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Abstract 
 

We analyze the simultaneous diffusion of multiple ICTs that are related. A new 
econometric model is used to examine the presence of complementarities, testing 
for strong one-step-ahead non-causality and strong simultaneous independence. 
Results indicate significant complementarities between CAD and CNC 
technologies. Prior adoption of either of the two technologies has a large effect on 
the posterior adoption of the other one; in addition, simultaneous adoption is found 
to be more likely than adoption of the two technologies in isolation. Consistent with 
the presence of complementarities, we also find evidence of substantial price cross-
effects: a decrease in the price of CAD (or CNC) increases the adoption probability 
of CNC (or CAD). Lastly, the increase in the likelihood of adopting the 
complementary technology turns out to depend on several plant-specific moderating 
factors.   
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1. Introduction 

The aim of this paper is to study the diffusion of bundles of allegedly complementary 

technological innovations using a new and powerful empirical model. We explore empirically 

whether two related information/communication technologies (ICT), Computer Aided Design 

(CAD) and Computer Numerically Controlled Machine Tools (CNC), that have been argued 

to be complementary (Jaikumar, 1986; Milgrom and Roberts, 1990; Colombo and Mosconi, 

1995) do indeed exhibit complementarities in their adoptions. We further explore the 

determinants of those complementarities. We adopt the general economic framework of 

Stoneman and Kwon (1994) for analyzing the determinants of the return to the adoption of 

multiple technologies that may exhibit complementarities. In this framework, the 

complementarities are expressed as an increase in the per annum gross profit from adopting 

both technologies over and beyond the per annum gross profit from adopting the two 

technologies in isolation from each other. This framework is quite similar to the 

supermodularity theory of Milgrom and Roberts but more precise. 

 In this paper, a new econometric model developed by Mosconi and Seri (forthcoming) 

is used to examine the adoption of CAD and CNC by US manufacturing plants. The decisions 

to adopt the two technologies under consideration are modeled as a bivariate discrete-time 

binary process. There are some appreciable advantages of using this model over previous 

attempts at estimating complementarities (e.g., Stoneman and Kwon, 1994; Colombo and 

Mosconi, 1995; Stoneman and Toivanen, 1996; Kaiser, 2003; Hempell, 2003; Miravete and 

Pernias, forthcoming). In particular, we are able to control more effectively for unobserved 

heterogeneity across plants and the associated endogeneity bias, which may have led to 

inconsistent estimates in previous studies (see Athey and Stern, 1998). In addition, testing for 

the presence of complementarities between two technologies is quite direct using this model. 
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It allows for testing strong simultaneous independence and strong one-step-ahead non-

causality; if the tests are rejected, adoption of both technologies (simultaneously or one after 

the other) is more likely than adoption of either technology in isolation. In addition, if 

technologies are complementary, the variables that directly affect the adoption probability of a 

given technology (e.g., the price of the technology) should have indirect cross-effects on the 

complementary technology. The model also allows us to explore whether the extent of 

complementarities depends on moderating factors. 

We find significant complementarities between CAD and CNC technologies. Prior 

adoption of either of the two technologies results in an increase in the likelihood of adopting 

the other. In addition, simultaneous adoption of the two technologies is found to be more 

likely than adoption of either individual technology in isolation. We also find evidence of 

substantial cross-effects relating to the price of the complementary technology. Lastly, we 

highlight that the increase in likelihood of adopting either CNC or CAD once the other 

technology is in place depends on various plant-specific factors. 

 The next section develops an empirical model summarizing the impact of a set of 

variables on a firm's decision to adopt two complementary technologies. Section 3 describes 

the data, section 4 explains the estimation methods and variables, section 5 presents results, 

and section 6 concludes. 

