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ABSTRACT

This paper investigates the term structure implications of a simple structural model with non-
separable preferences and habit formation. The distinguishing features of the model are that the
drift of equilibrium spot interest rates is non-linear, interest rates depend on lagged values of
monetary and consumption shocks, and the price of risk is not a constant multiple of interest rates
volatility. We solve the model in closed-form and investigate its empirical properties. We find that
habit persistence can help reproduce (i) the non-linearity of the spot rate process, (ii) the empirical
Campbell and Shiller (1991) linear projection coefficients and the documented deviations from
the expectations hypothesis, (iii) the extent of the persistence of conditional volatility of interest
rates, (iv) the lead/lag relationship between interest rates and monetary aggregates, and (v) the
dynamics of the inflation risk premium. We also describe the limitations of this particular form of
habit persistence. Although the model improves some traditional models with respect to several
dimensions, its ability to reproduce, at the same time, the equity risk premium and the conditional
second moments of interest rates is still limited.
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In this paper, we investigate a structural model that links the fundamentals of a monetary
economy with habit formation and the dynamics of the yield curve. First, we provide testable
restrictions on how the dynamics of the nominal yield curve depend on both the habit stock and
monetary factors. Then, we use data on nominal bonds to study whether habit persistence can help
explain some of the empirical regularities highlighted by the existing term structure literature.

Both the economic and the psychological literature stress the importance of interpersonal effects and
time non-separabilities in consumption choices. Duesenberry (1949) and Veblen (1899) argue that
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consumers imitate each others’ purchases to conform to the expectations of the people in their

reference group. Thereafter, a large literature has used preferences assuming some of these features

to address a variety of questions ranging from criminal behavior, business cycle, rational addiction,

and asset pricing. Both the economic and the psychological literature stress the importance of

interpersonal effects and time non-separabilities in consumption choices. Duesenberry (1949) and

Veblen (1899) argue that consumers imitate each others’ purchases to conform to the expectations

of the people in their reference group. Thereafter, a large literature have used preferences assuming

some of these features to address a variety of questions ranging from criminal behavior, business

cycle, rational addiction, and asset pricing. With regards to the latter, preferences with habit

persistence have been found useful to explain some asset pricing empirical regularities. Constantinides

(1990), Stambaugh and Kandel (1991), Abel (1990), Campbell and Cochrane (1999) argue that habit

formation can help to explain the large realized equity excess returns and that the assumption of

time-separability plays an important role in the difficulty of traditional asset pricing models to

reproduce the empirical regularities of equity returns. However, very little is known with regards

to the implications of these models in terms of the cross-sectional and time-series properties of the

term structure of interest rates and whether they can help to explain some of the empirical features

found in the data.

Campbell and Cochrane (1999) argue that habit formation can help to explain the large realized

equity excess returns and that the assumption of time-separability plays an important role in the

difficulty of traditional asset pricing models to reproduce the empirical regularities of equity returns.

However, very little is known with regards to the implications of these models in terms of the cross-

sectional and time-series properties of the term structure of interest rates and whether they can help

to explain some of the following empirical features found in the data.

Duffee (2002) finds that across the maturity spectrum, the unconditional mean excess return

to bonds is small relative to the variation in conditional mean excess returns and the conditional

volatility of yields is very persistent. Moreover, linear projections of bond yield changes on the slope

of the yield curve give large and negative Campbell-Shiller slope coefficients. This result is very

robust across different time periods and statistical methods. Dai and Singleton (2002) find that "key

to matching the empirical findings in Fama and Bliss (1987) and Campbell and Shiller (1991) are

parametrization of the market price of risk that let the risk factors affect the market price of risk

directly, and not only through their factor volatilities". Cheridito, Filipovic, and Kimmel (2003)

investigate a class of flexible arbitrage-free specifications of the market price of risk.

Second, there is mounting evidence against the Fisher neutrality assumption. Benninga and

Protopapadakis (1983), Fama (1990), Evans (1998) and Boudoukh (1993) find that the inflation rate

is negatively related to the real interest rate in terms of both realized changes and expected values.

Fama (1976), Fama (1990), Fama and Gibbons (1982), and Marshall (1992) find that real returns

on nominal bonds decline when inflation increases. Moreover, Chen, Roll, and Ross (1986) find that

assets that are positively correlated with inflation earn a lower risk premium.1

1Fama (1981) finds evidence of inflation non-neutrality also in the stock market as stock real returns are negatively
correlated with inflation. Moreover, in the medium and long term, the real gross domestic product is negatively affected
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Third, both real and nominal interest rates appear to be correlated with past (detrended) levels

of output and money (Fiorito and Kollintzas (1994), Chari, Christiano, and Eichenbaum (1995), King

and Watson (1996)). When the role of money is assumed away, it is hard to explain the correlation

between asset returns and money growth. Marshall (1992) shows, however, that when money is

introduced into the model to facilitate transactions, the negative correlation between inflation and

stock returns and the positive correlation between money growth and asset returns can become an

equilibrium property. This article follows this path and investigates an economy in which money

facilitates consumption transactions.

Fourth, Conley, Hansen, Luttmer, and Scheinkman (1997) argue that "although linear specifi-

cations are convenient for deriving and estimating explicit models of the term structure of interest

rates, from the viewpoint of data description it is important to specify the short term rate drift and

possibly the diffusion in more flexible ways."2 They estimate the stationary density of the fed funds

rate and find evidence of non-linearity in the short-term rate using semi-parametric methods. Similar

results are also discussed by Ait-Sahalia (1996) and Ait-Sahalia (1999) using different econometric

methods.

In this paper, we use these insights to develop and estimate a simple structural model in which

some of these features arise in equilibrium. We explore a tractable monetary version of an exchange

economy with external habit formation in which the term structure of interest rates has the following

properties in equilibrium. First, the market price of risk is not a constant multiple of interest rates

volatility. The term premium is state dependent so that the model can accommodate deviations

from the expectations hypothesis. Second, the inflation risk premium is positive and time varying,

so that the model can allow for deviations from the Fisher hypothesis. Third, the model induces a

lead-lag relationship between both nominal interest rates and money, and between nominal interest

rates and consumption. Fourth, yield to maturities are not affine in the state variables. In particular,

the spot interest rate has a non-linear drift that captures some of the empirical properties described

by Ait-Sahalia (1996) and Ait-Sahalia (1999) and Conley, Hansen, Luttmer, and Scheinkman (1997).

Our model builds on the work by Campbell and Cochrane (1999) who investigate an economy

with non-separable preferences and constant interest rates in which the representative agent’s current

utility depends not only on his own current consumption, but also on the history of aggregate

consumption.3 This generates a wedge between relative risk aversion and the intertemporal marginal

rate of substitution. Negative endowment shocks, pushing current consumption toward the habit

stock, make investors more risk averse. Therefore, during recessions, asset prices must drop more

than in a time-separable economy in order to reflect the higher state-dependent risk premium. An

important advantage of the extrinsic model specification is the avoidance of the implied excess interest

rate volatility and negative Arrow-Debreu state price density, which is sometimes present in internal

habit models (see Chapman (1998) for a discussion). We extend Campbell and Cochrane (1999)

by an increase in inflation (Fama and Gibbons (1982), Boudoukh (1993), Harvey (1988)).
2Conley, Hansen, Luttmer, and Scheinkman (1997), page 526.
3 In an earlier working paper draft of the published article, Campbell and Cochrane (1998) discuss the implications

of an economy with stochastic interest rates.
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and Menzly, Santos, and Veronesi (2004) in two important ways. First, we allow interest rates to

be stochastic. Second, we consider a monetary economy that supports positive monetary holdings

in equilibrium. This has some important implications. The Fisher relationship does not hold, so

that assets that are positively correlated with inflation earn lower returns, and the documented link

between money growth and nominal interest rates is an equilibrium feature of the model. Moreover,

since preferences are non-separable, the model can account for a persistent correlation between money

growth and interest rates. The monetary aspect of the economy requires, however, to solve for the

inflation rate as an endogenous stochastic process. This is a non-trivial step that links inflation and

nominal interest rates to the state variables governing also the real side of the economy. We derive

closed-form solutions for both the real and nominal term structure of interest rates, the inflation

risk premium and conditional yield volatilities. We find that the model-implied equilibrium process

of interest rates is non-linear. We subsequently estimate the structural model using data on U.S.

nominal Treasury bonds from January 1960 to December 2000. We address the following questions.

First, to what extent does a model with habit persistence link term structure dynamics with eco-

nomic fundamentals for reasonable values of the structural parameters? We find, based on asymptotic

GMM tests, that the joint moment restrictions of the model on both bond yields and macroeconomic

time-series, such as inflation and monetary holdings, are not rejected. Moreover, when we investigate

the cross-sectional implications of the model, we find that the implied median absolute errors for

the one year yield to maturity is 14.6 basis points and 13.1 basis points for the five year bond. The

model is also quite accurate in fitting, at the same time, the conditional volatility of yields. We run

a regression of squares in yield changes onto the model-implied conditional second moment of yield

changes. We cannot reject the null hypothesis that the intercept is zero at any maturity and that the

slope coefficient is one for maturities between 3 months and 3 years. The null hypothesis is, however,

rejected for maturities above or equal to five years.

Second, does habit persistence help explain the Campbell-Shiller expectations puzzle? We com-

pute the model-implied slope coefficients of a regression of changes in yields onto the slope of the

yield curve. These coefficients, known as the Campbell and Shiller (1991) coefficients, are considered

important statistics describing the conditional second moment properties of a term structure model

(see Dai and Singleton (2000) and Duffee (2002)). We find that the model-implied Campbell-Shiller

slope coefficients are negative and increasing (in absolute value) with the horizon. The magnitude of

these coefficients matches those found in the expectations hypothesis literature. At two and five-year

horizons, the empirical Campbell-Shiller slope coefficients are −0.95 and −1.72, while the model-
implied coefficients are −0.339 and −1.274. We find that the time variation in the habit stock plays
a crucial role in explaining the time variation in the forward premium.

Third, how large is the inflation risk premium and is it time varying? Increasing empirical

evidence shows that nominal interest rates are not consistent with the Fisher hypothesis, which

assumes that nominal interest rates are equal to real interest rates plus the expected inflation. For

instance, the spread between yields of nominal bonds and index-linked bonds is, on average, larger

than realized inflation and its dynamics are only partially explained by changes in expected inflation.

In our model the spread between nominal and real interest rates includes a state-dependent inflation
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risk premium. We find that the inflation risk premium accounts for about one fourth of the spread

between nominal and real interest rates. The inflation risk premium is upward-sloping and time-

varying. The average inflation risk premium is 44 basis points for an eight year horizon and ranges

between 20 and 90 basis points.

Fourth, to what extent does the time variation in the inflation risk premium explain the rejection

of the expectations hypothesis? We regress the forward premium onto the inflation risk premium and

find that a large component of the time variation of the forward premium is due to the time variation

in the inflation risk premium. The results hold for any horizon between 6 months and 10 years.

Fifth, we find that the model implies a nonlinear spot interest rate process which is similar to the

one estimated using both the semi-parametric method of Conley, Hansen, Luttmer, and Scheinkman

(1997) and the nonparametric method of Ait-Sahalia (1999). Moreover, our results show that habit

persistence help explain the hump-shaped response of consumption to monetary shocks and the lead-

lag correlation between real interest rates and output (see also Fuhrer (2000) and Boldrin, Christiano,

and Fisher (2001) for similar results based on calibration methods).

Related Literature. The model in this paper links two separate streams of the literature: monetary

models of the term structure of interest rates and business cycle models with habit formation. Impor-

tant contributions to the monetary literature include Bakshi and Chen (1996a), and Marshall (1992).

Marshall (1992) shows that when money is introduced in the model to facilitate consumption transac-

tions, it is possible to reproduce the negative correlation between inflation and stock returns. Bakshi

and Chen (1996a) and Buraschi and Jiltsov (2005) derive implications for the term structure of in-

terest rates endogenizing inflation in a money-in-the-utility-function model. These models, however,

assume time-separable preferences. We explore a setting in which this assumption is relaxed. Sun-

daresan (1989), Constantinides (1990), Abel (1990) and Detemple and Zapatero (1991) were among

the first to relax the time-separability assumption and to study preferences with habit formation.

Constantinides (1990) discusses a rational expectations model in which the habit is “intrinsic”, i.e.

rationally anticipated by the investor when making optimal consumption and investment decisions.

He shows that habit persistence induces a more realistic average equity risk premium and it helps

to reduce the implied risk-free rate (risk-free rate puzzle).4 In his model, habit persistence allows

stock prices to be rationally volatile even if the consumption process is smooth. Menzly, Santos, and

Veronesi (2004) investigate the cross-sectional expected equity returns implications of a Campbell

and Cochrane (1999) economy and propose a structural explanation for the observed predictability in

stock returns. Other contributions in this literature include Dunn and Singleton (1986), Ferson and

Constantinides (1991), Bakshi and Chen (1996b), Daniel and Marshall (1997), Dai (2002), Wachter

(2005), Carroll, Overland, and Weil (2000), Heien and Duhram (1991).

The empirical evidence on habit formation is mixed. Heaton (1995) finds evidence in support

4Mehra and Prescott (1985), Hansen and Jagannathan (1991) show that the traditional consumption-based CAPM
is not consistent with the observed equity premium for reasonable levels of the risk aversion coefficient. Additional
studies show that, with respect to the arrival of new information, the time series of aggregate consumption is too
smooth, the real interest rate is too low and the volatility of stock prices too high in order to be reconciled with models
with traditional complete-markets time-separable preferences.
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of habit persistence if consumption is allowed to be locally substitutable. He finds that the stochas-

tic discount factor of a model with long-term habit persistence is consistent with the Hansen and

Jagannathan (1991) bounds and can match the autocorrelation pattern of the monthly returns of

Treasury Bills and stocks. The model, however, finds it difficult to fit both the volatility of stock

returns and the equity premium at the same time. Ferson and Constantinides (1991) show, using

aggregate consumption data, evidence of habit formation in stock returns using Euler restrictions at

monthly, quarterly, and annual frequencies.

Some new direct studies of preferences with habit formation are based on longitudinal consump-

tion data. Dynan (2000) tests and rejects habit formation in consumption using annual household

food consumption (PSID) data. Ravina (2004) uses a data set consisting of individual specific U.S.

credit card accounts and finds evidence of habit persistence in household consumption once individual

heterogeneity and credit constraints are allowed.

Some important questions, however, are raised by Lettau and Uhlig (2000) who argue, by sim-

ulating a real business cycle model with production, that the consumption reaction to technology

shocks is too small when utility includes a consumption habit and that the labor input can even

become countercyclical. Chapman (1998) highlights some problems of early specifications of models

with habit persistence. He shows an example of an endowment process that matches the uncondi-

tional moments of consumption growth and asset returns (i.e. resolves the equity premium puzzle)

but implies negative marginal utility with probability one in the case of intrinsic habit models. He

describes the conditions that need to be satisfied to ensure positive Arrow-Debreu state prices.

The paper is also related to Bekaert, Engstrom, and Grenadier (2004) who explore the role

of preference shocks in a multifactor affine model to explain empirical regularities of both equity

returns and interest rates and to Wachter (2005) who studies the link between short-term real rates

and lagged average real consumption growth rates. She shows that habit persistence helps explain

this relation. While she focuses on a real economy, this article provides closed-form solutions for the

nominal term structure in a (continuous-time) monetary economy. This result is useful as most of

the empirical evidence and available data are on nominal bonds.

Our paper proceeds as follows: Section 1 presents the model. Section 2 and 3 discuss its asset

pricing implications. Section 4 describes the data-set. Section 5 presents the econometric methodol-

ogy. Section 6 summarizes the empirical results. Section 7 discusses the non-linear properties of the

model-implied spot interest rate. Section 8 tests the model’s implications for the lead-lag relation-

ship between interest rates, consumption and money. Section 9 shows the extent to which the model

can explain the Campbell-Shiller expectations puzzle. Section 10 investigates the properties of the

model-implied inflation risk premium and compares it to the empirical evidence. Section 11 studies

the extent of the trade-off between explaining the equity premium and the dynamics of interest rates.

Section 12 concludes. All proofs are in the Appendix.
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I. The Model

We study a representative agent endowment economy with habit formation. Real monetary holdings

are assumed to provide a transaction service by reducing the total amount of resources Xt needed

to achieve a given level of net consumption Ct. Thus, in this economy, money is held because

of its positive marginal productivity. Clearly, one may desire to work with a simpler real model,

abstracting from the nominal side of the economy. However, a real model would not give implications

for nominal interest rates. Since most of the available empirical evidence is on nominal Treasury

bonds, this would be a shortcoming. Alternatively, one could specify an exogenous inflation process

and impose inflation neutrality. The empirical literature, however, finds strong evidence of violations

of the Fisher hypothesis (see Buraschi and Jiltsov (2005)). Finally, a vast monetary literature finds

a correlation between lagged real monetary shocks and nominal interest rates. Thus, a monetary

framework is necessary to take into account the structural interaction between the monetary and

real growth rates of the economy and the different dynamics of the real and nominal yield curves.

Assumption 1

(a) (Preferences). The representative agent is affected by external habit formation Ht. The agent

chooses his consumption plan and nominal monetary holdings to maximize his expected value of utility

u(X,H)

E0

∞Z
0

e−ρt log (Xt −Ht) dt, ρ > 0 [A1]

(b) (Transaction Costs). The consumption of Xt entails a proportional transaction cost 1 − ψ.

Given a level of gross consumption Ct, the level of net consumption is Xt = ψCt, with ψ(Ct,
Mt
Pt
) =

ψ0

³
Mt/Pt
Ct

´γ
, 0 ≤ γ ≤ 1 and ψ0 being a normalization factor such that ψ ≤ 1. Mt and Pt are the

nominal amount of monetary holdings and the general price level respectively.

