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Abstract

In contests, players invest non-retrievable effort to increase the probability of winning a rent. In the

context of research, contests arise when departments compete for funds, scientists strive for tenure or

firms rival for patents. Such contests are usually dynamic and involve heterogeneity and asymmetric

information. This leads to the possibility that players send strategic signals. We model one-sided

asymmetric information in a discrete two-stage contest. We show under which circumstances pooling

and separating equilibria occur. We also derive the implications for a contest designer, who wants to

maximize research activity and can choose between a one- and a two-stage contest, e.g. by deciding

on whether intermediate valuation is required before renewal of funds or not.
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1 INTRODUCTION

1 Introduction

Among the most intriguing results in economics is the insight of the favorable forces of competition. It

helps to unleash productive and innovative forces and reduces the possibility that some few can reap

up extraordinary rents at the expense of general welfare. It is therefore not surprising that economists

have come to advertise competition in many spheres besides regular markets. One of these areas is

research. It is now common practise that research funds are awarded according to criteria such as

previous achievements or active solicitation efforts. Tenure is given to those young scientists who have

proven for several years to be the best among their competitors.1 Finally, the race between researchers

for patents is believed to foster scientific progress.2

A closer look, however, reveals that these examples are not instances of competition in the classical sense

but should rather be described as contests. The distinguishing feature is that the investment of effort

that affects the probability of winning some advertised rent is non-retrievable. The literature on such

contests, starting with Tullock (1980), shows that it is no longer clear whether this kind of competition

will lead to a desirable outcome. Aspects such as the nature of the effort, individual characteristics of the

rent-seekers and contest rules determine how much effort is wasted, i.e. the degree of rent-dissipation.

The understanding of all effects at work is all the more important as the rules of research contests can

deliberately be designed along several dimensions such as time structure and the size and division of the

rent.3 Our contribution wants to add to the understanding by examining the possibility of signalling

and its impacts in dynamic research contests.

What are the specific features of research contests? First, research is a long-term issue and not a one-

shot game with instant results. Furthermore, at least part of the contest effort constitutes research itself.

The application of a university department for research funds requires a clear concept and at least some

preliminary results. In the case of the patent race, research and contest efforts are largely congruent.

This is of importance when it comes to making welfare statements, because inducing high effort levels

might be desirable, opposed to other applications of contests such as political rent-seeking.4

Second, the effort of competitors can be observable during the run of the game. In some circumstances,

this might not be influenceable by the contest designer. For example, assistant professors can simply

monitor the publications of their peers. Often, however, the contest rules can directly specify whether

efforts are observable or not. They could, for example, either require outside intermediate evaluation

before research funds are renewed, or award them once and for all. Abstractly, this amounts to the

choice between a one- and a two-stage contest.

1See Kolmar and Wagener (2005) for an application of the theory of contests to tenure decisions.
2This area is probably the one that has been most investigated. See for example Baye and Hoppe (2003), Tylor (1995)

and Che and Gale (2003).
3As Moldovanu and Sela (2005) put it, contests ‘are either designed or arise naturally’. In the context of research,

most contests are clearly delineated by some governmental or private agency that can set rules at its own discretion. The
question of optimal design of contests has recently received much attention. Se for example Singh and Wittman (1988),
Gradstein (1998), Gradstein and Konrad (1999), Che and Gale (2003) and Moldovanu and Sela (2005), who all deal with
different aspects of contest design.

4It is in the interest of the contest designer to ‘induce a general increase of activity in the specific field.’ (Moldovanu
and Sela 2005, p. 543)
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Third, researchers differ with respect to productivity and talent. While this itself will be important to

take into account, even more important is the fact that it can create an information asymmetry. For

example, the capabilities of an established Ivy-League university department are well known and have

been proven several times. Still one might want to open the possibility for some upcoming young de-

partment to compete. By the very nature of the described process, however, neither the contest designer

nor the more established competitor will have much information about the new player.

All these aspects create the need to model a dynamic contest with heterogeneous agents and asymmetric

information. It is therefore clear that signalling effects are highly relevant in research contests.

The literature on contests has virtually mushroomed since Tullock’s first contribution.5 Various steps

have been taken in order to model different economic situations, among them the interaction of hetero-

geneous players with asymmetric information. Heterogeneity can be introduced both via different price

valuations or via different productivities. The first approach is taken by Hillman and Riley (1989), Che

and Gale (1998) and Nti (1999). Rosen (1986) uses the second possibility. It turns out that both het-

erogeneity with respect to valuation and productivity have very similar effects (see for example Nitzan

1994, p. 46). Here we follow the approach taken by Amegashi (2005) who, in the context of elimination

tournaments with asymmetric information, models heterogeneity in prize valuation but interprets it as

the ‘strength’ of the players. Other important contributions that deal with heterogeneity and asym-

metric information are Harstad (1995) and Wärneryd (2001). They, however, restrict themselves to the

static case.

The literature one repeated interaction between contestants can be classified on whether they describe

elimination tournaments, in which only the winner of a round proceeds to the next stage (tennis in

Wimbledon), or multi-stage contests where the same opponents meet several times (Formula I racing).

Amegashi (2005) finds that signalling in elimination contests will, if anything, lead to higher efforts by

the players than in the case with perfect information. However, as indicated in the above discussion,

we believe that multi-stage contests are more appropriate for the case of research. Within this class

one can distinguish between models where players choose efforts simultaneously or sequentially. See for

example Yildrim (2003), who models both possibilities and also discusses the preceeding literature such

as Leininger (1993), Gradstein (1998) and Gradstein and Konrad (1999). These contributions, however,

do not take into account asymmetric information.

We proceed as follows. In the next section we describe and solve a one-stage game under different

information assumptions. We then extend the model to a two-stage setting in section 3. Using examples,

section 4 illustrates how the new insights can be used by a contest designer. The last section concludes.

5For an overview over earlier developments in contest theory see Nitzan (1994).
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2 Static Game

2.1 Perfect Information

Consider a one-stage game in which two players simultaneously compete for a prize. In case of winning

the prize, the payoff for player 1 (player 2) is V (W ). For now, both V and W are assumed to be known

by both players. The probability of winning is determined according to a contest success function.

Denote the probability of winning for player 1 by p = p(e1, e2), where ei denotes the effort chosen by

player i = 1, 2. Consequently player 2 is the winner with probability 1−p(e1, e2). In contrast to much of

the literature we assume that only one of two discrete effort levels can be chosen by each of the players.

They can either exert a high effort level eH or a low effort level eL < eH . The contest technology is then

uniquely defined by four probability values pjk = p(ej , ek), where ej ∈ {eL, eH} is the effort chosen by

player 1 and ek ∈ {eL, eH} is the respective effort of player 2.

The game will be solved with as few assumptions on the values pjk as possible. Some restrictions,

however, have to be taken to capture the nature of a contest. First assume that

pLL = pHH , (2.1)

which states that the success probability does not vary with a joint increase of effort by both players.6

Second, we assume that the own probability of winning increases whenever a player increases the effort

from low to high. This can be summarized as

pHL > pLL = pHH > pLH . (2.2)

Because of the unusual discreteness of the available effort levels, we derive the equilibrium of the game

in some detail. The optimization problem of player 1 is given by

max
e1∈{eL,eH}

π1 = p(e1, e2)V − e1 (2.3)

and analogously for player 2. Reaction functions can easily be derived. Player 1 prefers eH over eL

given some effort e2 = ek by his opponent if pHk V − eH ≥ pLk V − eL and vice versa.7 This yields his

best response:

e1(ek) = eH ⇔ V ≥
eH − eL
pHk − pLk

≡
∆e

∆p•k
. (2.4)

The difference ∆p•k, which is positive due to (2.4), stands for the increase in his success probability

resulting from an increase in his own effort level from low to high, given that player 2 supplies the effort

6This assumption could easily be based on the standard Tullock contest success function p(e1, e2) = e1

e1+θe2 where θ > 0
is a parameter measuring the relative effectiveness of player 2 in the contest. Substituting any two effort levels eL and eH

yields the above given assumption as an implication.
7We ignore the fact some player 1 will be indifferent between the two pure actions and might therefore play any mixed

strategy. Even in the more advanced game in following section this will not be relevant as the probability that this event
occurs is zero.