2. An empirical model of the adoption of complementary technologies 

The aim of this section is to illustrate an empirical model predicting the effects of a set of 

variables on a firm's decision to adopt two complementary technologies (A and B). We follow 

previous literature (e.g., Karshenas and Stoneman, 1993) in distinguishing between rank, 

stock, order, and epidemic effects. Rank effects describe differences across firms. Stock 

effects relate to the expected decrease in the profits for an adopter generated by an increase 
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over time in the number of competitors using the technology. Order effects relate to 

differences in profit gains from adoption derived from the firm’s position in the order of 

adopters at adoption time, with the assumption that first-mover advantages make early order 

more attractive. Epidemic effects capture the increases in the profit gains from adoption that 

arise from greater available information on the new technology, the latter being positively 

related to the number of adopters.  

Let gj(τ,t), j=A,B be the yearly operating profit gain at time τ from adoption of 

technology j alone at time t. Define gAB(τ,tA,tB) as the yearly operating profit gain at time τ 

from adoption of technology A at time tA and technology B at time tB, with τ≥tA and τ≥tB, 

relative to no use of the two new technologies. We then specify gAB as: 

gAB(τ,tA,tB) = gA(τ,tA) + gB(τ,tB) + v        (1) 

We define the two technologies as complementary if v>0 (Stoneman and Kwon, 

1994). It also may be useful to differentiate between gains from simultaneous adoption and 

gains from sequential adoption.1 Let vS and vjh indicate the synergistic gains from 

simultaneous adoption and from adoption of technology j for a firm that has already installed 

technology h, respectively. For the sake of simplicity, let us assume vS, vAB and vBA to be 

constant over time.  

Let Nj(τ) represent the number of adopters of technology j, j =A,B at time τ. In 

accordance with previous studies, we assume the gjs to depend on variables that reflect rank 

(X(τ)), stock (NA(τ), NB(τ)), order (NA(t), NB(t)), and epidemic effects (NA(τ), NB(τ)). 

Therefore, we obtain:  

gj(τ,t) =gj[X(τ), NA(τ), NB(τ), NA(t), NB(t)]    j=A,B   (2) 

                                                 
1 For instance, there may be economies (or diseconomies) of scope from joint simultaneous adoption of the two 
technologies; alternatively, through sequential adoption, firms may benefit from learning-by-doing effects.  
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We indicate with ∂gj/∂k the derivatives of the gj functions with respect to term k. If 

stock and order effects are present, we expect:  

∂gj/∂Nh(τ)<0; ∂gj/∂Nh(t)<0  j,h=A,B      (3) 

Epidemic effects imply: 

∂gj/∂Nj(τ)>0     j=A,B       (4) 

Note that stock and epidemic effects are captured by the same variables but suggest 

opposite predictions as to their effects on the gjs. On the contrary, there are no specific 

predictions as to the signs of ∂gj/∂xk(τ), j=A,B, which depend on the specific variable xk 

included in the vector X. Following previous literature, we assume that the derivatives of the 

gj functions are time invariant.  

Let us indicate with pj(t) the price at time t of the capital good that embodies 

technology j, j=A,B. Both pA(t) and pB(t) are assumed to fall over time. As is usual in the 

inter-firm diffusion literature, we assume that a firm can adopt a new technology by 

purchasing a single unit of the capital good that is infinitely long lived and that adoption 

decisions are irreversible.  

Firms are assumed to have perfect foresight. Hence, a firm will adopt a new 

technology at time t if the benefit of waiting for a period dt is lower than the associated cost. 

Let us first consider a firm i that has not adopted either of the two new technologies under 

consideration. Following Stoneman and Kwon (1994), we indicate with yi
A/O(t), yi

B/O(t), and 

yi
AB/O(t) the difference between the benefits and the costs for the firm of waiting until (t+dt) 

before adopting technology A alone, technology B alone, or jointly adopting both 

technologies. Denoting with r the interest (discount) rate at time t, this results in:  
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Note that: 

yi
AB/0=yi

A/0+yi
B/0-vS.          (6a) 

 Let us now indicate with yi
j/h(t) the difference between the benefits and the costs of 

waiting until (t+dt) before adopting technology j for a firm that has previously adopted 
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According to expression (6a) and (6b), if the synergistic gains v are positive, there is an 

additional net profit gain from the adoption of technology j, j=A,B when the other technology 

is in place.  