This assumption implies that money reduces the transaction costs of obtaining the desired level

of consumption. Thus, although money does not yield any interest, money is demanded in equi-

librium.5 A similar approach has been used to investigate monetary equilibria in different settings

by Marshall (1992) and Bekaert (1996). In the case of time-separable preferences, Feenstra (1986)

shows that money-in-the-utility models are equivalent to assuming that money facilitates consump-

tion transactions. Thus, this specification is also related to Bakshi and Chen (1996a) who consider

an economy with money-in-the-utility function.6

The stochastic sequence of habits Ht is regarded as exogenous by each agent and specified im-

plicitly as a function of the past aggregate consumption and monetary holdings. The existence of

5 In the period 1905-2004, money velocity Ct
Mt/Pt

ranged between 1 and 2. Thus, a value of 0 < ψ0 < 2γ guarantees
that the realized value of the transaction cost function is 0 < ψ < 1.

6The previous specification can also be thought as one in which the agent consumes a composite good X = C1−γCγ
∗

with C∗ being a cash-good subject to a cash-in-advance constraint C∗ =M/P .
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transaction costs coupled with habit persistence makes monetary shocks have a persistent effect on

future asset prices and interest rates. The intuition is simple. With monetary transaction costs,

current money shocks affect ψ and therefore current marginal utility and optimal current consump-

tion. Because current consumption, however, affects the habit stock Ht, current money shocks affect

future marginal utilities and therefore future asset prices. This link is very important in order to

reproduce the persistence found in the data.

The equilibrium level of risk aversion is state-dependent: individuals become more risk-averse in

bad times (when consumption is low relative to its past values) than in good times (when consumption

is high relative to its historical levels). Thus, the habit Ht affects the way in which consumption

shocks change the level of risk aversion in a state-dependent fashion. This property allows one to

investigate a (potentially) more flexible term structure model, even when consumption growth is

i.i.d., without giving up tractability. We follow Campbell and Cochrane (1999) and Menzly, Santos,

and Veronesi (2004) and model the habitHt as an external process in terms of the process St = Xt−Ht
Xt

,

the surplus to consumption ratio, or equivalently, its inverse Yt. Clearly, given an equilibrium process

for Xt, there is a one-to-one mapping between Yt and Ht, so that the choice of which one to model

is immaterial. However, since the local curvature of the utility function −Xt
uxx
ux

is equal to 1
St
, it is

more convenient to model Yt directly.

Assumption 2 (Habit Formation)

Let the net surplus-consumption ratio be St =
Xt−Ht
Xt

and let Yt = 1
St
. Yt follows a stochastic mean

reverting process

dYt = ky (θy − Yt) dt− (Yt − λ)σydWt [A2]

initialized at Y0 > λ > 1.

The Yt process is bounded below by λ. Thus, when λ ≥ 1 the specification ensures that the habit
Ht is always positive. This condition also implies that Xt > Ht so that the marginal utility is always

finite and positive. Yt is mean reverting to θy and its stochastic innovations are driven by unexpected

innovations in net consumption Xt. Thus, the dynamics of Yt are a function of both the gross-

consumption endowment shocks and the liquidity shocks affecting their service flow. Assumption

[A2] is originally made in Menzly, Santos, and Veronesi (2004) to study the cross-section of (real)

expected equity returns. This diffusion process is not affine since the local variance is quadratic in

the state variable. It is easy, however, to verify that the drift and diffusion coefficients satisfy global

Lipschitz and growth conditions which imply the existence and uniqueness of a strong solution to

[A2].7 Of course, for the process to be stationary additional restrictions are required. The stationarity

of the process depends on the boundary behavior of Yt. The following Proposition discusses the

7For the statement of Ito’s classical results of strong form existence and uniqueness using global conditions see
Oksendal (1992), Theorem 5.5); for a statement using local Lipschitz see Karatzas and Shreve (1991), Theorem 2.5,
p. 287; for even weaker conditions see the Yamada-Watanabe theorem (Karatzas and Shreve (1991), Theorem 2.13 p.
291).
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conditions under which the process [A2] admits a unique strong solution and a stationary density

density p, such that when the diffusion is initialized with a density p, the diffusion is stationary with

stationary density p (see Hansen and Scheinkman (1995), p. 774 and Karlin and Taylor (1981), p.

221).8 The Proposition also provides the conditions under which the process is square integrable.

Proposition 1

A. (Stationarity). If the process [A2] satisfies condition [C1]

θy > λ > 1, ky > 0, Y0 > λ. [C1]

then Yt does not explode and its unique strong solution is

Y (t) = λ+ ω−1t

∙
(Y0 − λ) + k(θ − λ)

Z t

0
ωsds

¸
ωt = exp{(k + 1

2
σ2y)t+ σy(Wt −W0)}

Moreover, the boundaries of (λ,+∞) are both entrance boundaries and the stationary density p(y) of
Y is Inverse-Gamma:

p(y) = N · (y − λ)a exp

µ
b

y − λ

¶
with N = (−b)−1−a

Γ(−1−a) , a = −2(1 + ky
σ2y
) and b = −2ky(θy−λ)

σ2y
.

B. (Square-integrability). If, in addition to [C1], the following condition is also satisfied, then

E|Y |2 <∞. The process is square-integrable.9

2ky − σ2y > 0 [C2]

The first part of Proposition 1 shows that the inverse of the surplus-consumption ratio Y (t) is a

weighted average of the lagged shocks Ws, for 0 ≤ s ≤ t. The persistence of the shocks depends on

(2k + σ2y). When this is positive, the solution converges. Moreover, it shows that when the process

is properly initialized, mean reversion (i.e. k > 0) is a sufficient condition for the two boundaries

to be entrance boundaries.10 The second part shows that in order for the process to have bounded

unconditional second moments, mean-reversion is not sufficient and a stricter condition is required.

A full characterization of the conditional moments are given in Proposition 3.

The parameter λ is the lower bound of Yt, so that (0, 1λ) is the support of the surplus ratio St.

Campbell and Cochrane (1999) restrict λ to yield a constant real interest rate. Since our focus is

8See Ait-Sahalia (1996), Appendix 1, Conley, Hansen, Luttmer, and Scheinkman (1997), Assumption 1 and 2, p.
532 and 533.

9 In this case the process is also said stationary in a wide sense. For a definition of strict and wide sense stationarity
see Liptser and Shiryaev (2001), page 23.
10For the sake of comparison, it is insightful to observe that in the case of square-root diffusions, Feller (1951) shows

that zero is an entrance boundary for the process if 2kθ > σ2.
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to model the dynamics of the term structure of interest rates, we do not impose such a restriction.

Instead, we require λ ≥ 1 to avoid negative habit formation.
The growth rate of the aggregate consumption endowment process is i.i.d. and follows the process

dCt

Ct
= µcdt+ σcdW

c
t

The assumption of an i.i.d. consumption growth rate process is motivated by a large body of

empirical evidence that argues that deviations from this assumption, which is consistent with the

permanent income hypothesis (PIH), are small. At the aggregate level, the autocorrelation of U.S.

consumption11 at quarterly frequency is 0.22 in 1947-1996 and it becomes −0.117 in the 1891-1995
period.12 This assumption is also consistent with the empirical literature on the PIH based on

household data.13 Thus, we follow Campbell and Cochrane (1999) and exogenously constrain the

consumption growth process to be i.i.d. and investigate whether it is possible to generate the required

autocorrelation in the stochastic discount factor (SDF) via a parsimonious habit specification.

Stock and Watson (1989) find that the M1 money supply process in the U.S. can be described

as a stationary process around a positive deterministic time trend.14 Thus, we consider a process

for the money supply which is given by two components: a deterministic (exponential) rate µM and

a stochastic deviation from this trend Lt, which can be thought of as the detrended inverse of the

money supply:

d lnMt = µMdt− d lnLt µM > 0 (1)

Assumption 3 (Money Supply)

Let Lt be the aggregate liquidity shock generated by n factors cit following the stochastic process

dcit = kci (θci − cit) dt+ σcicitdW
ci
t with E(dW ci

t dW c
t ) = ρci,cdt [A3]

with Lt =
Pn

i=1 cit and E(dW ci
t dW

cj
t ) = 0.

This particular specification of the cit process is of special interest for two reasons. First, Nelson

(1990) shows that this process is the continuous time limit of the Garch(1,1)-M studied by Engle and

Bollerslev (1986). It has been extensively used to model empirically log-excess equity returns but

never to investigate the implications of a term structure model. Second, it will be shown that the

interest rate dynamics depend on the ct process and that the quadratic local variance of ct produces

in equilibrium a non linear drift in interest rates. We investigate the extent to which this particular
11For the U.K. the autocorrelation is −0.017 (1970-1996), for Canada it is 0.113 (1970-1996).
12See "Asset Prices, Consumption, and the Business Cycle," in Handbook of Macroeconomics, edited by John B.

Taylor and Michael Woodford.
13Attanasio and Weber (1995) use a time series of cross-sections from the Consumer Expenditure Survey (1980-1990)

to test the PIH after controlling for several variables that are likely to affect family composition and labor supply
behavior over the business cycle. They use a robust IV technique to control for the potential endogeneity of the
explanatory variables. They find that the excess sensitivity to labor income disappears after controlling for these
effects (see Table 3) and conclude that consumption growth display very modest autocorrelation.
14? also investigate a specification for the log of the money supply with a quadratic time trend. To simplify the

derivation, we decided to consider the simpler case with a linear time trend.
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model-implied non-linearity in interest rates is close to what found in the data by Conley, Hansen,

Luttmer, and Scheinkman (1997) and Ait-Sahalia (1999).

Since ct is a shifted version of Yt, with a boundary set at zero, the conditions for the existence

of a stationary density and for the square-integrability are analogous to Conditions [C1] and [C2]

with λ = 0. Thus, the process ct is stationary if θc > 0, kc > 0, c0 > 0 and square-integrable if

2kc − σ2c > 0.15 The closed-form solution of the stationary density can be obtained from the result

of Proposition 1a setting λ = 0.

Using Ito’s rule, it follows that in a one monetary factor economy dMt
Mt

=
³
(µM + kc + σ2c )− kcθc

ct

´
dt−

σcdW
c
t . The expected growth rate of the nominal money supply can be either positive or negative

depending on the level of the state variable ct. The drift of the money growth rate is positive (nega-

tive) if ct is above (below)
kcθc

µM+σ
2
c+kc

. The nominal stock of money supply is however always positive.

For expositional simplicity and to streamline the notation, whenever clear from the context we drop

the subscript i from ct.

Since the innovations of the inverse-surplus ratio σydWt must be functions of the same Brownian

innovations driving the state variables of the economy, namely dWt =
h
dW c

t , dW
ci
t

i
, we simply define

σydWt ≡
h
σcydW

c
t − σ0cydW

c
t

i
with σ2y ≡ σ2cy +

P
i(σ

2
ciy
- 2ρci,cσcyσciy). When σcy > 0, a negative

consumption shock increases the inverse surplus to consumption level, thus inducing an increase in

the investor’s implied (local) risk aversion. The second component comes from liquidity shocks. Due

to habit formation in consumption, the transaction service generated by liquidity shocks at time t

affect the marginal utility of consumption in future time periods as well. If monetary holdings do

not provide a transaction service, the dynamics of the habit stock are driven only by the past real

consumption. We let the data illustrate the empirical magnitude of σcy.

In the monetary literature, it is common to interpret the long-term mean of the monetary policy

as the targets of a Taylor rule in which the monetary authority adjusts the money supply according

to the deviations of some observable economic aggregates from their target levels.16 Since Taylor

rules are usually specified in terms of one real factor (deviations from a real consumption growth

target) and one nominal factor (deviations from an inflation target), we consider a two factor process

for the money supply.

In addition to Condition 1 and 2 and ρ > 0, we require additional parameter restrictions to

ensure that Cov(dHt, dCt)/dt > 0, so that positive innovations in consumption increase the habit.

Let c∗ = maxi σciσcρc,ci , it is easy to show that a sufficient condition is that [(1− St)σ
2
c -(1− St)γc

∗-
Stσy(1 − λSt)ψc] ≥ 0 with ψc = σycσc − σyciσcρci,c. The lower bound of this conditions is reached

at S∗ = v 1
σy
with v =

σyψc+σ2c−γc∗
2λψc

. Substituting S∗ back, we find that Cov(dHt, dCt)/dt > 0 if

σy ≥ vσ2c−vγc∗+λψcv2
σ2c−γc∗−vψc .17

15 In the case of a Cox, Ingersoll, and Ross (1985) square-root processes, the equivalent condition for zero being
non-attracting is 2kθ − σ2 > 0.
16We refer to Buraschi and Jiltsov (2005) for a discussion of a monetary model of the term structure with an explicit

two factor Taylor rule. They derive reduced form equations similar to [A3].
17The condition requires aα2 + bσ + c ≥ 0, with â = 1

4
σLψL
λ
, b̂ = ( 1

2λ
− 1)σcσLρc,L, ĉ = σLq1(σcρc,L − λψL) and

10



A. Aggregation in Heterogeneous-Agent Economies

Since the aggregation properties of economies with this type of habit preferences are not completely

known, in this section we briefly investigate the link between the competitive equilibrium prevailing

in a heterogeneous-agent economy and the representative agent equilibrium. We consider two het-

erogenous economies. In the first economy, all agents have identical logarithmic preferences (as in our

model) but different endowments. In the second economy, agents have heterogeneous preferences.

Case 1. (Heterogeneous endowment) - When markets are dynamically complete it is possible to show

that equilibrium asset prices in a heterogeneous-agent economy are the same as those prevailing in a

representative agent economy in which the single agent’s consumption is equal to the total available

resources Xt =
P

i x
i
t and Ht =

P
i h

i
t = Xt−

P
i s

i
tx

i
t. When markets are dynamically complete, the

stochastic discount factor ξit,T = e−δ(T−t) u
0(xiT−hiT )
u0(xit−hit)

of each agent in the heterogeneous economy is

unique and identical across agents, so that ξit,T = ξ̄t,T ∀i. With logarithmic preferences, this implies
that

h
e
δ(T−t)
t,T ξ̄t,T

i
(xiT − hiT ) = (xit − hit). Since the term in square bracket is agent independent,

we can aggregate across agents and obtain that ξ̄t,T is equal to the intertemporal marginal rate

of substitution of an agent with logarithmic preferences who consume the aggregate endowment,

i.e. u(Xt,Ht) = log(Xt − Ht). Since sitx
i
t = xit − hit and in equilibrium xit − hit = xjt − hjt , thenP

i s
i
tx

i
t = Xt −Ht so that the representative agent surplus consumption ratio is a weighted average

of the individual surplus ratios, i.e. St =
P

i ωis
i
t where the weights ωi are equal to the individual

consumption share ωi = (xit/Xt).

Case 2. (Heterogeneous preferences) - Since for analytical convenience in the rest of the article

we assume the existence of a representative agent with logarithmic preferences, in what follows we

study if a disaggregated economy with multiple agents and heterogeneous CRRA preferences admits a

representative agent aggregation. The case of a representative agent with logarithmic preferences is a

special case. Let us assume that each agent has preferences of the type ut = e−δt 1
1−γ (xt(γ)−ht(γ))1−γ

and ut = e−δt ln(xt − ht) for the agent with γ = 1.

In a heterogeneous economy, the social planner allocates the aggregate endowment Xt across

agents to achieve Pareto efficiency. Let ω(γ) be the social weight attributed to agent of type γ. Since

there is no intertemporal transfer of resources via a production technology, at each time t the social

planner maximizes the following objective function

sup
xt(Xt,ht;γ)

Z
ω(γ)

1

1− γ
(xt(γ)− ht(γ))

1−γdγ ∀t

subject to the resource constraint
R
xt(γ)dγ ≤ Xt. Let zt be the Lagrange multiplier associated to

the resource constraint, the first order conditions are ω(γ)(xt(γ) − ht)
−γ = zt and

R
xt(γ)dγ = Xt.

Solving for xt and substituting in the resource constraint we have Xt − Ht =
R
ω(γ)1/γz

−1/γ
t dγ.

The Lagrange multiplier zt is an implicit function of the aggregate surplus consumption Xt − Ht.

q1 =
σcρc,L
2λψL

, ψL = σycσLρc,L − σyLσL.

11



Let zt = ϕ(Xt −Ht) be the solution of the previous implicit function. Asset prices depends on the

representative agent stochastic discount factor ξt,T , which is equal to e−δ(T−t)(zT/zt). Substituting
the solution for the Lagrange multiplier, we have ξt,T = e−δ(T−t)ϕ(XT−HT )

ϕ(Xt−Ht)
.

Two things should be noticed. First, the representative agent stochastic discount factor is a

deterministic function of the excess aggregate consumption XT −HT . The representative agent in-

herits the external habit preferences of the heterogenous agents as the argument of ϕ is the aggregate

surplus consumption. The function ϕ, however, is not an arithmetic average of each agent’s power

functions.

Second, from the first order conditions it is possible to obtain that in equilibrium the consumption

share of an agent of type γ is equal to xt(γ)
Xt
=ht(γ)

Xt
+ω(γ)1/γyt(γ), where yt(γ) =

z
−1/γ
t
Xt

is the solution

of St =
R
ω(γ)yt(γ)dγ. Since, under Condition 1, St is stationary then each agent’s consumption

share xt(γ)
Xt

is stationary. No single agent dominates the economy in the long-run. This contrasts with

heterogenous-agent economies with standard CRRA agents in which the economy becomes eventually

dominated by the least risk averse agent (Wang (1996)). The reason for the different asymptotic

behavior is due to the effect of the habit on the cross-section of marginal utilities. In a traditional

economy, as the economy grows, the agent with lower risk aversion experiences higher marginal utility

of consumption. Thus, he is allocated a progressively higher share of total endowment. This does

not occur in the habit economy since consumption growth has also the effect of increasing the habit

stock which reduces the marginal utility of consumption. This reduction is larger the lower the risk

aversion coefficient. Thus, habit persistence is an interesting and effective way to achieve stationarity

in the distribution of consumption allocation in the disaggregated heterogeneous-agent economy.