4



2 STATIC GAME

e2 = ek. Condition (2.4) reflects the comparison between the positive and negative effects of an increase

in effort. If the valuation V is high enough, the utility gain V∆p•k is larger than the utility loss ∆e.

By the same line of reasoning the optimal behavior of player 2 is given by:

e2(ej) = eH ⇔W ≥
eH − eL
pjL − pjH

≡
∆e

∆pj•
. (2.5)

The critical values defined in (2.4) and (2.5) deserve closer examination. Due to (2.1), their denominators

are related as follows:

∆p•L = ∆pH• and ∆p•H = ∆pL•. (2.6)

Now define the following general critical value function:

CV (x) ≡
∆e

x∆pH• + (1 − x)∆pL•
=

∆e

x∆p•L + (1 − x)∆p•H
. (2.7)

Therefore, the critical value that is decisive for player 1’s optimal response to high effort of his opponent

is CV (0), while the relevant critical value for the best response to low effort is CV (1). Conversely, the

best response of player 2 to a high effort level of player 1 is determined by the relative position of his

valuation W to CV (1). For the best response to e1 = eL, the value CV (0) is relevant.

A first natural case to consider would be a situation in which pHH = pLL = 1
2 and pLH = 1 − pHL, i.e.

a completely symmetric case.8 The following proposition summarizes the results for all cases in which

the weaker ‘symmetry assumption’ pHL − pLL = pHH − pLH is satisfied.

Proposition 2.1. If pHL − pLL = pHH − pLH , the game has a unique Nash-equilibrium in strictly

dominant strategies. The efforts chosen by the players solely depend on their own valuation of the prize

V and W, respectively. Player 1 exerts the high effort if V ≥ CV (0) = CV (1) and the low effort

otherwise. The same critical value is crucial for player 2.

The proposition is easily proven since under pHL − pLL = pHH − pLH the gain from increasing one’s

own effort does not depend on the action of the opponent. Therefore, the two critical values CV (0) and

CV (1) coincide.

The equilibrium behavior of the model is summarized in figure 1, where we assume some upper and

lower bound on one the valuations V and W . The abscissa (ordinate) measures W (V). Four areas are

defined by the critical value CV (0) = CV (1). The first entry in each area denotes the equilibrium effort

of player 1. Note that neither asymmetric information about the opponent’s valuation nor a dynamic

structure would change this result. Signalling effects do not occur if the opponent has a dominant

8Such relations would for example emerge if the Tullock function parameter θ mentioned in footnote 6 was set equal
to one.
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eH , eH

eL, eL

eH , eL

eL, eH

CV(1)

=

CV(0)

CV(0) = CV(1) W

V

Figure 1: Symmetric One-Stage Game with Perfect Information

strategy and his actions can therefore not be influenced.

Consider now a situation in which the symmetry property does not hold. Specifically, assume without

loss of generality that pHL − pLL > pHH − pLH .9 This assumption implies that the gain from increasing

effort is larger for player 1 if his opponent chooses the low effort level (∆p•L > ∆p•H). Conversely, player

2’s additional effort is more productive if his opponent chooses the high effort level (∆pH• > ∆pL•).

We take this situation to represent an a priori advantage of player 2. To see this note that we have

pLL = pHH < pLH+pHL

2 . Compared to the symmetric case above, in which pLL = pHH = pLH+pHL

2

holds, the winning probability of player 1 if both exert the same effort level is smaller. This is most

adequately interpreted as some kind of ‘bias’ in favor of player 2: even if the opponents are equally

engaged in the contest, player 2’s winning probability is higher. Many circumstances can cause such

a bias. In research contests, for example, evaluations and decisions about funds or positions are done

by established researchers themselves, such that personal connections, reputation effects or strategic

interests will almost certainly influence the decision towards one or the other contestant.

The two critical values derived above now become unequal; the optimal reply of the players can depend

on the action undertaken by the opponent. We have ∂CV (x)/∂x < 0, which implies CV (0) > CV (1).

The equilibrium of the asymmetric game is characterized in the following proposition.

9Reversing the inequality sign would result in an analogous but reverted situation. Note that the current constellation
of probability values could be retrieved from a Tullock function in which player 2 has an advantage, i.e. θ > 1.
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eL, eL

Mixed Strategies

eH , eH

eL, eL

eH , eH

eH , eL

eH , eL

eL, eH

eL, eH

CV(1)

CV(0)

CV(1) CV(0) W

V

Figure 2: Asymmetric One-Stage Game with Perfect Information

Proposition 2.2. If pHL − pLL > pHH − pLH there exists a unique Nash-equilibrium in pure strategies

if at least one valuation V or W is outside the interval [CV (1), CV (0)]. If both valuations lie within the

interval there exists a unique equilibrium in mixed strategies. The characteristics of the equilibria are

summarized in figure 2.

Proof. Players below the critical value CV (1) strictly prefer to play the low effort and do not find

reaction to the action of their opponent desirable. The same applies for valuations of the prize above

CV (0): here players always exert the high effort level. Only in the interval between CV (1) and CV (0)

do players have a nonconstant reaction function. If only one of the players is located in this area, he

will play his optimal response to the dominant strategy of the opponent as defined in (2.4) and (2.5).

If both valuations lie within the respective interval, no equilibrium in pure strategies exists. Consider

player 1 exerting the high effort. Player 2 would then also like to exert the high effort, as CV(1) is

relevant for his decision. Player 1, however, would then like to deviate to eL as CV(0) is decisive for

him, which in turn alters the best response of player 2 and so on. It can easily be shown that a mixed

strategy equilibrium exists in this case. As its features are not relevant for the following, we leave the

derivation of the mixing probabilities to the reader.

2.2 Asymmetric Information

In this section we change our assumption concerning the information structure of the game while we

keep the asymmetry assumption pHL − pLL > pHH − pLH for the rest of the paper. We assume that

nature first chooses the valuation V of player 1 from a uniform distribution on the support [α, β] with
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α < CV (1) and β > CV (0). While player 1 knows the outcome of this first stage, player 2 is not

informed about it but only knows the distribution of V . The valuation W of player 2, on the other

hand, is common knowledge and lies within the interval [CV (1), CV (0)], i.e. in the domain in which

he does react to the action of player 1. Assuming W to lie in this interval allows for the possibility of

signalling.

The assumed structure captures what we believe to be the most important aspects of information in

research contests as outlined in the introduction. Player 2, who we assumed to have the a priori advan-

tage, is well-known. He represents an established player whose publicity might be the result of several

previously won contests. Player 1 can be interpreted as the newcomer, challenger, or the ‘underdog’,

who is not yet known.

The following two propositions describe the equilibria of the game.

Proposition 2.3. The one-stage game with asymmetric information admits a unique Nash-equilibrium

in pure strategies in which player 2 chooses the effort eL if W < CV (qL), where qL = β−CV (1)
β−α

, and eH

if W > CV (qH), where qH = β−CV (0)
β−α

. Player 1 chooses his effort level according to his best response

function (2.4).

Proof. Examine the choice of the uninformed player 2, whose action depends on the probability q with

which he believes player 1 to play eH . As the reaction function of the informed player 1 is still the same

as before, this probability amounts to q = Pr[V > CV (0)] + Pr[CV (1) < V < CV (0)]1(e2 = eL). The

indicator function captures the fact that q depends on player 2’s equilibrium action via the best-response

of a player 1 with V in [CV (1), CV (0)]. Player 2 prefers eH over eL and vice versa if

[q(1 − pHH) + (1 − q)(1 − pLH)]W − eH ≥ [q(1 − pHL) + (1 − q)(1 − pLL)]W − eL, (2.8)

which reduces to the condition

W >
∆e

q∆pH• + (1 − q)∆pL•
= CV (q). (2.9)

Via q, CV (q) still depends on the action of player 2. First assume that e2 = eH is optimal. According

to (2.9) this does not yield a contradiction if W > CV (qH) with qH = β−CV (0)
β−α

from the above specified

rational beliefs and the assumption of the uniform distribution of V . Next assume that e2 = eL is

optimal. This does not yield a contradiction if W < CV (qL) with qL = β−CV (1)
β−α

. From β > CV (0) >

CV (1) > α it follows that 1 > qL > qH > 0 and thus CV (1) < CV (qL) < CV (qH) < CV (0).

