WELFARE EFFECTS OF SHORT-TIME COMPENSATION

Helge Braun University of Cologne

Björn Brügemann VU University Amsterdam

Klaudia Michalek University of Cologne

April, 2013

SHORT-TIME COMPENSATION (STC): WELFARE QUESTIONS

- Does introducing STC improve on UI?
- If so, how to combine STC and UI optimally?
- Through what mechanism does STC affect welfare?
- What features of the environment (preferences, technology, private insurance) determine the desirability of STC?

MINIMAL INGREDIENTS

- Risk averse workers
- Intensive margin (hours per worker can vary)
- Limited access to private insurance

STARTING POINT: BURDETT AND WRIGHT (1989)

KEY FEATURES

- · Static model of a firm with risk averse workers attached to it
- Risk-averse employer
- Firm-specific shocks to profitability
- Firm can respond on intensive and extensive margin

MAIN RESULTS

- UI induces excessive layoffs (as in Feldstein (1976))
- STC induces inefficiently low hours

DISCUSSION OF POLICY IMPLICATION

recommend neutralizing UI and STC via experience rating

THIS PAPER

- build on Burdett and Wright (1989)
- analyze welfare effects of STC and optimal policy
- key trade-off: labor-input distortions vs. insurance
- trade-off well understood for UI
- question: how does STC enter this trade-off?
 - insurance channel
 - labor-distortions channel

THIS PAPER: MAIN RESULTS

IDENTIFY KEY DETERMINANT OF OPTIMALITY OF STC How well are firms already insured against "temporary" shocks in the absence of public insurance?

TEMPORARY SHOCKS INSURED

- UI induces excessive layoffs in response to adverse shocks
- STC mitigates this distortion
- STC has no direct insurance role, but indirectly yields better insurance by raising optimal UI

TEMPORARY SHOCKS UNINSURED

- distressed firms choose high hours, foregoing STC
- direct insurance effect is negative
- STC cannot mitigate the excessive layoffs in these firms

ENVIRONMENT: TECHNOLOGY

- firm with mass N = 1 workers attached to it
- production function:

xf(nh) - nF

- n fraction of workers working positive hours
- h hours per worker
- f strictly increasing, strictly concave, differentiable
- x profitability (technology, demand etc.)
- *F* per-worker fixed cost of working positive hours

ENVIRONMENT: SHOCKS & PRIVATE INSURANCE

SHOCKS

- profitability x subject to shocks: function x(s) of state $s \in S$
- $\theta(s)$ is probability of state s

TWO SUBSETS OF SHOCKS

- simple setup with exogenous incomplete markets
- subset S_l is perfectly insured
- subset S_U is uninsured
- $S = S_I \cup S_U$

ENVIRONMENT: PREFERENCES

$$\sum_{s\in S} \theta(s) \left\{ u(c(s)) - n(s)v(h(s)) \right\}$$

c(s) consumption of each worker

- u strictly increasing, strictly concave, differentiable
- v strictly increasing, strictly convex, differentiable

OWNERSHIP

For simplicity no distinction between workers & firm owners: workers own and operate the firm.

POLICY INSTRUMENTS: UI AND STC

INSTRUMENTS

- g_{UI} payment to workers with zero hours worked
- g_{STC} payment to employed workers for every hour that hours worked fall short of "normal" level *H*
 - au proportional tax on total hours

NET SUBSIDY SCHEDULE

$$(1-n)g_{UI}+n\max[0,H-h]g_{STC}-\tau nh.$$

ISOLATING COEFFICIENTS ON *n* AND *nh*

$$\left\{ \begin{array}{ll} g_{UI} - n[g_{UI} - Hg_{STC}] - nh[g_{STC} + \tau], & h < H, \\ g_{UI} - ng_{UI} - nh\tau, & h \ge H. \end{array} \right.$$

FIRM PROBLEM

CHOOSE

$$oldsymbol{c}(oldsymbol{s}) \in \mathbb{R}_+, oldsymbol{n}(oldsymbol{s}) \in [0,1], oldsymbol{h}(oldsymbol{s}) \in [0,h^{\mathsf{max}}] \quad orall oldsymbol{s} \in oldsymbol{S}$$

TO MAXIMIZE

$$\sum_{s\in S} \theta(s) \left\{ u(c(s)) - n(s)v(h(s)) \right\}$$

SUBJECT TO

$$\sum_{s\in S} \theta(s) \{ x(s)f(n(s)h(s)) - n(s)F - c(s) \} = 0$$

FIRM PROBLEM

CHOOSE

$$oldsymbol{c}(oldsymbol{s}) \in \mathbb{R}_+, oldsymbol{n}(oldsymbol{s}) \in [0,1], oldsymbol{h}(oldsymbol{s}) \in [0,h^{ extsf{max}}] \quad orall oldsymbol{s} \in oldsymbol{S}$$