In order to obtain closed-form solutions, our analysis will focus on economies that support

ϕ(XT −HT ) = (XT −HT )
−1, i.e. economies supporting a logarithmic representative agent.

Chetty and Szeidl (2003) argue that a non-psychological interpretation of external habit prefer-

ences can be given in the context of economies with forced consumption commitments. Suppose that

an individual i has preferences defined over both cit, a vector of consumption goods (or characteris-

tics) of which some components are not directly observable, and hit, a consumption good that can

be adjusted only at discrete frequencies, such as real estate or monetary holdings. At any generic

point of time t the individual has to commit to a stream of consumption goods his between t and

the subsequent readjustment date. When preferences are time-separable, the aggregate behavior of

this economy is observationally equivalent to a representative agent economy with habit persistence.

To show the equivalence, let uit = e−ρt
¡
ln cit + βi lnhit

¢
. Since cit can be freely adjusted at no cost if

markets are complete, there exists a unique stochastic discount factor ξt,T such that ξt,T = e−ρτ 1/c
i
T

1/cit
.

Thus, using the previous aggregation argument and defining Xt to be the total observable consump-

tion, Xt = Ct + Ht, with
P

i h
i
t = Ht and

P
i c

i
t = Ct, then Xt − Ht = (XT − HT ) [e

ρτξt,T ] so

that

ξt,T = e−ρτ
Xt −Ht

XT −HT

The Euler condition that describes bond and asset prices in an heterogeneous competitive equilibrium

12



is thus identical to the Euler equation of a representative agent economy with habit persistence:

B(t, T ) = Et

∙
e−ρτ

Xt −Ht

XT −HT

¸
Since hit can change only at discrete frequencies, the aggregate committed consumption Ht is a

weighted average of lagged consumption innovations. Clearly, a key assumption for this equivalence

to be useful empirically is that some of the individual components of cit are not directly observable.

B. The Equilibrium Price Level

First, we solve for the general price level in equilibrium. Then, we use the result to solve for

equilibrium asset prices. Let us define the real stock of money as m = M/P . First, notice that in

equilibrium the following transversality condition needs to hold in order for an interior condition to

exist:

Transversality Condition

lim
T→∞

e−ρTEt

∙
ux(XT ,HT )

∂XT

∂CT

1

PT

¸
= 0 (2)

If (2) were not satisfied, a small reduction in consumption at time t would yield a large discounted

marginal utility by using money as a store of value and delaying consumption up to time T .

To solve for the equilibrium price level, we follow Bakshi and Chen (1996a) and consider the

marginal decision between consumption and monetary holdings. Since the inverse of the general

price level 1
Ps
is the relative price of the monetary holdings with respect to consumption, a marginal

reduction in one unit of real monetary stock yields a marginal utility reduction of ux(Xt,Ht)
∂Xt
∂Ct

1
Pt
.

The marginal revenue, over a dt interval of time with s = t+dt, is Ete
−ρdtux(Xs,Hs)(

∂Xs
∂ms

dt+ ∂Xs
∂Cs

) 1Ps .

The first term is the service flow of the monetary stock, the second term comes from the increase in

consumption at the later period. Since in equilibrium the agent must be indifferent between reducing

consumption or the money stock, the following Euler restriction must be satisfied for ∀dt:

ux(Xt,Ht)
∂Xt

∂Ct

1

Pt
= Ete

−ρdt
∙
ux(Xs,Hs)(

∂Xs

∂ms
dt+

∂Xs

∂Cs
)
1

Ps

¸
(3)

Equation (3) can be solved forward. Using the the transversality condition and taking the continuous

time limit, we obtain
1

Pt
= Et

"Z ∞

t
e−ρ(s−t)

ux(Xs,Hs)
∂Xs
∂ms

ux(Xt,Ht)
∂Xt
∂Ct

1

Ps
ds

#
(4)

Money is a durable stock, thus its value reflects its service flow in all future periods.18 Taking

18Bakshi and Chen (1996a) use this Euler condition to solve for a stochastic monetary equilibrium in an economy
with time-separable preferences.
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derivatives, we obtain ux(Xt,Ht)
∂Xs
∂Cs

= (1− γ) 1
StCt

and ux(Xs,Hs)
∂Xs
∂ms

= γ 1
Ssms

. So that

1

Pt
=

γ

1− γ
CtSt

Z ∞

t
e−ρ(s−t)Et

∙
Ps

SsMs

1

Ps

¸
ds (5)

=
γ

1− γ
CtSt

Z ∞

t
e−(ρ+µM )(s−t)

1

LtMt
Et [YsLs] ds (6)

Since L is the inverse of the money supply, for simplicity one could initialize L0M0 = 1, so that
1

LtMt
= e−µM t. To solve for the equilibrium price level, which allows one to solve for nominal interest

rates, we need to solve for the conditional expected value of the product of two Garch-Ito processes.

The following Lemma provides the general result for this class of processes.

Lemma 1 Consider a linear system of two mean-reverting Garch-Ito processes ξ1t and ξ2t

dξ1t = kξ1 (θξ1 − ξ1t) dt+ (ξ1t − λξ1) [υdW
2
t + σξ1dW

1
t ]

dξ2t = kξ2 (θξ2 − ξ2t) dt+ (ξ2t − λξ2)σξ2dW
2
t , E(dW 1

t · dW 2
t ) = ρdt

The conditional expectation of their product qt = ξ1tξ2t is non-linear in the state variables and equal

to

Et [qt+τ ] = A0(τ) +A1(τ)ξ1t +A2(τ)ξ2t +A3(τ)qt (7)

with Ai(τ) being deterministic functions of the expectation horizon and fully characterized in the

appendix. ¥

Clearly, this result is important for asset pricing applications since the price of any contingent

claim is the conditional expected value of the product of the stochastic discount factor and the future

cash flows. Moreover, it can be used in econometric applications to calculate conditional covariances

of pairs of Garch-Ito processes. To solve for the equilibrium price level, let ΘY = [ky, θy, σy, λ] and

Θci = [kci , θci , σci , 0] be the vectors of structural parameters for Y and ci, then let us use Lemma 1

to solve for Et (Ysci,s). The equilibrium price level is:

1

Pt
=

γ

1− γ

Ct

Yt

1

LtMt

Z ∞

t
e−(ρ+µM )(s−t)

"
2X

i=1

µ
A0i(s− t;ΘY ,Θci) +Aci(s− t;ΘY ,Θci)cit+

AY (s− t;ΘY ,Θci)Yt +AciY (s− t;ΘY ,Θci)citYt

¶#
ds

If Conditions [C1] and [C2] are satisfied and the parameters Ai(s) are bounded, the integral converges

and the economy admits a monetary equilibrium with a finite market clearing price level. Sufficient

conditions are that −ky − kci − (σycσciρ+ σyciσci) < 0, ∀i. We summarize the result as follows:

Proposition 2 If, in addition to Conditions [C1] and [C2], −ky − kc − (σycσcρ + σycσc) < 0 then

the economy supports a monetary equilibrium whose price level is

1

Pt
=

γ

1− γ

Ct

Yt

1

LtMt
ψt

ψt =
2X

i=1

Γ0i(ΘY ,Θci) + ΓY,i(ΘY ,Θci)Yt + Γci(ΘY ,Θci)cit + ΓciY (ΘY ,Θci)Ytcit
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where Γ(·) are deterministic functions of the structural parameters whose functional form is fully

described in the appendix. ¥

From the solution of the equilibrium price level we can determine the money velocity. This is

defined as vt = PtCt
Mt
, thus vt =

(1−γ)LtYt
γψt

. Under Conditions [C1] and [C2] both cit and Yt are strictly

positive stationary processes, thus both the numerator and the denominator are stationary. Thus,

it is possible to show that a sufficient condition for vt to be stationary is that the denominator does

not cross zero inside the support of Yt and ct. A sufficient condition is that the coefficients Γ0, Γ1,

Γ2 and Γ3 are non-negative.

II. The Term Structure of Interest Rates

A. Nominal Spot Interest Rate. The nominal spot rate can be obtained from the first order conditions

observing that the agent in equilibrium must be indifferent between reducing current consumption

to invest in a (nominal) riskless opportunity paying off 1 +Rtdt and reducing current consumption

to increase the money stock. In the first case, the expected discounted increase in marginal utility

is e−ρdtEt[ux(Xs,Hs)
∂Xs
∂Cs

(1 + Rtdt)
1
Ps
]. In the second case, the increase is e−ρdtEt[ux(Xs,Hs)

( ∂Xs
∂ms

dt + ∂Xs
∂Cs

) 1Ps ]. In equilibrium, these two quantities must be equal. Simplifying and taking the

continuous time limit, we obtain Rt =
ux(Xt,Ht)∂Xt/∂mt

ux(Xt,Ht)∂Xt/∂Ct
which yields the following relationship:

Rt =
γ

1− γ

CtPt
Mt

Substituting the equilibrium price process in Proposition 2, we find the following relationship between

the inverse surplus ratio and the instantaneous nominal interest rate:

Rt =
YtLthP2

i=1 (Γ0i(ΘY ,Θci) + ΓY,i(ΘY ,Θci)Yt + Γci(ΘY ,Θci)cit + ΓciY (ΘY ,Θci)Ytcit)
i (8)

The nominal interest rate is non linear in the state variables. It depends on both the habit stock

and the factors affecting the monetary aggregate. A higher expected growth in monetary holdings

increases the interest rate. The higher the surplus ratio St (i.e. the higher the current level of

consumption with respect to the habit), the higher the incentive to save for future consumption and

the lower the nominal interest rate. Thus, the model implies that the lagged real money-adjusted

consumption predicts both real and nominal interest rates. This empirical implication of the model

is consistent with the finding of a lagged effect between changes in monetary holdings and interest

rates, which has been the focus of substantial interest in the monetary literature.

B. Bond Prices. Given the equilibrium price process, we can solve for the term structure of nominal

and real bond prices. Let N(t, τ) and B(t, τ) be time t prices of two pure discount bonds paying

at time t+ τ one unit of currency and one unit of the consumption good respectively. The price of
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the second bond is equal to the price of an index-linked bond. The price of the nominal bond must

satisfy the following Euler condition:

N (t, τ) = e−ρτEt

"
ux(Xt+τ ,Ht+τ )

∂Xt+τ

∂Ct+τ

ux(Xt,Ht)
∂Xt
∂Ct

Pt
Pt+τ

#

The marginal cost of reducing consumption and purchasing a nominal bond isN (t, τ)ux(Xt,Ht)
∂Xt
∂Ct

1
Pt
.

In equilibrium, it must be equal to the marginal utility of the future consumption that can be ob-

tained from the bond investment ux(Xt+τ ,Ht+τ )
∂Xt+τ

∂Ct+τ
1

Pt+τ
. The Euler restriction for the real bond

is similar. However, since the payoff is indexed to the price level:

B (t, τ) = e−ρτEt

"
ux(Xt+τ ,Ht+τ )

∂Xt+τ

∂Ct+τ

ux(Xt,Ht)
∂Xt
∂Ct

#

The price of the two bonds are affected by the habit via the consumption surplus ratio as
ux(Xt+τ ,Ht+τ )

∂Xt+τ
∂Ct+τ

ux(Xt,Ht)
∂Xt
∂Ct

= CtSt
Ct+τSt+τ

. Using the result of Proposition 2 for the price level, we obtain Ct+τSt+τPt+τ =
γ
1−γ e

µMτLtMt/Ψt+τ withΨt+τ =
P2

i=1(ΓY,i(ΘY ,Θci)Yt+τ + Γci(ΘY ,Θci)cit+τ + ΓciY (ΘY ,Θci)cit+τYt+τ

+ Γ0i(ΘY ,Θci)). Hence, applying Lemma 1, we obtain the following result:

Theorem 1 (The Nominal Term Structure) The price of a nominal bond N (t, τ) at time t with
time to maturity τ is given by

N (t, τ) = e−(ρ−µM )τ
P2

i=1 (Λ0i (τ ;ΘY ,Θci) + ΛY,i (τ ;ΘY ,Θci)Yt + Λci (τ ;ΘY ,Θci) cit + ΛciY (τ ;ΘY ,Θci) Ytcit)P2
i=1 (Γ0i(ΘY ,Θci) + ΓY,i(ΘY ,Θci)Yt + Γci(ΘY ,Θci)cit + ΓciY (ΘY ,Θci)Ytcit)

where

ΛY,i (τ ;ΘY ,Θci) = ΓY,i(ΘY ,Θci)e
−kyτ + ΓciY (ΘY ,Θci)Aci(τ ;ΘY ,Θci)

Λci (τ ;ΘY ,Θci) = Γci(ΘY ,Θci)e
−kciτ + ΓciY (ΘY ,Θci)AY (τ ;ΘY ,Θci)

ΛciY (τ ;ΘY ,Θci) = ΓciY (ΘY ,Θci)Aci(τ ;ΘY ,Θci)

Λ0i (τ ;ΘY ,Θci) = Γ0i(ΘY ,Θci) + ΓY (ΘY ,Θci)θy

³
1− e−kyτ

´
+ Γci(ΘY ,Θci)θci

³
1− e−kciτ

´
+

+ ΓciY (ΘY ,Θci)A0i(τ ;ΘY ,Θci)

where Γ·(·), and A·i(τ ;ΘY ,Θci) are deterministic functions of the structural parameters ΘY and Θci.

Their functional form is given in Proposition 2 and Lemma 1 respectively. ¥

C. The Price of Risk. To gain further intuition on the properties of the term structure of interest

rates, it is instructive to study the properties of the price of risk that are implied by the model.

In the term structure literature, the issue of flexible specifications of the price of risk has received

considerable attention. Let ξt be the stochastic discount factor, ξt = e−ρtu0(c∗t ,M∗
t ), so that the
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discounted value of any tradable asset is a martingale, ξtBτ
t = Et(ξsB

τ
s ). The diffusion process of

the stochastic discount factor must be of the form

dξt
ξt
= −rtdt− ΛtdWt

with ΛtdWt being the price of risk. From the equilibrium solution of the structural model, we obtain

−ΛtdWt = −
∙
σcy(1− λ

Yt
) + σc

¸
dW c

t −
2X

i=1

∙
σciy(1−

λ

Yt
)

¸
dW ci

t (9)

so that the price of risk of unexpected consumption innovations is
h
σcy(1− λ

Yt
) + σc

i
and the price

of risk of the monetary risk factor is
h
σc1y(1− λ

Yt
)
i
. Both prices of risk are state dependent. When

the consumption level is close to the habit level Ht, Yt is low and the local curvature of the utility

function is high. The higher implied risk aversion generates a higher price of risk which affects

expected returns independently of interest rate volatility. To see this, let us use Ito’s rule to obtain

the unexpected innovation in the nominal interest rate dRt −EtdRt. We obtain:

Rt(1− λ

Yt
)σydW

y
t +RtσLdW

L
t +RtΞt

£
(Γ1 + Γ3Lt)(Yt − λ)σy − (Γ2 + Γ3Yt)LtσLdW

L
t

¤
(10)

with Ξt = Γ1Yt + Γ2Lt + Γ3LtYt + Γ0,

A comparison of (9) and (10) show that the price of risk is not a constant multiple of interest rates

volatility. Similar to Duffee (2002) and Dai and Singleton (2002), we find that such a property is

important to explain, at the same time, the joint empirical properties of first and second conditional

moments of the term structure and expected bond returns.

III. The Term Structure of Index-Linked Bonds

The term structure of real bonds prices can be obtained by solvingB(t, τ) = e−ρτEt

"
ux(Xt+τ ,Ht+τ )

∂Xt+τ
∂Ct+τ

ux(Xt,Ht)
∂Xt
∂Ct

#
=

e−ρτEt

h
Ct
Yt

Yt+τ
Ct+τ

i
. Since d(1/Ct) = −(µc − σ2c )dt − σcdW

c
t , it is straightforward to use Lemma 1 to

solve for the conditional expectation Et

h
Yt+τ
Ct+τ

i
. Let ξ1t = 1

Ct
and ξ2t = Yt and consistent with the

notation of Lemma 1 let Θy and Θ1/c be the four-dimensional vector of parameters of the two diffu-

sion processes for dYt and d(1/Ct).19 Since the inverse of the consumption is a geometric Brownian

motion, then θξ1 = λξ1 = 0 and so that we obtain that A0 = Ay = 0 in Lemma 1. Thus, we obtain

the following result:

Theorem 2 (The Term Structure of Index-Linked Bonds) The price B(t, τ) of an index-linked
bond with time to maturity τ is equal to

B(t, τ) = e−ρτ
∙
AY/c(τ ;ΘY ,Θ1/c) +A1/c(τ ;ΘY ,Θ1/c)

1

Yt

¸
19Thus, Θy = [ky, θy, σy, λ] and Θ1/c ≡ [−(µc − σ2c ), 0, −σc, 0].
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Index-linked bonds are affected by monetary innovations through the surplus ratio 1/Yt. The

higher the current consumption relative to the current habit stock is, the higher 1/Yt and therefore

the higher the yield to maturity. Since both monetary and endowment shocks affect Yt, innovations

on both state variables affect the real term structure of interest rates.