Denote the interval [CV (1), CV (qL)[ by Ω1, the interval ]CV (qH), CV (0)] by Ω2 and the yet uncovered

interval [CV (qL), CV (qH)] by Ω3. Let us now turn to Ω3 where no equilibrium in pure strategies exists.

8
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Proposition 2.4. If W ∈ Ω3, a unique Nash-equilibrium exists in which player 2 plays the mixed

strategy σ2 = (r, 1 − r) where the probability r of choosing the low effort, is given by

r(W ) =
pL•

∆pL• − ∆pH•
+

(∆e)2W

∆e(α− β) +W (β∆pH• − α∆pL•)
. (2.10)

The probability r(W ) is decreasing in W and r(CV (qL)) = 1 and r(CV (qH)) = 0. Player 1 plays eH if

V ≥ CV (r) and eL otherwise.

Proof. See Appendix A

The intuition behind this result is straightforward. By playing a mixed strategy, player 2 creates exactly

one type of player 1 (V = CV (r)) who is indifferent between the two effort levels. All players 1 with a

smaller valuation choose the low, types with higher valuation the high effort level. The equilibrium value

of r for player 2 with valuation W is such that he is exactly indifferent between his two pure strategies.

The described mixed strategy equilibrium converges to the pure strategy equilibria from proposition 2.3

as the valuation W approaches the boundaries of Ω3.

Figure 3 summarizes our analysis of the one-stage game with asymmetric information. A valuation W in

the interval Ω3 generates a critical value CV (r(W )) that increases in W . In the figure this is indicated

by the upwards sloping line.10

eL, eL

eH , eH

eL, eL

eH , eL

eH , eL eH , eH

eL, eH

eL, eH

eH , r

eL, r

CV(r(W))

CV(qL) CV(qH)

Ω1 Ω3 Ω2

α

CV(1)

CV(0)

β

α CV(1) CV(0) β W

V

Figure 3: Asymmetric One-Stage Game with Asymmetric Information

10The function CV (r(W )) is depicted as a straight line only for presentational purposes. In fact it is concave in W .
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3 Dynamic Game

3.1 Model Structure

Assume now that the individuals play two times against each other. We assume an additive structure

for the probability of winning the prize. The payoff function of player 1 becomes

π1 = a[p(e11, e
2
1) + p(e12, e

2
2)]V − e11 − e12, (3.1)

where eij denotes the effort player i chooses in period j.11 The payoff function for player 2 is given

analogously. Different situations can be modelled by choosing appropriate values of a. If a = 1/2,

the probability of winning is determined as the average outcome of two separate contests. A contest

designer could for example set up such a dynamic contest instead of a one-stage contest.12 For a = 1,

a simple repeated contest is modelled. From now on, only the case with a = 1 will be examined. Due

to the additive structure, the results can be transferred to other cases by multiplying the valuations V

and W by the desired a and applying the following results to the such transformed game.13

Players still choose their efforts simultaneously in each period, but first period efforts become observable

before period 2 and thus constitute signals. If the action of player 1 in the first period contains some

information about his type, in the sense that not all types would choose the same effort level, player

2 will use this information in deciding about his second period move. Equilibria of this kind will be

labelled ‘separating’.14 On the other hand, if all possible types choose the same effort e11, no information

is revealed. In such ‘pooling’ equilibria, the second round of the contest takes place as in the one-stage

game with asymmetric information since the game is over afterwards and nothing can be gained by

deviations from the optimal actions of the one-stage setting.

The number of Perfect Bayesian Equilibria (PBE) in signalling games is usually large. In our model, it

is however possible to derive some properties common to all equilibria. Denote the equilibrium strategy

of player 2 in the first round by σ2
1 = (r, 1 − r), where r represents again the probability of playing the

low effort and denote his equilibrium strategy in the second round by σ2
2(e

1
1) = (s(e11), 1− s(e11)), where

s(e11) represents the probability of playing the low effort after having observed e11 in the first round. We

again restrict ourselves to the examination of pure strategies e11(V ) and e12(V ) for player 1 since for any

strategy of player 2 there will be only one type V that is indifferent between his two pure actions. This

type occurs with probability zero.

In equilibrium, no type of player 1 can increase his payoff by unilaterally deviating from his strategy.

11Throughout this section, an upper index will signify the player while a lower index will signify the period.
12Designing a multi-stage contest is straightforward if people can choose their effort continuously and reduce it as much

as they like. In the present model with only two effort levels to choose from, a participation constraint might become
binding. We ignore this problem. It could for example be omitted by setting eL = 0.

13This transformation, using a = 1/2, will for example be necessary when a contest designer wants to compare the
results of a one- and a two-stage contest while the same prize is to be awarded in both cases.

14The usual difference between perfectly separating and partially separating equilibria is not applicable here, since
perfect separation is impossible. As the set of types is infinite while the set of actions is finite, the uninformed player can
never infer from the observed action to the type of this opponent perfectly.
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Define the ‘deviation function’ h(V ) to measure the payoff change for player 1 of type V of switching

from e11 = eL to eH , taking the strategy of player 2 as given. It contains a direct first period effect and

a second period effect. The second period effect takes into account the induced change in the mixing

probability s from s(eL) to s(eH) and the optimal reaction of player 1’s second period effort to this

change. Assume h(V ) was strictly increasing in V , for every strategy tuple (σ2
1,σ

2
2). This would imply

that whenever some type V ′ of player 1 finds it optimal to play e11 = eH , every type V ′′ > V ′ would

find this optimal as well, as his payoff difference between high and low effort in the first period would

even by larger. This in turn would make it possible to restrict attention to pooling equilibria and to

separating equilibria characterized by a single value Ṽ , such that types with a larger V choose the high

and types with a lower V choose the low effort in the first period. The value Ṽ would be defined by

h(Ṽ ) = 0. Unfortunately, h(V ) does not in general take such a simple form. Lemma 3.1 summarizes

the properties of h(V ) that are derived in Appendix B.

Lemma 3.1. The function h(V ) on [α, β] is

(i) continuous,

(ii) stepwise linear, changing the slope at CV (s(eL)) and CV (s(eH)),

(iii) strictly increasing in V if s(eL) ≤ s(eH).

If s(eL) ≤ s(eH) we actually obtain the ‘monotonicity property’ discussed above. If deviation from low

to high effort in the first period induces player 2 to play eL with (weakly) greater probability in the

second period, h(V ) is strictly increasing. However, σ2
2(e

1
1) is not exogenously given but itself a part of

the equilibrium strategy profile. Unfortunately, the monotonicity property does not necessarily hold in

equilibria when s(eL) > s(eH). In that case, properties (i) and (ii) of Lemma 3.1 still tell us something

about the equilibrium. Continuity and stepwise linearity of h(V ) on the three subintervals of [α, β]

separated by the points CV (s(eL)) and CV (s(eH)) implies that h(V ) can generically have at most three

zero points in [α, β].15 This implies that each equilibrium can be characterized by at most three values

Ṽk at which first period behavior of player 1 changes. In any equilibrium, every zero point at which

h(V ) actually changes its sign corresponds to one such point Ṽk.
16 Furthermore, a change in sign from

minus to plus corresponds to a change in first period effort from low to high and vice versa.

