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Summary 
 
While economic evaluation methods addresses efficiency concerns, the related topic of 
affordability is also important for decision makers.  Budget impact analysis is a proposed 
alternative method to address this question.  Both methods are recognised by many 
national decision-making bodies, such as the National Institute for Clinical Excellence 
(NICE).  However, in contrast to economic evaluation, there is little guidance on how to 
conduct budget impact analysis, nor has there been much research comparing different 
estimation methods. 
 
Using Generalized Linear Model (GLM) estimation, this paper compares the results from 
different regression models to quantify the net costs of cholinesterase inhibitor therapy 
for Alzheimer’s Disease (AD), inclusive of long-term care costs. 
 
Three policy models were estimated: an “All Cohort” model that assumed all patients 
received therapy, irrespective of cognition, a “NICE Guidance 1” (NG1) model, where 
only those with a particular cognitive level commenced therapy and were withdrawn 
from therapy after another level of cognition was reached, and an alternative “NICE 
Guidance 2” (NG2) model where individuals with a certain level of cognition were 
treated until death. Probabilistic sensitivity analysis was employed for all models. 
 
The results showed that there was a large difference in net costs between alternative 
modelling strategies.  There was much greater uncertainty over whether therapy was cost 
saving using a multiplicative GLM model, relative to an additive model.   
 
Further work is planned to develop further understanding of these results in order to 
assess the validity of the models.  The results highlight the importance of the choice of 
modelling strategy in estimating cost impact, suggesting a need for further studies 
exploring the choice of modelling methods.  
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Introduction 
 
Guidance from national agencies on resource allocation decisions in health care is 

increasingly relying on cost-effectiveness evidence.  Whilst economic evaluation may 

assist in such decisions, it fails to provide information on whether a particular 

intervention is affordable.  This is likely to be an important concern of local health care 

decision-makers responsible for guidance implementation, as no additional funds are 

made available to support implementation.  Affordability questions are also likely to be a 

concern of national bodies, as there may be a positive relationship between affordability 

and guidance implementation. 

 

Methods known as Budget Impact Analyses have been developed to address affordability 

questions (Chambers et al 2002).  These are now being used in a number of countries to 

inform decision-making (Trueman et al 2001).  The Australian Pharmaceutical Benefits 

Advisory Committee, the National Institute for Clinical Excellence (NICE) in the UK 

and the Sickness Funds Council in the Netherlands all recommend that health care 

system costs should be estimated in any reimbursement submissions. 

 

In the UK, affordability is not held to be one of the criteria in the determination of 

whether new interventions should be provided using public funds.  However, the most 

recent NICE guidance states that estimation of the net impact on the NHS (and Personal 

Social Services where appropriate) is required to enable effective national and local 

financial planning (NICE 2004).  This suggests implicit recognition that affordability may 

be a contributory factor to the success or otherwise of the delivery of new interventions 

to patients.  However, the guidance gives little information on the choice of analytical 

methods to undertake such estimation.   
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Previous estimates of budget impact within NICE Technology Appraisals Guidance have 

largely been undertaken using deterministic methods (see for example NICE 2001).  It is 

unclear how reliable or uncertain these estimates are.  However, with the development of 

probabilistic sensitivity analysis methods within economic evaluation, quantification of 

the uncertainty around budget impact estimates is also possible. 

 

Previous national estimates of the cost implications associated with the provision of new 

treatments have been undertaken using deterministic approaches (Detournay et al 2002), 

cohort simulation methods (Wimo et al 1997; Fagnani et al 2004) or regression modelling 

techniques (Wimo et al 1998).  Estimation using regression modelling must account for 

the statistical nature of cost data.  Three characteristics of these data deserve special 

attention (Blough & Ramsey 2000).  First, due to non-use of services, it is usual to find 

many zero observations.  Second, the data are often highly right skewed.  Finally, the 

assumption of homoscedasticity (constant variance) is often violated; that is, variability 

tends to increase as costs increase. 

