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Abstract 

We present new and encouraging Monte Carlo evidence regarding the feasibility of 

separating causality from selection within non-experimental event history data, based 

on the Non-Parametric Maximum Likelihood Estimator (NPMLE). Provided that the 

model is correctly specified and that no unjustified restrictions are imposed on the dis-

tribution of unobserved heterogeneity, the effect of non-random treatment on subse-

quent transition propensities can be accurately recovered from observed data. How-

ever, the approach is vulnerable towards misspecification, and sources of non-

modelled unobserved heterogeneity can cause substantial biases in the estimated pa-

rameters. 
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1 Introduction 

In this paper, we provide Monte Carlo evidence regarding the extent to which the tim-

ing of stochastic processes and their outcomes convey information that enable us to 

identify and estimate causal parameters. The unit of analysis in this paper is a subject 

entering into some state (the origin state), and its subsequent stochastic transition into 

another state (the destination state). We are interested in how non-random events dur-

ing the occupation of the origin state affect the probability of making a transition to 

the destination state. The paper focuses on two types of events. The first is a treat-

ment, which we may think of as some kind of (induced) change in the economic envi-

ronment relevant for the transition propensity. The second is the outcome of the sto-

chastic transition process itself, as reflected in the duration of still progressing origin-

state-spells. The problems associated with identification of treatment effects and dura-

tion dependence arise from imperfect control for subject heterogeneity, e.g. because 

parts of this heterogeneity is unobserved by the researcher. The distribution of uncon-

trolled heterogeneity obviously changes as the time spent in the origin state elapses. 

And to the extent that the treatment in question is not fully randomised through a con-

trolled experiment, it is also likely that the distribution of uncontrolled heterogeneity 

varies between the treatment and the non-treatment observations. These problems are 

well known and described in the literature (see e.g. Heckman et al, 1999), and they 

will not be further elaborated here. The purpose of the present paper is to evaluate 

identification and estimation strategies for non-experimental data. Our results suggest 

that causal effects can be accurately and reliably recovered from non-experimental 

data, provided that the model is correctly specified and that there exist some sources 

of exogenous variation in transition propensities. A particularly useful source of iden-
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tification, that has received only modest attention in the literature, is the existence of a 

common calendar time source of variation in hazard rates (provided, of course, that 

calendar time is not perfectly correlated to process time). Our encouraging results 

hold for a large variety of unobserved heterogeneity distributions, including distribu-

tions containing defective risks. However, we also find that unjustified restrictions on 

the model structure or on the heterogeneity distribution may lead to seriously biased 

results. 

The evaluation presented in this paper builds on artificial observations for 

which the true Data Generating Process (DGP) is known. Data-structures that are 

similar to the DGP’s evaluated in this paper arise in many types of real-world applica-

tions. The most obvious situation to think of is perhaps that of an individual entering 

into an origin state of e.g. unemployment, welfare participation, or sickness absence. 

In these cases, the destination state is typically that of ordinary employment, while the 

treatment may be a benefit sanction, a labour market program, or some kind of medi-

cation. Another example is an individual entering into the origin state of a job, and 

thereafter consider whether to quit this job for another, or to pull out of the labour 

force (retire). In this case, the treatment could be a promotion or a pay rise. In our ex-

periments, we focus on situations in which large numbers of observations are avail-

able, to facilitate estimation techniques that are as ‘non-parametric’ as possible. With 

respect to the examples referred to above, that kind of data are now, in many coun-

tries, accessible from administrative registers, and such registers are likely to play an 

important role in future micro-econometric research; see e.g. Røed and Raaum 

(2003b). But even with the best conceivable data at hand, no statistical model can be 

completely non-parametric, hence an important concern in our evaluation is the extent 

to which formal non-parametric identification results carry over to realistically de-
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signed data and models. Our paper serves as a Monte Carlo evaluation of what has 

become known as the timing of events approach (Abbring and Van den Berg, 2003a). 

The strategy of the paper is to use non-parametric estimation techniques to recover 

true causal parameters, under alternative (realistic) assumptions about the data. Our 

paper is closely related to a previous Monte Carlo study by Baker and Melino (2000), 

who investigated the behaviour of the nonparametric maximum likelihood estimator 

(NPMLE) for a discrete single risk duration model with unobserved heterogeneity and 

unknown duration dependence. Baker and Melino concluded that NPMLE in many 

cases resulted in a substantial bias in estimated duration dependence as well as in the 

effects of observed heterogeneity, but that the usage of an information criterion with a 

penalty attached to the number of support points in the heterogeneity distribution 

could lead to a dramatic improvement. Our findings suggest that NPMLE is extremely 

reliable as long as the model is correctly specified (apart from the unknown distribu-

tion of unobserved heterogeneity), but that misspecification of the model (for example 

in the form of a pre-specified number of support points in the heterogeneity distribu-

tion) can lead to serious bias problems. We also find that the ‘over-parameterisation’ 

problem identified by Baker and Melino (2000) is a strictly small sample problem. As 

the dataset becomes large, the difference between the Maximum Likelihood and the 

Maximum Penalised Likelihood estimators disappears (as long as the penalty is mod-

erate). 

The paper is structured as follows. The next Section describes the Data Gener-

ating Process (DGP) that we refer to as the baseline model. Section 3 discusses identi-

fication issues, and Section 4 outlines the statistical model used to recover the pa-

rameters of the DGP. Section 5 then discusses the models’ ability recover the true 

baseline model parameters. Section 6 looks at the influence of sample size. Section 7 
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studies the impact of complicating the statistical distribution of unobserved heteroge-

neity, while Section 8 looks at the consequences of changing the causal parameters in 

the DGP in ways that potentially can affect the scope for identification. Section 9 dis-

cusses more fundamental deviations in the DGP from the basic assumptions underly-

ing the estimated model (such as the proportional hazards assumption). Section 10 

explores the consequences of, and suggests a remedy for, sample-selection due to in-

terval censoring. Finally, Section 11 concludes. 

2 The Data Generating Processes 

The setting of our analysis is the following: There is an observation window of Q cal-

endar time periods for which the researcher has access to records of entries into an 

origin state and subsequent transitions into a treatment state p and/or a final destina-

tion state e. The treatment may (or may not) have a causal effect on the hazard rate 

into the final destination state, both during (on-treatment effect) and after (post-

treatment effect) the treatment. The length of the treatment (if no exit occurs to the 

final destination state) is assumed predetermined and observed. The first cohort of 

entrants is monitored up to Q periods, the second Q-1 periods and so on, until the last 

cohort, which is monitored only 1 period. Still active spells are censored at the end of 

the observation window. The transition rate probabilities for each subject are gov-

erned by underlying continuous time hazard rates, which again are determined by five 

factors: calendar time (t), spell duration (d), an observed time-invariant covariate (x), 

treatment status (z), and a two-dimensional vector of time-invariant unobserved co-

variates (v). It is the two unobserved variables that embody the selection problem. 

They are drawn from a simultaneous probability distribution.  

An important aspect of real data is that they rarely conform to the idea of con-

tinuous time measurement. Real data records are typically updated at particular points 
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in time, such as by the end of each week or month. We take this point-in-time sam-

pling into account by generating data that do not record exact transition times, but in-

stead record in which discrete time interval each transition has taken place. We as-

sume, however, that the underlying continuous time hazard rates are constant (or de-

velop smoothly) within each of these time intervals.  

 We generate a number of different datasets characterised by different types of 

(and degrees of) calendar time effects, different degrees of duration dependence, dif-

ferent treatment effects and different distributions of unobserved heterogeneity. Al-

though we stress the generality of the timing of events approach, we have chosen to 

design the artificial data such that they resemble genuine administrative register data 

(that we are familiar with), in which the origin state is open unemployment, the treat-

ment state is a labour market programme, and the destination state is regular em-

ployment. The size of the observation window, the level of the period-specific transi-

tion rates, and the magnitudes of the various causal effects, are chosen roughly to 

match that kind of data. 

Since the processes under study are assumed to be observed only at a finite 

number of discrete points in time, we set up the DGP in terms of grouped (discrete) 

hazard rates. Let ( , , , , )k t kt d x z vϕ denote the period-specific integrated hazard rate, in-

tegrated over the time interval (t-1,t] governing the transition to state k=e,p, given that 

the spell duration by the end of this interval is d periods and given the observed ex-

planatory variable x  and the unobserved scalar vk, and given the treatment status tz . 