Lemma 3.1 therefore allows us to restrict the search to four categories of equilibria, defined by the

number n of points Ṽk. The category of pooling equilibria is characterized by n = 0. Within each of the

categories, there remain two further possibilities, depending on which effort level e11 the smallest type

α chooses, i.e. depending on e11(α). Therefore, the search is restricted to 8 equilibrium classes, each

uniquely defined by (n, e11(α)). Figure 4 illustrates the discussion for the case of a (0, eH)-equilibrium

and a (3, eL)-equilibrium.

15‘Generically’ here means that one could construct effort levels and probabilities pij such that h(V ) = 0 on one or more
of the three subsets. This infinite set of zero points would, however, vanish if one of the game parameters was varied only
slightly.

16In the exceptional case that h(V ) reaches a local maximum or minimum in a zero point, behavior does not change
there and therefore we cannot simply state that each zero point corresponds to a critical value Ṽk; the change in sign is
necessary.
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V

e11 h(V )

α β

eH

eL

CV (s(eH)) CV (s(eL))

(0, eH)-equilibrium

V

e11 h(V )

α β

eH

eL

(3, eL)-equilibrium

Figure 4: Classes of Perfect Bayesian Equilibria

Besides the two possible pooling equilibria (0, eL) and (0, eH), one further class of equilibrium is espe-

cially appealing due to its intuitive properties.

Definition 3.2. A PBE of the dynamic game with asymmetric information is said to be strictly

monotonic if it belongs to the class characterized by (1, eL).

Strictly monotonic equilibria exhibit one critical value for V in ]α, β[ such that smaller types choose the

low and larger types the high effort in the first period. Furthermore:

Definition 3.3. A PBE of the dynamic game with asymmetric information is said to be monotonic if

it belongs to one of the classes defined by (0, eL), (0, eH) or (1, eL).

A monotonic equilibrium is therefore either strictly monotonic or a pooling equilibrium. It immediately

follows that

Corollary 3.4. Any PBE in which s(eL) ≤ s(eH) is monotonic.

Proof. From Lemma 3.1, if s(eL) ≤ s(eH) the function h(V ) is strictly increasing in V. It can therefore

have at most one zero point in [α, β]. Furthermore, if it has one in which h(V ) intersects the abscissa,

the intersection will be from below.

Note that s(eL) ≤ s(eH) is a sufficient but not a necessary condition for monotonicity.
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3 DYNAMIC GAME

3.2 Monotonic Equilibria

In what follows we restrict attention to monotonic equilibria as defined above. They exhibit the intuitive

property that types that have a higher interest in the contest than others do never invest less in the

first period.

3.2.1 Pooling Equilibria

Theorem 3.5. Pooling on eL.

If W ≤ WCV
1 there does exist a PBE with e11(V ) = eL for all V ∈ [α, β] and e21 = eL. The value WCV

1

is given by r−1[(β − CV (1))/β] ∈ Ω3, where r−1 denotes the inverse of the probability function (2.10).

The second stage of the games takes place as described in section 2.2. The equilibrium is supported by

any off-equilibrium path belief that implies s(eH)=0.

Proof. See Appendix C

Proposition 3.5 shows that pooling on the low effort can constitute an equilibrium if on the one hand

the maintained lack of information makes player 2 choose eL with large enough probability in the sec-

ond period and deviation on the other hand is punished through high effort. Adherence to the first

condition is captured by the upper boundary condition on W while the second condition is ensured by

the presumed off-equilibrium path belief structure.17 This illustrates the intuition behind this ‘dove’

equilibrium: it represents a situation in which even high types V of player 1 understate their interest to

induce the opponent to not play hard later.18

Theorem 3.6. Pooling on eH .

If W ≤WCV
2 and α ≥ 1

2 CV (0) there does exist a PBE with e11(V ) = eH for all V ∈ [α, β] and e21 = eH .

The value WCV
2 is given by r−1[(CV (0) − α)/α] ∈ Ω3. The second stage of the games takes place as

described in section 2.2. The equilibrium is supported by any off-equilibrium path belief that implies

s(eL)=0.

Proof. See Appendix D

The intuition behind this ‘hawk’ equilibrium is similar as above. In the present case, however, we

assumed a different belief structure to explain what can be interpreted as a typical ‘deterrence’ situation:

all possible types V choose the high effort and pretend to be strong, as this actually intimidates player

2.

The conditions for the existence of such a pooling equilibrium are more restrictive than for the other

pooling equilibrium. First, the condition on the relation between α and CV (0) requires that player 1

may not have too small valuations of the prize, because very small types would not be willing to choose

17These beliefs are the ones most favorable for existence of the equilibrium. If s(eH) 6= 0, the equilibrium will still exist
as long as s(eH) is small enough for the ‘punishment effect’ to be present. The boundary condition on W will become more
restrictive, however.

18Note that the condition s(eL) ≤ s(eH) is not fulfilled in the described equilibrium since only types W ∈ Ω2 would
play s(eL)=0. For these types, the described equilibrium does not exist.
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4 EXAMPLES

the high effort in the first period. Second, under a broad range of parameter assumptions, the critical

value that W may not exceed is smaller in the present case than in the case of pooling on eL.19 This

reflects the fact that pooling on eL goes with the additional benefit of saving effort.

Note finally that h′(V ) > 0 holds in the (0, eH)-equilibrium, as illustrated in figure 4, since s(eH) ≥

s(eL) = 0 holds naturally.

3.2.2 Strictly Monotonic Equilibria

Strictly monotonic equilibria can be characterized by a unique value Ṽ1 ∈ ]α, β[ such that e11(V ) = eL

if V < Ṽ1 and e11(V ) = eH otherwise. Both information sets (defined by the two possible first period

actions of player 1) are therefore on the equilibrium path such that player 2’s beliefs can be derived

by ‘weak consistency’. After having observed e11 = eL, he believes player 1’s type to be uniformly

distributed on the support [α, Ṽ1]. The support of his (uniform) belief if e11 = eH is [Ṽ1, β]. Matters

become complicated, however, since the two described intervals usually contain types of player 1 with

different reaction functions. Appendix E goes into greater detail about this problem. While some general

results can be proven, we are not able to derive the strictly monotonic equilibria in a comprehensive

fashion.20 We therefore explore the topic by means of examples in the next section.

4 Examples

4.1 Example 1

The first example gives a case in which only pooling on the low effort constitutes an equilibrium. Neither

the other pooling equilibrium nor any strictly monotonic equilibrium do exist. We use this example to

show how our findings can be used by a contest designer who can decide on whether to let the opponents

meet once or twice.

The following technology parameters are given:

pHL = 0.8, pHH = pLL = 0.4, pLH = 0.1, (4.1)

which satisfy (2.1) and (2.2) and the ‘asymmetry condition’. It follows that ∆pH• = ∆p•L = 0.4 and

∆pL• = ∆p•H = 0.3. Assuming eL = 15 and eH = 60 gives ∆e = 45, CV (1) = 112, 5 and CV (0) = 150.

We assume for the valuations W = 240, α = 80 and β = 320 and first examine the course of a one-period

game with asymmetric information.

Since W lies above the larger critical value CV (0) and therefore in the ‘unresponsive’ area, player 2

will choose the high effort. The critical value CV (0) will then be decisive for player 1. Types between

α and CV (0) occur with probability 0.292. The expected, average valuation of these types, who will

choose the low effort, is equal to (α + CV (0))/2 = 115. Types between CV (0) and β, who choose the

high effort, occur with probability 0.708. Their expected prize valuation will be (β + CV (0))/2 = 235.

19Symmetry CV (0) − α = β − CV (1) would be one such assumption.
20Among the general results is the fact that no strictly monotonic equilibrium with Ṽ1 < CV (1) does exist.
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Putting these figures together, it follows that the expected rent of the one-stage contest equals

R1 = 0.292[pLH115 + (1 − pLH)240] + 0.708[pHH235 + (1 − pHH)240] ≈ 234.93. (4.2)

The effort that is spent in expectation is given by

E1 = eH + 0.292eL + 0.708eH ≈ 106.86. (4.3)

Now turn to the case of a two-stage contest, in which the final winning probability is determined as

the average of the winning probabilities of two single contests. Given the notation of the model, this

amounts to a = 0.5 in equation (3.1). To be able to apply the results from the two-stage model to the

current case, the valuations, including the bounds of the support of V , have to be divided by two. This

yields 0.5W = 120, 0.5α = 40 and 0.5β = 160. The critical values CV (1) and CV (0) remain unchanged

but still lie inside the interval [0.5α, 0.5β].