Following previous literature, we assume that unobserved factors may randomly 
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terms, then from expressions (5) and (6) we can derive predictions as to the determinants of 

the adoption probabilities of the two technologies.  

In particular, we are interested in sufficient conditions for the two technologies to be 

complementary. First, suppose that with all else equal, adoption of technology j, j=A,B 

becomes more likely after adoption of the other technology. Then, we derive 

),,,(),()( 0// hjBAhjtyty j
i

hj
i ≠=<  and, from expression (6b), vjh>0. There is a synergistic 

gain from joint use of the two technologies; that is, the two technologies are complementary.  

Let us now consider a firm that is using old vintage technologies (i.e., it has not 

adopted either of the two technologies under consideration). If simultaneous adoption of the 

two technologies turns out to be more likely than adoption of either individual technology in 

isolation, then ).()()( 0/0// tytyty B
i

A
i

OAB
i +>  From (6b), we then obtain vS>0.  

Lastly, with two complementary technologies, the likelihood of adopting either of 

them will increase with an increase of the value of variables that positively affect the adoption 

probability of the other. For example, consider the effect of a decrease over time in the price 

pB of technology B, with the price pA of technology A held constant. Suppose initially that the 

values of pA and pB are such that yi
A/0>0, yi

B/0>0, and yi
AB/0>0. So, it is unprofitable for a firm 

to install the two technologies both jointly and in isolation. If 0/AS yv > , as the value of pB 

declines over time the firm will move to a state where yi
AB/0<0 and yi

B/0>0. Then it will 

become profitable for the firm to buy both technologies. Hence, due to complementarity, the 

likelihood of adopting technology A increases as pB decreases. It follows that cross-effects 

can be interpreted as indirect evidence of complementarities. 

What remains is to introduce reasonable instruments for the terms in equations (5), 

collect data, and specify the econometric model that will test the existence of 

complementarities. 
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3. Data and sources 

To test the predictions illustrated in the previous section, a national mail survey was 

administered to plant managers using an address register from Dun and Bradstreet, followed 

up with a telephone survey. Following previous research results (Karshenas and Stoneman, 

1993; Åstebro, 2002), we focus on plant-level characteristics as firm-level characteristics 

have been found generally not to be predictive of technology adoption. The telephone survey 

targeted plant technology specialists (one for each technology) with detailed technology-use 

questions.2 The survey was conducted in 1993 and requested information about conditions at 

the plant and firm in 1992, in 1987, and, if applicable, at the time of adoption of CAD and/or 

CNC. The adjusted sample population consisted of 1,569 manufacturing plants representing 

26 randomly selected metalworking industries. While 349 questionnaires were returned, 330 

had usable data on outcome variables, representing an adjusted overall response rate of 21%. 

CAD and CNC are of general interest as examples of ICTs that have wide application 

in the manufacturing sector. They have been reported to have independent positive effects on 

productivity (e.g., Ewers, Becker, and Fritsch, 1990; King and Ramamurthy, 1992; Stoneman 

and Kwoon, 1996). It also has been reported that even greater productivity increases are 

possible if the two technologies are used in combination (Milgrom and Roberts, 1990; 

Colombo and Mosconi, 1995). The purported advantages relate to computerized integration 

(communication) between the design and manufacturing functions such that prototypes can be 

developed more rapidly, production can be set up more quickly, and customers’ changing 

demand requirements can be fulfilled more effectively. Other complementary benefits include 

reduced or eliminated labour for transferring information between the design and 

manufacturing functions. As such they represent in combination an example of the typical 

                                                 
2 For details on the survey’s design, see Åstebro (2002).  
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ICT revolution effects that are claimed to have produced large increases in productivity 

during the 1990s (e.g. Jorgensen and Stiroh, 2000; Oliner and Sichel, 2000; Bailey and 

Lawrence, 2001.) 