The treatment status has two dimensions as captured by the indicator variables 

1 2( , )t t tz z z= . The variable 1tz is equal to 1 during treatment (and 0 otherwise), while 

2tz  is equal to 1 after a treatment is completed (and 0 otherwise). Note that previous 

treatment is assumed to be irrelevant while a subject is enrolled again, (i.e. (1,1)tz ≠ ).   



 7

In most of the datasets that we generate, the underlying hazard rates are pro-

portional in the effects of calendar time, spell duration, observed heterogeneity, unob-

served heterogeneity and treatment. The integrated period-specific hazard rates kϕ  

can then be written as 

( )
( )

( , , , , ) exp ,  

( , , , , ) exp
e it it ei e it et ed it ei

p it it pi p it pt pd pi

t d x z v x z v

t d x z v x v

ϕ β σ λ α

ϕ β σ λ

= + + + +

= + + +
,  (1)  

where ktσ  and kdλ are the period-specific calendar time and duration dependence pa-

rameters, respectively, and α  is the vector of treatment effects. Note that there are 

two dimensions of time in this model, process time (d) and calendar time (t). Calendar 

time should not be thought of a causal factor itself, but rather as a proxy for all exter-

nal influences that jointly affect the hazard rates of the population at risk, such as 

business cycles, seasonal effects, or changes in treatment capacity. The period-

specific transition probabilities are equal to 

 ( , , , , )( , , , , ) 1 exp ( , , , , )
( , , , , )

it

it

k it it ki
k it it ki k it it ki

k K k it it ki
k K

t d x z vp t d x z v t d x z v
t d x z v

ϕϕ
ϕ∈

∈

  
= − −     

∑ ∑
,(2) 

where { },itK p e= for (0,0)itz =  (no treatment so far) or (0,1)itz =  (completed treat-

ment) and { }itK e= for (1,0)itz =  (ongoing treatment).  

 We start out by generating a baseline model, which is described in Table 1. 

There is neither duration dependence nor treatment effects in the baseline model (i.e. 

constant hazard rates and irrelevant treatment), but there is negative selection on the 

observed covariate and positive selection on the unobserved covariates. The positively 

correlated unobservables will – if unaccounted for - produce a spurious pattern of 

negative duration dependence and favourable treatment effects.  

Table 1 around here 
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3 Identification 

The Mixed Proportional Hazards (MPH) structure of the baseline DGP ensures non-

parametric identification of both treatment effects (Abbring and Van den Berg, 2003a) 

and duration dependence (Elbers and Ridder, 1982; Heckman and Honoré, 1989; Ab-

bring and Van den Berg, 2003b). In practice, the scope for actually recovering the true 

parameters from observed data depends on the degree of exogenous variation in the 

hazard rates stemming from observed covariates. In our model, there are two observed 

sources of exogenous variation in hazard rates; the time invariant (and subject-

specific) covariate x and the calendar time period t.  

Even though the identification results referred to above are all derived from 

the requirement of time-invariant covariates only, an important aim of the present pa-

per is to explore the potential for non-parametric identification embedded in calendar 

time variation in hazard rates as well. Intuitively, time-varying covariates can recover 

the influences of unobserved heterogeneity because, for a population of subjects with 

common spell duration above zero, it will be the case that the present distribution of 

unobserved heterogeneity depends on hazard rates experienced earlier in the spells, 

while current transition rates do not (Van den Berg and Van Ours, 1994; 1996). 

Hence, as pointed out in a similar context by Eberwein et al (1997, p. 663), time-

varying variables naturally provide an exclusion restriction in the sense that past val-

ues of these variables affect the current transition probabilities only through the selec-

tion process. As a result, mixed hazard rate models may be non-parametrically identi-

fied even in the absence of the proportionality assumption (McCall, 1994; Brinch, 

2000). Time-varying covariates may therefore provide a more robust source of identi-

fication than time-invariant covariates.  
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4 The Statistical Method and Model Evaluation Criteria 

The parameters are recovered by means of a Non-Parametric Maximum Likelihood 

(NPML) technique. Each subject contributes to the analysis with a number of obser-

vations equal to the number of periods at risk of making a transition of some sort. 

Each observation is described in terms of calendar time, spell duration, the value of 

explanatory variables and an outcome (generated by the drawings described in the 

previous section). Let kity be an outcome indicator variable which is equal to 1 if the 

corresponding observation period ended in a transition to state k, and zero otherwise, 

and let iN be the set of potential transition periods observed for subject i. The contri-

bution to the likelihood function formed by a particular subject, conditional on the 

vector of unobserved variables ( , )i ei piv v v=  can then be formulated as 

1

( , , , , )1 exp ( , , , , )
( , , , , )

( )

exp ( , , , , )
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∏ (3) 

Since the distribution of unobserved heterogeneity is assumed unknown to the re-

searcher, we approximate the heterogeneity distribution in a non-parametric fashion 

with the aid of a discrete distribution (Lindsay, 1983; Heckman and Singer, 1984). Let 

W be the (a priori unknown) number of support points in this distribution and let 

{ }, ,  1, 2,... ,l lv p l W=  be the associated location vectors and probabilities. In terms of 

observed variables, the likelihood function is then given as  

( ) ( )
1 11 1

[ ] ,    1
i

N N W W

i i l i l lv l li i

L E L v p L v p
= == =

= = =∑ ∑∏ ∏ .   (4) 
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Our estimation procedure is to maximise this function with respect to all the model 

and heterogeneity parameters repeatedly for alternative values of W. We start out with 

W=1, and then expand the model with new support points until the model is ‘satu-

rated’. Our maximization method is a combination of Fisher scoring (i.e. Newton-

Raphson with the Hessian replaced by the Fisher information matrix) and BFGS.1  

Our approach for identifying the ‘correct’ number of support points differs from the 

one used by Baker and Melino (2000). Rather than performing a separate maximiza-

tion with respect to the heterogeneity distribution before maximizing with respect to 

all parameters, we make a limited random search in the following simple-minded 

fashion:   

1. We copy an old non-defective (randomly selected) mass-point and assign it a 

probability of 0.0001. 

2. For the first element in the location vector, we pick 50 random numbers be-

tween minus 3 and 2 and compute the resulting likelihood functions.  

3. If one of the random numbers yields an improvement of the likelihood, we use 

it (if more than one yields an improvement, we use the best); otherwise, we 

keep the old one. We then go back to (2) for the next element in the location 

vector. 

                                                 

1 For the Fisher scoring we have modified Xie and Schlick's TNPACK (from 
http://www.netlib.org), and for BFGS we have used Zhu, Byrd, Lu and Nocedal's LBFGS-B. Both of 
these methods have their strengths and weaknesses.  Fisher scoring usually converges fast, and the 
Fisher matrix is easy to compute since we anyway do analytic gradients.  BFGS converges slower, but 
is much more robust.  Typically we start out with 100 iterations of BFGS, then we switch to Fisher 
scoring.  Normally, a maximum is found with 3-10 iterations of Fisher. However, some models are 
harder, in particular when the number of mass-points increases.  If we haven't converged after 50 
Fisher iterations, we switch back to BFGS, this time with more iterations. We switch back and forth a 
couple of more times, and this is usually sufficient for convergence. Experience has shown that both 
BFGS and Fisher may at times get stuck, apparently due to an ill-conditioned Hessian in certain re-
gions, or because the Fisher matrix is too different from the Hessian. By switching between them we 
often manage to move out of the problematic region. 
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4. If we have improved the likelihood through this exercise, we use the newly 

found heterogeneity distribution, together with the previously estimated pa-

rameters, as an initial vector, and start the full maximization.  

5. If we have not been able to improve the likelihood through direct search, we 

replace the location vectors and probabilities with random numbers and start 

the full maximization anyway.2 

6. We continue adding mass-points until there is no improvement in the likeli-

hood. For practical and computational reasons, we consider this to be the case 

when the likelihood increases by less than 0.05.  

 

According to the Maximum Likelihood (ML) criterion the model is saturated 

when the likelihood cannot be made any larger by adding additional support points to 

the heterogeneity distribution. However there is some discussion in the literature 

about the need for information criteria that ‘punish’ parameter abundance (Leroux, 

1992; Baker and Melino, 2000). Let ˆWµ be the vector of parameter estimates derived 

from a model with W support points in the heterogeneity distribution and let ˆ( )Wl µ  be 

the corresponding log-likelihood function. A general form of a Maximum Penalised 

Likelihood Criterion is ˆ( ) (# )W Ml a parametersµ − , where Ma is a penalty function 

derived from the total number of observations M. Baker and Melino (2000) propose to 

use either the Bayesian Information Criterion (BIC) or the Hannan-Quinn Information 

Criterion (HQIC) in order to avoid “over-parameterisation” of the heterogeneity dis-

tribution. The BIC uses the penalty function 0.5lnMa M= , while the HQIC uses 

                                                 

2 Sometimes, a heterogeneity parameter is estimated as a large negative number (< -20). This is 
numerically problematic. When we encounter this, we mark the offending parameter as 'negative infin-
ity' and keep it out of further estimation. The 'negative infinity' mark is kept when we add new mass-
points. This also implies that we allow defective risks to be present in the data. 