First note that the new lower bound 0.5α = 40 is not larger than half of CV (0) any more, so that

a condition for the existence of the (0, eH)-equilibrium is violated (see Proposition 3.6). Furthermore

we obtain qL = 0.396 and qH = 0.083 which gives CV (qL) = 132.51 and CV (qH) = 145.96 as the

boundaries between the intervals Ω1,Ω2 and Ω3. Therefore, the transformed valuation of player 2 lies in

Ω1 since it is smaller than CV (qL). The (0, eL)-equilibrium does exist if we use the off-equilibrium path

beliefs from Proposition 3.5.21 As is shown in Appendix F, there does not exist a strictly monotonic

equilibrium.

Going through analogous steps as for the one-stage game, we obtain

R2 ≈ 226.58 (4.4)

and

E2 ≈ 77.82. (4.5)

To answer the question which of the two options the contest designer will want to choose, one needs to

specify his objective. Assume he maximizes the function

S(R,E) = bR+ cE, (4.6)

where b and c are parameters.22 In the standard context of rent-seeking one would for example set

b = 1 and c = −1, i.e. one assumes that the designer minimizes ‘rent dissipation’. Clearly, the two-stage

21It is straightforward to show that no participation constraint is violated in this equilibrium, i.e. no player spends more
effort in expectation than he expects to earn.

22In principle, there might be an objective money value of the rent, for example the value of a professor’s salary, that
should be included, for example by simply subtracting it. However, since the choice of the size of the prize is not subject
of this paper, we take it as given and can as well omit it at this point.
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contest would then be preferable. While the expected rent is smaller than in the one-stage game, there

is the large benefit of saving effort; the objective takes the value of S(R2, E2) ≈ 148.76 as compared

to S(R1, E1) ≈ 128.07. However, in the context of research contests, the designer might have a very

different objective. He might want to maximize research effort and might not care about the expected

rent of the researchers at all (b = 0, c = 1). In that case, clearly the one-stage contest would be

preferable. Finally, if the valuation of the rent b is normalized to one, the designer will prefer the

one-stage contest whenever c > −0.29 and the two-stage contest otherwise.

4.2 Example 2

The second example illustrates a case in which a strictly monotonic equilibrium exists, but no pooling

equilibrium. The first period action of player 1 therefore constitutes a meaningful signal about his type.

We stick to the assumptions about the effort levels and the contest success function from the previous

example. The values CV (1) and CV (0) therefore remain unchanged. Furthermore, we assume α = 40

and β = 160 as in the two stage case above. We therefore again have CV (qL) ≈ 132.51 and CV (qH) ≈

145.96. However, this time we assume W = 149 ∈ Ω2, such that no pooling equilibrium exists. From

the general derivations in Appendix E it now follows that a strictly monotonic, separating equilibrium

characterized by Ṽ1 ≈ 151.81 > CV (0) exists.23 By definition, types V < 151.81 play e11 = eL and vice

versa. Player 2 chooses e21 = eH , which is also derived in the Appendix. The second period mixing

probabilities of player 2 are given by s(eH) = 0 and s(eL) ≈ 0.01. Accordingly, types V > Ṽ1 will then

choose e12 = eH and the action of types V < Ṽ1 will depend on their relative position to the critical

value induced by s(eL), which is CV (0.01) ≈ 149.56. No other strictly monotonic equilibrium exists.24

In the described equilibrium, information is revealed in a very intuitive fashion. If player 2 observes

eH , he knows to be confronted with an opponent who has a high valuation and will play hard in the

second period as well. This makes him respond with high effort. On the contrary, if he observes eL, he

knows that his opponent’s valuation is not that high. By playing an appropriately mixed strategy he

makes sure that the probability of facing high effort in the second period is very small (only types V in

between 149.56 and 151.81 would do this).

We can again compute expected rents and the amount of effort that is spent in expectation. As before,

this is done by considering all possible constellations of types that might meet, taking into account their

actions and the resulting success probabilities. We obtain

R2 ≈ 288.28 (4.7)

23Using the notation from Appendix E, we find W > CV (µ) ≈ 146.66 and W ∈ [CV (κL), CV (κH)] = [134.27, 149.20].
As has been shown in Appendix E, an equilibrium with Ṽ1 > CV (0) exists if Ṽ1 is such that it makes player 2 choose the

mixing probability s(eL) = CV (1)
CV (0)

−
CV (1)

Ṽ1

in the second period after having observed eL in the first period. For this to

happen, the beliefs in the equilibrium after having observed eL have to be such that they make player 2 indifferent between
his two pure actions. Given the values from the present example, this can easily be shown to hold.

24This follows from the results in Appendix E as well. It can easily be shown that W = 149 is always larger than CV (θ)
for all of the remaining strictly monotonic equilibrium candidates, which can be characterized by CV (1) ≤ Ṽ1 ≤ CV (0).
This, however, violates a necessary condition for existence.
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and

E2 ≈ 156.57. (4.8)

We could again interpret the above used valuations as being already transformed, to derive the equilib-

rium of a one-stage contest with true valuation 2W = 298 of player 2 and bounds 2α = 80 and 2β = 320.

In this game, player 2 chooses the high effort while the choice of player 1 depends on his relative position

to CV (0) = 150. This gives an expected rent of

R1 ≈ 274.81 (4.9)

and expected efforts of

E1 ≈ 106.88. (4.10)

The fact that R2 > R1 is not surprising: in a strictly monotonic equilibrium, types with a high interest

in the contest choose the high effort level, types with lower interest the low effort level. This makes sure

that types with a larger interest win the contest with a higher probability. In this sense, the two-stage

contest is the better institution with respect to rent allocation. This goes at the ‘expense’ of higher

effort levels. Therefore, whenever b, c > 0, the two-stage contest is preferred by the contest designer;

this is the relevant case in research contests. To the contrary, the one-stage contest leads to a higher

surplus in the classical sense (b = 1, c = −1).

The two examples illustrate the importance of understanding signalling in research contests. For ex-

ample, whether research funds should be awarded once and for all, or whether there should be an

intermediate evaluation before renewal, crucially depends on the type of equilibrium that we expect to

arise. The ‘danger’ of pooling on eL makes the one-stage option more desirable. However, if different

types separate in a strictly monotonic fashion, the two-stage contest with partial information revelation

leads to the preferable outcome. This latter case can be expected if the well-known contestant is a very

strong player.

5 Conclusions

Contests are games in which players invest non-retrievable effort to increase the probability of winning a

rent. In the context of research, contests arise when departments compete for research funds, scientists

strive for tenure or firms rival for patents. Research contests usually involve heterogeneous players.

This creates asymmetric information and the possibility of signalling. Furthermore, research differs

from other applications of contest theory in that a high level of effort invested is not bad but usually

desirable, as contest effort is at least in parts also research effort.

Understanding of research contests is not only interesting from a positive, but also from a normative

point of view. Mostly, they are deliberately designed by some agency that has to take choices about

parameters of the contest, such as the size and division of the rent. Here, we focus on a different choice,
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namely the time structure of the contest. In several cases, the contest designer can decide between a

one- and a two-stage contest, where judging the latter option requires the understanding of signalling.

We model a discrete contest, in which players with differing prize valuations choose one of two possible

effort levels. We derive the equilibria of the one-stage game both under perfect and under asymmetric

information. An especially interesting case arises if a well-known player with an a priori advantage is

challenged by an unknown ‘newcomer’. We believe this to be a relevant situation in research, where

contests might even be especially arranged to give upcoming new scientists or research units a chance

to prove themselves against established players. In that case, the information contained in the first

period actions of a two-stage contest becomes relevant. We prove that eight classes of equilibria can in

principle exist. We then focus on the intuitively most appealing case of ‘monotonic’ equilibria in which

players with a greater interest in the contest never invest less effort than others in the first period.

