugal, South Korea, Spain

- 12 years: 1996-2007
- Sources:
 - OECD
 - ITU (International Telecommunication Union)

Variables

- Broadband rate
 - Broadband connections (>256 kbit/s) per 100 inhabitants
- GDP per working-age population (2000 PPP)
- Capital accumulation
 - Real private non-residential fixed capital formation / real private GDP
- Human-capital accumulation
 - Years of schooling population aged 15-64
- Population aged 15-64 years
- Fixed-telephone lines per 100 inhabitants
- Cable TV subscribers per 100 inhabitants

• ISTO

Logistic Diffusion and Nonlinear First Stage

Instruments:

Fixed telephone lines and cable TV subscribers in 1996

Spread of new technologies typically follows S-shaped diffusion curve (Griliches 1957)

Existing networks determine maximum broadband rate γ_i

 $\gamma_{i} = \gamma_{0} + \gamma_{1} telephone + \gamma_{2} cableTV$

Logistic Diffusion and Nonlinear First Stage

- Non-linear first stage: Crucial to choose correct functional form (Angrist/Krueger 2001)
- Vast empirical literature following Griliches (1957) on logistic diffusion curves (Comin, Hobijn and Rovito 2006)

Predicted values from first stage used to determine growth effect of broadband:

- Predicted values
 - Time-varying predicted values for broadband rate
 - Predicted value for year of introduction of broadband ($B_{it} \ge 1\%$)
- Bootstrapped standard errors in second stage

The Diffusion Curve: First Stage of IV Model

Dependent variable: Broadband penetration rate	Model 1	Model 2
Voice-telephony penetration rate (γ_1)	0.585***	0.487***
Cable-TV penetration rate (γ_2)	$(6.16) \\ 0.279^{**} \\ (2.11)$	$(4.59) \\ 0.301^{**} \\ (2.54)$
Diffusion speed (β)	0.647^{***}	0.623***
Inflexion point (τ)	(15.60) 2.004.5 ^{***} (10423.8)	(13.36) 2.004.5 ^{***} (10508.9)
Constant (γ_0)	-0.057 (1.25)	0.002 (0.04)
R^2	0.96	0.93
F-test (voice PR = cable PR = 0)	26.69	32.18
Observations	260	325
Countries	20	25

- Estimated by non-linear least squares
- Same results when 2nd-stage control variables are included

Actual and Predicted Broadband Penetration Rates

Actual Broadband Penetration Rate

----- Predicted Broadband Penetration Rate

Effect of Broadband Diffusion: IV Results

$\log y_{it} = \alpha_i + \alpha_t + \alpha_1 D_{it} + \beta_1 \log s_{it} + \beta_2 \log h_{it} + \beta_3 n_{it} + \varepsilon_{it}$

Dependent variable: Log of GDP per capita	Model 1	Model 2	Model 3
Predicted broadband introduction	0.027 ^{***} (2.84)	0.031 ^{***} (3.18)	0.039 ^{***} (4.56)
Log of capital formation/GDP	0.107 ^{**} (2.11)		
Log of years of education	0.088 (0.61)		
Growth of working-age population	0.043 (0.06)		
Country dummies	yes	yes	yes
Year dummies	yes	yes	yes
Constant	3.627***	3.563***	3.492***
	(12.10)	(65.67)	(61.41)
R^2 (within)	0.86	0.85	0.84
Observations	240	240	300
Countries	20	20	25

Effect of Broadband Diffusion: IV Results

 $\Delta \log y_{it} = \alpha + \alpha_1 B_{it} + \beta_1 \Delta \log s_{it} + \beta_2 \Delta \log h_{it} + \beta_3 \Delta n_{it} + \beta_4 \log y_{i0} + \beta_5 T_{it}^B + \varepsilon_{it}$

Dependent variable: Growth of GDP per capita	Model 1	Model 2	Model 3
Predicted broadband penetration rate	0.092 ^{***} (3.57)	0.135 ^{***} (5.27)	0.145^{***} (4.10)
Years since predicted broadband introduction	-0.003 ^{***} (3.92)	-0.005 ^{****} (5.40)	-0.005 ^{***} (4.03)
Growth of capital formation/GDP	0.069 ^{***} (5.73)		
Growth of years of education	-0.004 (0.19)		
Δ Growth of working-age population	-0.18 (0.77)		
GDP per capita in 1996	-0.001 ^{***} (6.06)	-0.001 ^{***} (6.57)	-0.001 ^{***} (4.38)
Constant	0.052^{***} (10.29)	0.056^{***} (11.59)	0.049 ^{***} (8.36)
$\overline{R^2}$	0.29	0.19	0.12
Observations	240	240	300
Countries	20	20	25

Additional IV Specifications

- Results are robust in specifications that add
 - Full set of country fixed effects
 - Estimated effects slightly larger
 - Dummies for four time intervals
- Critical-mass specification
 - Network effects: non-linear effect of broadband infrastructure?
 - Include interaction terms of predicted broadband penetration and step dummies for having reached at least 10% and 20%
 - Clearest effect when 10% threshold is passed; linear beyond
- Results about the same with lagged broadband penetration
 - Nearly whole effect occurs contemporaneously
- Results are robust when we use broadband per household

Is our Instrument an accurate predictor of BB and not other ICTs?

- Indirect effect of voice-telephony and cable TV networks?
 - Through non-broadband channels e.g., use of other technologies
 - Estimated diffusion curves for mobile telephony and computers
 - →No significant effects of penetration of traditional networks on diffusion of mobile telephony and computers
- Independent direct effect of traditional networks?
 - Likely to have subsided; per-capita GDP in 1996 included
 - Non-linear 1st stage allows us to test for any 2nd-stage effects!

→No significant effects of penetration of traditional networks on growth; predicted broadband penetration keeps significant positive effect

Broadband Diffusion and Growth

Counterfactual GDP/capita in Germany (if Germany had had a 10% higher BB penetration in 2003)

Germany missed out on GDP growth opportunities

Additional 2007 GDP/cap if Country had BB Penetration of max. (Canada) in 2003

Results and Open Issues

- Positive effect broadband infrastructure on economic growth
 - Introduction of broadband leads to increase of per-capita GDP by 2.7% to 3.9% (controlling for country and year fixed effects)
 - Increase of broadband penetration rate by 10 percentage points leads to increase of GDP growth by 0.9 to 1.5 percentage points
- Results prove highly robust
- Open issues for future research:
 - Longer time frame (here: medium-term effects)
 - Definition of broadband very rough: connection > 256 kbit/s
 - Consider intensive margin of diffusion (here: only extensive)
 - Channels through which broadband increases growth

Saving a single holiday picture in 1980 would have cost \$3500