 

There is now a growing literature that has compared Ordinary Least Squares (OLS) 

methods with alternative estimation techniques using cost data (Lipscomb et al 1998; 

Diehr et al 1999; Andersen et al 2000; Kilian et al 2002).  The choice between alternative 

techniques depends on the problem at hand.  To deal with a large number of zeros, two-

part models have been developed.  In contrast, the problem of skewness and 

heteroscedasticity is often handled by a log transformation of the data.  One drawback 

with this however is that inference is on the log scale, not on the original cost scale.  In 

retransforming back to the original cost scale, biased estimates may be generated unless 

an appropriate heteroscedastic retransformation is applied (Manning 1998; Manning & 

Mullahy 2001).   
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An alternative approach to log transformation is the employment of a generalized linear 

model (GLM).  These models explicitly account for heteroscedasticity whilst retaining the 

original cost scale.  As there is no need to retransform the model, one advantage of 

GLMs is that the problems related to bias induced by retransformation are avoided.   

Further, these models directly accommodate skewness in the distribution through prior 

specification of an appropriate distribution.   

 

Although the use of GLM estimation of cost data is growing, few studies have compared 

particular classes of GLM to OLS using untransformed data for predicting and 

extrapolating mean costs for a national population.  This is a relevant consideration as in 

some circumstances it may be better to retain an additive scale (e.g. untransformed OLS 

or its GLM equivalent) instead of a multiplicative one (e.g. GLM on a log-link scale).  

Which scale is more appropriate is an empirical question that may be investigated by 

comparison of the plausibility of the respective cost estimates.  Using Ordinary Least 

Squares (OLS) and Generalized Linear Model (GLM) estimation, this paper compares 

the results from both methods to quantify the net costs of cholinesterase inhibitor 

therapy for Alzheimer’s disease (AD) to the NHS and personal social services in England 

and Wales. 
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Methods 

Estimates were produced using OLS and GLM regression models of the effects of 

therapy on disease progression and costs.  The clinical effects of therapy on cognition 

were obtained from a systematic review of placebo-controlled trials of donepezil (Birks 

& Harvey 2004), observational data (Lopez et al 2002) and natural history studies 

(Mungas et al 2001; Neale et al 2001).  The cost impact of the effects was modelled using 

cohort simulation.  The cohort comprised the current population of people with AD in 

England and Wales, based on 2002 national population estimates (National Statistics, 

2004) and AD prevalence rates (MRC CFAS 1998).   

 

Costs of AD care were modelled as a function of age, gender, Mini-Mental State 

Examination (MMSE) score and Activities of Daily Living (ADL) score.  Data for the 

regression estimates were obtained from a previous UK observational multi-centre study 

of resource use and costs that included older people with dementia (McNamee et al 

1999).  Treatment costs and other AD care costs were applied to the cohort over ten 

years, with or without cholinesterase inhibitor treatment.  Based on previous guidance 

(NICE 2001), three policy models were estimated: an “All Cohort” model that assumed 

all patients with a diagnosis of AD received therapy, irrespective of MMSE level, a 

“NICE Guidelines 1” (NG1) model, where only those with a level of MMSE greater 

than 12 commenced therapy and were withdrawn from therapy when MMSE was no 

longer greater than 12, and an alternative “NICE Guidelines 2” (NG2) model where 

individuals with MMSE greater than 12 were treated until death.  Baseline assumptions 

for model parameters are outlined in Table 1. 

 

 5



The sensitivity of the results to different model assumptions was explored using two 

approaches.  First, to take account of parameter uncertainty, we undertook probabilistic 

sensitivity analysis.  This involved taking repeated random draws from specific 

distributions of key parameters (MMSE and ADL baseline values, MMSE change per 

year, survival, regression coefficients).  The correlation between parameters was modelled 

using Cholesky decomposition based on variance-covariance matrix values.  Second, 

changes to other parameters were implemented on an individual basis using one-way 

sensitivity analysis (discount rate, treatment cost).   

 

As previously outlined (see for example Blough & Ramsey 2000; Barber & Thompson 

2004), the GLM is an extension of the traditional linear model.  The two key 

components are a distribution function (F) for the dependent variable and a link function 

(g) to describe the relationship between covariates and the dependent variable.  Let yi 

equal the cost for individual i =1….n and μi = E(yi) equal the expected mean cost 

generated from the model.  With K covariates, and letting xik be the kth covariate for 

individual i, the general structure is:    

 

g (μi) = xiβ, yi ~ F 
 

     K  

where xiβ = β0 + Σ βkxik and β0, β1…K  are the regression coefficients.  
    k=1     
 
 

The standard OLS model is a GLM with an identity link function and gaussian (normal) 

distribution.  The identity link means that covariates act additively on costs, with the 

coefficients describing the change in mean costs per unit change in a covariate.  