We find that both kinds of pooling equilibria can exist, i.e. both the ‘dove’ equilibrium in which all

types of the informed player understate their true interest, and the ’hawk’ equilibrium in which they

try to intimidate their opponent. Which of the two possibilities will arise crucially depends on the off-

equilibrium path believes of the uninformed player. The ‘dove’ equilibrium, however, will occur under

a broader range of assumptions as it goes with the benefit of saving effort. Both pooling equilibria will

only exist if the valuation of the uninformed player is not too large.

A separating equilibrium in which players with a low valuation choose the low, players with a high

valuation the high effort in the first period can also occur. We illustrate in an example that this will

happen if the valuation of the uninformed player is large.

For the contest designer who wants to maximize research activity, this implies that a two-stage contest is

more attractive if the valuation of the established and well-known player is large; interpreted differently,

this is the case if he is a very strong player. Separation will then both lead to higher expected effort

levels and to a more efficient allocation of the rent than in the one-stage setting. To the contrary, if

the uninformed player is not too strong, the one-stage contest will be preferable, as the possibility of

pooling on the low effort makes the two-stage setting less attractive.

The general conditions under which strictly monotonic equilibria exist remain to be derived. This turns

out to be sophisticated as the fairly general model assumptions allow for many possible constellations.

The problem could possibly be solved by putting more structure on the contest success probabilities

and the players’ valuations. Furthermore, five equilibrium classes were not analyzed at all, chiefly

because they do not exhibit intuitively appealing properties and might even overstrain the individuals’s

rationality.

Future research could examine the contest designer’s problem more rigorously and derive general con-

ditions under which one or the other time structure is preferable. Also, a look at the reverse case in

which the privately informed player has the a priori advantage might generate additional insights.
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B THE DEVIATION FUNCTION

A Proof of Proposition 2.4

Denote the mixed strategy of player 2 by σ2 = (r, 1 − r), where r ∈ [0, 1] is the probability of playing

the low effort. The type of player 1 which is then indifferent between playing e1 = eH and e1 = eL is

implicitly determined by

[(1 − r)pHH + rpHL]V − eH = [(1 − r)pLH + rpLL]V − eL. (A.1)

Solving for V yields the indifferent type

Ṽ (r) =
∆e

r∆p•L + (1 − r)∆p•H
= CV (r) (A.2)

with Ṽ (r) decreasing in r. Being faced with the mixed strategy σ2 = (r, 1 − r), player 1 plays e1 = eL

if his type is below Ṽ (r) and e1 = eH otherwise. Player 2 therefore faces an opponent exerting the

low effort with probability µ1 =
eV (r)−α

β−α
and a player exerting a high effort with probability 1 − µ1.

An equilibrium in mixed strategies requires that player 2 is indifferent between playing his two pure

strategies. This is the case if

[µ1(Ṽ )(1−pLH)+(1−µ1(Ṽ ))(1−pHH)]W−eH = [µ1(Ṽ )(1−pLL)+(1−µ1(Ṽ ))(1−pHL)]W−eL. (A.3)

Solving (A.3) for Ṽ yields

Ṽ (W ) =
(α− β)∆e+W (β∆pH• − α∆pL•)

W (∆pH• − ∆pL•)
. (A.4)

Finally, equating (A.2) with (A.4) and solving for r yields the desired probability function r(W ):

r(W ) =
pL•

∆pL• − ∆pH•
+

(∆e)2W

∆e(α− β) +W (β∆pH• − α∆pL•)
. (A.5)

Its derivative with respect to W can be calculated as

∂r

∂W
=

(∆e)2(α− β)

[∆e(α− β) +W (β∆pH• − α∆pL•)]2
< 0. (A.6)

B The Deviation Function

Given the equilibrium strategies of player 2, the effect of switching from e11 = eL to eH for player 1 of

type V can be decomposed into a first and a second period effect. The first period effect, denoted by

f(V ), is given by

f(V ) = [r∆p•L + (1 − r)∆p•H ]V − ∆e. (B.1)

The function f(V ) is obviously continuous and linearly increasing in V .
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B THE DEVIATION FUNCTION

The second period effect, denoted by g(V ), is more complicated. It depends on the induced change of

player 2’s second period action from s(eL) to s(eH) and on the corresponding optimal adjustment of

player 1’s second period effort e12.

As a preliminary result, we show which types V will actually change their second period effort in reac-

tion to the changed probability s. After having observed eL in the first period, player 2 plays the low

effort with probability s(eL) in the second period and therefore makes type V = CV (s(eL)) indifferent

between the two effort levels. After the change, player 2 makes the type V = CV (s(eH)) indifferent.

Player 1 therefore changes his second period effort if his valuation lies in between the two critical values.

It is, however, not yet clear which of the two critical values is larger. Assume first that s(eL) = s(eH);

the strategy of player 2 in the second round does not vary with what he observes. We now have

CV (s(eL)) = CV (s(eH)) and can conclude that no type will change his second period action. More

generally, in this case there will be no second period effect whatsoever and the effect of deviating from

low to high effort in the first period boils down to the first period effect f(V ).25 If s(eL) < s(eH), we find

that CV (s(eL)) > CV (s(eH)). In this case, types V ∈ [CV (s(eH)), CV (s(eL))] will optimally adjust

their second period effort from low to high whenever they deviate from low to high in the first period.

All other types will stick to their second period effort. Specifically, no type will invest less in the second

period than before. Finally, if s(eL) > s(eH), the reverse holds. Types V ∈ [CV (s(eL)), CV (s(eH))]

will change their second period effort from high to low while no other types will react.

We can now examine properties of g(V ). First, it is continuous. This is only nontrivial at the discussed

critical values CV (s(eL)) and CV (s(eH)) at which the first period deviation is accompanied by a discrete

second period behavior change. However, behavior changes occur at types who are indifferent between

the two actions. Therefore, limV ′→V g(V ′) = g(V ) everywhere.

Second, the sign of g(V ) can be determined. If s(eL) < s(eH), we find that g(V ) > 0, ∀ V ∈ [α, β]. This

holds since the change from low to high effort induces player 2 to play the low effort with greater probabil-

ity in the second period, which is unambiguously positive for player 1, independent on whether he adjusts

his second period effort or not.26 If s(eL) > s(eH), then g(V ) < 0, ∀ V ∈ [α, β]. This is obvious for

types V who do not change their second period effort: they unambiguously loose from being faced with

high effort with higher probability. To see why g(V ) is negative for types V ∈ [CV (s(eL)), CV (s(eH))]

as well, consider their second period payoff difference

g(V ) = [s(eH)pLL + (1 − s(eH))pLH ]V − eL − [s(eL)pHL + (1 − s(eL))pHH ]V + eH , (B.2)

which takes into account their effort adjustment from high to low. (B.2) can easily be shown to be

25Formally, this means that g(V ) = 0, ∀ V ∈ [α, β] if s(eL) = s(eH).
26To see why this is true, assume that the respective player does not change his second period effort. The second period

effect is then obviously positive since any player’s payoff is increased if his opponent puts less effort into the contest. The
possibility of adjusting second period effort will only be used if it further increases player 1’s payoff.
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negative if

V >
∆e

s(eL)∆p•L + (1 − s(eH))∆p•H
. (B.3)

The RHS of inequality (B.3) is smaller than CV (s(eL)) such that it is always fulfilled for the relevant

types.