 12

ln(ln )Ma M= . Zhang (2003) found, however, that the much “milder” penalty pro-

vided by the Akaike Information Criterion (AIC), with 1Ma = perform better than 

BIC and HQIC in a setting similar to the one used here.  

5 Recovering the Baseline Model from Observed Data 

The aim of this section is to assess the statistical model’s ability to uncover the true 

causal parameters in repeated trials of data generation and estimation. For this pur-

pose, we generate 100 distinct datasets from the assumptions of the baseline model, 

each with 50,000 subjects. Some key characteristics of these datasets are described in 

Table 2. The average size is 492,000 observations, implying that the average duration 

of origin state spells is 9.8 periods (including right-censored spells, which made up 

28.9 per cent of all spells). Despite their common DGP, the random drawings of un-

observed heterogeneity and calendar time effects ensure that the data sets differ a lot. 

While the smallest dataset has an average spell duration of only 3.2 periods, and, 

hence, contains as little as 160,000 observations, the largest has an average spell dura-

tion of 17.3 periods and contains 864,000 observations. There is also a substantial 

variation between the datasets in the fraction subject to treatment (from 4 to 87 per 

cent) and in the degree of censoring (from 4 to 72 per cent).  

Table 2 around here 

We let each of the 100 datasets be subject to the estimation procedure de-

scribed in section 3. For each trial, around 165-200 parameters are estimated, depend-

ing on the number of support points in the mixing distribution.3 Table 3 reports the 

number of mass-points that were required to satisfy the four alternative model selec-

                                                 

3 In some of the datasets, there are also some coefficients, particularly attached to some of the last 
calendar time and spell duration parameters, that cannot be estimated due to lack of variation in out-
comes (or “empty cells”). 
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tion criteria, BIC, HQIC, AIC and ML, in the 100 trials. While the most restrictive 

information criterion, BIC, typically requires 4-7 support points, the least restrictive 

criterion, ML, typically requires 10-14. 

Table 3 around here 

 Table 4 presents the main results regarding the four structural parameters of 

interest, and some summary statistics regarding the two duration baselines, while Fig-

ure 1 presents a more detailed picture of the non-parametrically estimated effects of 

spell duration. A first point to note is that the biases induced by failing to control for 

unobserved heterogeneity are large, not only in the estimated effects of treatment and 

spell duration, but also in the estimated effects of the exogenous covariate x. The lat-

ter results from the fact that subjects with x=1 require a high unobserved exit propen-

sity in order to exit fast, while subjects with x=0 tend to make this exit quickly any-

way; hence x becomes correlated with unobserved heterogeneity as the spells proceed 

(even though they are orthogonal to start with). It is sometimes claimed that the re-

sulting bias is likely to be small insofar as the duration baseline is sufficiently flexible 

(see e.g. Narendranathan and Stewart, 1993; Arulampalam and Stewart, 1995); but the 

results above, which are based on a completely flexible duration baseline, show that 

this should not be taken for granted. Treatment effects are of course also biased by the 

selection related to the dependence between the unobserved employment and treat-

ment propensities. Without controls for unobserved heterogeneity, we would typically 

draw the false conclusions that treatment increases the hazard rate to the final destina-

tion state by 100(exp(0.443) 1) 55.7%− =  during the treatment, and by 

100(exp(0.324) 1) 39.0%− =  afterwards. We would also draw the false conclusion 

that there is strong negative duration dependence in both hazard rates, particularly in 

the final destination hazard, which declines with as much as 
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100(exp( 1.53) 1) 78.3%− − = −  during the first 36 time periods. The estimated treat-

ment baseline declines less, reflecting that subjects transiting to the treatment state 

return to the risk set when the treatment is completed. This also explains the peculiar 

step-wise rises in the estimated treatment hazard that occur as treatment participants 

(who, on average, are positively selected with respect to the unobserved treatment 

propensity) return to the origin state (after five periods of participation), and are again 

exposed to the risk of treatment. 

Figure 1 around here 

A second point to note is that the biases are eliminated by means of non-

parametric control for unobserved heterogeneity, but that only the models with little 

or no penalty for parameter abundance (AIC and ML) eliminate the biases completely. 

Both the AIC and the ML criteria perform remarkable well, in the sense that they re-

liably return unbiased estimates close to the true parameter values.4 The reported 

standard errors are also close to reflecting the true statistical uncertainty.5 As a result, 

the standard t-tests tend to reject the true parameters almost in accordance with the 

nominal significance levels. There is, however, a slight tendency to over-reject the 

truth for some of the parameters in the final destination hazard. The reason for this is 

that the degree of statistical uncertainty tends to be underestimated in some of the rep-

lications. This seems particularly to be the case in the replications based on very small 

datasets (with very few period-observations for each subject). Figure 2 describes the 

                                                 

4 Although not shown here, it may be noted that the model also recovered the true calendar time 
parameters with great precision. These parameters may in some cases have an interesting interpretation, 
e.g. in the form of business and/or seasonal cycles; see Gaure and Røed (2003). 

5 To verify this statement, we also made 100 data-replications based on the same population and 
economic environment (i.e. we drew the heterogeneity terms and calendar time effects only once, im-
plying that only the transition ‘lottery’ was replicated) and compared the resultant estimated standard 
errors with the observed standard deviation. In this case, the estimated standard errors were almost ex-
actly the same in each replication, and equal to the empirical standard deviation of the 100 estimates. 
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distribution of the 100 estimates for the four key structural parameters derived from 

the ML criterion, by means of histograms, and compares them to normal densities. 

The typical picture is that the distributions are “almost” normal, but that a few outliers 

disturb the picture. These “outliers” are typically generated from the models with few 

observations and very short spells. 

Figure 2 around here 

A third point to note is that there does not seem to be a great risk of ‘over-

correcting’ for unobserved heterogeneity, in the sense that e.g. the negative duration 

bias imposed by neglected heterogeneity is replaced by a positive bias. On the con-

trary, there is a substantial risk of ‘under-correcting’ for unobserved heterogeneity 

when information criteria with large penalties for additional parameters are used. In 

particular, models selected on the basis of HQIC or BIC tend to reject the true pa-

rameters much more often than suggest by nominal significance levels. For example, 

at the five per cent nominal level, HQIC rejects the true value of eβ  in 30 per cent of 

our replications, while BIC rejects the true value in as much as 75 per cent of the 

cases. 

Given that the search for the optimal number of support points requires sub-

stantial computational resources – and hence that the number of support points in ac-

tual applications is often specified a priori as at most two or three - it may be of inter-

est to investigate how models with just a few (predetermined) number of support 

points perform. For the four structural parameters, this is illustrated in Figure 3. It 

turns out that two support points is clearly insufficient to identify any of the parame-

ters, while three points seem to do a good job in revealing the two treatment effects. 

However, a low number of support points seems utterly inadequate in order to identify 

the true spell duration effects. This is illustrated in Figure 4, where we have plotted 
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the average estimated duration parameters associated with the final destination hazard 

for models incorporating from 1 to 10 support points in the heterogeneity distribution. 

It is clear that the negative duration bias diminishes as more support points are in-

cluded, but only the most flexible models (with up to 10 points) are able to remove it 

completely. Hence, in order to correctly disentangle duration dependence and selec-

tion, it seems to be essential that the heterogeneity distribution is saturated in terms of 

a maximum likelihood or a penalized maximum likelihood criterion.  