Instantaneous Real Interest Rate. The instantaneous real interest rate can be obtained either by

taking the limit for τ → 0 of the previous result, or even more simply from the drift of the stochastic

discount factor. Letting πt = e−ρtux(Xt,Ht)
∂Xt
∂Ct

and using Ito’s Lemma one obtains20

dπt
πt

= µ(π, t)dt+ σ(π, t)0dWt

with

µ(π, t) = −ρ− µc + σ2c + ky
(θy − Yt)

Yt
− (Yt − λ)

Yt
σcyσc

−σ(π, t)0dWt =

∙
σcy
(Yt − λ)

Yt
− σc

¸
dW c

t + σciy
(Yt − λ)

Yt
dW c1

t + σc2y
(Yt − λ)

Yt
dW c2

t

The real interest rate is given by rt = −µ(π, t). Thus,

rt = ρ+ µc − σ2c − ky
(θy − Yt)

Yt
+
(Yt − λ)

Yt
σcyσc (11)

The first two terms stem from the intertemporal consumption smoothing motive, the third term is

the precautionary motive and the last two terms are due to the presence of the habit. Given the

focus of their paper, Campbell and Cochrane (1999) assume constant real interest rates by using a

specific value of λ. In our model, this would be equivalent to assuming that λ = − kθ
σycσc

. Since the

focus of our paper is the dynamics of the term structure of interest rates, we discuss the properties

of the model without imposing this restriction.

IV. The Dataset

The empirical results are based on the sample period between January 1960 and December 2000.

The data-set consists of three main components: interest rate data, price level data, and money

supply data. Interest rate data from January 1960 to February 1991 is obtained from the McCulloch

and Kwon data-set21. This database contains end-of-month zero-coupon yields and forward curves

based on the McCulloch (1975) methodology from one month to 10 years. We extend this dataset

using the daily GovPX data-set which provides end-of-day prices for all Treasury securities. The

data are based on the transactions done by the primary dealers through five of the six inter-dealer

brokers for all active and off-the-run U.S. Treasuries. We keep the methodology for the construction

of the zero-coupon yield curve as close as possible to that of McCulloch (1990) and Kwon (1992).

20Observing that dπ = d
�
e−ρt Yt

Ct

�
and using Ito’s Lemma, we have: dπ

π
= −ρdt+

�
dYt
Yt

�
−
�
dCt
Ct

�
+
�
dCt
Ct

�2− dYt
Yt

dCt
Ct

21See McCulloch (1990) and Kwon (1992).
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We select the last business day of each month and remove all callable bonds from consideration. The

number of Treasury securities in the McCulloch data-set increases from slightly over 40 in the 1950s

to over 200 in the late 1980s. The average number of Treasury securities in each cross-section of our

implied spot curve is 134, ranging from 100 to 200.

Inflation data is based on the Consumer Price Index (CPI) for all urban consumers, which is

available from January 1947. The money supply data used in this study is from the official H.6 release

of the Federal Reserve Board of Governors. We choose the M2 money stock measure since it includes

money market deposit accounts, which can be used for purchasing products and services. This is the

closest representation of money in our model. For our purposes, M3 is too wide a measure because

it includes instruments that pay significant interest rates which can not be classified as money in our

framework. The quarterly per capita consumption series is from the Citibase data-set.

Summary statistics for our sample are given in Table 1. We find that the correlation between M2

growth and the yield on the 5 year zero coupon bond is 15%, supporting the evidence of an important

link between monetary shocks and nominal interest rates. Moreover, the monthly correlation between

M2 growth and inflation is 16.8%.

V. Econometric Methodology

This section uses the restrictions from Propositions 2 and 1 to estimate the structural model. The

term structure is not affine as yields are non linear functions of a set of underlying factors that follow

non Gaussian diffusions. Methods for estimation and inference that can be applied to continuous-

time non linear Markov models when data is sampled discretely have been proposed, among others,

by Lo (1988), Hansen and Scheinkman (1995), Conley, Hansen, Luttmer, and Scheinkman (1997),

Ait-Sahalia (1996, 1999), Ait-Sahalia (2002) and Stanton (1997).

With discrete time sampling, Lo (1988) discusses the computation of the likelihood function

solving numerically the Fokker-Planck partial differential equation. Since a solution has to be ob-

tained for each maximum likelihood iteration, Ait-Sahalia (1999) proposes a method to approximate

the correct transition function using Hermite polynomials in the context of a maximum likelihood

estimation. Hansen and Scheinkman (1995) construct generalized method of moments estimators of

the unknown parameter vector using the properties of both the original and reverse-time infinitesimal

generator.

With respect to the literature, our econometric task is considerably simplified by the fact that

we are in the privileged situation of knowing both the stationary density of the states z(t) in closed-

form and the conditional moments up to any order. Thus, we can obtain consistent estimators of

the unknown parameter vector using GMM. Consistency is achieved for an increasing number of

observations (T →∞), even when these are sampled discretely (∆t > δ > 0).

The unobservable states are expressed as functions of the observable economic variables X(t)

using the model’s solutions. The panel data X(t) consists of both nominal bond yields and macro
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variables, including real consumption, inflation and monetary holdings. The vector of moment con-

ditions used to estimate the structural parameters refer to the level of nominal bond yields, moments

of the distribution of changes in bond yields, the inflation rate, and the growth in monetary holdings.

1. No-arbitrage Cross-sectional Restrictions

The model imposes tight no-arbitrage restrictions among bond with different maturities. When

bond prices are observed with a measurement error these restrictions take the form of moment

conditions. If the rank of the covariance matrix of the observation errors is lower than full rank by at

least the number of state variables, then we can use two yields to maturities y(t, τA) to obtain the two

(liquidity) states by inverting the yield equations. The third state variable Yt is directly observable

using the result in Proposition 1a. The remaining yields y(t, τB) must be equal, by no-arbitrage, to

a function F of y(t, τA) plus an observation error.22 Let

h1(y
τ
t ; θ) = y(t, τB)− F (y(t, τA))

The first set of cross-sectional moment conditions is:

E [h1(y
τ
t ; θ0)] = 0

We select 5 bond yields to construct the moment condition for h1.

2. Time Series Moment Restrictions

A. Moments from the Stationary Density.

In addition to cross-sectional restrictions on the term structure, we consider a sufficiently large

set of moment restrictions generated by both the stationary and conditional density. Let X(z, t)

be an observable economic variable, function of the state zt, such as bond yields, and let φ(X) be

a smooth function of X. Since the stationary density p(z; θ) of the states is known in closed-form

(Inverse Gamma), moments of X can easily be computed by integration Eφ =
R
φ(X)p(z; θ)dz. The

estimation of θ can be posed in a standard generalized-method-of-moments framework by setting

h2(Xt; θ) = [φ(Xt)−Eφ] (12)

The second set of moment conditions is:

E [h2(Xt; θ0)] = 0

We choose φ and X so that h2 is a vector of second moments of five bond yields and of the first two

moments of Mt, Pt, and Ct. The total number of moment restrictions is therefore 5 + 6 = 11.
22Clearly, the choice of which bonds are observed with no error is arbitrary (i.e. the generalized inverse of the

covariance matrix is not unique). Thus, we decide to select the instruments that imply the lowest pricing errors for the
remaining bonds. We find that this is achieved when we select the 3 month and 2 year yield to maturity. The empirical
results are not, however, very sensitive to this choice as long as they sufficiently span the maturity structure.
Similarly, when the inverse function of the instrument is not unique, we choose the state vector that minimize the

bond pricing errors.
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B. Conditional Moment Restrictions.

Let φ(z) be a smooth function of the state vector zt = [Yt, ct]. Consider a Taylor expansion of

φ(zt+1) at zt. Taking the conditional expected value:

Etφ(zt+1) = φ(zt) +
JX
i=1

1

i!

∂i

∂zi
φ(zt)Et [zt+1 − zt]

i + o
³
E [zt+1 − zt]

i
´

The moments Et [zt+1]
i can be obtained using the results of the following Proposition, so that the

conditional expectations of Etφ(zt+1) can be obtained up to any desired degree of approximation.

Proposition 3 Given a linear stochastic process zt satisfying assumption [A2] with entrance bound-
ary λ, the conditional second moment is equal to23

Et

¡
z2T
¢
= e−(2k−σ

2)T z20 + 2
¡
kθ − λσ2

¢ ∙ θ

(2k − θ)
+

e−kT (z0 − θ)

(k − θ)

¸
All other moments can be obtained recursively by integrating the following differential equation

d

dt
Et (z

n
T ) = Et

¡
zn−2T

¢ ∙−nk + n(n− 1)
2

σ2
¸
+Et

¡
zn−1T

¢
[nkθ]

¥
Note that in order for the process to admit a finite unconditional moment of order n, the

parameters must satisfy the condition
£−2k + (n− 1)σ2¤ < 0. This restriction becomes progressively

tighter as the order n increases.

For the estimation, we choose φ to be [y(t + 1, τ), y2(t + 1, τ)], so that the parameters are

estimated using the first two conditional moments of the observable process. Let

h3 (Xt, θ) =
£
yτt+∆ −E

¡
yτt+∆|Xt

¢¤⊗ ξ (Xt)

h4 (Xt, θ) =
h¡
yτt+∆

¢2 −E
³¡
yτt+∆

¢2 |Xt

´i
⊗ ξ (Xt)

We select the lagged values of consumption and money growth to build a set of instruments

ξ(Xt). Thus, since the number of independent bond yields is five, the total number of restrictions

from this set of moments is 5× 2× 2 = 20.

The state variables.

An explicit characterization of Y (t), the inverse surplus ratio, as a function of the accumulated

consumption and monetary shocks is obtained in Proposition 1a as a solution of [A2]: Y (t) = λ +

ω−1t
h
(Y0 − λ) + k(θ − λ)

R t
0 ωsds

i
with ωt = exp{(k+ 1

2σ
2
y)t+σy(Wt−W0)}, where σydWt = σy(

dX
X −

E dX
X ) = σy((1−γ)σy(dCtCt

−µc) + γ(dmt
mt
−µm)). The other unobservable state variables are cit. They

can be obtained by inverting two of the measurement equations to express cit as a function of the

23Clearly, the process ct is a special case of Yt with boundary λ = 0.
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remaining vector of observable economic variables and θ, cit = F(Xt, θ). This approach is also used

by Chen and Scott (1993) and Duffie and Singleton (1997) for the swap curve. Once we substitute

these restrictions on Yt and cit back into ht(Xt, θ), all moment conditions depend exclusively on

observable economic variables and structural parameters.

Estimation.

We merge the no-arbitrage cross-sectional restrictions and the moment conditions from both the

stationary and conditional distribution in a vector ht (Xt; θ), with ht = [h1, h2, ..., h4]0, so that:

E [ht (Xt; θ)] = 0 (13)

The total number of moment conditions is therefore 5 + 11 + 20 = 36. Since the model has 19

parameters, the model is overidentified and the number of degrees of freedom is 17. One can obtain

a consistent estimator of the vector of structural parameters by minimizing with respect to θ the

quadratic criterion JT (Xt; θ), based on the sample counterpart of the previous moments:

JT (Xt; θ) =

"
1√
T

TX
t=1

ht (Xt; θ)

#0
W−1

T

"
1√
T

TX
t=1

ht (Xt; θ)

#
(14)

Under the null hypothesis that the model is correctly specified, JT (Xt; θ)→ χ2(17). This asymptotic

distribution can be used to construct test statistics for the overidentifying restrictions of the model. It

is important to notice that the condition to obtain consistent estimators for θ depend on the number

of observation T → ∞. They do not require that the sampling frequency converge to 0. This
property differs from other estimation techniques for non-linear continuous-time models. The reason

is simple. Even if the model is non-linear, we can identify the unconditional and conditional moment

conditions even for a strictly positive sampling frequency ∆t > 0. Thus, for our model consistency

in the estimation does not require continuously observed sample processes. The weighting matrix

WT is the Newey-West heteroskedastic and autocorrelation consistent estimator of the covariance

matrix, namely WT = Γ0 +
Pq

i=1

³
1− i

q+1

´
(Γi + Γ

0
i) with Γi =

PT
t=i+1 (ht − h) (ht−i − h)0 and

h = 1
T

PT
t=1 ht.

Small Sample Properties. Since the model is non-linear and most of the test statistics rely

on asymptotic results, we check their small sample properties. To do this, we select a parameter

configuration θ0 and simulate the data-generating process {X̃j1(θ0), ..., X̃jT (θ0)}Nj=1. The assumed
parameter configuration corresponds to the sample estimates of the model. Then, we estimate θ̂ using

the moment conditions Eht(X̃t, θ) = 0 computed for each simulation by minimizing the quadratic

criterion (14). We obtain {θ̂1, ....,θ̂N}. Under the null hypothesis that the estimators are unbiased
in small samples, limN→∞ 1

N

PN
j=1 θ̂j → θ0, for finite T . Then, we compute the empirical rejection

ratio of the overidentifying no-arbitrage restrictions. We find that the empirical rejection frequency

is 6.1%, as opposed to the theoretical value of 5%. The test slightly over-rejects the model in small

samples: the asymptotic tests tend to be biased on the conservative side when used in small samples.
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VI. Empirical Results

This section summarizes the results based on the estimation of a three factor model.

1. Joint Test of the Overidentifying Restrictions. Table 2 reports estimates of the parameters

and their corresponding standard errors.24 It is easy to verify that 2ky > σ2y, θy > λ > 1, and

ky > 0 so that Yt satisfies the conditions [C1] and [C2] for Yt to be stationary and square-integrable.

The equivalent conditions for the liquidity factors c1t and c2t are also satisfied. Moreover, the two

conditions for the existence of a monetary equilibrium require −ky − kci − (σcyσciρ+σciyσci) < 0 for

i = 1, 2. These conditions are satisfied and, at the estimated parameter values, are equal to −0.35 and
−0.22 respectively. Finally, a sufficient condition for Cov(dH, dC) > 0 is that σy ≥ vσ2c−vγc∗+λψcv2

σ2c−γc∗−vψc
where ψc = σycσc − σyciσcρci,c and v =

σyψc+σ2c−γc∗
2λψc

with c∗ = maxi σciσcρc,ci . The condition is

satisfied.

To assess the model’s overall goodness of fit we first run a joint GMM test on the model overi-

dentifying restrictions. The test is based on all moment conditions. Under the null hypothesis

that the model is correctly specified, the maximum JT (Xt, θ̂) statistics is asymptotically chi-squared

distributed with 17 degree of freedom:25

JT (Ŷ , ĝ, θ̂) =

"
1√
T

TX
t=1

h
³
Xt, θ̂

´#0
W−1

T

"
1√
T

TX
t=1

h
³
Xt; θ̂

´#
∼ χ2(17)

The model implied p-value, based on all overidentifying moment conditions, is 36%. The model is

not rejected.

Campbell and Cochrane (1999) and Menzly, Santos, and Veronesi (2004) choose a parameter con-

figuration to match a set of unconditional moments of real equity returns. Some of these parameter

values are different from our estimates. For instance, MSV choose ky = 0.16 and σ2y = 0.62, which are

both higher than the values that we estimate.26 On the one hand, since they calibrate a number of

moments that is smaller than the number of their free parameters, the difference in parameter values

is not surprising. Different parameter configurations imply the same moments in their exercise. More-

over, since the stationary distribution p of a diffusion process satisfies d
dx

£
p(x)σ2(x)

¤
= 2µ(x)p(x),

the drift and volatility parameters µ and σ are identified only up to a scale factor. Thus, MSV

could scale the choice of k and σ2y by a factor ten without affecting the unconditional moments

of the observable processes.27 Clearly, however, even if the two parameter configurations produce

similar unconditional moments, they generally imply different conditional moments and since bond

prices are conditional moments of the stochastic discount factor, this difference plays a crucial role

in our study. For this reason, in our empirical analysis and tests we will pay special attention to the

conditional moment properties of interest rates. Moreover, their parameter choice violates condition
24The asymptotic covariance matrix of the parameters is based on the outer-product of the Jacobian of the log-

likelihood function.
25See Hansen (1982).
26We estimate ky = 0.022 and the model-implied σ2y is equal to 0.07.
27To see this, note that the statistical distribution of Yt is an Inverse-Gamma with parameters −2( k

σ2
− 1) and 2 kθ

σ2
.
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[C2]. Thus, in the last section of our paper we investigate the equity risk premium that is implied

by a model with habit persistence that produces realistic interest rates implications.

2. Nominal Yield Curve. The average fitting errors of the yield curve range between 27 and 60 basis

points, see Table 4, Panel A. Since in the estimation the same three factors are required to fit the

consumption process, the inflation rate, the money supply growth rate and the second moments

of the yields, we also report the results when the model is estimated exclusively using yield curve

moment conditions. The overall mean absolute error of the yield curve drops to 21 basis points, see

Table 4, Panel B.

We find that the yield curve is higher during low surplus consumption (high habit stock) periods,

i.e. recessions. In these states, investors’ marginal utility is high implying a higher consumption

demand. Figure 3 illustrates the relationship between the yield curve and the surplus consumption

ratio for different levels of the money growth rate. This relationship is monotone both at high and

low monetary growth levels. The closer the consumption to the habit, the higher the level of the

yield curve. A one standard deviation change in the surplus consumption ratio induces a 60 basis

points change in the level of the yield curve. This is about the same average yield difference between

a three and eight year bond. Moreover, we find that the yield curve is steeper during periods of high

monetary growth. For instance, when the money growth rate is one standard deviation above its

long-run mean, the slope of the yield curve is 370 basis points. The average slope is 40 basis points.

This can be due to the following. First, a high money growth rate anticipates high future inflation

rates, which translates to higher current long-term yields. Second, since real monetary holdings are

mean reverting, high current values, which are expected to revert to its long-term mean, reduce the

surplus consumption ratio and therefore increase current future long-term yields.