Finally, the slope of g(V ) is very important. To derive it, it is necessary to explicitly write g(V ) in

the spirit of (B.2), but for all six possible cases. A first case discrimination results from the possi-

bility that either s(eL) > s(eH) or s(eL) < s(eH).27 For each of them, the interval [α, β] has to be

divided into three subintervals bounded by the critical values for behavior change. It immediately fol-

lows that g(V ) is linear in V on each of these subintervals. Making use of the ‘asymmetry condition’

pHL − pLL > pHH − pLH one can also show that g(V ) is strictly increasing in V if s(eL) < s(eH) and

strictly decreasing if s(eL) > s(eH). However, g(V ) is not linear throughout and therefore not differ-

entiable. The slope of g(V ) changes at the values CV (s(eL)) and CV (s(eH)). Furthermore, g(V ) is

generally neither concave nor convex in V .

We can now state properties of h(V ) = f(V ) + g(V ). First, it is continuous as it is the sum of two

continuous functions. Second, since g(V ) is not generally differentiable at the two critical values, h(V )

is not either.28 Third, it is linear on each of the three subintervals defined by the critical values, as both

f(V ) and g(V ) are linear there. Fourth, it is strictly increasing in V if s(eL) ≤ s(eH) as f is strictly

increasing and g is nondecreasing in that case. Unfortunately, no such monotonicity condition can be

stated if s(eL) > s(eH). The function h(V ) might be increasing on one and decreasing on another

subinterval of [α, β], depending on whether the positive slope of f or the negative slope of g dominates

on this subinterval.

C Pooling on Low

In the stated equilibrium candidate, player 2 will choose e21 = eL since we assumed W ≤ CV (0) through-

out the paper. No information about V will be revealed in the first stage and the second stage of the

game will take place as in the one-stage game with asymmetric information. We examine separately the

cases of W in Ω1, Ω2 and Ω3.

Assume W ∈ Ω1. Player 2 will then choose eL in the second period (s(eL) = 1), while the choice of

player 1 will depend on his valuation of the prize: e12(V ) = eL for V < CV (1) and e12(V ) = eH for

V > CV (1). The concept of PBE requires off-equilibrium path beliefs, i.e. player 2’s beliefs about V

after observing e11 = eH . We assume that this belief will induce him to choose the high effort in the

27Note again that g(V ) = 0 if s(eL) = s(eH).
28In the special case of s(eL) = s(eH), where h(V ) = f(V ) as mentioned above, h(V ) is of course differentiable.
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second period (s(eH) = 0), without specifying it explicitly.29 This implies that s(eL) ≤ s(eH) is not

fulfilled and we can therefore not argue that the deviation function h(V ) will be monotone.

However, deviation from the described case is obviously not profitable for V ∈ [α,CV (1)]. Besides the

negative payoff effect in the second period, the first period effect is negative as well for such types.30

The same holds for types V ∈ [CV (1), CV (0)]:

π = [pLL + pHL]V − eL − eH > [pHL + pLH ]V − eH − eL = π̃. (C.1)

The LHS of inequality (C.1) is the pooling payoff of such types, the RHS equals the payoff in case of

deviation. The optimal action in case of deviation is e12 = eL, the best response to a high effort of the

opponent. The inequality follows from the fact that pLL > pLH . With an analogous argument we find

for types V ∈ [CV (0), β]:

π = [pLL + pHL]V − eL − eH > [pHL + pHH ]V − eH − eH = π̃. (C.2)

The RHS of inequality (C.2) again equals the payoff in case of deviation, in which e12 = eH is optimal.

The inequality follows from the fact that eH > eL. The postulated pooling case is therefore an equilib-

rium if W ∈ Ω1.

Assume W ∈ Ω3. Player 2 will play σ2
2(eL) = (s(eL), 1 − s(eL)) = (r(W ), 1 − r(W )), inducing the

critical value CV (r(W )) such that smaller types will play e12 = eL and vice versa. We again check

profitability of deviation for all possible types V . The expected payoff in the pooling case for a type

V ∈ [α,CV (r(W ))] is

π = [pLL + rpLL + (1 − r)pLH ]V − eL − eL. (C.3)

The deviation payoff is given by

π̃ = [pHL + pLH ]V − eH − eL (C.4)

since types V ≤ CV (r(W )) ≤ CV (0) respond with a low second period effort in case of deviation.

Expression (C.4) is smaller than (C.3) if

V <
∆e

∆p•L − r∆p•H
. (C.5)

Therefore, if CV (r(W )) is smaller than the RHS of (C.5), none of the examined types will have an

29Player 2 has to believe that the probability of facing a high effort in the second period is large enough, to make the
high effort an optimal choice for himself as well. First, this seems to be a reasonable belief structure as it simply assumes
that player 2 beliefs the strength of his opponent in the contest to be rather high if he observes high effort. Second, it is
most likely to support the equilibrium as deviation is followed by a harsh punishment.

30This follows directly from the definition of CV (1).
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incentive to deviate. Simplification of this condition gives

r(W ) > 1 −
CV (1)

CV (0)
. (C.6)

Deviation may also not be profitable for types V ∈ [CV (r(W )), β]. Their expected pooling payoff is

π = [pLL + rpHL + (1 − r)pHH ]V − eL − eH . (C.7)

When deviating, the payoff becomes

π̃ = [pHL + pLH ]V − eH − eL (C.8)

for types V ∈ [CV (r(W )), CV (0)] and

π̃ = [pHL + pHH ]V − eL − eH (C.9)

for types V ∈ [CV (0), β]. It is straightforward to show that (C.8) is smaller than (C.7) for all values of

V ∈ [CV (r(W )), CV (0)]. (C.9) however is smaller than (C.7) only if V (1 − r) < ∆e/∆p•L. Deviation

is therefore not profitable for any V ∈ [CV (0), β] if it is not profitable for the highest type V = β. This

yields the condition

r(W ) > 1 −
CV (1)

β
. (C.10)

But (C.6) is always fulfilled if (C.10) is fulfilled and only the latter is therefore binding. It states that

the probability that player 2 chooses the low effort in the second period has to be high enough to make

pooling an equilibrium. If it is not, at least type V = β will be harmed more by playing cautiously in

the first period than he gains later. The probability r(W ) decreases in W , so condition (C.10) is only

fulfilled if W is small enough. Inversion of r(W ) yields the critical value WCV ∈ Ω3. The function r

– defined on Ω3 – is strictly decreasing and therefore invertible. It takes values between zero and one.

Since CV (1) < β, we have r−1(1 − (CV (1)/β)) ∈ Ω3.

Assume W ∈ Ω2. Player 2 will then choose eH in the second period (s(eL) = 0) and the property

s(eL) ≤ s(eH) holds identically. The deviation function h(V ) is therefore strictly increasing as there is

no second period effect of deviation. The first period effect f(V ) of deviation from eL to eH , however, is

strictly positive for all types V > CV (1), such that the examined case is not an equilibrium if W ∈ Ω2.

Note again that the underlying belief structure was the one most likely to support the equilibrium.

D Pooling on High

In the stated equilibrium candidate, player 2 will choose e21 = eH since we assumed W ≥ CV (1) through-

out the paper. As no information about V will be revealed, we again examine the cases of W in Ω1,Ω2

and Ω3 separately, using the off-equilibrium path beliefs that are most favorable for the existence of
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the equilibrium: s(eL) = 0. This immediately implies that s(eL) ≤ s(eH) and h(V ) is therefore strictly

increasing. Therefore, the type of player 1 that has the greatest incentive to deviate in the first period

is α. Note that in the second period this type will always play the low effort, both under pooling and

in case of deviation.

Assume W ∈ Ω1 and therefore e22 = eL. Deriving the difference between the resulting payoffs under

pooling and deviation, one can easily show that deviation does not pay off if α > 1
2CV (0).

Assume W ∈ Ω3. Player 2 will play σ2
2(eH) = (s(eH), 1 − s(eH)) = (r(W ), 1 − r(W )), inducing the

critical value CV (r(W )). Again, type α will choose e12 = eL both under pooling and in case of deviation.