Figure 3 around here 

Figure 4 around here 

Although the main purpose of applied research typically is to recover struc-

tural parameters of the type discussed above, it may sometimes also be of interest to 

recover properties of the heterogeneity distribution itself. It is of course not meaning-

ful to interpret the mass-point distribution literally in terms of representing a corre-

sponding number of distinct subject types, since the underlying true heterogeneity dis-

tribution may very well be continuous (as is the case in our baseline model). It is also 

interesting to note that although our 100 trials of data generation and estimation re-

turned the same (correct) structural parameters, they returned very different heteroge-

neity parameters in terms of mass-point locations and probabilities. This is related to a 

fundamental symmetry in the likelihood function, implying that different combina-

tions of mass-point locations and probabilities are observationally equivalent (a trivial 

example of this symmetry amounts to swap the locations, as well as the probabilities, 

of any two mass-points). But, even though the mass-point locations and probabilities 

themselves are not directly interpretable, there may be other properties of the esti-

mated heterogeneity distribution that have a more substantive interpretation. Obvious 

candidates are the lower order moments of the distribution of the unobserved propor-
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tionality terms (i.e. of the ( )exp( ),exp( )e pv v distribution). In particular, in a treatment 

effect setting, it may be of interest to characterise the selection process into treatment 

in terms of, say, a correlation coefficient. Table 5 report our estimates of the first and 

second order moments of the heterogeneity distributions.6 While the means are cor-

rectly, and also robustly, recovered, the second order moments are not always well 

represented. For the Maximum Likelihood criterion, the estimated correlation coeffi-

cients between the two latent variables are, on average, fairly close to the true value; 

hence the estimate seems to be consistent. However, there is a large statistical uncer-

tainty associated with this parameter, and in our 100 trials, the estimated correlation 

coefficient ranged from a minimum of 0.05 to a maximum of 0.94 (the true value be-

ing around 0.40).   

Table 5 around here 

6 The Role of Sample Size 

So far, the analysis has been based on datasets containing 50,000 subjects. In this sec-

tion, we look at the impact of sample size, by comparing results based on five differ-

ent sample sizes, containing from 5,000 to 5,000,000 subjects. The main results are 

summarised in Table 6, where we present the average number of support points in the 

estimated heterogeneity distribution for each model, as well as mean errors for some 

key parameters. The estimated number of support points seem to increase monoto-

                                                 

6 Note that it is empirically impossible to distinguish between different ‘large’ positive locations 
for  ve or vp, since the exponential functional form by which they affect the hazard rate in any case im-
ply that such numbers are associated with transition probabilities equal to unity (irrespective of other 
characteristics). At the same time, large positive locations for  ve or vp may have a very strong impact 
on the calculations of first and second order moments (even when the associated probability is close to 
zero). For this reason, we have chosen to set an upper limit on these numbers before moments are cal-
culated by replacing locations larger than 2 by the number 2. The exact selection of cut-off point does 
not matter much in practice, since these locations are typically attributed extremely low probability. 



 18

nously with sample size for all information criteria, suggesting that the sample size 

may have a substantive influence on the way our statistical model interprets the data. 

Table 6 around here 

The mean errors that are presented in Table 6 are all based on the same total 

number of subjects, irrespective of sample size, namely 5,000,000. When we look at 

sample sizes of only 5,000, we thus generate and estimate the model 1,000 times, and 

the reported mean errors are averages taken over all these trials. At the other extreme, 

when we look at sample sizes of 5,000,000, we only make a single trial. This means 

that if the parameter estimates are unbiased irrespective of sample size, the mean er-

rors should be the same, and close to zero, for all sample sizes.  However, Table 6 re-

veals that the mean errors do depend on sample size. The larger is the sample, the 

smaller are the mean errors, irrespective of the model selection criterion. Moreover, 

the larger is the sample, the less important is the selection of information criterion (for 

sufficiently large samples, all information criteria perform remarkably well). For 

small samples (5,000 or 10,000 subjects), there is a substantial risk of obtaining bi-

ased results, and the selection of information criterion seems to be of paramount im-

portance. Like Baker and Melino (2000), we find that the ML criterion tends to ‘over-

correct’ for unobserved heterogeneity in small-sample situations, and that a substan-

tial improvement can be achieved by relying on an information criterion that penalises 

the number of parameters in the heterogeneity distribution. This is most clearly seen 

by looking at the mean errors associated with the final destination spell duration base-

line ( )edλ . For example, for sample sizes of 10,000, we see that the ML criterion pro-

duces a positive bias in the spell duration parameters (on average equal to 0.173), 

while the AIC criterion delivers correct results. However, more restrictive information 

criteria (BIC and HQIC) tend to ‘under-correct’ for unobserved heterogeneity, and, 
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hence ,fail to remove the negative duration bias. This is more clearly illustrated in 

Figure 5, where we have plotted the mean duration parameter estimates from the 500 

trials with sample sizes of 10,000 subjects. The pattern is the same for sample sizes of 

5,000; BIC and HQIC ‘under-corrects’, ML over-corrects, and AIC (almost) hits the 

target.  

Figure 5 around here 

 Our results suggest that AIC is the safest information criterion to rely on, par-

ticularly when samples are small. However, it is difficult to assess the generality of 

this result. The ‘optimal’ information criterion may be DGP-specific. 

7 The Role of the Heterogeneity Distribution 

In this section, we present some estimation results obtained from models with unob-

served heterogeneity distributions that deviate from the baseline case. For each model, 

we repeat data generation and estimation 10 times only, in order to limit our usage of 

computational resources. To avoid too much variation in the number of observations 

from trial to trial (which would make comparisons between different models awk-

ward), we have drawn unobserved heterogeneity and calendar time effects only once 

for each model type. The main aim of this section is to assess the extent to which the 

relatively optimistic identification results from the previous section holds for more 

challenging classes of heterogeneity distributions. In the presentation of our results, 

we restrict attention to parameter estimates based on AIC and ML (it is still the case 

that these criteria perform best). We first complicate the heterogeneity problem with-

out changing the DGP, by assuming that the researcher does not observe the exoge-

nous explanatory variable x; hence x is transformed into an unobserved (dichotomous) 

covariate, which, together with the bivariate normal covariate, now constitutes the un-

observed heterogeneity distribution. Note that the researcher in this case is assumed 
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not to have access to any subject-specific exogenous covariates at all; hence it is only 

the calendar time dummy variables that ensure non-parametric identification of treat-

ment effects and duration dependence effects. Even though the unobserved heteroge-

neity distribution is more complicated in this case, it is not unambiguously the case 

that the number of support points required to satisfy the two model selection criteria 

increases. The maximum likelihood criterion ended up requiring from 10 to 14 points, 

while the AIC required from 7 to 11 points, very much in line with the requirements 

when x was observed. The results regarding the treatment effects are presented in Ta-

ble 7. These effects are still robustly identified, although standard errors are larger 

than what was the case when x was observed. The same conclusion applies to the spell 

duration baselines (not shown). Hence, with some exogenous variation in hazard rates 

over calendar time, no subject-specific covariates are required in order to identify 

treatment and spell duration effects. 

Table 7 around here 

Before we modify the DGP in order to include more complicated heterogene-

ity distributions, we take a look at the case in which the DGP does not contain any 

unobserved heterogeneity at all. When this is the case, a model without heterogeneity 

is obviously appropriate, but it could nevertheless be the case that we erroneously 

found some unobserved heterogeneity to be present. Indeed, when we used the maxi-

mum likelihood criterion for model selection, only one out of 10 trials ended up re-

jecting the presence of unobserved heterogeneity completely. In six of the trials, three 

support points were identified. However, the identified support points were either lo-

cated closely together (almost indistinguishable), or the attached probability to the 

“deviating” mass-points was close to zero; hence the structural parameters of interest 

were not biased at all. When, we used the penalized likelihood criterion (AIC) to se-
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lect model, all 10 trials ended up correctly rejecting the presence of unobserved het-

erogeneity. 

We now briefly assess the consequences of complicating the unobserved het-

erogeneity distribution. We do this by presenting five illustrative example distribu-

tions. The first four examples are based on various combinations of continuous (Nor-

mal or Gamma) and discrete heterogeneity distributions. The last example is a pure 

discrete simultaneous distribution, in which some of the support points involve defec-

tive risks. A more detailed description of the various models and the main results are 

provided in Table 8. The bottom line is that the true structural parameters, including 

treatment effects, are robustly recovered from the data irrespective of the way unob-

served heterogeneity is distributed. As illustrated in Figure 6, this also applies to the 

duration dependence parameters. These results also hold for a number of other het-

erogeneity distributions that we have tried; hence we conclude that the precise nature 

of the heterogeneity distribution is unimportant with respect to identification of our 

baseline model.  

