Background	Literature Review O	Theory	Empirical Results	References	Background Factors O	Theory

Technology Entry in the Presence of Patent Thickets NBER WP 21455

Bronwyn Hall¹, Christian Helmers², Georg von Graevenitz³

9.10.2015

¹University of California, Berkeley ²Santa Clara University ³Queen Mary University of London & Centre for Competition Policy

Georg von Graevenitz

Shapiro (2001): "... a dense web of overlapping intellectual property rights that a company must hack its way through in order to actually commercialize new technology."

Georg von Graevenitz

- Do patent thickets affect entry?
- **1** Are there patent thickets ?

Yes: Hall and Ziedonis (2001); Ziedonis (2004); Jaffe and Lerner (2004); Bessen and Meurer (2008); Graevenitz et al. (2013)

- Effects on patenting, R&D investments and competition?
 Patenting increases, opposition decreases, R&D unaffected (?), competition ?
- 3 Is there a measurable effect on entry into patenting by UK firms? This paper

Context:

3

- ▷ Patent applications growing faster than patent offices can keep up.
- Concerns about effectiveness of patent examination:
 Quillen et al. (2003); Quillen and Webster (2009), Lei and Wright (2009); van Pottelsberghe de la Potterie (2011)
- > Unitary Patent Package

<⊡> <⊇>

<.≣> ≣

Sac

- We model entry into patenting and patenting choices in discrete and complex technologies;
- We derive predictions on effects of complexity of technologies, technological opportunity and of thickets on entry;
- We test these predictions using UK data;
- We report statistically and economically significant effects on entry;
- > All predictions hold in our data.

Causes of Patent Thickets

- New patentable subject matter
- ▷ Increasing complexity of some key technologies (e.g. ICT)
- Changing technological opportunity
- Changes in US legal system, resulting in frequent use of injunctions
- Strategic patenting, rise of Patent Assertion Entities (PAEs)
- Lack of resources at patent offices
- Increased trade

▷ Some of these forces arguably improve social welfare

< ≣ ト 重 の Q (0

Technological opportunity raises patenting, competition reduces it (Graevenitz et al., 2013).

$$\pi_{ik}(o_i) = o_i p_k V - o_i L - o_i C_o - o_i p_k C_a - C_c(o_i)$$

where

 o_i – Number of opportunities (=patents) applied for

- V-Value of an opportunity
- p_k Probability of patent grant
- $L-{\sf Legal\ costs}$
- $C_o \mathsf{R\&D} \ \mathsf{costs}$
- C_a Costs of administering the patent
- $C_c-{\sf Costs}$ of R&D coordination

I heory Extension to complex technology

	Technology Area 1	Technology Area 2	Technology Area 3	
Technological Opportunities O _i	O ₁ O ₂ O ₃	 O ₁ O ₂	 $O_1 O_2 O_3 O_4$	
Patentable Facets F _i	6 6 6 6 6 6			Level of Complexity

▷ In a technology area there are Ω = FO patents. Here O represents technological opportunities and F facets of these.
 ▷

$$N_{k} = \sum_{j=0}^{N} j \binom{N}{j} \left(1 - \frac{o}{O}^{(N-j)}\right) \frac{o}{O}^{j}, \ p_{k} = \sum_{j=0}^{N_{k}} \frac{1}{j+1} \binom{N_{k}}{j} \prod_{l=0}^{N_{k}-j} \left(1 - \frac{f_{l}}{F}\right) \prod_{m=0}^{j} \frac{f_{m}}{F}.$$

Georg von Graevenitz

Background Literature Review Theory Empirical Results References Background Factors Theory o Theory Complex technology

- ▷ We analyze a two stage model of entry and patenting.
- ▷ Stage two is a generalized version of Graevenitz et al. (2013):

$$\pi_{ik}(o_i, f_i) = o_i \left(V(\tilde{F}) \Delta(s_{ik}) - L(f_i p_k, s_{ik}, h_k) - C_o(\sum_{j=1}^{N_O} o_j) - f_i p_k C_a \right) - C_c(o_i) \quad .$$

where $f_i, o_i - \text{Number of facets/opportunities applied for}$

 $\tilde{F}-$ Total facets granted per opportunity

 s_{ik} – Share of facets granted to the firm

- $\triangleright\,$ If the game is supermodular, doing comparative statics is simple.
- ⇒ The conditions for supermodularity are *fragmentation* of patent applications and *elasticity* of V > elasticity of Δ .
 - ▷ Extension to incumbents and entrants.