The condition for not wanting to deviate becomes

α >
1

1 + r
CV (0), (D.1)

Since r ∈ [0, 1], condition (D.1) requires α to be larger than half of CV (0) for r = 1 and is even more

restrictive for smaller values of r. Therefore, the restriction α > 1
2CV (0) that was derived for the case

of W ∈ Ω1 and is stated in Theorem 3.6 is always fulfilled in equilibrium if W ∈ Ω3. The condition for

existence follows from rearrangement of (D.1):

r(W ) >
CV (0)

α
− 1. (D.2)

Inversion of r(W ) gives the critical value WCV in the proposition. Again, WCV ∈ Ω3 since 1
2 CV (0) <

α < CV (0) and the argument of r−1 therefore lies in the interval [0, 1].

Finally assume that W ∈ Ω2 and therefore s(eL) = 0. As there is no second period effect of deviation,

the type V = α will always want to deviate to e11 = eL such that pooling on eH is not an equilibrium.

E Strictly Monotonic Equilibria

Given any equilibrium candidate with Ṽ1 ∈ ]α, β[, the first period action of player 2 can easily be de-

rived. The uncertainty about his opponent’s type makes him face a ‘mixed strategy’, with probability

µ = (β − Ṽ1)/(β − α) on the high effort. This induces the critical value CV (µ) such that he prefers eL

over eH if W < CV (µ) and vice versa. His second period beliefs then follow from Bayes Law. After hav-

ing observed e11 = eL, he believes player 1’s type to be uniformly distributed on the support [α, Ṽ1]. The

support of his uniform belief if e11 = eH is [Ṽ1, β]. His optimal second period action then depends on the

location of Ṽ1. It is convenient to discriminate between three cases: Ṽ1 < CV (1), CV (1) ≤ Ṽ1 ≤ CV (0)

and CV (0) < Ṽ1.

First, consider Ṽ1 < CV (1). Player 2 will choose s(eL) = 1 as he knows to be confronted with a low

effort in the second period after having observed e11 = eL. This suffices to show that no candidate

characterized by such Ṽ1 can be an equilibrium. Consider any type V ∈ [Ṽ1, CV (1)]. The first period
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payoff effect of switching from eH to eL will be positive for such a type, by definition of CV (1). The

second period effect cannot be negative as s(eH) ≤ s(eL) = 1 will necessarily hold. He therefore has an

incentive to deviate.

Consider CV (0) < Ṽ1. We immediately obtain s(eH) = 0. Player 2’s optimal reaction to having observed

e11 = eL is more complicated. In that case, he cannot predict with certainty his opponent’s best response

to his own second period action. This gives rise to a consideration exactly in the spirit of Propositions

2.3 and 2.4. It is straightforward to show that he will play as follows:

s(eL) =





1 : W ≤ CV (κL)

∈ ]0, 1[ : CV (κL) < W < CV (κH)

0 : W ≥ CV (κH)

(E.1)

with κL = (Ṽ1 − CV (1))/(Ṽ1 − α) and κH = (Ṽ1 − CV (0))/(Ṽ1 − α) < κL.

If W is large (W ≥ CV (κH)), there will be no second period effect of deviation from the examined

equilibrium candidate for player 1. It therefore cannot be an equilibrium since any type V ∈ [CV (0), Ṽ1]

would like to deviate to eH in the first period, by definition of CV (0). For low values of W (W ≤

CV (κL)), the described candidates cannot be an equilibrium either. One can show that all types

V > Ṽ1 will have an incentive to deviate to e11 = eL, a result that is independent of the effort level of

player 2 in the first period. To derive it, simply compare payoffs in the respective equilibrium candidates

and in case of deviation, as has been done several times before.

The remaining range of valuations W is CV (κL) < W < CV (κH). Only some general results are

available for this case. First, if additionally W > CV (µ), then an equilibrium exists if the valuation

W is such that it leads player 2 to choose s(eL) = CV (1)
CV (0) −

CV (1)

Ṽ1
. This result is found by deriving the

conditions under which no type V has an incentive to deviate. It turns out that all types V > Ṽ1 do

not have this incentive if for them

V ≥
∆e

∆p•H − s(eL)∆p•L
, (E.2)

while no type V < Ṽ1 has this incentive if

V ≤
∆e

∆p•H − s(eL)∆p•L
. (E.3)

(E.2) and (E.3) can jointly be fulfilled only if their RHS equals Ṽ1. Rearrangement of this conditions

yields the above result. It gives a unique value Ṽ1 for each valuation W in the admissible interval.

If, on the other hand, W < CV (µ), the valuation W must be such that player 2 plays s(eL) ≥ 1− CV (1)
CV (0) ,

a condition that is derived analogously.

Finally consider the candidates CV (1) ≤ Ṽ1 ≤ CV (0). Both optimal second period strategies s(eL) and
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s(eH) are sophisticated in that case. With the usual considerations we obtain

s(eL) =





1 : W ≤ CV (ψ)

∈ [0, 1[ : W > CV (ψ)

(E.4)

with ψ = (Ṽ1 − CV (1))/(Ṽ1 − α) and

s(eH) =





∈ ]0, 1] : W ≤ CV (θ)

0 : W > CV (θ)

(E.5)

with θ = (β−CV (0))/(β− Ṽ1). Unfortunately, there is no clear relation between ψ and θ. Furthermore,

no unambiguous relation exists to the value µ, which is relevant for first period behavior of player 2.

This opens up a large amount of different cases that would have to be considered.

It is, however, possible to show that if W > CV (µ) and therefore e21 = eH , there can only be an

equilibrium of the discussed type if s(eL) < s(eH). Otherwise, types V ∈ [Ṽ1, CV (0)] will deviate. From

(E.5), a necessary condition for existence is therefore W ≤ CV (θ). We will use this condition in example

2 to show that the respective candidates are no equilibria.

If W < CV (µ) and therefore e21 = eH , the necessary property is s(eL) > s(eH).

F Example 1

This section proves that there does not exist a strictly monotonic equilibrium in the example in section

4.1. We know from Appendix E that equilibria with Ṽ1 < CV (1) do not exist and that equilibria with

CV (0) < Ṽ1 can only exist if W ∈ [CV (κL), CV (κH)]. Here, we obtain CV (κL) > 132.5 for all relevant

values Ṽ1 > CV (0) such that the (transformed) valuation of player 2 does not fulfill this condition and

only candidates Ṽ1 ∈ [CV (1), CV (0)] remain to be examined.

With slight abuse of notation denote the transformed valuation of player 2 by W = 120 and the

transformed valuation of player 1 by V . First note that we obtain W < CV (µ) for all the remaining

values of Ṽ1 and therefore e21 = eL (see first paragraph of Appendix E). It can also be shown easily

that W < CV (ψ) always holds. Player 2’s optimal choice in response to an observed low effort in

the first period is therefore s(eL) = 1 (see (E.4)). The optimal reaction to an observed high effort is

more involved. Only for Ṽ1 > 146.67 do we obtain W > CV (θ) and therefore s(eH) = 0 (see (E.5)).

Otherwise, the mixing probability s(eH) can be derived by exploiting the usual ‘equalizing property’,

i.e. be choosing s(eH) as to make player 2 indifferent between his two pure actions, given the beliefs

that are derived by Bayes Law. We obtain s(eH) = (33 − 0.225Ṽ1)/(4 + 0.075Ṽ1) which induces the

critical value CV (s(eH)) = 40 + 0.75Ṽ1 for player 1. Note that CV (s(eH)) > Ṽ1 if Ṽ1 < 160, which is

fulfilled. Therefore, there are always types Ṽ1 < V < CV (s(eH)) who, in the equilibrium candidates

under examination, play e11 = eH and e12 = eL. In case of deviation (e11 = eL) they would choose e12 = eH
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as optimal response to s(eL) = 1. For them, deviation pays off if

π = [0.9 + 0.3s(eH)]V − 75 < 1.2V − 75 = π̃, (F.1)

which is fulfilled if s(eH) < 1. This in turn is fulfilled for all relevant values of Ṽ1, as we have seen above.

None of the examined values Ṽ1 therefore constitutes an equilibrium.
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