Table 8 around here 

Figure 6 around here 

It may be of interest to take a closer look at the results from model v), since 

this is the only model in which the DGP is actually based on a discrete heterogeneity 

distribution of the type used in the estimation procedure. Hence, this model could po-

tentially be fully recovered from the data, in the sense that the correct mass-point lo-

cations and probabilities were identified. A particularly interesting issue is the mod-

els’ ability to recover the true fraction of defective risks, since this fraction sometimes 

may be of substantive importance. As it turned out, the presence of defective risks (5 

per cent in the DGP) in the final destination hazard was identified in all the 10 trials, 
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while the presence of defective risks (1 per cent in the DGP) in the treatment hazard 

was identified in 9 out of the 10 trials. In most cases, the corresponding estimated 

probability was also close to the true fraction of defective risks, particularly in the 

hazard with the largest defective risks fraction. However, it is not generally the case 

that the true mass-point locations are recovered. And none of the model selection cri-

teria were particularly good at identifying the true number of support points (both cri-

teria found the correct number of points in 2 out of the 10 trials only); the maximum 

likelihood criterion tended to return too many points, while AIC tended to return too 

few points. Given that other parts of the model are reliably recovered, this must reflect 

the fundamental symmetry property discussed in the previous section; i.e. that differ-

ent combinations of mass-point locations and probabilities are equally consistent with 

data.  

8 The Role of the True Causal Effects 

As pointed out in the introduction to this paper, there are two substantive sources of 

non-parametric identification of treatment and spell duration effects in our artificial 

data: The exogenous subject specific covariate x, and the variation in hazard rates 

over calendar time tσ . In this section, we start out by investigating how our ability to 

identify the true causal effects changes as we manipulate these two identification 

sources. We have already established that we do not need to observe the exogenous 

covariate x. We now proceed by also reducing the degree of variation in the calendar 

time component (while keeping the degree of variation in unobserved heterogeneity, 

which now also incorporates the variable x, constant) and by looking at possible con-

sequences of calendar time effects being auto-correlated. Given the number of esti-

mated models, we do not present complete graphical results for the spell duration pa-
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rameters, but focus instead on the Weighted Mean Absolute Error (WMAE) of these 

parameters, using the inverse of the estimated standard errors as weights. Let 

ˆ ˆ( , )kdr kdrλ ψ be the estimated spell duration parameter and standard error corresponding 

to transition k and spell duration d in trial r. For R trials, WMAEk is defined as fol-

lows: 

 
1

ˆ

1
ˆ

1 ˆkdr

kdr

k kdr kd
r d

d

WMAE
R

ψ

ψ

λ λ= −∑∑ ∑
.    (5) 

Some illustrative results are provided in Table 9. As expected, the manipulation of the 

sources of identification primarily affects the estimates of spell duration baseline for 

the final destination state. The smaller is the variance of the calendar time parameters, 

the less precise are the estimates, and the larger is the expected mean absolute error in 

the estimated duration effects. This reflects that a reduction in the impact of calendar 

time variation reduces the data-based foundation for non-parametric identification of 

spell duration effects. Auto-correlated calendar time effects do not reduce the scope 

for identification. 

Table 9 around here 

The results presented so far are based on models in which treatment and dura-

tion effects are all equal to zero in the data generating process. But the conclusions do 

not depend on this assumption. We have also estimated models on DGP’s containing 

positive and negative duration dependence and positive and negative treatment ef-

fects. Some illustrative results are provided in Table 10 and Figure 7. 

Table 10 around here 

Figure 7 around here 
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9 Non-Proportional Models and Parameter Heterogeneity  

In this section, we look at the consequences of introducing into the DGP deviations 

from two of the basic assumptions underlying our statistical model, namely the as-

sumptions of proportional hazards and of homogeneous causal parameters. These two 

assumptions are of course closely related, since heterogeneity in causal effects – e.g. 

such that the effect of spell duration depends on the value of the exogenous covariate 

x – represents a violation of the proportionality assumption. But, as long as parameter 

heterogeneity (and non-proportionality) is related to observed explanatory variables 

only, no new fundamental difficulties arise. As long as the correct model is specified 

– including the appropriate interaction terms – the true parameters will be recovered. 

We illustrate this point by modifying the DGP, such that subjects with low final exit 

propensity (x=1) are attributed positive duration dependence in the final destination 

hazard (Weibull baseline with shape parameter equal to 1.1), while subjects with high 

exit propensity (x=0) are attributed negative duration dependence (Weibull baseline 

with shape parameter equal to 0.9). As illustrated in Figure 8, when separate baselines 

are estimated for the two groups, we are still able to recover the true parameters (al-

though the degree of statistical uncertainty obviously increases). This result holds true 

for other types of non-proportionalities as well. 

Figure 8 around here 

 More serious problems arise if we take into account that the statistical model 

we use may represent a simplification of the true DGP, in the sense that there exist 

sources of non-proportionality that are not modelled. To illustrate, let us return to the 

issue of heterogeneity in duration dependence effects (according to the value of x), but 

this time assume that the researcher erroneously restricts the model to be fully propor-

tional. Figure 9 illustrates the rather dismaying results obtained in this case. The upper 
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panel presents the estimated common duration parameters for the case discussed 

above, i.e. with positive duration dependence attributed to subjects with low unob-

served exit propensity and negative duration dependence attributed to subjects with 

high unobserved exit propensity. The estimates are far off any conceivable ‘compro-

mise’ between the two true baselines. The lower panel presents the estimation results 

for the case in which negative duration dependence is attributed to subjects with high 

exit propensity (and vice versa). The results are more promising in this case. But un-

fortunately, the general conclusion that we draw from this and other similar exercises, 

is that parameter heterogeneity in the DGP that is unaccounted for in the estimated 

model (either because it is unobserved or because the appropriate interaction term is 

not included in the model), produces results that have no convenient interpretation. 

The NPMLE of an assumed constant parameter that is really a random coefficient in 

the DGP does not necessarily represent any reasonable average of the underlying true 

parameters. The reason for this is of course that the parameter heterogeneity induces a 

source of unobserved heterogeneity that is not controlled for; and this heterogeneity 

entails a sorting effect of exactly the same kind as the sorting effect following from 

disregarding unobserved heterogeneity in the first place. Subjects with high parameter 

values leave the risk set first, leaving behind subjects with lower parameter values.  

Figure 9 around here 

 A particularly interesting case to look at is that with heterogeneous treatment 

effects. Assume, for example, that the true treatment effects 1 2( , )α α , rather than be-

ing the same for all subjects, are subject to some kind of probability distribution. It 

follows directly from the sorting argument referred to above that our estimators 

1 2ˆ ˆ( , )α α cannot be expected to represent average treatment effects in this case. Once 

subjects have entered into the treatment state, those with the highest effects exit first, 
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and a negatively selected group – in terms of treatment effects – is left behind. Hence, 

if the treatment effects are distributed independently of other variables in the model 

(including the two unobserved scalar variables ve and vp), the estimated effect will 

typically be negatively biased (compared to the true mean). A corollary of this argu-

ment is that, if the researcher allows the treatment effect to depend on time since entry 

or completion (which is in fact common practice in the treatment evaluation literature, 

see e.g. Van Ours, 2001; Richardson and Van den Berg, 2001; Lalive et al, 2002), the 

existence of effect heterogeneity will induce a negative duration bias in the estimated 

treatment effect. This reflects that it is difficult to distinguish empirically between 

heterogeneous (but constant) and common (but declining) treatment effects. Further 

complications arise if the distribution of treatment effects is not independently dis-

tributed from other sources of unobserved heterogeneity in the model.  

 Since we have already seen, in previous sections, that the first-order moment 

of an unobserved heterogeneity distribution can be reliably recovered from data, a 

natural solution to the problem of heterogeneous treatment effects is to model this 

heterogeneity explicitly. The treatment effects are then interpreted as state-specific 

contributions to the distribution of unobserved heterogeneity. We illustrate this point 

within a slightly simplified version of the baseline model, where we assume that the 

effects of ongoing and completed treatment are the same, i.e., it is only one treatment 

effect for each subject. Let 1 2i i iα α α= =  be the treatment effect for subject i. Fur-

thermore, let iα be independently distributed according to a normal distribution with 

mean 0.2 and variance 0.2.  This means that, in this example, roughly two thirds of 

the subjects have positive treatment effects. The average treatment effect (ATE), as 

measured by the proportionality factor in the final destination hazard rate is 

[exp( )] exp(0.2 0.1) 1.35iE α = + = , i.e., a 35 per cent increase in the hazard rate. Based 
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on these assumptions, we generate 100 new artificial datasets (containing 50,000 sub-

jects each), and then estimate the parameters of the model. But this time, the treatment 

effect is not modelled as a parameter, but as a random coefficient, subject to some un-

known joint probability distribution. Hence, the vector of unobserved covariates con-

sists of three elements in this case, ( , , )i ei pi iv v v α= , and the parameters of this distri-

bution is estimated in exactly the same way as described in Section 4. The only differ-

ence is that there are now three elements, rather than two, in each location vector.  