3. Real Interest Rates and Consumption. We compare the behavior of the model-implied and em-

pirical real yields using index-linked bonds. We use the approach suggested by Green and Odegaard

(1997) and Buraschi and Jiltsov (2005) to control for the tax implications of the inflation-adjustment

of the principal amount. We focus this part of the analysis on the sample period after January 29,

1997, which is the date of the first Tips issue. The model-implied mean and standard deviation

of the 3 month real yield are equal to 2.13% and 1.13% respectively. The corresponding empirical

values are equal to 2.88% and 0.47%. The model can reproduce the first moment of the 3 month real

interest rate, but it clearly underestimates its volatility. The p-value of a GMM test for the joint null

hypothesis that the first two moments are correctly specified is 5%. However, the null hypothesis

that the second moment of the 3 month real yield is correctly specified is rejected.

The model fares better with long-term real yields. The model-implied mean and standard devia-

tion of the 10 year real yield are equal to 2.51% and 0.44% respectively. The corresponding empirical

values are equal to 2.84% and 0.34%. The p-value of a GMM test on the joint null hypothesis that

the first two moments are correctly specified is 12%.

The model-implied mean and standard deviation of the consumption growth rate are equal to
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2.4% and 1.7% respectively. The corresponding empirical values are equal to 1.9% and 1.9% (Table

1). The model can fit bond prices without an excessively volatile consumption process. We run a joint

test for the null hypothesis that the model-implied first two moments correspond to the empirical

values and find that the null hypothesis is not rejected with a p-value of 0.11.

4. Inflation. Figure 2 plots the model-implied and realized inflation rate. The model-implied

mean and standard deviation of the inflation rate are equal to 4.03% and 2.33% respectively. The

corresponding empirical values are equal to 4.70% and 3.23% (Table 1). The p-value of a GMM

test for the null hypothesis that the model-implied first two moments are equal to their empirical

counterparts is 0.25. The model-implied inflation forecasting errors are 29, 57, and 115 basis points

at 3, 6 and 12 month horizons respectively (Table 6). For the sake of comparison, we compute the

forecasting errors implied by an exogenous ARMA(1,1) specification and find that the corresponding

values are 28, 53, and 110 basis points.

We run an orthogonality test on the model prediction errors to test the inflation process goodness

of fit. Let Et (πt+1| It) be the model-implied expected inflation rate. If the model is correctly

specified, the prediction errors should be orthogonal to any function of xt, measurable with respect

to It. If the model is not correctly specified, some function of the explanatory variable φ (xt) would

improve the model forecasts, i.e. Et (πt+1| It)+ θ0φ (xt) . Consider the inflation forecast error ut+1 =
πt+1 − Et (πt+1| It) − θ0φ (xt), and the null hypothesis H0 : θ = 0. Define h (xt, θ) as a function of

the prediction errors

h (xt, θ) =

∙
ut+1 (θ)

ut+1 (θ)⊗ [ξ (xt)]
¸

Under the null hypothesis that the model is correctly specified θ0 = 0 and Eh(xt, θ0) = 0. Using a

standard GMM approach we observe that, under the null hypothesis, the following dT−statistics is
distributed as a χ2

dT = T · £hT (xt, θ0)0W−1
T hT (xt, θ0)− hT (xt, θ)

0W−1
T hT (xt, θ)

¤
where θ0 is the parameter value restricted to be equal to zero and θ is the unrestricted parameter

value, with hT (xt, θ) =
PT

t=1 ht (xt, θ).

The results are reported in Table 5. We find that the p-value of the orthogonality tests are

0.066, 0.156 and 0.374 at 3, 6 month and 1 year horizons respectively. Thus, we do not reject the

null hypothesis that the inflation prediction errors are orthogonal to φ(xt).

5. The Term Structure of Second Moments. We now turn to explore the extent to which the

model can reproduce the time variation of the conditional second moments of the term structure of

interest rates once we fix the parameter at their estimated values.28 Let φnt be the Model-Implied

Conditional Second Moment, which is obtained by solving in closed form Et

£
∆ynt+∆t

¤2 using the
28Dai and Singleton (2001), Backus, Telmer and Wu (1999) document the trade-off of traditional models in explaining

the first and second moments of interest rates.
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model’s structural restrictions. We run a regression the regression29¡
∆ynt+∆t

¢2
= α+ β × φnt + εt+∆t

We test the null hypothesis that H0 : α = 0 and H0 : β = 1. The results are summarized in Table 9,

Panel B. We fail to reject the null hypothesis that H0 : α = 0 for maturities above 3 years. Moreover,

we do not the null hypothesis that H0 : β = 1 for any maturities. The R2 of the regressions range

from 11% for the 10-year yield to maturity to 26% for the 3-month yield to maturity. These results

can be compared with Duarte (2000). He runs a similar test both on a three factor CIR model and

on his own model with a flexible specification for the price of risk. Based on the 1983-1998 sample

period,30 he rejects the null hypothesis that H0 : β = 1 and reports a R2 that ranges between 7% and

15% for the CIR model. The persistence of the habit stock as a state variable clearly helps explain

the yield change volatility at the short end of the term structure as the R2 are larger than those

reported in Duarte (2000). We find it, however, less helpful in the long end of the term structure.

We also compute an asymptotic GMM test of the model’s ability to reproduce the condi-

tional second moments of bond yields. For each maturity n, we construct the test statistic dT =h
1√
T

PT
t=1 ht+∆t

i0
W−1

T

h
1√
T

PT
t=1 ht+∆t

i
with ht+∆t =

¡
∆ynt+∆t

¢2 − φnt . This statistic is distributed

as a Chi-square with one degree of freedom. The results are reported in Table 9, Panel A. The

p-value of the test ranges from 37% for the 3-month yield to 18% for the 10-year yield to maturity.

A joint test based on all maturities, gives a p-value equal to 21%. We conclude that the model can

produce sufficient time-variation in the conditional second moments.

VII. Nonlinear Interest Rates

Our model implies a nonlinear short-term interest rate process. To investigate the nonlinearity of

interest rates, Conley, Hansen, Luttmer, and Scheinkman (1997) study the pull function ℘(r), which

is defined as the conditional probability that the process rt reaches the value r + ε before r − ε, if

initialized at r0 = r. Formally, let Tε be the local hitting time Tε = inf (t ≥ 0; rt = r + ε), then ℘(r)

is defined as ℘(r) = Pr {Tr+ε < Tr−ε|r0 = r}. In practice, ℘(r) is computed as

℘(r) =
S(r)− S(r − ε)

S(r + ε)− S(r − ε)

where S(y) = R y s(x)dx with s(x) being the scale function of the interest rate process, i.e. s(x) ≡
exp

h
− R x 2µr(v)σ2r(v)

dv
i
. Solving the previous equation, ℘(r) = 1

2 +
µr(r)
2σ2r(r)

ε+o(ε), where µr(r) and σr(r)

are the drift and local volatility of the interest rate process. Thus, ℘(r) has a simple and intuitive

interpretation: it is a conditional measure of mean reversion (scaled by twice the local variance).

Conley, Hansen, Luttmer, and Scheinkman (1997) estimate ℘(r) using the properties of subordinated

29The spirit of this regression analysis is similar to the one outlined in Duarte (2000). Our regression, however,
applies to the volatility of the changes in bond yields, as opposed to that of the level of bond yields
30This time span does not include the period of high interest rate volatility, which is more difficult to predict.
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diffusions for alternative interest rate specifications and suggest a test statistic to compare the model-

implied ℘(r) with its sample counterpart. They find statistical evidence of non-linearity in µr(r).

In what follows, we use their methodology to investigate the difference between the model-implied

pull function, computed at the estimated structural parameter values, and its empirical counterpart,

estimated using semi-parametric methods.

Figure 1

To estimate the model-free ℘(r), we assume a flexible polynomial specification of the local volatil-

ity σ(r) =
Pγ

i=0 σir
i and follow Conley, Hansen, Luttmer, and Scheinkman (1997) to estimate the

drift µ(r). The results are shown in Figure 1. The pull function is positive for rt ≤ 5.4% and it

goes above 10 for interest rate values below 4%. The model-implied ℘(r) has a similar behavior

and it remains inside the confidence bounds for most part of the support. We run a test of the null

hypothesis that the pull function implied by the habit model is equal to the empirical one and find

that the p-value is equal to 0.43. We do not reject the null hypothesis that the model is correctly

specified. Second, we impose the restriction that the interest rate drift µr(r) is linear and recom-

pute the pull function. The p-value is now equal to 0.02 and we find the pull function outside the

confidence bounds for large sections of the support. We conclude that the type of non-linearity in

interest rates implied by the model is consistent with the data in our sample period.

VIII. The Lead-lag Relation between Interest Rates,
Consumption and Money

The lead-lag correlations between real interest rates, consumption and output are important prop-

erties in the real business cycle literature. Fiorito and Kollintzas (1994) and Chari, Christiano, and

Eichenbaum (1995) report that real and nominal interest rates are positively (negatively) correlated

with past (future) detrended output. Wachter (2005) focuses on a real interest rate model and finds

that future real interest rates are predicted by the past average consumption. King and Watson

(1996) and Boldrin, Christiano, and Fisher (2001) view the lead-lag relationship between consump-

tion, output and interest rates as an important challenge to standard models with time-separable

preferences, such as Cox, Ingersoll, and Ross (1985). They argue that the original model should be

extended to include more general preferences and/or monetary policy shocks. The empirical evidence

reported in these studies is consistent with the predictions of our model. To see this, observe that

equation (11) implies that ∂rt/∂Yt > 0. The relationship between Yt and the nominal interest rate

Rt given by equation (8) is more complicated since it involves the indirect effect of Yt on the inflation

rate. Nonetheless, it is possible to show that ∂Rt/∂Yt > 0. This implies that an increase in lagged

consumption increases the habit stock, thus reducing St and increasing Yt, with the resulting effect

of increasing interest rates. Since money reduces transaction costs, lagged positive innovations in

the money supply have a similar effect.

We investigate these relationships by regressing the short term real and nominal interest rates

onto the Yt process. The exact solution for Yt is given in Proposition 1 as Y (t) = λ + (Y0 − λ)eφt
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exp{−σy(Wt −W0)} + k(θ − λ)
R t
0 e

φ(t−s) exp{−σy(Wt −Ws)}ds where φ = exp(−(ky + 1
2σ

2
y)). We

construct an empirical time-series for Yt as a function of lagged observed innovations in consumption

and monetary holdings by discretizing the previous solution. We obtain Ỹt. Then, we study the

following regressions:

rt+1 = α1 − β1Ỹt (φ, γ) + εt+1

Rt+1 = α2 − β2Ỹt (φ, γ) + ηt+1

An empirical prediction of the model is that H0 : β1 < 0 and H0 : β2 < 0. We present the results

both for a full grid of parameter configurations (φ, γ), to check their robustness against a range of

parameter values, and for the parameter values obtained by estimating the structural model.

Real Interest Rate. The regression results are given in Table 3, Panel A. At the estimated parameter

values of the structural economy, ky = 0.02 and σy = 0.027 hence φ = 0.96 and γ = 0.51. With this

parameter configuration, we obtain β1 = −0.17 and R2 = 15%. The slope coefficient is negative and

significantly different from zero as predicted by the model. The result is robust to any parameter

configuration (φ, γ) with φ > 0.90. Moreover, we find that the result, both in terms of R2 and

statistical significance of the slope coefficient, is not very sensitive to γ.

Nominal Interest Rate. The regression results for the nominal interest rates are given in Table 3,

Panel B. At the estimated parameter values of the structural economy, the slope coefficient is −0.32
with a t-statistic equal to −7.5. The R2 is 34%. Can we use a real term structure model, similar

to Cox, Ingersoll, and Ross (1985) and Wachter (2005), to explain the dynamics of the nominal

yield curve? The simple answer is “no”. Nominal interest rates are strongly influenced by monetary

fundamentals. To see this, notice that when γ = 0 (see first column in Table 3, Panel A and B), the

Ỹt process has very limited explanatory power of the interest rate process. The R2 hardly reaches

1%. For this parameter value, money does not provide any transaction service and is not held in

equilibrium. The model economy is real. When the real monetary aggregate is included, however, for

parameter values above γ = 0.40 the R2 exceeds 30%. This evidence is very useful since it suggests

that a real term structure model cannot, on its own, explain the dynamics of the nominal yield curve.

Moreover, the persistent effect generated by the habit stock help explain the relationship between

interest rates and lagged consumption.

IX. The Expectations Hypothesis

The expectations hypothesis of interest rates, hereafter EH, is one of the most debated and studied

financial relationships. If the EH were correct, at least in a statistical sense, one could use implied

forward rates to obtain a simple unbiased proxy for the expected future spot rate. Most of the EH

empirical evidence, however, indicates its rejection. This empirical evidence suggests the existence

of a time-varying risk premium.31 The extent and importance of the deviations are such that the
31Bekaert, Hodrick, and Marchall (2001) suggest a different explanation and investigate whether the violation of the

EH in U.S. data may be the result of a peso problem, in which a high-interest-rate regime occurred less frequently in
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size of the bias with respect to the EH predictions has been used in the empirical literature as a

separate moment condition to build model specification tests. Such a metric is directly related to

the properties of the conditional second moments of interest rates.32

We explore the extent to which monetary and habit factors can explain the time variation of the

forward risk premium. Let the forward interest rate at time t for an instantaneous forward contract

beginning at time T = t + τ be f(t, T ). The instantaneous forward rate is − ∂
∂T lnN (t, τ). Taking

the derivative of the log-price of the bond we obtain

f (t, τ) = − ∂
∂τ lnN (t, τ) = ρ−

2X
i=1

∂
∂τΛY i (τ)Yt +

∂
∂τΛci (τ) cit +

∂
∂τΛciY (τ) citYt +

∂
∂τΛ0i (τ)

(ΛY i (τ)Yt + Λci (τ) cit + ΛciY (τ) citYt + Λ0i (τ))

The nominal rate is given by

Rt =
Yt(c1t + c2t)hP2

i=1 (ΓY iYt + Γcicit + ΓciY citYt + Γ0i)
i

The EH postulates that the difference between the forward rate f(t, τ) and the expected future spot

interest rate Et(Rt+τ ) is constant:

f(t, τ)−Et(Rt+τ ) = α

However, in our model the forward risk premium depends on the levels of the nominal risk factors

cit and the consumption surplus St. Thus, the model may provide a possible explanation for the

EH violation. The nonlinear dependence of the nominal rate on the model factors does not allow

analytical solutions for Et (Rt+τ ). However, we can compute Et(Rt+τ ) numerically using standard

methods. To assess the forward premium’s time variation and dependence on the monetary and habit

factor, we regress the forward premium onto the monetary factors cit and the inverse consumption

surplus ratio Yt.

f (t, τ)−Et (Rt+τ ) = α+ β1icit + β2Yt + εt

We then assess (a) whether the forward premium is constant by testing H0 : β1i = β2 = 0, and (b)

the relative contribution of the nominal and habit factors to the forward risk premium time variation.

The results are given in Table 7. To gain insight into the reasons for the strong rejection of the EH,

we decompose the total time-variation of the forward premium into two components: the nominal

and habit factors. We find that at a three month horizon, 87% of the volatility of the forward

premium is due to the nominal factors and 13% is due to the habit factor. At a one year horizon,

the importance of the habit factor increases to 62%. Especially at short horizons, the rejection of

the EH is mainly due to the time variation in the risk premium of nominal shocks.

the U.S. sample than was rationally anticipated.
32The Campbell and Shiller (1991) tests of the EH focus on the slope coefficient properties of a regression of future

yield changes onto the current slope of the term structure. Since such a slope coefficient is a ratio between a conditional
covariance and a conditional variance, the ability of a model to reproduce the empirical violations of the EH are a
function of the ability of the model to reproduce the empirical conditional second moments of interest rates.
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Campbell and Shiller regressions. Campbell and Shiller (1991) regress the change in the

constant time-of-maturity yield onto the current slope of the yield curve. To determine the time

variation of the forward risk premium, we explore the following question: “If we generate term

structure data using our structural model and run Campbell-Shiller (1991) type regressions, do we

find the same pattern in the slope coefficients?”. Let yτt be the yield at time t on a Treasury bond

with maturity t + τ . Given a sampling frequency equal to m units of time, consider the following

regression

yn−mt+m − ynt = α+ β

∙µ
m

n−m

¶
(ynt − ymt )

¸
| {z }+εt

Sn,mt

The Expectations Hypothesis suggests that β = 1. Campbell and Shiller (1991) test this hypothesis

and find not only that the slope coefficient is different from one, but is also negative. Thus, an

increase in the slope of the term structure is followed by a decrease in long term yields. At a 7 year

maturity horizon, the empirical slope coefficient is about −3. These results have been proven to be
robust. In fact, a large sample of empirical literature now considers the slope coefficients of such

regressions as moment conditions in themselves, from which to build tests of model specification.

We generate data using the model and run a Campbell-Shiller type regression for each simulated

run. Then, we test whether the model-implied moments are significantly different from the empirical

ones. Since the slope coefficient is the ratio of the covariance between the left and right hand side

variable over the variance of the right hand side variable, we can design a GMM test using the slope

coefficient as a moment condition. Let β(Θ̂) be the model-implied slope coefficient of the Campbell-

Shiller regressions, given the set of estimated structural parameters Θ̂. Let β̂ be the empirical slope

coefficient obtained by re-running the Campbell-Shiller regression on the data-set. We simulate the

model 1000 times and test whether the simulated moments are close to those obtained from the data.

Table 8 summarizes the results. Both the absolute levels of the slope coefficient and their patterns

as a function of maturity closely mirror the Campbell and Shiller results. The slope coefficient at a

one year horizon implied by the structural model is −0.02 compared to a value of −0.58 obtained
empirically. As the horizon increases, the slope coefficients decrease as in Campbell and Shiller. At a

7 year horizon, the implied slope regression coefficient is −1.86 while the empirical Campbell-Shiller
value is −2.13. We run Chi-square tests of the null hypothesis that H0 : β(Θ̂) = 1 and that the

two sets of coefficients are equal, i.e. H0 : β(Θ̂) = β̂cs. We find that the implied values of the

Campbell-Shiller regression coefficients strongly reject the expectations hypothesis at any confidence

level. Additionally, the implied slope coefficients β(Θ̂) are not significantly different from those

obtained by Campbell and Shiller, with p-values ranging between 0.07 and 0.44. The p-value of a

joint test for all maturities is 0.14.