- Greater opportunity increases entry.
- ▷ Greater complexity increases entry.
- ▷ Greater likelihood of hold-up reduces entry.
- ▷ Greater experience with R&D increases entry in new areas.

- PATSTAT 2010 & 2011 yielding data on UK and EPO patents until 2009.
- FAME 2005, 2009 & 2011 covering the population of registered UK firms until 2009.
- ▷ PATSTAT and FAME are matched at firm level.
- Sample includes all UK firms with at least one patent application between 2001 and 2009.
- \triangleright Additionally, we include 1% of all non-patenting UK firms.
- ▷ 29,435 firms that might enter 34 areas, yielding 998,219 obervations at risk with 12,991 actual entries.

Triples: Measuring the Density of Patent Thickets

We exploit citation from european patents to measure thicket density using a count of **triples**:

Triad census: Holland and Leinhardt (1976); Milo et al. (2002, 2004) Three is a crowd: Grujić et al. (2012)

Advantages & Disadvantages of the Triples Measure

- ▷ It is based on the "objective" research of patent examiners.
- It captures the network aspect of patent thickets using an established measure of local network structure.
- ▷ It captures firm and time specific variation in intensity of thickets.
- ▷ The measure is a proxy measure of hold-up potential.

	any X cite	Share with any Y cite	X or Y cite
Granted	30.7%	15.9%	37.3%
Not granted	43.0%	20.0%	49.7%

Critical References in Applications and Granted Patents

A simple test of the *triples* measure

@ SEEK 2015

Georg von Graevenitz

- Dependent variable:
 - Entry into a technology area new to the firm
- Independent variables:
 - Technological opportunity (+): log of area applications in a year, 5 year growth rate in non-patent literature references
 - Technological complexity (+): network density of citations in US patents in 10 years before potential entry
 - Thicket density (-): triples measure

▷ We estimate duration models:

How long before a firm **first** patents in sector j?

- Duration models explain how variables of interest (normalized triples) affect probability of patenting.
- Covariates are firm characteristics (assets, age), sector characteristics (applications).
- ▷ We stratify by industrial sector.
- Different models are estimated; AFT models allow the hazard of patenting to vary with firm characteristics.
- We do not have an experiment/shock to allow identification of a causal effect.

Table 4: Cox Proportional Hazard Model							
Coefficients for the hazard of entry into patenting in a TF34 Class							
538,452 firm-TF34 observations with 10,665 entries (29,435 firms)							
Compl. : Log (network density)	0.115***		0.127***	0.107***			
	(0.024)		(0.023)	(0.021)			
Opp. : Log (patents in class)	0.317***	0.506***	0.545***	0.514***			
	(0.025)	(0.031)	(0.030)	(0.027)			
Opp. : 5-year growth of non-	0.060***	0.084***	0.072***	-0.009			
patent refs in class	(0.022)	(0.022)	(0.022)	(0.021)			
Hold-up : Log (triples density		-0.138***	-0.139***	-0.101***			
in class)		(0.011)	(0.011)	(0.010)			
Age : Log firm age in years	1.135***	1.135***	1.136***	0.773***			
	(0.104)	(0.104)	(0.104)	(0.130)			
Age : Log (pats applied for				0.836***			
by firm previously)				(0.021)			
Size : Log assets	0.270***	0.270***	0.270***	0.142***			
	(0.011)	(0.011)	(0.011)	(0.013)			
Industry dummies	stratified	stratified	stratified	stratified			
Year dummies	yes	yes	yes	yes			
Log likelihood	-65.96	-65.86	-65.84	-58.69			
Degrees of freedom	12	12	13	14			
Chi-squared	1270.6	1429.1	1517.2	3465.1			

.