 The main results from this exercise, regarding the treatment effects, are de-

scribed in Table 11. The table shows that the mean treatment effect (ATE) is consis-

tently evaluated by the estimated parameters of the discrete mass-point distribution. A 

problem with this estimator, however, is that little is known about its sampling distri-

bution. From our trials, we note that the standard deviation associated with the ATE-

estimate of 1.361 (according to the ML criterion) is 0.088. The individual estimates 

ranged from a minimum of 1.135 to a maximum of 1.581; hence, based on our data, it 

seems that ATE is recovered in a fairly reliable fashion. However, in order facilitate 

statistical inference, more knowledge about the sampling distribution of heterogeneity 

parameters is required. It may also be noted that we are not able to recover the true 

variance of the treatment distribution. This is unsurprising, given our failure to re-

cover second order moments of the heterogeneity distribution in previous sections. 

Table 11 around here 

10 Interval Censoring and Lost Subjects 

So far, we have assumed that all spells belonging to the DGP under consideration are 

observed by the researcher, and that their starting times can be accurately measured. 

In practice, interval censoring usually means that some very short spells - those start-
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ing and ending between two observation-points – are never recorded. This implies 

that the sample available to the researcher is selected. In particular, unobserved het-

erogeneity can no longer be assumed independent of either observed covariates or 

calendar time, since the impact of unobserved heterogeneity during the censored pe-

riod – in terms of actual transitions - depends on the values of all other explanatory 

variables.  

 The problem can be assessed within the framework of our Monte Carlo ex-

periments by assuming that all first-period records are unobserved. Hence, subjects 

are observed conditional on the spell lasting more than one period. We illustrate the 

consequences of such a sampling scheme by estimating a version of the baseline 

model (with 100,000 subjects to start with), under two alternative assumptions about 

the size of the sample selection problem. In the first example, the final destination 

hazard rates are scaled such that approximately 10 per cent of the subjects are lost due 

to exits in the first (unobserved) period of their spell. In the second example, as much 

as 20 per cent of the subjects are lost. We only make a single experiment for each of 

these DGP’s, since this suffices for making our points. The two upper panels of Fig-

ure 10 illustrate what happens with the estimated duration parameters when the sam-

ple selection problem is disregarded, in the sense that the selected sample is treated as 

if it was un-selected. The NPML estimators then fail to remove the spurious negative 

duration dependence completely. Other parameters are also biased. For example, 

when 10 per cent of the spells are unobserved, the effect of the exogenous covariate x 

on the final destination hazard is estimated (according to the ML criterion) to –0.93 

(0.02). When 20 per cent of the spells are unobserved, the estimate is –0.86 (0.02) (re-

call that the true value is –1).  
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The solution to this sample selection problem is to set up the likelihood func-

tion directly in terms of the true conditional probabilities. Let ( | 1)i iL v d > be the like-

lihood contribution formed by subject i, conditional on survival during the first (cen-

sored) period and conditional on the vector of unobservables. In order to integrate out 

unobserved heterogeneity in this case, we need to take into account that it can no 

longer be assumed independent of other variables in the model (due to the sorting 

process that has already occurred). The conditional distribution of unobserved hetero-

geneity can be derived from Bayes’ theorem. Let f(vi) be the joint density of vi to start 

with (i.e. for the entire uncensored population). We can then write the conditional 

density as (we assume, for simplicity, that subjects exiting to the treatment state be-

tween two observation points are also lost)  
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and the likelihood function takes the form 
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where ( )| 1i iL v d >  can be obtained from Equation (3). Hence, the solution to the in-

terval left-censoring problem is to multiply the conditional likelihood contribution for 

each subject with the probability of being observed (conditional on v), and divide by 

the expected probability of being observed (with v integrated out). It is clear, how-

ever, that an additional assumption regarding the spell duration baseline is called for, 

since there is no foundation in the data for inferences about the first-period exit rate. 
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A natural assumption to make (in the absence of a parametrically specified baseline) 

is that the spell duration effect for the first period is equal to that of the second period 

(a similar assumption is required regarding the calendar time effects associated with 

the very first calendar period in the dataset). The two lower panels in Figure 10 illus-

trate what happens with the estimated duration dependence parameters when we 

maximise the likelihood function in (7). The negative bias is now completely re-

moved. And the effects of other parameters are again also correctly recovered. For 

example, when 10 per cent of the spells are unobserved, the effect of x on the final 

destination hazard is now estimated to –1.02 (0.03). When 20 per cent of the spells are 

unobserved, the estimate is –0.98 (0.02). 

  In practice, the researcher may not have exact information about the duration 

a sampled subject has been at risk at the time of sampling, since it may have entered 

into the origin state at any time between the two observation points. In this case, addi-

tional assumptions are required regarding the distribution of the flow into and out of 

the origin state during the censored time interval. In the absence of additional knowl-

edge, the most natural assumption to make is that entrances to the origin state are uni-

formly distributed over the censored interval, and that the hazard rates are constant 

within the same interval. We can then write the probability of survival to the first ob-

servation point after entry as  
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11 Conclusion 

Based on comprehensive Monte Carlo experiments, we conclude that, for a correctly 

specified model, the Non-Parametric Maximum Likelihood Estimator (NPMLE) 

robustly recovers the true treatment effects from non-experimental event history data, 

even when there are large unobserved sorting problems involved. We also find that 

the degree of duration dependence can be recovered, without parametric restrictions 

on either duration dependence or unobserved heterogeneity. Our results are encourag-

ing compared to previous studies, and suggest that event history analysis may repre-

sent a powerful tool for solving the difficult problem of disentangling causality from 

sorting, based on non-experimental data. It is a well-known fact that the Mixed Pro-

portional Hazard (MPH) model is non-parametrically identified, provided that a rele-

vant exogenous variable exits. We have shown in this paper that a subject-specific 

exogenous covariate is not required if there exists a calendar-time source of variation 

in hazard rates (as long as calendar time is not perfectly correlated to process time). 

 We have also demonstrated that the NPML estimator is fragile towards unjus-

tified restrictions, and, in particular, that any non-modelled sources of unobserved 

heterogeneity (e.g. in the form of random slope parameters) may produce substantial 

bias in causal parameters. We emphasise in particular, the following: 

 

1. It is essential that the number of support points in the unobserved heterogene-

ity distribution is selected according to an appropriate information criterion. A 

pre-specified (low) number of support points may result in substantial bias, 

particularly with respect to the estimated duration dependence parameters. 

2. The most reliable information criterion is the likelihood itself, or the likeli-

hood supplemented by a weak penalty for parameter abundance (such as the 
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Akaike Information Criterion). With small samples, a stronger penalty may be 

required (e.g. the Hannan-Quinn Information Criterion). 

3. It is not the case that a flexible (non-parametric) baseline hazard is sufficient 

for ensuring that uncontrolled heterogeneity does not bias parameter estimates 

attached to exogenous covariates. The typical situation is that an error in the 

estimation of one parameter (or one set of parameters) contaminates other pa-

rameters as well. 

4. The individual parameters of the estimated discrete unobserved heterogeneity 

distribution, are estimated with enormous statistical uncertainty and have no 

convenient interpretation. The only robustly estimated property of this distri-

bution is its mean. 

5. For parameters reflecting the influence of observed covariates, it is the case 

that the standard errors calculated conditional on the given number of (opti-

mally chosen) support points in the heterogeneity distribution, also reflect the 

unconditional statistical uncertainty. 

6. Sample selection caused by interval censoring (the failure to sample spells that 

start and stop between two observation points) may cause substantial bias in 

all parameter estimates. This problem can be solved by setting up the likeli-

hood function in terms of the appropriate conditional distribution of unob-

served heterogeneity. 

7. Deviations from the proportional hazards assumption are not problematic, as 

long as these deviations are accounted for in the formulation of the model. 

8. It is possible to consistently recover the mean of a heterogeneous treatment ef-

fect distribution, by means of modelling the treatment effects as subject-
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specific unobserved covariates. However, little is known about the sampling 

distribution of the estimator. 

9. Deviations from the proportionality assumption that are unaccounted for in the 

model may cause substantial bias in all parameter estimates. 