Why does the model succeed? Most traditional affine reduced-form models of the term structure

assume that the market risk premium is proportional to the volatility of the latent factors. Duffee

(2002), Duarte (2000), Dai and Singleton (2000), Backus, Telmer, and Wu (1999) show that this

assumption is an important limiting feature. Our model differs in that the equilibrium price of risk
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is not directly proportional to the local volatility of the pricing factors. Moreover, it can change sign,

allowing for more flexibility in the expected returns dynamics. The properties of the risk premium

are such that the volatility of the returns can be high without necessarily implying a high expected

bond return.

X. The Inflation Risk Premium

An additional important implication of the model regards the yield spread between nominal and

index-linked bonds. Several articles in the empirical literature find that this spread exceeds the

expected inflation rate, which indicates the existence of a large inflation risk premium. Using U.K.

data, Risa (2001) estimates that the average inflation risk premium has been above 100 basis points;

Tristani and Vestin (2005) find that in the Euro-area it has fluctuated over time between 20 and 100

basis points. Ang and Bekaert (2005) obtain similar values using U.S. Treasury data.33

This empirical evidence cannot be easily reconciled with standard asset pricing models. Lucas

(2000), for instance, calibrates a cash-in-advance model and finds that in low inflation regimes the

welfare costs of inflation are extremely small. Buraschi and Jiltsov (2005) show that in order for a

structural model to support realistic inflation risk premia one needs to assume fiscal distortions and

a large effective marginal tax rate.

In our model, the violation of the Fisher relationship between nominal and real interest rates is an

equilibrium feature of the model and the inflation risk premium is positive even in the absence of fiscal

distortions. The violation is generated by the fact that inflation reduces the real value of the monetary

holdings that are used to finance the optimal consumption plan. With respect to traditional models

with time-separable preferences, however, habit formation increases the volatility of the stochastic

discount factor and its covariance with inflation. Thus, habit formation can potentially generate

inflation risk premia that are consistent with those observed empirically even abstracting from fiscal

distortions. To explore this issue, in what follows we fix the estimated values of the structural

parameters and compute the model-implied inflation risk premia.

The inflation risk premium is defined as COVt
h
e−ρτ u

0(Xt+τ−Ht+τ )
u0c(Xt−Ht)

;
p∗t
p∗t+τ

i
, which is also equal to

the difference between the value of a nominal bond N(t, t) and the value of a real bond adjusted

by the expected change in the general price level B (t, τ) × Et

h
Pt

Pt+τ

i
. When we use the estimated

values of the structural parameters, we find that the average inflation rate risk premium is 44 basis

points at a 8 year horizon. It ranges over time between 20 and 90 basis points. The average term

structure of this premium, calculated over the entire sample, is presented in Panel D of Figure 4. The

term structure is upward sloping. In the short run, inflation is influenced by the short-term history

of monetary policy. In the longer run, a greater inflation uncertainty and longer bond duration

translates into a higher premium on nominal bonds. Moreover, duration amplifies the price impact

33An additional reason for the growing interest of the literature in the estimation of the inflation risk premium is that
expected inflation rates are often computed by subtracting the inflation risk premium from the yield spread between
nominal and indexed-linked bonds.

31



of inflation on long term bonds so that long nominal bonds require higher risk premia.

Panel B of Figure 4 illustrates the dynamics of the inflation risk premia. During periods of high

nominal interest rates and inflation, such as during the 1982 recession, the inflation risk premium

increased. Panel C of Figure 4 shows the three dimensional evolution of the inflation risk premium

in both time and maturity domains and it suggests that a structural model with habit persistence

can support large and time-varying inflation risk premia that are consistent with those found by the

empirical literature.34

XI. The Equity Premium

What is the trade-off between explaining interest rate properties and the equity risk premium?

Traditional models with time separable preferences find it hard to match both the observed equity

premium and bond premia. For sensible levels of risk aversion, observed equity excess returns are

too high. Moreover, bond excess returns are too small with respect to their volatility.

Stambaugh and Kandel (1991) show that breaking the link between the atemporal risk aversion

and the intertemporal rate of substitution allows the model to produce equity risk premium closer

to the empirical evidence without worsening the risk free rate puzzle. In what follows, we investigate

the magnitude of the trade-off between matching the properties of the term structure of interest rates

and matching the level of equity risk premium. Bekaert, Engstrom, and Grenadier (2004) estimate

moment conditions implied by an affine model with preference shocks to investigate the trade-off

between matching equity and bond risk premia. They find that stochastic risk aversion helps to

explain some important features in the data.

LetWi(t) be a contingent claim (equity) on the dividend Di(t) and let the dividend be a fraction

wi of the total consumable output, Di = wiC. Menzly, Santos, and Veronesi (2004) investigate

the cross section of equity returns assuming that the dividend consumption ratio wi is an industry

specific stochastic process. We focus on the total wealth portfolio and assume wi to be a constant.

In equilibrium
P

iDi = C. Using the functional form of the stochastic discount factor, we have

W (t) =
1

u0c(t)
Et

∙Z ∞

t
e−ρ(u−t)u0c(u)D(u)du

¸
= wStCtEt

∙Z ∞

t
e−ρ(u−t)

1

Su
du

¸
Under the assumption that the integral converges, which requires ρ > 0, we can apply Fubini’s

Theorem to invert the order of integration:

W (t) = wStCt

∙Z ∞

t
e−ρ(u−t)Et [Yu] du

¸
34 It would be of great interest to extend the dataset to include also U.S. index-linked bonds. Unfortunately, the

first issue of these securities occured in 1997, so that the lack of available data limits, thus far, the reliability of a joint
estimation of the model.
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Since the drift of the process is linear, Et [Yu] = θy + (Yt − θy) e
−ky(u−t). Hence

W (t) = wCt

∙Z ∞

t
e−ρ(u−t)St

h
θy + (Yt − θy) e

−ky(u−t)
i
du

¸
=

= wStCt

∙
θy
ρ
− θy

ρ+ ky

¸
+

1

ρ+ ky
Ct

= wCt
1

ρ+ ky

µ
1 +

kyθy
ρ

St

¶
The risk premium on the total wealth portfolio is thus given by dRw

t =
dW (t)+D(t)dt

W (t) − r(t)dt. Let us

define A ≡
h
θy
ρ − θy

ρ+ky

i
and B ≡ 1

ρ+ky
so that Wi(t) = wiAStCt + BCt. Using Ito’s rule it can be

shown that

dRw
t = µwdt+ σwdWt

µw = µc +
BSt

A+BSt

£
ky(1− θySt) + (1− λSt)

2σ2y − (1− λSt)σc [σcy − σliyρlic]
¤− rt (15)

σwdWt = σcdW
c
t −

µ
BSt

A+BSt

¶
(1− λSt)σ

0
ydW

y
t (16)

The expected equity risk premium is the sum of two terms. The first term is directly proportional to

the consumption growth rate. The second term is the product of two terms. The first term increases

with the surplus ratio. The second term is non monotone in St. For large values of ky and λ and

small values of σc, the equity risk premium is decreasing in the surplus ratio St. More precisely, for

St <
1

2λ2σ2y

¡
kyθy + 2λσ

2
y - λσc (σcy − ρcliσyli)

¢
, the equity risk premium is decreasing in the surplus

ratio St. The intuition is simple: the larger the surplus ratio is, the lower the curvature of the

utility function is, the lower the indirect risk aversion is and therefore the lower the expected equity

premium is. At the estimated values of the structural parameters, which are not based on equity

return properties, the implied equity risk premium is 4% and the volatility of the equity risk premium

is 5%. This compares with empirical values of 7% and 16% respectively. Since the results suggest

the existence of a trade-off between fitting term structure moments and the average equity premium,

we re-estimate the model imposing (15) and (16) as additional overidentifying restrictions. In the

new estimation, the model is also required to reproduce the unconditional equity risk premium and

its volatility. With these additional restrictions, the median yield absolute fitting errors increase to

14bp, 16bp, 16bp, and 39bp for bonds with maturity 3m, 1y, 5y, and 10y respectively (compared with

Table 4, Panel B). The additional equity risk premium restriction increases the average yield curve

fitting errors by about 2bp. We also investigate the effect of these restrictions on the conditional

second moment properties of the yield curve by recomputing the Campbell-Shiller linear projection

coefficients. When we impose the restrictions on µw and σw in the estimation, the difference between

model-implied and empirical linear projection coefficients increases:
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Joint Test 1 2 3 5 7 10
Empirical β -0.579 -0.955 -1.238 -1.723 -2.135 -2.621
Model β(bθ) -0.020 -0.339 -0.652 -1.274 -1.865 -2.492
Restricted Model β(bθ) -0.015 -0.026 -0.553 -1.097 -1.650 -2.221

p-val for Hun
0 : β(bθ) = βCS 0.069 0.088 0.129 0.237 0.351 0.440

p-val for Hre
0 : β(bθ) = βCS 0.069 0.084 0.101 0.180 0.250 0.358

Joint Test Hre
0 : β(bθ) = βCS 0.11

The joint test on all maturities produces a p-value equal to 11%. The restricted model is still not

rejected. The absolute values of the projection coefficients, however, are lower. The restricted model

finds it more difficult to reproduce the linear projection coefficients for horizons lower than two years.

The intuition is simple. In order to match the equity risk premium, the restricted model must imply

a higher indirect risk aversion. This increases interest rate volatility and reduces the absolute level

of the linear projection coefficients. In turn, this reduces the short term performance of the model.

The implied relative risk aversion (RRA) can be obtained from the value function V as RRA =

−WVWW (W )
VW (W ) = −∂ lnVW

∂ lnW . Since the envelope condition for the maximization problem implies that

VW = uc, we obtain RRA = − ∂ lnuc
∂ lnC0

∂ lnC0
∂ lnW0

= η0
∂ lnC0
∂ lnW0

where η is the curvature of the utility

function: ηt = −Ctucc(Ct,Xt)
uc(Ct,Xt)

= −∂ lnuc(Ct,Xt)
∂ lnCt

. Using the first order conditions, it is possible to show

that

RRAt =
ρ

ρ+ ky

µ
Yt +

ky
ρ
θy

¶
=

ρ

ρ+ ky

µ
1

St
+

ky
ρ
θy

¶
In the unrestricted model, the unconditional average of Yt is θy. If we substitute Yt = θy, the average

value of the RRA coefficient is 11. Most of the dynamics of indirect RRA range between 10 and 20

with the exception of the 1980−1982 period, characterized by the short-term monetary experiments,
in which the model-implied RRA coefficient reaches 28.

The implied average risk aversion for the restricted model is 28. The average curvature needed

to reproduce, at the same time, also the unconditional equity risk premium is higher. Thus, even if

the unrestricted model can match interest rates properties without assuming a large curvature of the

utility function, the restricted model requires a larger average risk aversion. The difference between

the restricted and unrestricted indirect RRA is statistically significant. This result highlights both the

advantages and limitations of this particular class of habit models. Reverse-engineering the preference

structure to obtain a habit process that is consistent with asset pricing moment conditions grants

sufficient flexibility to the model to match, at the same time, conditional first and second moments

of bond yields and the non-linear dynamics of the spot interest rate. The model, however, shows its

fragility when pushed one step further: explaining, at the same time, conditional moments of bond

yields and the equity risk premium.
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XII. Conclusion

In the last ten years, models with time non-separable preferences have been the focus of several

studies. Important examples of these models explore preferences with habit formation. Little is

known, however, about their term structure of interest rates implications. This paper is the first to

investigate a monetary model with (external) habit formation and derive closed-form solutions for

the dynamics of both nominal and real yield curves.

The distinctive features of the model with respect to traditional specifications are that the price

of risk is not a constant multiple of the interest rates volatility and that it is state dependent. In bad

(good) states of the world, the implied curvature of the indirect utility function is higher (lower). This

is useful to help explain the changes in the observed term premium over the business cycle. Second,

interest rates are correlated with both current and lagged monetary and consumption innovations.

Third, the drift of the short-term interest rate is non-linear.

Moreover, the paper documents new empirical evidence of the extent to which habit persistence

can help explain term structure of interest rates dynamics. We find the following.

First, tests of the overidentifying yield curve pricing restrictions do not reject a model with habit

formation. We find that, at the estimated parameter values of the structural model, the model can

simultaneously reproduce both the persistence of the conditional second moments of changes in bond

yields and their conditional first moments. We run an asymptotic GMM test based on the second

moments of yield changes and find that the null hypothesis that the model is correctly specified is

not rejected at any horizon between 3 months and 10 years.

Second, habit formation helps reproduce both the sign and magnitude of the interest rate devia-

tions from the expectations hypothesis described by Campbell and Shiller (1991). The model-implied

linear projection coefficients are negative and increasing in absolute value with the regression horizon.

Third, we investigate whether, at the estimated parameter values, habit persistence helps ex-

plain the lead-lag correlation between interest rates and money highlighted in the macroeconomics

literature (King and Watson, 1996). We find that a predictive regression of future nominal interest

rates on the model-implied nominal habit stock produces a R2 in excess of 30%.

Fourth, since the model can account for deviations from the Fisher hypothesis, we investigate

the spread between nominal and real interest rates and estimate the inflation risk premium. We find

that the inflation risk premium accounts for about one fourth of the nominal versus real interest rate

spread. This premium is upward sloping and time varying. The average inflation risk premium is 44

basis points at an eight year horizon and it ranges between 20 and 90 basis points. We find that this

time variation plays a key role in explaining the rejection of the expectations hypothesis.

We also document the limitations of the model and show the extent of the trade-off between

explaining the equity risk premium and the characteristics of interest rates dynamics. We find that

the equity risk premium implied by the unrestricted model is 4%. This is lower than the empirical

value of 7%. When we restrict the model to also match, at the same time, the equity risk premium,

most of the p-values of tests based exclusively on interest rate data decline substantially. The model is
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still not statistically rejected. Its performance, however, in reproducing short-term Campbell-Shiller

linear projection coefficients is weaker.
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Appendix. Proofs
Proposition 1.
A. Strong form solution of the diffusion processes.
Consider dYt = k(θ − Yt)dt− σy(Yt − λ)dWt. Let Zt = Yt − λ, so that dZt = k(θz −Zt)dt− σyZtdWt and θz = θ − λ.
Let us make a change of variable using the function ω(t) = exp{�k + 1

2
σ2y
�
t + σy(W (t)−W (0))}. Using Ito’s rule and

noticing that dωt = ωt(k + σ2y)dt+ ωtσydWt we obtain:

d(ωtZt) = ωtdZt + Ztdωt + hdωtdZti
= kθzωtdt

which can be directly integrated to yield

Zt =
1

ωt

�
Z0ω0 + kθz

] t

0

ωsds

�
Transforming back to Y (t):

Y (t) = λ+
1

ωt

�
(Y0 − λ) + k(θ − λ)

] t

0

ωsds

�
ωs = exp{(k + 1

2
σ2y)s+ σy(Ws −W0)}

B. Existence of a stationary density.
Sufficient conditions for the existence of a stationary density are that σ2(y) > 0 in the interior of the support (λ,∞) of
the process and that both boundaries are entrance boundaries, i.e.

U∞
λ

m(y)dy <∞ and
U x
λ
s(y)dy =

U∞
x

s(y)dy =∞,
∀x ∈ (λ,∞) [Theorem 5.7 and 5.13 of Karatzas and Shreve (1991), p.335; see for applications Conley, Hansen, Luttmer,
and Scheinkman (1997) and Ait-Sahalia (1996)] where s(y) and m(y) are the scale function and speed density of the
process

s(y) = exp

�
−
] y 2µ(v)

σ2(v)
dv

�
, L < y < U

m(y) =
1

σ2(y)s(y)

Substituting the drift and volatility of the dYt process, s(y) = exp
k
− U y 2k(θ−v)

σ2y(v−λ)2
dv
l
. Integrating by parts we have:

s(y) = (y − λ)
2k
σ2y exp

�
2k(θ − y)

σ2y(y − λ)

�
For the lower boundary as y → λ, if 2kθ

σ2y
> 0 the scale function s(y) is dominated by exp

k
2k(θ−y)
σ2y(y−λ)

l
and

U x
0
(y −

λ)
2k
σ2y exp

k
2k(θ−y)
σ2y(y−λ)

l
= ∞. For the upper boundary, as y → ∞, if 2kθ

σ2y
> 0, s(y) is dominated by (y − λ)

2k
σ2y , whose

integral is 1
2k
σ2y

+1
(y − λ)

2k
σ2y

+1

. Thus, if 2k + σ2y > 0, we have
U∞
x
(y − λ)

2k
σ2 exp

k
2k(θ−y)
σ2y(y−λ)

l
= ∞. The last condition

requires that
U∞
0

m(v)dv <∞] ∞

0

m(v)dv =

] ∞

0

1

σ2y(v − λ)2
(v − λ)

− 2k
σ2 exp

�
− 2k(θ − v)

σ2y(v − λ)

�
dv =

=
1

σ2y

] ∞

0

exp

�
− 2k(θ − v)

σ2y(v − λ)

�
(v − λ)

−2k−2σ2y
σ2y dv

For the upper boundary, as v →∞, the exponential converges to exp 2k
σ2y
; the integral of v

−2k−2σ2y
σ2y is − σ2y

2k+σ2y
v

−2k−σ2y
σ2y

which converges to a finite value if −2k − σ2y < 0 or 2k + σ2y > 0. For the lower boundary, as v → λ, if 2kθ
σ2y

> 0 the

exponential goes to zero and it dominates the behavior of the integrand.