CNC and CAD initially spread slowly. The first adoption of CNC in the sample was in 

1971, while it was in 1974 for CAD. In 1983, CAD’s penetration was only 4% while CNC’s 

penetration was 16%. The technologies exhibited rapid diffusion in the late 1980s. By 1993, 

CAD had been adopted by 54% of the plants while 44% had adopted CNC. 34.6% of all 

adopters adopted CAD between 1989 and 1991. 29.8% of all CNC users adopted it first 

between 1987 and 1989. In 1993, 57% of CAD and 50% of CNC adopters had at least partial 

computer integration between CAD and CNC.  

For the analysis of complementarities, the sample can be divided into four main 

groups: (i) those that by survey time had adopted neither technology: 110 plants (33.3%); (ii) 

those that only adopted CNC: 31 plants (9.4%); (iii) those that only adopted CAD: 69 plants 

(20.9%); and (iv) those that adopted both CNC and CAD: 120 plants (36.4%). For group (iv), 

we have data on the time of adoption for 95 plants. These 95 plants can be subdivided into: 

(iv a) those that adopted the two technologies simultaneously: 15 plants (15.8%); (iv b) those 

that adopted CNC before CAD: 60 plants (63.2%); and (iv c) those that adopted CAD before 

CNC: 20 plants (21.0%). These data suggest that there might be complementarities since joint 

adoption is more prevalent than single technology adoption.  

A list of variables and definitions is provided in Table 1. Price data on CAD were not 

directly available. We know however that significant drops in quality-adjusted price occurred 

following the introduction of the minicomputer and personal computer in 1977 and 1981, 

respectively (Åstebro, 1992). Therefore, it seems reasonable to use as a proxy the price of 

computers and peripherals, obtained from BEA (NIPA, Table 7.8, row 37). The price of CNC 
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was obtained from Paul Stoneman and Giuliana Battisti, who have used this index in several 

publications. CNC prices were transformed from pounds sterling to U.S. dollars using Federal 

Reserve Board (FRB) publications. For interest rates, we used the FRB-published three-

month T-bill rate. All prices and costs were adjusted with the producer price index published 

by BEA (NIPA, Table 7.1). Estimates of size-of-industry demand and growth of demand were 

derived from yearly data on industry sales provided by the NBER 

(www.nber.org/nberces/nbprod96.htm). This source also provided data on by-year, by-

industry production and non-production wage rates. We obtained information on industry 

concentration (CR4) from the Census of Manufacturing Bulletin, Concentration Ratios in 

Manufacturing, 1974-1992. In between census years, we assigned values using linear 

interpolation. When data were missing prior to 1987 (SIC 3492, 3591, 3593, 2594, 3599), we 

assigned CR4s as given by 1987 values. Various plant-level data were obtained from the 

survey. 

4. Specification of the econometric model 

4.1. The econometric model 

The specification of the econometric model is based on Mosconi and Seri (forthcoming). We 

model the decisions to adopt the two technologies under consideration as a bivariate discrete-

time binary process Yt={YA
t, YB

t}. In particular: 

yA
i,t=1 if plant i is an adopter of CNC at time t  

yB
i,t=1 if plant i is an adopter of CAD at time t 

with t=[tE
i ..... T].  

tE
i is plant’s i year of entry, while T is the last year of the observation period (i.e., 

1993). At any time t, the state space of Yt includes four states: 0={0,0}, A={1,0}, B={0,1}, 

and AB={1,1}. Plants in state 0 adopted neither of the new technologies. Plants in state A and 
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B adopted either CNC or CAD, respectively. Joint adopters are in state AB. The model is 

represented by the diagram in Figure 1: each block corresponds to one of the four possible 

states, while arrows indicate transitions between states. Yt
 is assumed to exhibit a first-order 

Markov process.  