Changing the distribution function but retaining the identity link function leaves 
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interpretation of the coefficients unchanged.  Alternative functions to the identity link, 

such as the log, change the interpretation of the coefficients.  A log-link would mean that 

covariates have a multiplicative effect on costs, with an anti-logged coefficient giving the 

percentage change in mean costs per unit change in a covariate. 

 

Our modelling strategy is to compare a GLM with an identity-link function and gaussian 

distribution (i.e. untransformed OLS) with alternative GLMs that possess different link 

functions and distributions.  We go on to demonstrate that a log-link function applied to 

a gamma or negative binomial distribution provides an appropriate specification within 

the GLM class:   

 

log (μi) = xiβ, yi ~ gamma / negative binomial 

 

We therefore compare two sets of cost estimates, which we label as OLS and GLM for 

exposition.  Regression estimates were performed in STATA version 8.2 and cost 

estimates were produced using EXCEL. 
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Results 

Under deterministic OLS analysis, for the All Cohort model, the mean discounted 

incremental care costs associated with cholinesterase inhibitor treatment were £550 

million (2002/3 prices) over 10 years.  On a per patient basis, this equated to £1792.  

Cholinesterase inhibitor acquisition costs were £851 million (£2,773 per patient over 10 

years). 

 

For the NG1 model, mean discounted incremental care costs were £115 million, or £597 

per patient over 10 years.  Acquisition costs of cholinesterase inhibitor treatment 

amounted to £233 million (£1,210 per patient over 10 years). 

 

For the NG2 model, mean discounted incremental care costs were £298 million, or 

£1550 per patient over 10 years.  Acquisition costs of cholinesterase inhibitor treatment 

totalled £449 million (£2,331 per patient over 10 years). 

 

Probabilistic sensitivity analysis supported the findings from the baseline OLS 

deterministic models that treatment did not produce cost savings large enough to offset 

the costs of therapy (Figures 1 and 2).  These models all produced estimates to within 

3% of the deterministic analyses.  The probabilistic models however provide additional 

information relating to the range surrounding the mean estimates (Figures 3-5).   

 

Appendix 1 shows the performance of alternative GLM estimators.  Based on low AIC 

values, amongst log-link versions there was little to choose between alternative 

distributional forms.  A Park test value of 1.25 suggests that both the negative-binomial 
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and gamma distributions would be appropriate.  Appendix 2 demonstrates that all of the 

models tend to over predict costs in the bottom half of the distribution, whilst under 

predicting costs in the top half of the distribution.  Use of a GLM with coefficient 

estimates from the gamma and negative binomial models led to a considerable change in 

incremental costs.  Table 2 shows that the deterministic GLM models produced 

incremental cost estimates that were between 15-23% higher than the OLS models, whilst 

the probabilistic GLM models were between 11-45% lower than the OLS models. 

 

The greater difference between OLS and GLM estimation in probabilistic analysis gave 

rise to greater uncertainty within GLM over the probability that therapy was cost saving.  

With OLS, the probability that therapy was cost saving was less than or equal to 0.001.  

With GLM, this probability equalled 0.094, 0.212 and 0.096 for the All Cohort, NG1 and 

NG2 models respectively. 

 

We also explored the sensitivity of the model results to changes in two parameters. The 

costs estimates varied quite considerably according to the different assumptions taken.  

The effect of a zero discount rate led to therapy being more costly in all models.  For the 

OLS model, the rise of 11% was largest in the All Cohort model.  For the All Cohort and 

NG1&2 OLS deterministic models respectively, incremental cohort costs rose to £609 

million, £117 million and £324 million (or £1984, £609, £1684 per patient respectively). 