TO MAXIMIZE

$$\sum_{s\in S} \theta(s) \left\{ u(c(s)) - n(s)v(h(s)) \right\}$$

SUBJECT TO

$$\sum_{s\in S_l} \theta(s) \big\{ x(s) f(n(s)h(s)) - n(s)F - c(s) \big\} = 0$$

c(s) = x(s)f(n(s)h(s)) - n(s)F $\forall s \in S_U$

FIRM PROBLEM

CHOOSE

$$oldsymbol{c}(oldsymbol{s}) \in \mathbb{R}_+, oldsymbol{n}(oldsymbol{s}) \in [0,1], oldsymbol{h}(oldsymbol{s}) \in [0,h^{ extsf{max}}] \quad orall oldsymbol{s} \in oldsymbol{S}$$

TO MAXIMIZE

$$\sum_{s\in S} \theta(s) \left\{ u(c(s)) - n(s)v(h(s)) \right\}$$

SUBJECT TO

$$\sum_{s \in S_I} \theta(s) \{ x(s)f(n(s)h(s)) - n(s) - c(s) + (1-n)g_{UI} + n\max[0, H-h]g_{STC} - \tau nh \} = 0$$
$$c(s) = x(s)f(n(s)h(s)) - n(s)F + (1-n)g_{UI} + n\max[0, H-h]g_{STC} - \tau nh \quad \forall s \in S_U$$

Case: $n \le 1$ slack

$$h(s)v'(h(s)) - v(h(s)) = u'(c(s)) F$$

Case: $n \le 1$ slack

$$h(s)v'(h(s)) - v(h(s)) = u'(c(s)) F$$

• hours constant in x across S_I

Case: $n \le 1$ slack

h(s)v'(h(s)) - v(h(s)) = u'(c(s)) F

- hours constant in x across S_l
- hours decreasing in x across S_U

Case: $n \le 1$ slack

h(s)v'(h(s)) - v(h(s)) = u'(c(s)) F

- hours constant in x across S_l
- hours decreasing in x across S_U

Case: $n \le 1$ binds

$$\frac{v'(h(s))}{u'(c(s))} = x(s)f'(h(s))$$

Case: $n \le 1$ slack

h(s)v'(h(s)) - v(h(s)) = u'(c(s)) F

- hours constant in x across S_l
- hours decreasing in x across S_U

Case: $n \le 1$ binds

$$\frac{v'(h(s))}{u'(c(s))} = x(s)f'(h(s))$$

• hours increasing in x across S_l

Case: $n \leq 1$ slack

h(s)v'(h(s)) - v(h(s)) = u'(c(s)) F

- hours constant in x across S_l
- hours decreasing in x across S_U

Case: $n \le 1$ binds

$$\frac{v'(h(s))}{u'(c(s))} = x(s)f'(h(s))$$

- hours increasing in x across S_l
- depends on income vs. substitution across S_U

Case: $n \leq 1$ slack, h > H

 $h(s)v'(h(s)) - v(h(s)) = u'(c(s))[F + g_{UI}]$

- hours constant in x across S_l
- hours decreasing in x across S_U

CASE: $n \leq 1$ BINDS, h > H

$$\frac{v'(h(s))}{u'(c(s))} = x(s)f'(h(s)) - \tau$$

- hours increasing in x across S_I
- depends on income vs. substitution across S_U

Case: $n \leq 1$ slack , h < H

 $h(s)v'(h(s)) - v(h(s)) = u'(c(s))[F + g_{UI} - Hg_{STC}]$

- hours constant in x across S_l
- hours decreasing in x across S_U

CASE: $n \leq 1$ binds , h < H

$$\frac{v'(h(s))}{u'(c(s))} = x(s)f'(h(s)) - \tau - g_{STC}$$

- hours increasing in x across S_I
- depends on income vs. substitution across S_U

CALIBRATION: SHOCKS

TWO TYPES

"PERMANENT" $\theta(s_P) = 0.06$, $x(s_P) = 0$, always uninsured "TEMPORARY" log-normal distribution, std. $\sigma_x = 0.1$

SCENARIO 1: TEMPORARY SHOCKS INSURED

- only s_P in S_U, temporary shock realizations in S_I
- precludes direct insurance effect of STC

