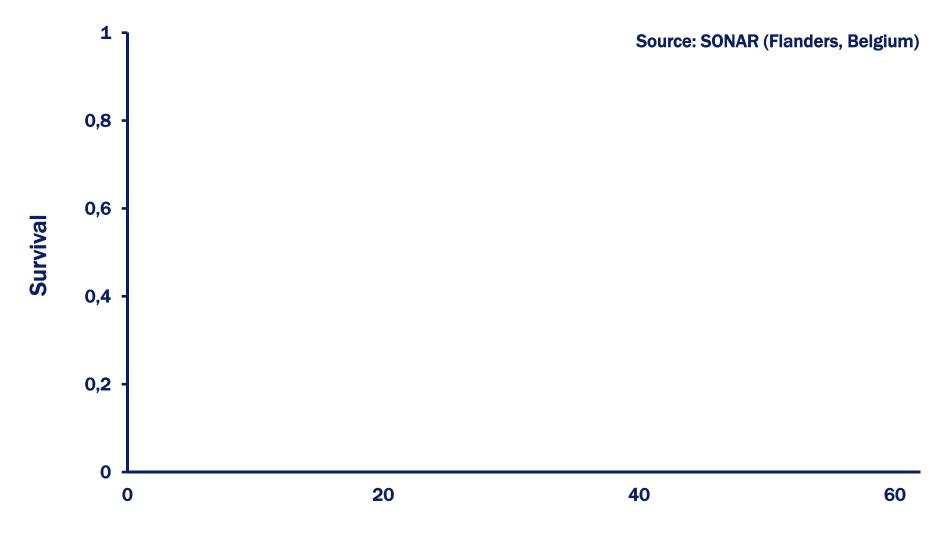
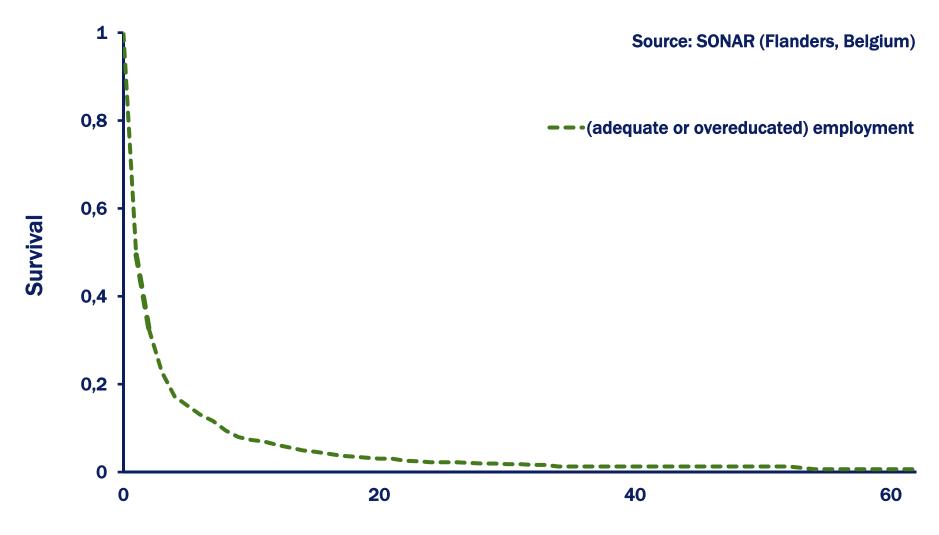


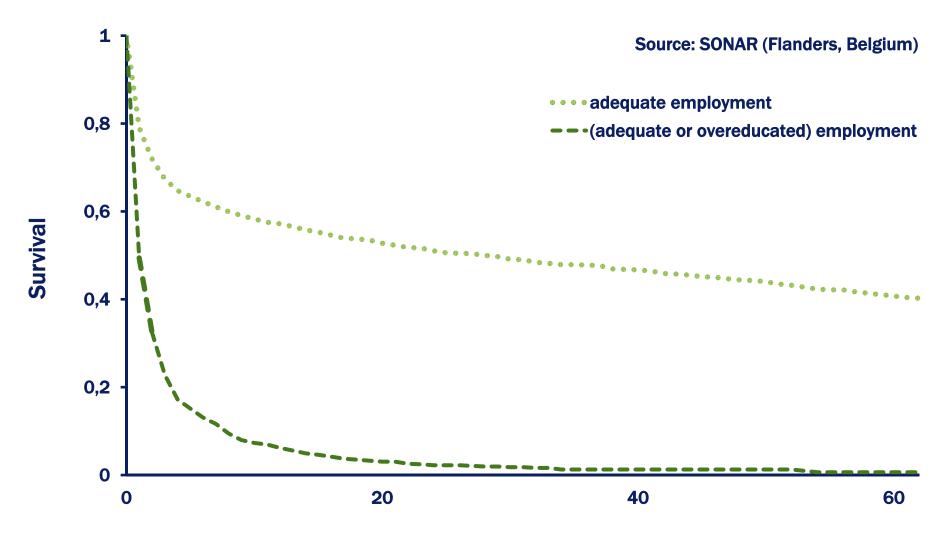
Stijn Baert


Bart Cockx

Dieter Verhaest



Overeducation at the start of the career: stepping stone or trap?