C. Functional form of the stationary density.
Consider first the case λ = 0. If it exists, the stationary density p(x) of the previous diffusion process is equal

to the normalized speed function, i.e. p(x) = N·m(x), where N is the normalization constant. Given the previous
solution for m(x), the stationary distribution must take form p(x) = N·xa exp � b

x

�
. This is an Inverted-Gamma density

with a = −2(1 + k
σ2
) and b = −2 kθ

σ2
.
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The solution can be easily verified by checking that p(x) solves the Fokker-Planck equation d
dy
[µ(y)p(y)] −

1
2
d2

dy2

�
σ2(y)p(y)

�
= 0, which can be rewritten (see Wong (1964)) as

�
p(x)σ2(x)

�0
= 2µ(x)p(x). Substituting the guess

p(x) = N·xa exp � b
x

�
, we obtain:

�
σ2a+ 2σ2

� �
xa+1 exp(

b

x
)

�
− bσ2

�
xa exp(

b

x
)

�
= 2kθ

�
xa exp(

b

x
)

�
− 2k

�
xa+1 exp(

b

x
)

�
Matching the coefficients, we have σ2 (2 + a) = −2k and −bσ2 = 2kθ. This implies that a = −2(1+ k

σ2
) and b = −2 kθ

σ2
.

Notice that the Inverse Gamma distribution is well defined if and only if b < 0 and a < −1. These are satisfied if
Condition 1 and 2, respectively, are satisfied: kθ > 0 and 2k + σ2 > 0.

For λ > 0, the diffusion can be easily obtained from the previous one using a change of variables x = y − λ, the

result is p(y) = N · (y − λ)a exp
�

b
y−λ

�
. This is an Inverted-Gamma density with a = −2(1 + k

σ2
) and b = −2k(θ−λ)

σ2
.

D. Second Moments. Let us consider the canonical representation of Y 2
T . Taking the expected value and differentiating

with respect to T we obtain:
dE0

�
Y 2
T

�
dT

= ν0(T ) + ν1E0
�
Y 2
T

�
with ν1 = (σ

2 − 2k) and ν0(T ) = 2
�
kθ − λσ2

�
Et (YT ) + λ2σ2. The previous differential equation admits the following

solution:

E0Y
2(T ) = e(σ

2−2k)TY 2
0 +

] T

0

ν0(s)e
(σ2−2k)(T−s)ds

If Condition 2 is satisfied, the result folllows.

Lemma 1. (Conditional Moments of Product)
Consider a linear system of two mean-reverting Ito processes ξ1t and ξ2t

dξ1t = kξ1 (θξ1 − ξ1t) dt+ (ξ1t − λξ1) [υdW
2
t + σξ1dW

1
t ]

dξ2t = kξ2 (θξ2 − ξ2t) dt+ (ξ2t − λξ2)σξ2dW
2
t , E(dW 1

t · dW 2
t ) = ρdt

We will prove that the conditional expectation of their product qt = ξ1tξ2t is equal to

Et [qt+τ ] = A3(τ ;Θξ1 ,Θξ2)qt +A1(τ ;Θξ1 ,Θξ2)ξ1t +A2(τ ;Θξ1 ,Θξ2)ξ2t +A0(τ ;Θξ1 ,Θξ2) (17)

The diffusion of qt = ξ1tξ2t is

dqt = ξ2t
�
kξ1 (θξ1 − ξ1t) dt+ (ξ1t − λξ1) [υdW

2
t + σξ1dW

1
t ]
�
+ ξ1t

�
kξ2 (θξ2 − ξ2t) dt+ σξ2 (ξ2t − λξ2) dW

2
t

�
+ ρσξ2 (ξ2t − λξ2)σξ1 (ξ1t − λξ1) dt+ (ξ2t − λξ2)σξ2 (ξ1t − λξ1)υdt

The stochastic process qt follows

dqt = [a3 + hξ2ξ2t + hξ1ξ1t + hqqt] dt+ΣqdW

with +
hξ2 = kξ1θξ1 − ρσξ2σξ1λξ1 − υσξ2λξ1 a1 = kξ2θξ2
hξ1 = kξ2θξ2 − ρσξ2σξ1λξ2 − υσξ2λξ1 a2 = kξ1θξ1
hq = −kξ1 − kξ2 + ρσξ2σξ1 + υσξ2 a3 = ρσξ2σξ1λξ2λξ2 + υσξ1λξ1λξ2

(18)

Consider the following three dimensional process ft = [ξ2t, ξ1t, qt] . Then we can describe the dynamics of the process
as

dft = (A0 +A1ft) dt+ΣfdW

where

A0 =

� a1
a2
a3

�
, A1 =

% −kξ2 0 0
0 −kξ1 0
hξ2 hξ1 hq

&
The system is linear, and the expected value Et [ft+τ ] can be calculated as

Et [ft+τ ] = Ψ (t+ τ) ft +

] t+τ

t

Ψ ((t+ τ)− s)A0ds

with Ψ (τ) = U exp (Λ · τ)U−1 where Λ is a diagonal matrix of eigenvalues of A1 and U is the matrix of associated
eigenvectors. We can find that

Λ =

#
hq −kξ1 −kξ2

$
, U =

⎛⎜⎝ 0 0 −hq+kξ2
hξ2

0 −hq+kξ1
hξ1

0

1 1 1

⎞⎟⎠
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Simple matrix multiplication gives us

Ψ (τ) = U exp (Λ · τ)U−1 =

⎛⎜⎝ e−kξ2τ 0 0
0 e−kξ1τ 0

ehqτ−e−kξ2τ hξ2
hq+kξ2

ehqτ−e−kξ1τ hξ1
hq+kξ1

ehqτ

⎞⎟⎠
Let us define vector e3 = (0, 0, 1). Then the expected value of qt is

Et [qt+τ ] = Et [e3ft+τ ] = e3Ψ (τ) ft +

] t+τ

t

e3Ψ (t+ τ − s)A0ds

After some algebra we obtain

Et [qt+τ ] = qte
hqτ + ξ1t

�
ehqτ − e−kξ1τ

�
hξ1

hq + kξ1
+ ξ2t

�
ehqτ − e−kξ2τ

�
hξ2

hq + kξ2
(19)

+ a3
1− ehqτ

hq
+ a2

hξ1
hq + kξ1

�
1− ehqτ

−hq − 1− e−kξ1τ

kξ1

�
+ a1

hξ2
hq + kξ2

�
1− ehqτ

−hq − 1− e−kξ2τ

kξ2

�
Substituting back the values for a1, a2, a3, hξ2 , hξ1 and hq using set of equations (18) we obtain the solution in terms
of the original parameters). That is

Et [qt+τ ] = A3(τ ;Θξ1 ,Θξ2)qt +A1(τ ;Θξ1 ,Θξ2)ξ1t +A2(τ ;Θξ1 ,Θξ2)ξ2t +A0(τ ;Θξ1 ,Θξ2) (20)

where⎧⎪⎨⎪⎩ A3(τ ;Θξ1 ,Θξ2) = ehqτ , A1(τ ;Θξ1 ,Θξ2) =
ehqτ−e−kξ1τ hξ1

hq+kξ1
, A2(τ ;Θξ1 ,Θξ2) =

ehqτ−e−kξ2τ hξ2
hq+kξ2

A0(τ ;Θξ1 ,Θξ2) = a3
1−ehqτ

hq
+ a2

hξ1
hq+kξ1

k
1−ehqτ
−hq − 1−e−kξ1τ

kξ1

l
+ a1

hξ2
hq+kξ2

k
1−ehqτ
−hq − 1−e−kξ2τ

kξ2

l (21)

with Θξi being the structural parameters of the diffusion processes Θξi ≡ [kξi , θξi , σξi , λ].
¥

Proposition 2. (General Price Level)
The general equilibrium price level is obtained from the equilibrium rate of substitution between the money stock mt

and consumption.35 We have
1

Pt
= Et

�] ∞

t

e−ρ(s−t)
um (Cs,ms,Hs)

uc (Ct,mt,Ht)

1

Ps
ds

�
In the case of the log-utility function u (c,m,H) = log (Cmγ −H), we obtain

1

Pt
= γ

Ct

Yt

] ∞

t

e−ρ(s−t)Et

�
Ys

1

Ms

�
ds

= γ
Ct

Yt

1

LtMt

] ∞

t

e−(ρ+µM )(s−t)Et [YsLs] ds (22)

To solve for the price level we need to solve for the expectation under the integral. For simplicity, let us first consider
the univariate case. Let qt = YtLt and ft = [Lt, Yt, qt] . Using Ito’s rule, it is easy to show that

df(t) = [A0 +A1f(t)] dt+ΣdWt

with

A0 =

� a1
a2
a3

�
, A1 =

% −kc 0 0
0 −ky 0
hc hY hq

&

a1 = kcθc, a2 = kyθy, a3 = 0

hY = kcθc

hc = kyθy + (λσycσcρ+ λσycσc)

hq = −ky − kc − (σycσcρ+ σycσc)

35See Bakshi and Chen (1996) for an analytical derivation of this continuous time first order conditions obtained as
the continuous time limit of a discrete time economy.
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Let Ψ (τ) = U exp (Λ · τ)U−1, where Λ is the diagonal matrix of eigenvalues of A1 and U the associated eigenvectors
matrix. From Lemma 2, we have

Et [ft+τ ] = Ψ (t+ τ) ft +

] t+τ

t

Ψ ((t+ τ)− s)A0ds,

Notice that

Λ =

#
hq −kY −kc

$
, U =

⎛⎝ 0 0 −hq+kc
h2

0 −hq+ky
h1

0
1 1 1

⎞⎠

with Ψ (τ) = U exp (Λ · τ)U−1 =

⎛⎜⎝ e−kcτ 0 0
0 e−kyτ 0

(ehqτ−e−kcτ)hc
hq+kc

(ehqτ−e−kyτ)hY
hq+ky

ehqτ

⎞⎟⎠, therefore using the result (20) we
have

Et [YsLs] =
2[

i=1

(Aq(τ)qt +AY (τ)Yt +Ac(τ)cit +A0(τ))

where ⎧⎨⎩ Aq(τ) = ehqτ , AY (τ) =
(ehqτ−e−kyτ)hY

hq+ky
, Ac(τ) =

(ehqτ−e−kcτ)hc
hq+kc

A0(τ) = a3
1−ehqτ

hq
+ a2

hY
hq+ky

k
1−ehqτ
−hq − 1−e−kyτ

ky

l
+ a1

hc
hq+kc

k
1−ehqτ
−hq − 1−e−kcτ

kc

l (23)

Hence, the inverse price level is

1

Pt
= γ

Ct

Yt

1

LtMt

] ∞

0

e−(ρ+µM )τ

%
2[

i=1

(Aq(τ)qt +AY (τ)Yt +Ac(τ)cit +A0(τ))

&
dτ

In order for the integral to converge, the parameter Ai(τ) need to be bounded. In addition to Conditions [C1] and
[C2], this requires additional constraints on the size of the covariance terms between the liquidity shocks and the dY
process:

hq = −ky − kci − (σycσciρcic + σyciσci) < 0

Note that all expression for A’s are of the form eζs or 1−eζt
ζ
. Thus, for convenience let us calculate the following

integrals for a generic value ζ. We will later substitute their values as a function of the structural parameters.] ∞

0

e−(ρ+µM )τeζτdτ =

] ∞

0

e−(ρ+µM−ζ)τdτ =
1

ρ+ µM − ζ] ∞

0

e−(ρ+µM )τ

�
1− eζτ

ζ

�
dτ =

1

ζ

�
1

ρ+ µM
− 1

ρ+ µM − ζ

�
= − 1

(ρ+ µM ) (ρ+ µM − ζ)

Using the result, let us consider the first term inside the integral

Γq ≡
] ∞

0

e−(ρ+µM )τAq(τ)dτ =

] ∞

0

e−(ρ+µM )τehqτdτ

=
1

ρ+ µM − hq

Similarly,

Γc ≡
] ∞

0

e−(ρ+µM )τAc(τ)dτ =
hc

hq + kc

�
1

ρ+ µM − hq
− 1

ρ+ µM + kc

�

ΓY ≡
] ∞

0

e−(ρ+µM )τAY (τ)dτ =
hY

hq + ky

�
1

ρ+ µM − hq
− 1

ρ+ µM + ky

�

Γ0 ≡
] ∞

0

e−(ρ+µM )τA0(τ)dτ = a3

�
− 1

(ρ+ µM )(ρ+ µM − hq)

�
+ a2

hY
hq + ky

�
1

(ρ+ µM )(ρ+ µM − hq)
− 1

(ρ+ µM)(ρ+ µM + ky)

�
+ a1

hc
hq + kc

�
1

(ρ+ µM )(ρ+ µM − hq)
− 1

(ρ+ µM)(ρ+ µM + kc)

�
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Summarizing
1

Pt
= γ

Ct

Yt

1

LtMt
[Γq(τ)qt + ΓY (τ)Yt + Γc(τ)ct + Γ0(τ)]

In the multivariate case, Lt =
S

i cit, the result is easily generalizable to:

1

Pt
= γ

Ct

Yt

1

LtMt

%
2[

i=1

(Γqi(τ)qit + ΓYi(τ)Yt + Γci(τ)cit + Γ0i(τ))

&
where the additional index i refers to the parameters of the process cit.

The integral of future values of the inverse consumption surplus ratio Et

U∞
t

e−(ρ+µM )(s−t)Ysds and monetary factors
Et

U∞
t

e−(ρ+µM )(s−t)cisds can be obtained using similar methods. Under the assumption that the two integrals converge,
which require ρ+ µM > 0, we apply Fubini’s theorem to invert the order of integration. Moreover, the linearity of the
drift of dYt implies Et(Ys) = θy + (Yt − θy) e

−ky(s−t) so that

Et

] ∞

t

e−(ρ+µM )(s−t)Ysds =
θy

ρ+ µM
+

(Yt − θy)

ρ+ µM + ky

Et

] ∞

t

e−(ρ+µM )(s−t)cisds =
θic

ρ+ µM
+

�
cis − θic

�
ρ+ µM + kic

Proposition 3. (High Order Conditional moments)
Consider dc(t) = k(θ − c)dt+ σ(c− c0)dWt, From Ito’s rule

d [c(t)n] = nc(t)n−1dc(t) +
n(n− 1)

2
c(t)n−2 [σc(ct − c0)]

2 dt

Thus

d

dt
E0c(t)

n = E0c(t)
n

�
−nk + n(n− 1)

2
σ2y

�
+E0c(t)

n−1 �nkθ − λn(n− 1)σ2y
�

+E0c(t)
n−2

�
n(n− 1)

2
c20σ

2
y

�
Let V0(t) ≡ E0c(t)

n, then integrating between 0 and T

V0(T )− V0(0) =

] T

0

Ψ0(s)ds+

] T

0

Ψ1Vt(s)ds

Ψ0(s) = E0c(s)
n−1 �nkθ − λn(n− 1)σ2y

�
+E0c(s)

n−2
�
n(n− 1)

2
c20σ

2
y

�
Ψ1 =

�
−nk + n(n− 1)

2
σ2y

�
differentiating with respect to T

V 0
0(T ) = Ψ0(T ) +Ψ1V (T )

which is known to have solution E0c(T )
n = eΨ1T c(0)n +

U T
0
Ψ0(s)e

Ψ1(T−s)ds. Notice the dependence of Ψ0(T ) on the
conditional moments E0c(T )n−1 and E0c(T )

n−2. The first conditional moment satisfies the following ODEs

dEt (cT )

dT
= kθ − kEt (cT )

which has solutions Et (cT ) = θ + (ct − θ) e−k(T−t). All the other moments can be computed recursively.
The conditional variances of YT , cT and central cross moment Et [(YT −Et (YT )) (cT −Et (cT ))] can be constructed

using the same approach.
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A. Conditional Moments of Nominal Yields
Nominal yields are y (t, τ) = − lnN(t,τ)

τ , a non-linear function φ (Zt,Θ) of the state vector Zt = [Y, (t); c(t)]. Thus, since
we have closed-form solutions for all the moments of z(t), we can compute the conditional first moments of y(t, τ) by
Taylor expansion

y(T, τ) = y(t, τ) + φ0 (y(t, τ)) [y(T, τ)− y(t, τ)] +
[
n=2

1

n!

∂n

∂yn
φ(y(t, τ)) [y(T, τ)− y(t, τ)]n

Ety(T, τ) = y(t, τ) + φ0 (y(t, τ)) [Ety(T, τ)− y(t, τ)] +
[
n=2

1

n!