In accordance with the latent regression approach, we assume that plant i adopts 

technology j, j=A,B if a latent continuous random variable y*j
i,t crosses a threshold level, 

which with no loss of generality is set equal to null. Furthermore, y*j
i,t is assumed to depend 

on the state in which plant i is in time t-1 and a set of covariates xi,t. We also consider the 

interaction between the covariates and the states of the process in t-1; in other words, the 

effects on y*j
i,t of the covariates may be state-contingent.  Hence, for a plant that has adopted 

neither CNC nor CAD (that is, it is starting from state 0), the latent regression system is: 
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It follows that the transition probabilities hi
j/0(t) of moving to state j, j=A,B,AB at 

time t, provided that plant i is in state 0 in time t-1, can be modeled through a bivariate probit 

model. This results in:   
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With respect to transitions from state A to state AB, the only latent regression 

concerns adoption of technology B and can be written as: 

B
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giving rise to the univariate probit model 
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The same holds for the passage from B to AB, as defined by the latent regression 

model 
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ti xxy ,,2,1

*
, εββ ++=  

Hence: 

{ }{ } ( )1,0;, ,2,11,1,, ti
T
Ati

T
Atiti

A
ti xxzBYyP ββ +Φ==−      (8b) 

In this framework, we are interested in testing for the presence of complementarity 

effects between the two technologies under consideration. For this purpose, we have to test 

for strong simultaneous independence and strong one-step-ahead non-causality. In particular, 

if the null hypothesis that YA
t and YB

t are strongly and simultaneously independent is rejected, 

simultaneous adoption of both technologies is more likely than adoption of either individual 

technology. This hypothesis can be tested through a Wald test for the parameters included in 

the vector γ, which drives the correlation coefficient ρ. If the null hypothesis that YA
t-1 (YB

t-1) 

does not strongly cause YB
t (YA

t) one-step-ahead is rejected, then the likelihood of adopting 

technology B (A) increases after adoption of the other technology. This hypothesis can again 

be tested through a Wald test for the parameters included in the vector βB2 (βA2). Furthermore, 
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if the two technologies are complementary, we expect variables included in the vector X that 

directly influence the adoption probability of one technology to have effects on the adoption 

probability of the other technology.   

4.2. Econometric adjustments 

We expected fewer responses from smaller plants. Survey responses were regressed on 

various predictors. There were significant variations in response rates. Responses were 

therefore weighted with the inverse of the predicted response frequency for each response. 

Use of this method is supported, for example, by Holt et al. (1980). 

The model illustrated in the previous section is estimated on data organized into time-

series cross-sectional panels. In the empirical analysis, we initially estimate the bivariate 

probit model described by equations (7) and (8) while replacing the vectors γ, βA2, and βB2 

with intercept parameters γ0, βA2,0, and βB2,0. In other words, we assume synergistic gains not 

to depend on any of the covariates included in the vector X. Hence, the null hypotheses of 

strong simultaneous independence and strong one-step-ahead non-causality, indicating that 

there is no complementarity between CNC and CAD, are as follows: 

i)  YA
t and YB

t are strongly simultaneously independent given Yt-1 iff γ0=0 

ii)   YB
t-1 does not strongly cause YA

t one-step-ahead iff βA2,0 = 0  

iii)  YA
t-1 does not strongly cause YB

t one-step-ahead iff βB2,0 = 0 

The reason for our conservative approach in specifying complementarity causes is 

that, based on previous theory and results, we can state with some degree of confidence the 

predictors of adopting CNC and CAD independently and jointly. However, much less is 

known about the predictors of the complementarities between these two technologies. It is 

also the case that there are fewer observations available to estimate the latter effects with 

precision.  
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In addition, we focus attention on cross-effects relating to price variables since we can 

state with confidence these expected cross-effects. Moreover, we extend the analysis to 

explore rank cross-effects. Finally, to avoid estimation problems, we delete from the analysis 

six industries that each had less than ten observations.3  

4.3. The explanatory variables 

Definitions of the explanatory variables are reported in Table 1. For a summary of 

predictions, see Table 2. The model outlined in section 2 predicts that the relative quality-

adjusted real price of a technology and the expected decrease of this price decrease the 

probability of its adoption. If CNC and CAD are complementary, their prices and expected 

price changes also should decrease the probability of the other technology’s adoption. 