3rd SEEK conference - 24-25/04/2013 - Mannheim

Duration until employment for unemployed school-leavers (months)

Duration until employment for unemployed school-leavers (months)

Duration until employment for unemployed school-leavers (months)

Many unemployed school-leavers accept jobs in which they are overeducated.

Overeducated workers are less paid (Hartog, 2000)

Overeducated workers are less satisfied (Tsang, 1978; Allen and van der Velden, 2000)

Overeducated job = a stepping-stone?

Career mobility theory (Sicherman & Galor, 1990)

Avoiding unemployment scarring (Arulampalam, 2001)

Overeducated job = a trap?

Locking in (Pissarides, 1994; Verhaest and Omey, 2009)

Overeducation scarring (McCormick, 1990; de Grip et al., 2008)

Reduced job search intensity (Holzer, 1978)

Which strategy to pursue in order to land in an adequate job as soon as possible?

Accepting overeducation as a stepping stone?

Or staying unemployed in search for a good match?

Roadmap

- 1. Empirical literature and our contribution
- 2. Data
- 3. Econometric model
- 4. Results
- 5. Conclusion

1. Empirical literature and our contribution

Former contributions and research question

- Many studies tested whether overeducation is temporary or permanent
 - Mixed findings
 - Even if overeducation is persistent, this does not reject the hypothesis that it may act as a stepping stone to an adequate job.

Our research question

Does accepting an overeducated job augment the transition rate to an adequate job for unemployed school-leavers?

Problem: non-random selection into overeducation

1. Empirical literature and our contribution

Our approach

- Timing of Events approach:
 - Treatment: overeducated job
 - Outcome at interest: adequate job
 - Treatment effect: effect of inflowing into an overeducated job on the transition rate to an adequate job
- Comparison of probability of getting an adequate job at a particular time with resp. without prior inflow into overeducation
- Multivariate duration model accounting for observed and unobserved

Allows estimation of how treatment effect changes over time

SONAR

- SONAR: retrospective survey covering transition from school to work
- Two birth cohorts of 3000 individuals
 - Born in 1978 and 1980
 - Interviewed at age 23 and at age 26/29
- Detailed school and labour market career data
 - Monthly basis
 - Starting dates of job search, transitions from unemployment to employment, job-to-job changes and position changes within the same firm

Enables comparison of results with respect to various definitions of overeducation

Overeducation definition

- Job analysis approach
 - **Each function in the data is coded following the Standard Occupation** Classification (CBS, 2001)
 - Based on 5 functional levels:
 - Less than lower secondary education
 - Lower secondary education
 - Secondary education
 - Lower tertiary education
 - Higher tertiary education
 - **Overeducated job:** functional level under the education level of the worker
 - **Adequate job:** functional level equal to / above the education level of the

Modelled durations

- Two duration times are modelled for each individual
 - Duration until inflow into overeducated job
 - Duration until inflow into adequate job
- Start: moment when school-leaver starts searching
- Duration times are censored for various reasons:
 - End of the observation period
 - Transition to (i) job with unknown functional level, (ii) full time education,
 (iii) self-employment or (iv) disability

Sample

- Youngsters who are unemployed right after graduation.
- Only males are considered.
- Exclusion of individuals without lower secondary education degree.
- Elimination of individuals for which explanatory variables are missing.
- Sample size: 1434 individuals.

3. Econometric model

Specification (1)

Econometric framework

$$\begin{cases} ln\theta_o(t|x,V_o) = ln\lambda_o(t) + x'\beta_o + V_0 \\ ln\theta_e(t|t_o,x,V_e) = ln\lambda_e(t) + x'\beta_e + \delta(t|t_o,x)\mathbb{1}(t > t_0) + V_e \end{cases}$$

- o: index for overeducated job; and e: index for adequate job
- θ : hazard rates
 - t: elapsed durations since start job search
 - λ: baseline hazards (piecewise constant)
 - x: vector of observable characteristics

unobservable component (discrete distribution)

■ 1(.): indicator function (1 if true, 0 otherwise)

3. Econometric model

Specification (2)

Econometric framework

$$\begin{cases} ln\theta_o(t|x,V_o) = ln\lambda_o(t) + x'\beta_o + V_0 \\ ln\theta_e(t|t_o,x,V_e) = ln\lambda_e(t) + x'\beta_e + \delta(t|t_o,x)\mathbb{1}(t > t_0) + V_e \end{cases}$$