Std. errors are clustered on firm. *** (**) denote sig. at the 1% (5%) level.

___≣ ∽<~

■ >
= >
= >

Summary of Results

- ▷ Patent thickets in technologies such as ICT exist.
- These thickets affect entry into patenting and in some cases product market entry.
- ▷ If causes of thickets are not addressed, market structure may be affected.
- ▷ UK patenting firms are not concentrated in ICT technologies.

Background	Literature Review	Theory	Empirical Results	References	Background Factors	Theor
	0		00000000		0	

BALASUBRAMANIAN, N. AND J. SIVADASAN (2011); "WHAT HAPPENS WHEN FIRMS PATENT? NEW EVIDENCE FROM U.S. ECONOMIC CENSUS DATA," The Review of Economics and Statistics, 93, 126-146.

BESSEN, J. AND M. J. MEURER (2008): Patent Failure, Princeton University Press.

BESSEN, J. E., M. J. MEURER, AND J. L. FORD (2011): "The Private and Social Costs of Patent Trolls," Boston Univ. School of Law, Law and Economics Research Paper.

CHIEN, C. AND M. A. LEMLEY (2012): "Patent Holdup, the ITC, and the Public Interest," .

COCKBURN, I. M. AND M. J. MACGARVIE (2011): "Entry and Patenting in the Software Industry," Management Science, 57, 915-933.

COCKBURN, I. M., M. J. MACGARVIE, AND E. MULLER (2010): "Patent Thickets, Licensing and Innovative Performance," Industrial and Corporate Change, 19, 899-925.

GRAEVENITZ, G., S. WAGNER, AND D. HARHOFF (2013): "Incidence and Growth of Patent Thickets: The Impact of Technological Opportunities and Complexity." The Journal of Industrial Economics, 61, 521-563.

GRUJIĆ, J., B. EKE, A. CABRALES, J. A. CUESTA, AND A. SÁNCHEZ (2012): "Three is a crowd in iterated prisoner's dilemmas: experimental evidence on reciprocal behavior." Scientific Reports, 2,

HALL, B. H. AND R. ZIEDONIS (2001): "The Patent Paradox Revisited: An Empirical Study of Patenting in the U.S. Semiconductor Industry, 1979-1995," Rand Journal of Economics, 32, 101-128.

HARHOFF, D., G. V. GRAEVENITZ, AND S. WAGNER (2012a): "Conflict Resolution, Public Goods and Patent Thickets," SSRN eLibrarv.

HARHOFF. D., G. VON GRAEVENITZ, AND S. WAGNER (2012b): "Conflict resolution, public goods and patent thickets," ESMT Research Working Papers ESMT-12-04 (R1), ESMT European School of Management and Technology.

HOLLAND, P. AND S. LEINHARDT (1976); "Local structure in social networks," Sociological methodology, 7.

JAFFE, A. B. AND J. LERNER (2004): Innovation and Its Discontents: How Our Broken Patent System is Endangering Innovation and Progress, and What to Do About It., Princeton, N.J.: Princeton University Press.

JONES, B. (2010a); "Age and great invention." The Review of Economics and Statistics.

—— (2010b): "As Science Evolves, How Can Science Policy?" NBER Working Papers.

JONES, B. F. (2009): "The Burden of Knowledge and the" Death of the Renaissance Man": Is Innovation Getting Harder?" The Review of Economic Studies.

LEI, Z. AND B. WRIGHT (2009): "Why Weak Patents? Rational Ignorance or Pro-'Customer'Tilt?" University of California, Berkeley.

MILO, R., S. ITZKOVITZ, N. KASHTAN, R. LEVITT, S. SHEN-ORR, I. AYZENSHTAT, M. SHEFFER, AND U. ALON (2004): "Superfamilies of evolved and designed networks." Science, 303, 1538.

MILO, R., S. SHEN-ORR, S. ITZKOVITZ, N. KASHTAN, D. CHKLOVSKII, AND U. ALON (2002): "Network Motifs: Simple Building Blocks of Complex Networks," Science, 298, 824.