 

Relative to zero discounting, the effect of an increase in treatment costs to reflect 2 extra 

monitoring visits (Pakrasi et al 2003) was more important in magnitude.   Assuming a 

cost of £127.30 per visit at 2002/3 prices (Clegg et al 2001), incremental cohort costs 

rose by approximately 50% in all OLS models to £794 million, £182 million and £427 

million respectively (or £2586, £943 and £2217 per patient respectively). 
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Discussion 

The analyses in this paper suggest that the introduction of cholinesterase inhibitors for 

the management of Alzheimer’s Disease is likely to lead to additional costs from the 

perspective of the NHS and personal social services in England and Wales.  The 

estimated magnitude of these additional costs is partly dependent on treatment policies 

such as NICE guidance.  The choice of modelling approach was also demonstrated to be 

important.  For example, the probability that therapy was cost saving was considerably 

different in GLM estimation relative to OLS estimation. 

 

The difference between the OLS and GLM models arises primarily from the way in 

which the cost coefficient estimates act on the dependent variable.  One key difference is 

the use of the constant term in GLM estimation.  Incorporation of this term produces 

greater variation in costs relative to the OLS model, because of the multiplicative nature 

of the model.  This is further magnified as the effect of a change in MMSE on costs is 

dependent on the product of the constant term and the MMSE coefficient.  As a result, 

the effect of different values for the MMSE coefficient on costs varies between the OLS 

and GLM specification.  Relative to OLS, higher values for the MMSE coefficient in 

GLM led to much greater cost savings per MMSE point reduction.  In the extreme, for 

the same value of MMSE coefficient, cost savings of £3000 per year per MMSE point 

reduction were obtained with GLM, relative to £600 per year for OLS.  However, for 

GLM, these values were also very sensitive to relatively small changes in the intercept 

term.  For example, a less than one point change in the constant term produces a 

reduction of over 50% in the cost effect of a one point MMSE reduction. 
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Where estimates are a linear function of covariates on the log-link scale, a previous study 

has noted that outliers can greatly affect GLM parameter estimates (Blough & Ramsey 

2000).  This suggests that probabilistic analysis using the multiplicative GLM is more 

sensitive to estimates that are less precise because of smaller sample size.  This is not 

necessarily problematic if the values appear credible.  However, for a one point reduction 

in MMSE, the higher values generated by GLM appear less credible than the lower 

values produced by OLS.  For example, a value of £3000 per year per MMSE point 

reduction implies a saving of approximately 2 months in long-stay residential care, which 

has not been demonstrated in previous clinical trials (AD2000 Collaborative Group 

2004).   

 

For both OLS and GLM estimation, a vital question relates to the validity of the 

structural assumptions underlying both models and the quality of the data sources.  All of 

the above models may be viewed as ‘conservative’, as they assume that the benefits of 

therapy are maintained over time.  This is based on the current evidence available in the 

literature (Birks & Harvey 2004).  A more ‘optimistic’ scenario assumes that the benefits 

of therapy increase over time.  In other words, the difference in MMSE seen at the end of 

year 1 is not only maintained but increases over time. We also calculated cost estimates 

based on this assumption.  As the focus of this paper relates to modelling methods, these 

results are not reported here.  However, the different modelling methods did produce 

different results under this assumption.  In particular, the GLM estimation using 

probabilistic methods led to mean cost savings. 

 

In addition, some of the data sources used may no longer reflect current forms of care.  

The resource use and cost data are based on observational data collected between 1991 

and 1995.  Since that time, there have been a number of policy changes that have 
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affected the delivery of care for older people with dementia.  This is partly addressed 

through the probabilistic analysis, although it remains unclear the extent to which this 

form of sensitivity analysis introduces too much noise into the estimates. 

 

Although there is little national guidance from NICE on how to conduct estimates using 

Budget Impact Analyses, other guidance is available (Trueman et al 2001).  One 

particular parameter that deserves some attention is a measure of the rate of adoption of 

new therapies.  Estimation of this parameter requires some knowledge on demand 

elasticities.  For example, introduction of a new treatment may substitute or complement 

existing treatments.  In addition, there may be separate effects related to whether or not 

clinicians, patients and carers opt to choose the new therapy, given eligibility criteria.  

Further, there is likely to be clinical variability over the interpretation of eligibility criteria.   