Treatment effect: Constant treatment effect model

$$\delta(t|t_o,x) = \delta(t|t_o,x) = \delta_o$$

Treatment effect: Extended model

$$\delta(t|t_o) = \delta_o + \delta_1(t - t_o) + \delta_2(t - t_o)^2 + \delta_3(t_o) + \delta_4(t_o)^2$$

Main results

Econometric framework

$$\begin{cases} ln\theta_o(t|x,V_o) = ln\lambda_o(t) + x'\beta_o + V_0 \\ ln\theta_e(t|t_o,x,V_e) = ln\lambda_e(t) + x'\beta_e + \delta(t|t_o,x)\mathbb{1}(t > t_0) + V_e \end{cases}$$

Treatment effect: Constant treatment effect model

$$\delta(t|t_o,x) = \delta(t|t_o,x) = \delta_o$$

Estimation results							
	$oldsymbol{\delta}_0$	$oldsymbol{\delta}_1$	$oldsymbol{\delta}_2$	$\boldsymbol{\delta}_3$	$oldsymbol{\delta}_4$	7	
Benchmark model	-3.171*** (0.287)						
Extended model	-4.080*** (0.354)	-0.014 (0.012)	0.000 (0.000)	0.232*** (0.088)	-0.004 (0.004)	HU	

Main results

Econometric framework

$$\begin{cases} ln\theta_o(t|x,V_o) = ln\lambda_o(t) + x'\beta_o + V_0 \\ ln\theta_e(t|t_o,x,V_e) = ln\lambda_e(t) + x'\beta_e + \delta(t|t_o,x)\mathbb{1}(t > t_0) + V_e \end{cases}$$

Treatment effect: Extended model

$$\delta(t|t_o) = \delta_o + \delta_1(t - t_o) + \delta_2(t - t_o)^2 + \delta_3(t_o) + \delta_4(t_o)^2$$

Estimation results						
	$\boldsymbol{\delta}_0$	$oldsymbol{\delta}_1$	$\boldsymbol{\delta}_2$	$\boldsymbol{\delta}_3$	$oldsymbol{\delta}_4$	
Benchmark model	-3.171*** (0.287)					
Extended model	-4.080*** (0.354)	-0.014 (0.012)	0.000 (0.000)	0.232*** (0.088)	-0.004 (0.004)	

Sensitivity analysis 1

- Re-estimation for 4 subsamples according to their highest diploma
 - Unemployed school-leavers: select subsample of higher educated
 - Imposing proportional effects of diploma variable might be too strong

Estimation results							
	$oldsymbol{\delta}_0$	$oldsymbol{\delta}_1$	$oldsymbol{\delta}_2$	$\boldsymbol{\delta}_3$	$oldsymbol{\delta}_4$		
Lower secondary	-4.322 ***	-0.006	0.000	0.357***	-0.008		
	(0.618)	(0.022)	(0.000)	(0.121)	(0.005)		
Secondary	-4.893 ***	-0.006	0.000	0. 421 ***	-0.011*		
	(0.689)	(0.017)	(0.000)	(0. 1 52)	(0006)		
Lower	-4.149***	0.0 15	-0.000	0. 21 9	-0.009		
tertiary	(0.606)	(0.042)	(0.000)	(0.214)	(0.013)		
Higher	-4.044	0.081	-0.00 1	0.200	0.003		
tertiary	(2.906)	(0.088)	(0.00 1)	(0.350)	(0.012)		

Sensitivity analysis 2

- More heterogeneity in the treatment effect
 - Effect less severe in times of booming economy?
 - Effect less severe for the high skilled?

Treatment effect: Extended model (sensitivity analysis 2)

$$\delta(t|t_o) = \delta_o + \delta_1(t-t_o) + \delta_2(t-t_o)^2 + \delta_3(t_o) + \delta_4(t_o)^2 + \delta_5 u r_t + \delta_6 delay_{16}$$

Estimation results							
$oldsymbol{\delta}_0$	$oldsymbol{\delta}_1$	$oldsymbol{\delta}_2$	$oldsymbol{\delta}_3$	$oldsymbol{\delta}_4$	$oldsymbol{\delta}_5$	$oldsymbol{\delta}_6$	1
-4.216 *** (0.605)	-0.015 (0.012)	0.000 (0.000)	0.229 ** (0.090)	0.004 (0.004)	0.012 (0.028)	-0.222 (0.153)	

Sensitivity analysis 3

- Alternative measure of overeducation
 - Modified subjective measure

Estimation results							
$oldsymbol{\delta}_0$	$oldsymbol{\delta}_1$	$oldsymbol{\delta}_2$	$oldsymbol{\delta}_3$	$oldsymbol{\delta}_4$			
-4.103*** (0.267)	-0.045*** (0.016)	0.000** (0.000)	0.320*** (0.072)	-0.009** (0.003)			

5. Conclusion

Accepting an overeducated job strongly retards transition into an adequate job

Reduced job-search intensity?

Firm-specific training investments?

Habituation?