SCENARIO 2: TEMPORARY SHOCKS UNINSURED all shocks in S_U , S_I empty

CALIBRATION: FUNCTIONAL FORMS

TECHNOLOGY

 $f(nh) = (nh)^{\alpha}$

PREFERENCES

$$u(c) - nv(h) = \frac{c^{1-\sigma} - 1}{1-\sigma} - n\eta \frac{h^{1+\psi}}{1+\psi}$$

CALIBRATION: PARAMETERS

	Value	Target
σ	2	
ψ	1.43	Frisch elasticity of 0.7
α	0.667	
$\theta(s_P)$	0.06	unemployment due to permanent shocks 0.06
$F(F/\overline{y})$	0.108(0.121)	unemployment due to temporary shocks 0.02
σ_X	0.1	
η	0.40	normalization of average hours to one
Н	1	setting normal hours equal to average hours
g ui	0.219	replacement rate 0.25%
g stc	0	no STC in calibration

POLICY CONFIGURATIONS

g_{UI}^* Optimal UI subject to no STC $g_{STC}^*|g_{UI}^*$ Optimal STC with UI fixed at g_{UI}^* $(g_{UI}^{**}, g_{STC}^{**})$ Optimal Combination of UI and STC

Scenario 1: Employment & Hours

Scenario 1: Employment & Hours

Scenario 1: Employment & Hours

SCENARIO 1: ALLOCATIONS

	Calibr.	g_{UI}^*	$g^*_{\scriptscriptstyle STC} g^*_{\scriptscriptstyle UI}$	$(g_{UI}^{**}, g_{STC}^{**})$	FB
g ui	0.219	0.248	0.248	0.279	NA
g sтс	0	0	0.107	0.171	NA
Replacement Rate	0.25	0.288	0.292	0.339	NA
\bar{n}_T	0.98	0.932	0.981	0.962	1
\bar{h}_{T}	1	1.02	0.958	0.929	1.03
y τ	0.891	0.877	0.866	0.839	0.92
$c(s_T)$	0.877	0.862	0.851	0.822	0.865
$C(S_P)$	0.219	0.248	0.248	0.279	0.865
Welf. rel. to FB	-12.1%	-11.1%	-10.3%	-9.64%	0%

SCENARIO 1: SUMMARY & DISCUSSION

WELFARE GAINS OF STC

- mitigation of labor input distortion caused by g_{UI}
- indirect insurance effect: enables more generous UI

MAGNITUDE OF WELFARE GAIN

- sizable: 1.5%
- both welfare effects play an equally important role
- negative effect on hours, leading to a drop in output

SCENARIO 1: HOURS & NET SUBSIDY

Scenario 2: Employment & Hours

SCENARIO 2: ALLOCATIONS

	Calibr.	Aut.	g^*_{UI}	$g_{STC} = rac{1}{2} g^*_{UI}$	FB
g ui	0.206	0	0.219	0.219	NA
g _{STC}	0	0	0	0.11	NA
Replacement Rate	0.25	0	0.269	0.278	NA
π _T	0.98	1	0.949	0.953	1
\bar{h}_{T}	1	0.989	1.01	0.973	1.02
ÿ τ	0.836	0.839	0.828	0.802	0.866
Ēτ	0.823	0.839	0.814	0.788	0.814
$C(S_P)$	0.206	0	0.219	0.219	0.814
Welf. rel. to FB	-13.2%		-12.8%	-13.1%	0%

SCENARIO 2: SUMMARY & DISCUSSION

WELFARE EFFECTS OF STC

- negative direct insurance effect
- unable to counteract excessive layoffs
- both is driven by downward-sloping hours profile

MAGNITUDE OF WELFARE LOSSES

- welfare loss of adopting $g_{STC} = \frac{1}{2}g_{UI}^*$: 0.3%
- negative insurance effect is minor: 0.04%

SUMMARY

WHAT WE DID

- built on Burdett & Wright (1989)
- analyzed welfare/optimal policy

THIS PAPER: MAIN RESULTS

IDENTIFY KEY DETERMINANT OF OPTIMALITY OF STC How well are firms already insured against "temporary" shocks in the absence of public insurance?

TEMPORARY SHOCKS INSURED

- UI induces excessive layoffs in response to adverse shocks
- STC mitigates this distortion
- STC has no direct insurance role, but indirectly yields better insurance by raising optimal UI

TEMPORARY SHOCKS UNINSURED

- distressed firms choose high hours, foregoing STC
- direct insurance effect is negative
- STC cannot mitigate the excessive layoffs in these firms

FUTURE WORK

- empirically implement identification of extent of private insurance against temporary shocks
- dynamic version of model