In the absence of observational data on implementation patterns related to current NICE 

guidance over these therapies, the assumption taken in the estimations reported here is 

that there is full adoption.         

 

It is perhaps however a topic for debate over whether such a parameter should be 

estimated at all.  There may be some value for a national decision-making body such as 

NICE or the Department of Health, but it is more difficult to see the value for a local 

decision-maker.  A more important question for them perhaps is which patient groups to 

prioritise if they cannot afford full adoption.  Different rates of adoption could be 

modelled for this purpose.  To inform decision-making however, this would of course 

require additional data on the gains to population health as well as calculation of cost 

implications.  
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In conclusion, it appears that there is a need for some form of cost estimation that 

relates to policy guidance decisions.  The analytical approach to be taken to meet this 

need can take a variety of forms.  This paper demonstrates methods that could be used 

to generate such estimates.  As the estimates are sensitive to the modelling approach 

adopted, careful attention to model specification is required.  Equally however, the 

validity of the model structure and data quality issues remains important to the 

estimation process.  

 13



Acknowledgements 
 
Financial support for this study was provided in part by a grant from the Wellcome 
Trust.  We also acknowledge the financial support of the Institute of Applied Health 
Sciences, University of Aberdeen, and the Chief Scientist’s Office (CSO) of the Scottish 
Executive Health Department.  The views expressed in the paper however do not 
necessarily represent those of the CSO or any other funding body.

 14



References 
 
AD2000 Collaborative Group.  Long-term donepezil treatment in 565 patients with 
Alzheimer’s disease: randomised double-blind trial.  Lancet 2004, 363:2105-2115. 
 
Andersen CK, Andersen K, Kragh-Sorensen P. Cost function estimation: the choice of a 
model to apply to dementia.  Health Economics 2000, 9:397-409. 
 
Barber J, Thompson S. Multiple regression of cost data: use of generalised linear models.  
Journal of Health Services Research and Policy 2004, 9:197-204. 
 
Birks JS, Harvey R. Donepezil for dementia due to Alzheimer's disease (Cochrane 
Review). In: The Cochrane Library, Issue 2, 2004. Chichester, UK: John Wiley & Sons, Ltd. 
 
Blough DK, Ramsey SD. Using generalized linear models to assess medical costs. Health 
Services and Outcomes Research Methodology 2000, 1:185-202. 
 
Chambers M, Hutton J, Nuijten M.  Budget Impact Analysis for health technology 
appraisal: development and application within the NICE appraisal process.  Journal of 
Clinical Excellence 2002, 4:203-206. 
 
Clegg A, Bryant J, Nicholson T, McIntyre L, De Broe S, Gerard K, Waugh N. Clinical 
and cost-effectiveness of donepezil, rivastigmine and galantamine for Alzheimer’s 
disease: a rapid and systematic review. Health Technology Assessment Vol.5: 
No.1. 2001. 137.  
 
Detournay B, Pribil C, Jourdanne C, Price M. Budget impact model for determining the 
costs of introducing inhaled salmeterol/fluticasone propionate combination for the 
management of persistent asthma in France. European Journal of Health Economics 2002, 
3:149-155. 
 
Diehr P, Yanez D, Ash A, Hornbrook M, Lin D. Methods for analysing health care 
utilization and costs. Annual Review of Public Health 1999, 20:125-144. 
 
Fagnani F, Lafuma A, Pechevis M, Rigaud A, Traykov L, Seux M, Forette F. Donepezil 
for the treatment of mild to moderate Alzheimer’s Disease in France: the economic 
implications. Dementia and Geriatric Cognitive Disorders 2004, 17:5-13. 
 
Kilian R, Matschinger H, Loffler W, Roick C, Angermeyer MC. A comparison of 
methods to handle skew distributed cost variables in the analysis of the resource 
consumption in schizophrenia treatment. The Journal of Mental Health Policy and Economics 
2002, 5:21-31. 
 
Lipscomb J. Ancukiewicz M. Parmigiani G. Hasselblad V. Samsa G. Matchar DB. 
Predicting the cost of illness: a comparison of alternative models applied to stroke. 
Medical Decision Making 1998 18(2 Suppl): S39-S56. 
 