Therefore, we predict negative and positive effects of rpj and dpj on the likelihood of adoption 

of both technologies.  

 Moving to rank effects captured by the vector X in equations (7) and (8), we 

distinguish between covariates that have a direct effect on the adoption probability of a given 

technology and those that have an indirect cross-effect, indicating that complementarity is at 

work. We further distinguish plant- and industry-specific effects. As to plant-specific direct 

effects, in accordance with previous studies (for a survey, see Stoneman, 2002) we predict 

that plant size (S) is a positive determinant of technology adoption. We also expect adoption 

of previous vintages of advanced manufacturing technology (i.e., numerically controlled 

machine tools, or NC) to provide learning opportunities that encourage the adoption of both 

CNC and CAD (Colombo and Mosconi, 1995; Åstebro 2002). Finally, we include two 

indicators of the benefits specific to CNC (BCNC: machining tolerance of parts) and CAD 

                                                 
3 Missing data for predictors were imputed using regression. For further information, see Åstebro (2004). We 
constructed a dummy variable whenever an observation was imputed and included that in regressions. None of 
these dummy variables were important or significant. 
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adoption (BCAD: number of design and/or engineering modifications); rationales for these can 

be found in Ewers, Becker and Fritsch (1990) and King and Ramamurthy (1992). If Bj 

(j=CNC, CAD) also influence adoption of the other technology (that is, they exhibit negative 

and positive cross-effects, respectively), this fact is interpreted as evidence of 

complementarities between the two technologies.  

 Following standard industrial economics literature (Stoneman, 2002), we include 

industry-specific rank effects as follows: a measure of market size (M), growth in demand 

(G), and the four-firm concentration ratio (CR4). Technology adoption is expected to be 

positively related to M and G, while there is no strong expectation on the sign for CR4. We 

also consider the ratio of the wage rate of non-production workers to that of production 

workers (WR). Computer-based technologies reportedly replace workers involved in 

standardized, procedural tasks, while they allegedly complement tasks that require greater 

cognitive skills (Bresnahan et al., 2002). To the extent that tasks performed by production 

(blue-collar) workers more frequently belong to the former category relative to those of non-

production (white-collar) workers, the demand for the two technologies under consideration 

should increase when the salaries of non-production workers are low relative to those of 

production workers (for a similar argument in a different context, see Caroli and Van Reenen, 

2001). Hence, we predict that WR will negatively affect the likelihood of adoption of CNC 

and CAD. Following Åstebro (2002), we suggest that the expected non-capital sunk costs of 

adoption (SCj) discourage technology adoption. This measure is implemented as a cross-

industry effect in this study. 

To capture stock and order effects, we use the number of adopters of CNC and CAD 

(Nj) measured at time t-1 so as to alleviate endogeneity problems and the expectation of the 

change in the number of users of the technology between t+1 and t (dNj) in the industry in 
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which a plant operates. Following the game-theoretic literature, we would expect these 

variables to relate negatively and positively to technology adoption, respectively. However, it 

is possible that Nj also captures epidemic effects associated with information diffusion. If 

these latter effects dominate, the sign of this variable may be reversed.4 Nevertheless, when 

more than one technology is being diffused, there are additional (direct and indirect) 

stock/order cross-effects and (indirect) epidemic cross-effects that need to be taken into 

account.  