 

The latter of these points constitutes a rather serious challenge for event his-

tory analysis in social (non-experimental) sciences, and suggests, unfortunately, that 

results gathered by means of this statistical technique can rarely be considered defini-

tive. In practice, it is typically impossible for the researcher to take all potential inter-

action effects and all potential sources of parameter heterogeneity into account. Most 

statistical models represent simplifications of the true DGP rather than an exact repre-

sentation. Hence, the risk of estimating a wrongly specified model is acute. This also 

implies that robustness should always be considered a key concern in the assessment 

of results based on NPMLE.  
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Table 1 
Properties of the baseline DGP 

Sample size 
 

50,000 subjects 

Data window size (number of 
periods observed) 
 

40 periods 

Entrance into origin state Randomly distributed over the 40 periods (with probability 1/40 for 
each period) 
 

Observed covariate Subjects are randomly attributed x=1 with a probability of 0.5, oth-
erwise x=0. The covariate has a negative effect on the final destina-
tion hazard, and a positive effect on the treatment hazard, such that 

1, 1e pβ β= − =  
 

Calendar time effects For each of the 40 periods, the parameters and et ptσ σ are independ-
ently distributed drawings from the standard normal distribution.  
 

Spell duration effects There are no spell duration effects, i.e. 0ed pd dλ λ= = ∀  
 

Duration of treatment The treatment lasts for five periods (unless a transition to the final 
destination occurs). Thereafter, the subjects return to the origin 
state. 
 

Treatment effects There are no treatment effects, i.e. (0, 0)α = . 
 

Unobserved heterogeneity The vector of unobserved covariates ( , )e pv v is distributed accord-
ing to a bivariate normal distribution with means ( , )e pc c , variances 
(1,1) and correlation coefficient 0.5. The means ( , )e pc c are normal-
ised such that, when x is zero and the calendar time effect is zero, 
the transition probabilities are equal to 0.1 (to final destination) and 
0.05 (to treatment). 
 

Transitions Transition probabilities are calculated from Equation (2). Actual 
transitions are generated by comparing the transition probabilities 
with random drawings from a uniform distribution on [0,1]. 
 

 



 38

 

Table 2 
Descriptive Summary Statistics for the 100 Data Sets Generated by the Baseline DGP 

 Mean Minimum Maximum 
Average spell duration 9.84 3.20 17.28 
Fraction subject to treatment 0.47 0.04 0.87 
Average duration until treatment (conditional on treatment) 9.49 3.71 15.13 
Fraction censored 0.29 0.04 0.72 
 

Table 3 
The distribution of the required number of support points according to Maximised Penalised Likeli-

hood and Maximum likelihood model selection criteria (100 trials) 
Required # support points BIC HQIC AIC ML 

3 2 0 0 0 
4 16 3 1 0 
5 36 16 0 0 
6 32 16 10 0 
7 14 25 15 1 
8 0 31 27 6 
9 0 9 23 5 

10 0 0 13 17 
11 0 0 7 17 
12 0 0 2 21 
13 0 0 1 13 
14 0 0 1 11 
15 0 0 0 6 
16 0 0 0 1 
17 0 0 0 0 
18 0 0 0 1 
19 0 0 0 1 

  
Average # support points 5.4 6.9 8.5 11.7

 



Table 4 
Estimated Effects of Exogenous Covariate and Endogenous Treatment  

Results from 100 trials based on the baseline DGP 
  Without control for  

unobserved heterogeneity 
BIC HQIC AIC ML 

 True 
value 

Mean Est. Mean 
S.E. 

Reject 
at 5% 

Mean 
Est. 

Mean 
S.E. 

Reject 
at 5% 

Mean 
Est. 

Mean 
S.E. 

Reject 
at 5% 

Mean 
Est. 

Mean 
S.E. 

Reject 
at 5% 

Mean 
Est. 

Mean 
S.E. 

Reject 
at 5% 

eβ  -1 -0.788 0.012 100 -0.932 0.020 75 -0.972 0.023 30 -0.992 0.025 13 -1.007 0.027 8 

pβ  1 0.907 0.012 100 0.987 0.020 16 0.993 0.020 9 0.996 0.020 6 0.999 0.021 5 

1α  0 0.443 0.017 100 -0.009 0.032 18 -0.006 0.034 8 -0.006 0.035 8 -0.003 0.037 4 

2α  0 0.329 0.025 100 -0.014 0.037 19 -0.010 0.039 15 -0.008 0.041 6 -0.004 0.042 6 

,ed dλ ∀     100   45   20   11   8 

,pd dλ ∀     100   5   5   5   5 

Note: The “Reject at 5% column contains the per cent of the replications that led to models for which the null hypothesis corresponding to the true parameter value was re-
jected at the five per cent nominal significance level. 
 
 



 
 

Table 5 
The lower order moments of the estimated heterogeneity distribution 

Results from 100 trials based on the baseline DGP 
 DGP BIC HQIC AIC ML 
  Mean 

Est. 
St. 

Dev. 
Mean 
Est. 

St. 
Dev. 

Mean 
Est. 

St. 
Dev. 

Mean 
Est. 

St. 
Dev. 

Mean 
exp(ve) 

0.177 0.167 0.012 0.174 0.012 0.181 0.015 0.188 0.014 

Mean 
exp(vp) 

0.089 0.088 0.011 0.089 0.009 0.093 0.010 0.096 0.011 

Var exp(ve) 
 

0.054 0.030 0.061 0.049 0.065 0.090 0.103 0.127 0.095 

Var exp(vp) 
 

0.014 0.021 0.079 0.028 0.067 0.046 0.080 0.061 0.084 

Corr(exp(ve), 
exp(vp)) 

0.399 0.0596 0.0202 0.482 0.195 0.476 0.220 0.423 0.226 

Note: The constant terms ce and cp are included in the heterogeneity distributions. 



 
Table 6 

Mean errors (estimated minus true) of estimated parameters under alternative sample sizes 
# sub-
jects  

5,000 10,000 50,000 500,000 5,000,000 

# sam-
ples 

1,000 500 100 10 1 

 BIC HQIC AIC ML BIC HQIC AIC ML BIC HQIC AIC ML BIC HQIC AIC ML BIC HQIC AIC ML 
                     
Mean W 3.1 4.3 6.0 10.1 3.6 5.0 6.7 10.7 5.4 6.9 8.5 11.7 8.4 9.6 11.3 13.4 12 12 14 16 
                     

eβ  0.167 0.090 0.002 -0.099 0.151 0.075 0.013 -0.040 0.068 0.029 0.008 -0.006 0.006 0.000 -0.002 -0.003 0.003 0.003 0.002 0.002 

pβ  -0.046 -0.029 -0.015 0.001 -0.029 -0.016 -0.006 0.004 0.013 0.007 -0.004 -0.001 0.000 0.002 0.003 0.003 0.000 0.000 0.000 0.000 

1α  -0.036 -0.044 -0.044 -0.032 -0.020 -0.025 -0.023 -0.016 -0.009 -0.007 -0.006 -0.003 0.004 0.004 0.006 0.006 -0.002 -0.002 -0.002 -0.001 

2α  -0.045 -0.050 -0.047 -0.030 -0.031 -0.036 -0.029 -0.019 -0.014 -0.010 -0.008 -0.004 0.003 0.004 0.006 0.006 -0.002 -0.002 -0.002 -0.002 

,
ed

dλ ∀  -0.467 -0.207 0.070 0.383 -0.452 -0.188 0.001 0.173 -0.206 -0.086 -0.017 0.029 -0.049 -0.031 -0.024 -0.019 -0.007 -0.007 -0.003 -0.003 

,
pd

dλ ∀  0.087 0.088 0.085 0.080 0.052 0.046 0.042 0.039 0.009 0.010 0.010 0.008 0.000 0.000 0.000 0.000 0.005 0.005 0.005 0.005 

                     
E[expve] -0.024 -0.009 0.014 0.041 -0.019 -0.005 0.012 0.027 -0.010 -0.003 0.004 0.011 -0.002 0.000 0.004 0.006 0.000 0.000 0.000 0.000 

E[expvp] -0.003 0.004 0.013 0.021 -0.002 0.004 0.010 0.014 -0.001 0.001 0.004 0.007 -0.001 -0.001 0.001 0.001 -0.001 -0.001 0.000 0.000 

V[expve] 0.000 0.057 0.161 0.305 -0.016 0.029 0.100 0.174 -0.024 -0.006 0.036 0.073 -0.048 -0.042 0.025 0.035 -0.010 -0.010 -0.007 -0.007 

V[expvp] 0.018 0.061 0.120 0.165 0.012 0.048 0.082 0.106 0.007 0.014 0.032 0.047 -0.005 0.000 0.011 0.009 -0.002 -0.002 -0.002 -0.002 

Corr. 0.475 0.285 0.109 -0.025 0.412 0.218 0.102 -0.017 0.196 0.083 0.077 0.024 0.055 0.041 0.063 -0.037 -0.028 -0.028 -0.021 -0.033 

 



Table 7 
Estimated Effects of Endogenous Treatment  

Results from 10 trials based on the baseline DGP, with all subject specific exogenous characteristics 
unobserved 

  Without control for unob-
served heterogeneity 

AIC ML 

 True 
value 

Mean Est.  Mean 
S.E. 