Lopez O, Becker J, Wisniewski S, Saxton J, Kaufer D, DeKosky. Cholinesterase inhibitor 
treatment alters the natural history of Alzheimer’s disease.  Journal of Neurology, 
Neurosurgery and Psychiatry 2002, 72:310-314. 
 

 15



Manning WG. The logged dependent variable, heteroscedasticity and the 
retransformation problem.  Journal of Health Economics 1998, 17:283-295. 
 
Manning WG, Mullahy J. Estimating log models: to transform or not to transform? 
Journal of Health Economics 2001; 20:461-494. 
 
McNamee P, Gregson B, Buck D, Bamford C, Bond J, Wright K.  Costs of  
formal care for frail older people in England. Social Science and Medicine  
1999, 48:331-341. 
 
MRC CFAS. Cognitive function and dementia in six areas of England and Wales: the 
distribution of MMSE and prevalence of GMS organicity level in the MRC CFA Study.  
Psychological  Medicine 1998, 28:319-335. 
 
Mungas D, Reed B, Ellis W, Jagust W. The effects of age on rate of progression of 
Alzheimer disease and dementia with associated cerebrovascular disease.  Archives of 
Neurology 2001, 58:1243-1247. 
 
National Institute of Clinical Excellence.  Guidance on the use of donepezil, 
rivastigmine and galantamine for the treatment of Alzheimer’s Disease. Technology 
Appraisal Guidance No.19, National Institute for Clinical Excellence, London, 2001. 
 
National Institute of Clinical Excellence. Guide to the methods of technical appraisal.  
National Institute for Clinical Excellence, London, 2004. 
 
National Statistics. T 03: England and Wales; estimated resident population by single year 
of age and sex; Mid-2002 Population Estimates 2004. 
(http://www.statistics.gov.uk/statbase/Expodata/Spreadsheets/D7024.xls). 
 
Neale R, Brayne C, Johnson A. Cognition and survival: an exploration in a large 
multicentre study of the population aged 65 years and over.  International Journal of 
Epidemiology 2001, 30:1383-1388. 
 
Pakrasi S, Mukaetova-Ladinska E, McKeith I, O’Brien J. Clinical predictors of response 
to Acetyl Cholinesterase Inhibitors: experience from routine clinical use in Newcastle. 
International Journal of Geriatric Psychiatry 2003, 18:1-8. 
 
Trueman P, Drummond M, Hutton J.  Developing guidance for Budget Impact Analysis.  
Pharmacoeconomics 2001; 19:609-621. 
 
Wimo A, Karlsson G, Nordberg A, Winblad B.  Treatment of Alzheimer Disease with 
Tacrine: A Cost-Analysis Model. Alzheimer Disease and Associated Disorders 1997, 11:191-
200. 
 
Wimo A, Witthaus E, Rother M, Winblad B.  Economic impact of introducing 
propentofylline for the treatment of dementia in Sweden.  Clinical Therapeutics 1998, 
20:552-566. 

 16



Table 1 Model Assumptions and Parameters 

Parameter Value/assumption Data Source 
Population of England and 
Wales aged 65 years or over 
in mid 2002 

 
8,385,800 

National Statistics (2004). 

Prevalence of AD 50% of age & sex specific 
rates for dementia 

MRC CFAS (1998). 

Cohort distribution by 
baseline MMSE  

Age & sex specific values 
from a minimum of 12.7 to 
a maximum of 18.6 

McNamee et al (1999). 

Cohort distribution by 
baseline ADL 

Age & sex specific values 
from a minimum of 6.5 to a 
maximum of 13.8 

McNamee et al (1999). 

Cohort distribution by 
baseline costs per person 
per year 

Age & sex specific values 
from a minimum of £1584 
to a maximum of £14,457 

McNamee et al (1999). 

MMSE reduction per year 
without therapy 

Age specific values from a 
minimum of 2 to a 
maximum of 3 

Mungas et al (2001). 

MMSE reduction per year 
with therapy 

Age specific values from a 
minimum of 1.2 to a 
maximum of 1.8 

Lopez et al (2002). 

Therapy costs per person 
per year 

£891 British National Formulary 
(2003). 

Cost savings per person per 
year per MMSE point 
reduction (OLS) 

£414 Regression estimates. 