Let us first consider direct cross-effects, neglecting indirect ones. If there are stock and 

order effects, lower expected profit gains from adoption of technology j, j=CNC, CAD 

leading to a decrease in the likelihood of adoption, are possibly determined by an increase 

over time in the number of users of the other technology (Nh, h≠j). Conversely, direct effects 

arising from information diffusion are technology-specific. Furthermore, if CNC and CAD 

are complementary, there will be indirect cross-effects. Stock/order effects again suggest that 

the likelihood of adopting technology j declines with Nh and increases with dNh, h≠j. By 

contrast, indirect epidemic cross-effects predict a positive coefficient for Nh in the equation 

relating to the adoption probability of the other technology. In sum, if only epidemic effects 

are at work (i.e., there are no stock/order effects), both NCNC and NCAD should positively 

affect the adoption of the two technologies. Conversely, if there are stock/order effects but no 

epidemic effects, the sign of the coefficients of NCNC and NCAD should be reversed and dNCNC 

and dNCAD should exhibit positive coefficients. As there may be several effects at work 

simultaneously, it may turn out to be difficult to estimate efficiently the coefficients for N j 

and dNj, j=CNC, CAD. 

                                                 
4 This indeterminacy (due to use of the specific proxy measures) has plagued past attempts at estimating 
stock/order effects. At best, only weak stock/order effects have been found (for instance, see Karshenas and 
Stoneman, 1993). 
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5. Results 

Equations (7) and (8) have been jointly estimated by maximum likelihood estimation. As was 

said earlier, we initially replaced vectors γ, βA2, and βB2 with intercept parameters γ0, βA2,0, 

and βB2,0, thus assuming that the extent of the complementarity effects does not vary across 

plants. Results are reported in Table 3. Results of tests for strong simultaneous independence 

and strong one-step-ahead non-causality (see Mosconi and Seri, forthcoming) are reported in 

the bottom part of Table 3. 

Our primary results are as follows. The value of γ0 is positive and statistically 

significant at 99%, rejecting the null hypothesis of strong simultaneous independence between 

yCNC and yCAD. The estimated value of the coefficient ρ representing the correlation between 

the error terms in the CNC and CAD equations is equal to 0.4539, indicating that 

simultaneous adoption of both technologies is more likely than adoption of either technology 

in isolation. In addition, the values of βCNC,2 and βCAD,2 are both positive and significant at 

99%. We are therefore able to reject the null hypothesis that yCAD (yCNC) does not Granger 

cause yCNC (yCAD) one-step-ahead. In other words, the adoption of either of the two 

technologies under consideration positively influences the likelihood of subsequent adoption 

of the other. Altogether, these results suggest that there are sizable gains from joint use of the 

two technologies relative to the increase in profits that can be obtained through using either of 

them in isolation.  

Further insights into the existence of complementarities can be provided by analyzing 

cross-effects. Here the evidence is mixed. As to cross- price effects, the null hypothesis that 

they are jointly null is rejected by a LR test at 99% (χ2(4)=29.14). In fact, both rpCAD and 

rpCNC have negative and statistically significant effects on the likelihood of adopting the other 

technology. Further, the coefficient for dpCAD in the CNC equation, which captures the cross-
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price expectation effect, is significant and has the expected sign. But the coefficient for dpCNC 

in the CAD adoption equation is not significant. Moreover, we do not find any evidence of 

rank cross-effects. The null hypothesis that the coefficients for BCAD in the CNC equation and 

that for BCNC in the CAD equation are jointly equal to null cannot be rejected by a LR test 

(χ2(2)=0.63).  

Let us now turn attention to the direct effects of the explanatory variables in the two 

equations. First, the results confirm the key role of the decline of prices for the diffusion of 

information technologies, as highlighted in previous studies (see Bresnahan et al., 2002 and 

references therein). As expected, the probabilities of adoption of CNC and CAD increase with 

a decrease in the own-price of the technology; both rpCNC and rpCAD have negative and 

significant coefficients in the CNC and CAD equations, respectively. Price expectations are 

also found to play a crucial role for the diffusion of CAD, with the coefficient of dpCAD 

positive as predicted and significant at 99%. However, own-price expectations turn out to 

exert a negligible influence on the diffusion of CNC, possibly as a consequence of the less 

rapid decline in the price of CNC machine tools in comparison with that of computers.  