∂n

∂yn
φ(y(t, τ))Et [y(T, τ)− y(t, τ)]n

The second moments are obtained using the delta method, since the conditional variance-covariance matrix V ar (Zt+∆t|Zt)
is known:

V ar (yτt+∆t|yτt ) =
�
∂y (Zt+∆t,Θ, τ)

∂Zt+∆t

�0
V ar (Zt+∆t|Zt)

�
∂y (Zt+∆t,Θ, τ)

∂Zt+∆t

�
(24)

Let Ψt =
S2

i=1

�
Γ1i
St
+ Γ2icit +

Γ3icit
St

+ Γ0i
�
, and Φt =

S2
i=1

�
Λ1i(τ)
St

+ Λ2i (τ) cit +
Λ3i (τ)cit

St
+ Λ0i (τ)

�
,

N (t, τ) = e−ρτ
S2

i=1

�
Λ1i(τ)
St

+ Λ2i (τ) cit +
Λ3i (τ)cit

St
+ Λ0i (τ)

�
S2

i=1

�
Γ1i
St
+ Γ2icit +

Γ3icit
St

+ Γ0i
�

thus
∂N
∂Y

= e−ρτ
q

2
i=1(Λ1i(τ)+Λ3i(τ)cit)

Ψt
+ (−1)

�
2
i=1 Φt
Ψ2t

��S2
i=1 (Γ1i + Γ3icit)

�r
∂N
∂cit

= e−ρτ
q

2
i=1(Λ2i(τ)+Λ3i(τ)Yt)

Ψt
+ (−1)

�
2
i=1 Φt
Ψt2

��S2
i=1 (Γ2i + Γ3iYt)

�r (25)

By Ito’s rule:

dy =
∂y

∂t
+

∂y

∂Y
dYt +

1

2

∂2y

∂Y 2
hdY i2 +

n[
i=1

�
∂y

∂cit
(dcit) +

1

2

∂2y

∂cit
hdciti2 + ∂2y

∂Yt∂cit
(dcit) (dYt)

�
Therefore, the dynamics of bond yields is given by

dy (t, τ) = µytdt+

�
∂y

∂Y
σcy (Yt − λ)

�
dW c

t +

�
∂y

∂ci
σiccit +

∂y

∂Y
σiY (Yt − λ)

�
dW ci

t

= µytdt+ σyc (Yt, cit) dW
c
t + σyi (Yt, cit) dW

ci
t
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Table i: Summary Statistics

This table presents summary statistics of the dataset used in the estimation. It is based on
observations between January 1960 and December 2000. Inflation is the observed inflation
rate calculated as the 12 months percentage change in the CPI index. Money growth is
the observed 12 months percentage change in the M2 money stock. Consumption Growth
is the real per-capita consumption growth. The other values are the yields to maturity of
nominal bonds at different maturities. The real yield data is from 1997 to 2000. The real
yield implied by the model is based on the model fitted to the data from 1960 to 2000. The
p-values of the test of the whether mean and volatilty of the time series are statistically
different from their empirical counterparts are given in the last columns.

Mean Mean Volatility Volatility p-value
Model Empirical Model Empirical

Nominal Yields
3 month 6.24% 6.28% 2.11% 1.79% 0.44
2—year 6.92% 6.99% 1.31% 1.38% 0.55
10-year 7.52% 7.55% 0.89% 0.95% 0.73

Real Yields
3 months 2.13% 2.88% 1.13% 0.47% 0.05
2-year 2.32% 2.87% 0.97% 0.34% 0.11
10-year 2.51% 2.84% 0.44% 0.34% 0.12

Inflation 4.03% 4.70% 2.33% 3.23% 0.25
Money Growth 5.76% 6.09% 2.54% 3.52% 0.18
Consumption 2.40% 1.90% 1.70% 1.94% 0.11



Table ii: Parameter Estimates

This table presents the estimates of the structural parameters. The estimation
is based on the asset pricing restrictions for eight nominal bonds with maturities
ranging from 3 month to 10 years, as well as the processes for the money supply
M2, the inflation and the habit. The estimated model has three factors. The
inverse consumption surplus factor follows

dYt = kY (θY − Yt) dt− (Yt − λ)
k
σcydW

c
t + σly dW

l
t

l
We assume two liquidity shocks cit affecting the money supply following
dcit = kli (θli − cit) dt + σcicitdW

ci
t , i = 1, 2.The Brownian motions W l

t and
W c

t are assumed to be correlated. In parenthesis we report the p-values of the
Likelihood Ratio test.

ρ kY θY σcy λ
0.0150 0.0218 11.0012 0.1580 10.4007
(0.01) (0.02) (0.01) (0.01) (0.03)

σl1y σl2y ρl1c ρl2c σc
0.0631 0.0511 0.2380 0.3185 0.0157
(0.01) (0.01) (0.01) (0.02) (0.02)

kl1 θl1 σl1 kl2 θl2
0.3662 0.8218 0.0109 0.2401 3.1978
(0.02) (0.01) (0.01) (0.01) (0.01)

σl2 µc µm γ
0.0106 0.0135 0.0432 0.5133
(0.01) (0.03) (0.01) (0.02)

Test of Overidentifying Restrictions
JT = 18.38, pval = 0.36, df = 17
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Table iii: Lead-lag Relation between Interest Rates and Habit

We run the following regressions

Panel A : rt+1 = α1 + β1Ỹt (φ, γ, n) + εt+1

Panel B : Rt+1 = a1 + b1Ỹt (φ, γ, n) + εt+1

where rt+1 and Rt+1 are the realized real and nominal interest rates. Ỹt is the discretized time-series
process of Yt obtained from the solution in Proposition 1. φ = exp[−(k + 1

2
σ2y)]

Panel A: Predictability Real Interest Rate by Money-Adjusted Habit
R2 (φ, γ)

φ \ γ 0.000 0.050 0.100 0.400 0.600 0.800 1.000
0.200 0.001 0.003 0.005 0.018 0.026 0.032 0.037
0.500 0.001 0.003 0.005 0.018 0.024 0.029 0.032
0.700 0.000 0.000 0.001 0.007 0.011 0.013 0.015
0.900 0.019 0.019 0.019 0.015 0.013 0.012 0.011
0.950 0.087 0.098 0.105 0.103 0.095 0.089 0.084
0.980 0.194 0.219 0.233 0.223 0.206 0.193 0.183

β (φ, γ) with T -stat in parenthesis
φ \ γ 0.000 0.050 0.100 0.400 0.600 0.800 1.000
0.200 0.794 1.162 1.462 2.246 2.261 2.149 1.999

(0.353) (0.537) (0.706) (1.422) (1.702) (1.891) (2.024)
0.500 0.257 0.355 0.434 0.611 0.598 0.557 0.511

(0.396) (0.573) (0.733) (1.388) (1.631) (1.790) (1.900)
0.700 0.026 0.071 0.106 0.193 0.194 0.182 0.168

(0.079) (0.226) (0.358) (0.891) (1.084) (1.210) (1.296)
0.900 -0.217 -0.208 -0.196 -0.118 -0.087 -0.067 -0.053

(-1.437) (-1.452) (-1.449) (-1.303) (-1.204) (-1.129) (-1.072)
0.950 -0.357 -0.355 -0.341 -0.209 -0.153 -0.119 -0.096

(-3.211) (-3.425) (-3.554) (-3.528) (-3.373) (-3.246) (-3.149)
0.980 -0.389 -0.382 -0.359 -0.202 -0.146 -0.113 -0.091

(-5.096) (-5.507) (-5.731) (-5.568) (-5.288) (-5.078) (-4.925)

Panel B: Predictability Nominal Interest Rate by Money-Adjusted Habit
R2 (φ, γ)

φ \ γ 0.000 0.050 0.100 0.400 0.600 0.800 1.000
0.200 0.059 0.078 0.098 0.201 0.245 0.275 0.296
0.500 0.048 0.069 0.091 0.203 0.252 0.285 0.308
0.700 0.030 0.050 0.072 0.193 0.246 0.283 0.309
0.900 0.006 0.024 0.052 0.229 0.303 0.350 0.381
0.950 0.004 0.029 0.068 0.294 0.373 0.419 0.448
0.980 0.006 0.039 0.085 0.313 0.382 0.421 0.445

b (φ, γ) with T -stat in parenthesis
φ \ γ 0.000 0.050 0.100 0.400 0.600 0.800 1.000
0.200 -5.495 -6.114 -6.576 -7.201 -6.723 -6.113 -5.525

(-2.595) (-3.031) (-3.434) (-5.206) (-5.921) (-6.406) (-6.744)
0.500 -1.434 -1.645 -1.802 -2.017 -1.877 -1.700 -1.532

(-2.336) (-2.828) (-3.280) (-5.242) (-6.025) (-6.558) (-6.931)
0.700 -0.574 -0.706 -0.806 -0.964 -0.900 -0.815 -0.733

(-1.834) (-2.390) (-2.898) (-5.080) (-5.943) (-6.531) (-6.945)
0.900 -0.114 -0.228 -0.314 -0.442 -0.402 -0.354 -0.311

(-0.775) (-1.646) (-2.434) (-5.662) (-6.845) (-7.618) (-8.148)
0.950 -0.072 -0.187 -0.267 -0.342 -0.295 -0.251 -0.216

(-0.642) (-1.786) (-2.805) (-6.713) (-8.017) (-8.829) (-9.369)
0.980 -0.067 -0.156 -0.211 -0.232 -0.194 -0.162 -0.138

(-0.817) (-2.082) (-3.174) (-7.008) (-8.164) (-8.858) (-9.311)



Table iv: Goodness of Fit by maturity

This table presents fitting errors for the model measured in basis points. The fitting errors are defined as the
difference between the model generated nominal spot rate and the observed nominal rate during the sample
period. The maturity of the bonds range between 3 months and 10 years. Panel A reports the estimation
results when all moment conditions are used. These moments include asset pricing restrictions as well as
restrictions from the money, inflation and habit process. Panel B reports the fitting errors of an estimation
based excusively on the yield curve restrictions of the model.

Panel A: Term Structure plus Macro Variable Fit

Min error Max Error Mean Absolute Error Median Absolute Error
3m -411.7 254.9 61.6 33.3
6m -473.0 173.1 78.9 58.8
1y -377.4 246.3 54.4 30.7
2y -278.9 300.8 47.8 27.1
3y -219.7 314.8 46.6 31.2
5y -182.4 321.2 41.6 26.8
7y -155.2 314.0 45.6 32.1
10y -185.5 275.5 71.2 62.5

Panel B: Term Structure Fit Only

Min error Max Error Mean Absolute Error Median Absolute Error
3m -36.4 42.7 12.8 11.7
6m -80.6 -1.7 37.6 38.0
1y -72.4 94.4 19.7 14.6
2y -83.1 130.0 32.8 28.2
3y -68.4 117.3 31.4 26.1
5y -61.7 70.5 17.6 13.1
7y -47.0 23.1 10.1 8.7
10y -54.1 -26.8 38.4 38.3



Table v: Orthogonality Tests

The table shows the results of the orthogonality tests of the prediction errors of
growth rates in consumption, price index and monetary holdings. We test the
null hypothesis H0 : θ = 0 in the GMM framework with the following moment
restrictions �

ut+12 (θ)
ut+12 (θ)⊗ [ξ (xt)]

�
In the case of the consumption equation, let ct+1 = ln

�
Ct+1
Ct

�
, the prediction

errors are defined as

ut+1 = ct+1 −Et [ct+1|It]− θ0φ (xt)

We test the null hypothesis using the following statistics dT

dT = T · �hT (xt, θ (H0))
0W−1

T hT (xt, θ (H0))− hT (xt, θ
∗)0W−1

T hT (xt, θ
∗)
�

which is χ2 distributed under the null hypothesis. We consider the following
set of lagged explanatory variables: φ (xt) = const, ct−1, c2t−1. We report the
value of the GMM dT statistics with their corresponding Chi-square p-values in
parenthesis.
Panel B and C present the results of the same orthogonality tests for the inflation
and money growth. We report the value of test statistic dT for three time horizons
(3 months, 6 months and 1 year).

Panel A: Orthogonality test of consumption

3 months 6 months 1 year
dT 3.319 3.173 4.922

(0.345) (0.366) (0.178)

Panel B: Orthogonality test of inflation

3 months 6 months 1 year
dT 7.180 5.220 3.115

(0.066) (0.156) (0.374)

Panel C: Orthogonality test of money

3 months 6 months 1 year
dT 39.257 11.538 6.098

(0.000) (0.009) (0.107)



Table vi: Forecasting Errors

The table presents the forecast errors of the model for the growth rates in con-
sumption, inflation rate and money growth. The model-implied forecast errors
are compared to an ARMA(1,1) specification. The errors are calculated as the
mean absolute deviation of the n-periods forecast. The unit of measure is basis
points. The sample period is 1960-2000.

Panel A: Consumption Growth

3 months 6 months 1 year
Model 38 bp 72 bp 119 bp
ARMA(1,1) 34 bp 60 bp 109 bp

Panel B: Inflation Rate

3 months 6 months 1 year
Model 29 bp 57 bp 115 bp
ARMA(1,1) 28 bp 53 bp 110 bp

Panel C: Money growth

3 months 6 months 1 year
Model 45 bp 90 bp 178 bp
ARMA(1,1) 41 bp 87 bp 170 bp



Table vii: Test of Expectation Hypothesis

The table presents the results of test for the unbiased expectation hypothesis.
We linearize the forward premium and investigate the following specification:

f (t, τ)−Et (Rt+τ ) = α+ β1ilti + β2St + εt

Columns 1 and 2 present the results of the test of the unbiased expectation hy-
pothesis i.e. whether forward premium is constant at different horizons (different
values of τ) from 3 months to 5 years. Columns 3 and 4 quantify the relative
contribution of monetary and habit factors to the total variable of the forward
premium.

J − stat p− value Relative Factor Contribution
Monetary Habit

3 months 6.14 0.00 87% 13%
6 months 8.06 0.00 73% 27%
1 year 9.60 0.00 62% 38%
2 years 16.57 0.00 64% 36%
3 years 33.29 0.00 61% 39%
5 years 65.51 0.00 57% 43%

Joint Test (All Maturities) p-V alue = 0.00



Table viii: Campbell and Shiller Regressions

This table reports the Campbell and Shiller regressions. The main regression equation is

Rn−m
t+m −Rn

t = α+ β

�
m

n−m

�
(Rn

t −Rm
t ) + εt

where Rn
t is the yield of a bonds with maturity n at time t. The expectation hypothesis

implies that the coefficient β is equal to 1. The value of m is taken to be one month. The
first row shows the results of Cambell and Shiller regressions on a sample ranging between
1960 and 2000. The second row shows the values of the same β coefficient implied by the
structural model at the estimated values of the structural parameters. Standard errors are
given in parenthesis.

1y 2y 3y 5y 7y 10y
Empirical β -0.579 -0.955 -1.238 -1.723 -2.135 -2.621
Model β -0.020 -0.339 -0.652 -1.274 -1.865 -2.492
Standard Error 0.378 0.456 0.519 0.628 0.706 0.860

p-val for H0 : β(θ) = βCS 0.069 0.088 0.129 0.237 0.351 0.440

p-val for H0 : β(θ) = 1 0.003 0.002 0.001 0.000 0.000 0.000

Joint Test (All Maturities) H0 : β(θ) = βCS p-V alue = 0.14
Joint Test (All Maturities) H0 : β(θ) = 1 p-V alue = 0.002



Table ix: Conditional Volatility

Panel A: An Asymptotic GMM Test

We test the correct specification of the model implied conditional volatility. Given the closed-form
model solution for the second non-central moment of yield changes, denoted asMV (Yt, git, θ), we
construct a GMM test based on the following moment conditions

ht+∆t = (∆yτt )
2 −MV (Yt, git, θ)

From which we construct the following Chi-square statistics:

dT =

%
1√
T

T[
t=1

ht+∆t

&0
W−1

T

%
1√
T

T[
t=1

ht+∆t

&

3m 6m 1y 2y 3y 5y 7y 10y
dT 0.808 1.249 1.601 1.749 1.921 2.078 2.005 1.764
p− value 0.369 0.264 0.206 0.186 0.166 0.149 0.157 0.184

Joint Test (All Maturities) p-V alue = 0.21

Panel B: Predictive Power

This table shows how well the model-implied conditional volatility of yield changes predicts the
future realized volatility. We solve for the second moment implied by the model and run the
following regression

(∆ynt+∆t −Et [∆ynt+∆t])
2 = α+ β ×Φt + εt+∆t

where Φt is the Model-Implied Conditional Second Moment of ∆y. We test the null hypothesis
that H0 : α = 0 and H0 : β = 1. The p-value for H0 : α = 0 are given in parenthesis under the
respective values for α. The p-values for H0 : β = 1 are given in the last row before the R2.

3m 6m 1y 2y 3y 5y 7y 10y
α -0.003 -0.003 -0.002 -0.001 -0.001 -0.000 -0.000 0.000
β 1.202 1.142 1.046 1.004 0.971 0.896 0.828 0.771
R2 0.259 0.237 0.204 0.189 0.182 0.158 0.133 0.110
P − value,H0 : β = 1 0.209 0.382 0.780 0.980 0.858 0.526 0.303 0.186
P − value,H0 : α = 0 0.002 0.003 0.011 0.035 0.052 0.215 0.594 0.695

Joint Test (All Maturities) H0 : β = 1 p-V alue = 0.42
Joint Test (All Maturities) H0 : α = 0 p-V alue = 0.07
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Figure 1: Pull Function
The plots shows the empirical pull function based on the flexible semiparametric approach
by Conley et. al. (1997), under the a flexible parametrization of the local volatility
σ(rt) =

Sγ
i=0 σir

i
t, and the habit model-implied pull function. The two thin solid lines are

the 95% confidence bounds around the empirical functions.
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Figure 2: Quality of Fit for Macro Variables

This figure plots the model-implied time series of inflation and money supply together with
their empirical counterparts. Gray boxes on the graph show the periods of US recessions
compiled and reported by NBER.
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Panel A: Historical Average Money Growth
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Panel B: High Money Growth
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Figure 3: Sensitivity of Bond Yields to Habit Level

This figure illustrates the bond yields sensitivity to the inverse of the surplus ratio, i.e. Yt.
We consider two regimes, moderate money growth (historical mean value, Panel A) and
high money growth (2 standard deviations higher than the historical mean, Panel B).
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Panel A: Inflation Risk Premium Panel B: Dynamics of Inflation Risk Premium
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Panel C: Inflation Risk Premium in 3D Panel D: Average Inflation Risk Premium
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Figure 4: Inflation Risk Premium
Panel A plots the inflation risk premium over time with respect to nominal and realized real interest rates.
Panel B shows the time variation of the inflation risk premium for different time horizons. U.S. recession
periods are marked as gray boxes. Panel C shows the three dimensional evolution of the term structure
of inflation risk premia. Panel D shows the average term structure of inflation risk premia over the entire
sample.
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