Cost savings per person per 
year per MMSE point 
reduction (GLM) 

£343 Regression estimates. 

Discount rate 3.5% Treasury Green Book 
(2003). 

Survival probability to 1, 3 
and 5 years 

Age, sex and time varying 
values from a minimum of 
0.18 to 0.90 

Neale et al (2001). 
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Table 2 Comparison of OLS and GLM estimated incremental costs per patient 
over 10 years 
 
OLS: Deterministic and 
Probabilistic values (£)  

GLM: Deterministic and 
Probabilistic values (£)  

OLS and GLM % 
difference 

        
ALL-deterministic 1792.103  ALL-deterministic 2107.001   0.175714 
ALL-probabilistic 1810.262  ALL-probabilistic 1608.287   -0.11157 
NG1-deterministic 596.7916  NG1-deterministic 736.5616   0.234202 
NG1-probabilistic 607.3662  NG1-probabilistic 333.7527   -0.45049 
NG2-deterministic 1549.592  NG2-deterministic 1785.023   0.151931 
NG2-probabilistic 1591.395  NG2-probabilistic 1388.689   -0.12738 
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Figure 1: Mean 10 year discounted incremental costs per cohort
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Figure 2: Mean 10 year discounted incremental costs per patient
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Figure 3: ALL COHORT - Discounted 10 year incremental costs per cohort
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Figure 4: NG1 COHORT - Discounted 10 year incremental costs per cohort
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Figure 5: NG2 COHORT - Discounted 10 year incremental costs per cohort
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Appendix 1   Comparison of alternative GLM estimators 
 
Model Constant Sex  Age ADL  MMSE AIC Bias* 
Identity 
link 

       

Gaussian -1.13 
(151.25) 

-49.77 
(22.60) 

5.35 
(1.66) 

-9.98 
(1.90) 

-7.96 
(2.46) 

13.47 0.26 

Poisson** - - - - - - - 
Gamma -42.58 

(0.00) 
-10.88 
(0.00) 

1.82 
(0.00) 

-3.46 
(0.00) 

-0.94 
(0.00) 

1.16e+08 0.78 

Negative 
binomial 

231.47 
(100.84) 

-6.95 
(12.32) 

1.55 
(0.94) 

-7.62 
(1.25) 

-7.12 
(1.53) 

11.89 0.31 

Log link        
Gaussian 2.88 

(0.90) 
-0.35 
(0.12) 

0.04 
(0.01) 

-0.06 
(0.01) 

-0.03 
(0.01) 

13.46 0.26 

Poisson 3.72 
(0.06) 

-0.32 
(0.01) 

0.04 
(0.00) 

-0.06 
(0.00) 

-0.05 
(0.00) 

213.09 0.26 

Gamma 4.37 
(1.02) 

-0.44 
(0.16) 

0.04 
(0.01) 

-0.06 
(0.01) 

-0.09 
(0.02) 

11.85 0.21 

Negative 
binomial 

4.37 
(0.73) 

-0.44 
(0.12) 

0.04 
(0.01) 

-0.06 
(0.01) 

-0.09 
(0.01) 

11.86 0.21 

 
 

*Computed as the absolute value of the difference between mean predicted and 
mean actual weekly costs divided by mean actual weekly costs  
 
**Convergence not achieved 
 
Variable definitions: Sex (=1 if female, =0 if male); Age (years); ADL (Activities of 
Daily Living index, range 0-18, scored according to whether respondents required 
help (=0), have problems (=1) or have no difficulties with (=2) nine daily activities); 
MMSE (Mini Mental State Examination index, range 0-30, where values 0-10, 11-22 
and 23-30 indicate severe, moderate to mild, and absence of cognitive impairment 
respectively). 
 
Standard errors in parentheses. 
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Appendix 2 Model comparison of predicted versus actual values 
 
Scheme 1 Model comparison for lower half of the actual cost distribution 
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Scheme 2 Model comparison for upper half of the actual cost distribution 
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	Summary 
	Further work is planned to develop further understanding of these results in order to assess the validity of the models.  The results highlight the importance of the choice of modelling strategy in estimating cost impact, suggesting a need for further studies exploring the choice of modelling methods.  
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