PHILIPP, M. (2006): "Patent filing and searching: Is deflation in guality the inevitable consequence of hyperinflation in quantity?" World Patent Information, 28, 117-121.

< 67 ► < ≣ → < ≣⇒ ÷. naa

@ SEEK 2015

19

Georg von Graevenitz patent applications and perf

- Complexity: scientific discoveries and patents are increasingly the result of teamwork, the teams involved are getting larger, their members more specialized (Jones, 2009, 2010a,b).
- Complexity: standards in ITC involve more eligible firms, more participants and more patents.
- Technological opportunity: less opportunity intensifies patenting in complex technologies (Harhoff et al., 2012b).
- ▷ Trade: between 1990 and 2007 subsequent filings grow faster than first filings (WIPO, 2011).

- ▷ Patentable subject matter extended, e.g. software.
- Establishment of the centralized Court of Appeals for the Federal Circuit (CAFC) in 1982.
- In eBay v MercExchange (2006) the US Supreme Court creates a tougher test for injunctions.
 - Now PAE's go to the International Trade Commission (Chien and Lemley, 2012).
- Both USPTO and EPO have attempted to address some of their quality problems.

- Patent portfolio races among semiconductor firms. (Hall and Ziedonis, 2001; Ziedonis, 2004)
- Rising litigation by PAEs, reduces market value of defendants. (Bessen et al., 2011; Tucker, 2012)
- ▷ Large firms increase patenting, medium and smaller sized firms reduce patenting (Graevenitz et al., 2013).
- ▷ Reduction in post grant opposition (Harhoff et al., 2012a).

- Heterogeneous effects of thickets on R&D investments and new product introduction: firms in better bargaining positions tend to benefit at the expense of others. Schankerman and Noel (2006); Cockburn et al. (2010)
- ▷ Cockburn and MacGarvie (2011) show that a 1% increase in software patents *cause* product market entry to drop by 0.8%.
- Balasubramanian and Sivadasan (2011) show that patenting for first time patenters is especially associated with growth through increased scope.

- ▷ Philipp (2006) notes quality of examination decreasing.
- EPO regularly cited as having higher quality of examination than USPTO or JPO.
- ▷ In 2007 EPO institutes "Raising the Bar".
- But in 2008 EPO examiners go on strike because of concerns about patent quality.
- In 2010 the IP Federation issue a paper highlighting quality of examination concerns, critical of "Raising the Bar".
- ▷ Last year EPO abolish an external audit committee set up in 2009.

 Accelerated failure time model, with industry (j) - specific speed up or slow down of firm (i) - specific distribution.
 Survival probability:

$$S(t) = \left[1 + (\lambda_i t_i)^{1/\gamma_j}\right]^{-1} \quad \text{with } \lambda_i = \exp(-X_i'\beta) \quad (1)$$

Hazard of entry:

$$h(t) = -\frac{dlogS(t)}{dt} = \frac{\lambda_i^{1/\gamma_j} t^{-1+1/\gamma_j}}{\gamma_j (1 + \lambda_i^{1/\gamma_j} t^{1/\gamma_j})}$$
(2)

 $\gamma \geq 1$: the hazard monotonically decreases from t=0 $\gamma < 1$: the hazard first increases and then decreases

୍ର SEEK 2015

◆ 団 → ◆ 団 → ◆ 団 →

Georg von Graevenitz

Elasticity of hazard w.r.t. regressors

$$\frac{\partial \log(h(t))}{\partial x} = \frac{-\frac{\beta}{\gamma_j}}{1 + (\lambda_i t)^{1/\gamma_j}}$$
(3)

> At the centre of the distribution in our data,

```
\gamma\approx 1 and \lambda is very small
```

- \triangleright Implication: the elasticity of hazard w.r.t. x is approximately $-\beta$ for a typical firm.
- ▷ However it varies considerably across sectors.

Georg von Graevenitz

< All >

◆ 単 ◆
◆ 単 ●
◆ ●