Mean Est.  Mean 
S.E. 

Mean Est.  Mean 
S.E. 

1α  0 0.193  0.014 -0.000  0.041 0.001  0.042 

2α  0 0.123  0.021 -0.012  0.047 -0.009  0.048 
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Table 8 

Estimated Effects of Exogenous Covariate and Endogenous Treatment  
Results from 10 trials based on the baseline model with different modified heterogeneity distributions 

 Without control for unob-
served heterogeneity 

AIC ML 

 

True 
value 

Mean Est. Mean S.E. Mean Est. Mean S.E. Mean Est. Mean S.E. 
Model i) Perfectly correlated discrete with five equally likely support points at 1 1

2 2
( 1, , 0, ,1)− − plus 

bivariate normal drawing (as in baseline model) 
Average number of support points 8.6 14 

eβ  -1 -0.737 0.010 -0.980 0.024 -0.993 0.025 

pβ  1 0.968 0.018 1.007 0.024 1.010 0.023 

1α  0 0.660 0.015 0.031 0.034 0.032 0.035 

2α  0 0.509 0.023 0.023 0.039 0.028 0.041 

Model ii) Independent discrete with five equally likely support points (as in model i), but with inde-
pendent drawings for the two unobservables) and bivariate normal 

Average number of support points 10.3 14.0 

eβ  -1 -0.672 0.011 -0.989 0.025 -0.999 0.026 

pβ  1 0.860 0.011 1.018 0.022 1.019 0.022 

1α  0 0.353 0.014 0.015 0.034 0.014 0.035 

2α  0 0.261 0.022 0.008 0.041 0.008 0.040 

Model  iii) Independent Gamma and perfectly negatively correlated discrete 
Average number of support points 9.7 12.2 

eβ  -1 -0.588 0.011 -0.999 0.026 -1.008 0.027 

pβ  1 0.748 0.010 1.008 0.020 1.008 0.020 

1α  0 -0.182 0.016 -0.009 0.038 -0.014 0.038 

2α  0 -0.120 0.022 0.002 0.042 -0.002 0.043 

Model iv) Truncated bivariate normal. Based on the baseline model, but the five upper percentiles in 
the ve-distribution are deleted from the dataset. 

Average number of support points 7.9 11.2 

eβ  -1 -0.794 0.011 -1.021 0.022 -1.031 0.023 

pβ  1 0.941 0.013 0.990 0.020 0.991 0.021 

1α  0 0.374 0.014 -0.014 0.031 -0.013 0.032 

2α  0 0.312 0.020 -0.015 0.035 -0.014 0.037 

Model v) Discrete with 7 ( , )e pv v support points at (-100, 0.5), (-1, 0.5), (-0.5, 1), (0, 0), (0.5, -1), 
(1, -0.5), and (0.5, -100); the first point with a probability of 0.05, the last point with 0.01 and the oth-

ers with a probability of 0.188. 
Average number of support points 5.6 7.9 

eβ  -1 -0.618 0.011 -1.003 0.021 -1.013 0.022 

pβ  1 0.817 0.012 1.003 0.015 1.002 0.015 

1α  0 -0.404 0.015 -0.000 0.027 -0.011 0.029 

2α  0 -0.368 0.021 0.003 0.032 -0.008 0.033 
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Table 9 
The Role of Exogenous Calendar Time Variation 

Estimates based ML criterion 
  1

 1
et

pt

Var
Var

σ
σ

=
=   0.25

 0.25
et

pt

Var
Var

σ
σ

=
=  0.01

0.01
et

pt

Var
Var

σ
σ

=
=  0

0
et

pt

Var
Var

σ
σ

=
=  

Random walk* 

 Mean 
Est. 

Mean 
S.E. 

Mean 
Est. 

Mean 
S.E. 

Mean 
Est. 

Mean 
S.E. 

Mean 
Est. 

Mean 
S.E. 

Mean 
Est. 

Mean 
S.E. 

1α =0 0.001 0.042 0.024 0.037 0.037 0.051 0.024 0.051 -0.024 0.037 

2α =0 -0.009 0.048 0.009 0.035 0.035 0.053 0.009 0.053 -0.036 0.044 

 WMAE WMAE WMAE WMAE WMAE 
Dur. eff. 
fin.  dest. 

0.104 0.190 0.555 0.603 0.155 

Dur. eff. 
treatment 

0.046 0.040 0.041 0.035 0.048 

• In the random walk model calendar time effects are generated as 1kt kt ktσ σ ε−= + , 
where ktε is standard normal with variance 0.25 

•  
Table 10 

Estimated Effects of Treatment  
Results from 10 trials with baseline model modified to contain positive or negative treatment effects 

 Without control for unob-
served heterogeneity 

AIC ML 

 

True 
value 

Mean Est. Mean S.E. Mean Est. Mean S.E. Mean Est. Mean S.E. 
Positive effects 

Average number of support points 9.0 12.9 

1α  0.2 0.559 0.014 0.200 0.031 0.199 0.032 

2α  0.2 0.473 0.021 0.212 0.037 0.213 0.038 

Negative effects 
Average number of support points 8.8 12.0 

1α  -0.2 0.247 0.015 -0.204 0.032 -0.204 0.033 

2α  -0.2 0.179 0.021 -0.199 0.037 -0.200 0.038 

Negative on-treatment effects, positive post-treatment effects 
Average number of support points 8.5 11.3 

1α  -0.2 0.235 0.015 -0.210 0.032 -0.210 0.032 

2α  0.2 0.519 0.020 0.169 0.035 0.170 0.036 

 

Table 11 
Estimated mean and variance of the unobserved treatment effect distribution. 

Results from 100 trials based on a modified baseline model with heterogeneous treatment effects 
 DGP AIC ML 
Mean # of support points  7.1 11.1 
  Mean Est. St. Dev. Mean Est. St. Dev. 

[exp( )]iE α  1.351 1.388 0.099 1.361 0.088 
[exp( )]iVar α  0.406 0.538 0.197 0.553 0.189 
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Figure 1. Average estimated effects of spell duration (point estimates with 95% confi-
dence intervals, based on observed standard deviation from the 100 trials). The true 
effects are equal to zero for all durations. 
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Figure 2. Distribution of the estimates of the four structural parameters, based on the 
ML criterion, and normal densities (with the same mean and standard deviation) 
Note: Each histogram contains 25 bars.   
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Figure 3. Mean estimates (over 100 trials) of the four structural parameters as func-
tions of the number of support points in the unobserved heterogeneity distribution (1 
support points corresponds to a model without unobserved heterogeneity). 
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Figure 4. Average estimated duration parameters in the final destination hazard, with 
from 1 to 10 support points in the unobserved heterogeneity distribution. The true pa-
rameters are all equal to zero. 
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Figure 5. Average estimated duration parameters in the final destination hazard, based 
on 500 samples with 10,000 subjects in each sample. 
Note: We only report estimates associated with the first 35 periods, since the number of observations of 
durations above 35 periods in each sample is too small to obtain sensible estimates. 
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Figure 6. Average estimated effects of spell duration (with 95 per cent confidence in-
tervals), according to the Maximum Likelihood criterion (based on average point es-
timates and standard errors over 10 trials for each model). The true effects are equal to 
zero for all durations. 
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Figure 7. Estimated duration dependence parameters according to the Maximum Like-
lihood criterion (with 95 per cent confidence intervals) in final destination hazard 
when the true baseline exhibits positive or negative duration dependence (average 
based on 10 trials) 
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Figure 8. Estimated group-specific duration dependence parameters according to the 
Maximum Likelihood criterion (with 95 per cent confidence intervals) in final 
destination hazard when the baseline exhibits positive duration dependence for x=1 
and negative duration dependence when x=0 (average based on 10 trials) 
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Figure 9. Estimated common duration dependence parameters according to the Maxi-
mum Likelihood criterion (with 95 per cent confidence intervals) in final destination 
hazard when the true baseline exhibits positive duration dependence for x=1 and 
negative duration dependence when x=0 (upper panel) and when the true baseline ex-
hibits positive duration dependence for x=0 and negative duration dependence when 
x=1 (lower panel)  (average based on 10 trials). 
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Figure 10. Estimated duration dependence parameters with (lower panels) and without 
(upper panels) correction for sample selectivity (Maximum Likelihood criterion, with 
95 per cent confidence intervals).  
Note: The DGP is a baseline model with 100,000 subjects to start with. 