Second, in line with the extant diffusion literature (reviewed in Stoneman, 2002), we 

find evidence of significant rank effects. Quite unsurprisingly, larger plants are more likely to 

adopt both CNC and CAD than smaller ones; the coefficients of S are positive and significant 

at conventional confidence levels in both equations. Previous adoption of NC equipment 

positively affects subsequent adoption probabilities of both CNC and CAD, as shown by the 

positive statistically significant coefficients of NC. This suggests that complementarities 

extend to previous vintages of both the same and related technologies. The result is also 

consistent with previous work (e.g., Colombo and Mosconi, 1995), which indicates that there 
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are learning-by-using effects across different vintages of these technologies.5 In the CNC 

equation, all remaining rank effects are insignificant with the exception of BCNC, which has a 

positive coefficient as expected. In the CAD equation, in addition to BCAD, the relative wage 

rate is close to significanct. Its negative sign is consistent with the argument proposed by the 

skill-biased technical change literature (e.g., Bresnahan et al., 2002) that information 

technologies are a complement of highly skilled labor while they replace unskilled labor (see 

infra). Note however that the same argument seems not to apply to CNC. We regard the latter 

as a plausible result given that CNC machine tools primarily increase skills of blue-collar 

workers (see Åstebro, 2002). 

With respect to stock, order, and epidemic effects, it is quite difficult to 

unambiguously interpret the results of the estimates as opposing forces may be at work. NCAD 

and NCNC exhibit positive and highly significant coefficients affecting CAD and CNC 

adoption, respectively, providing evidence of the existence of direct epidemic effects. The 

same variables have negative coefficients in the equation relating to the other technology: the 

coefficient for NCAD is significant at 99% in the CNC equation, while that for NCNC is only 

close to significant in the CAD equation. This suggests that negative direct and indirect 

stock/order cross-effects prevail over indirect positive epidemic cross-effects. As to the dNj 

(j=CNC, CAD) variables, their coefficients are insignificant; hence, there is no evidence of 

order effects (either direct or indirect). 

Last, we explore whether the complementarities we detect are moderated, first by 

plant-specific and second by industry-specific rank effects. Results relating to plant-specific 

rank effects are illustrated in Table 4 were we first consider the size of plants and the previous 

                                                 
5 In fact, the coefficient of NC is very large and highly significant in the CNC equation. We are aware that these 
results might suffer from an endogeneity bias. In principle, one could examine complementarities across M 
simultaneously diffusing technological innovations. Unfortunately, the estimate of a comprehensive multivariate 
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adoption of NC machine tools. We then introduce other plant-specific rank effects (Table 5). 

Estimates of the model, which, in addition to plant-specific effects, also includes industry-

specific rank effects, are provided in Table 6. Finally, Table 7 reports the values of the log-

likelihood function and the number of observations and parameters for the different models. 

The results are quite interesting, even though they should be interpreted with caution 

due to the limited number of observations. This caution applies especially to the simultaneous 

adoption of the two technologies where there are only 15 observations in that state. We 

therefore refrain from trying to interpret determinants of this state of adoption.  

Economic interpretation of coefficient estimates for the subsequent adoption of one 

technology after the other is somewhat less tenuous since there are more observations for 

these states (60 and 20, respectively), although caution is still warranted. Let us first consider 

the yCNC equation. As reported in Table 4, plant size has a positive statistically significant 

coefficient, indicating that the additional benefits from the integration of CNC for plants that 

have already adopted CAD over and above those arising from adoption of CNC alone are 

greater the greater the size of plants. βA2,NC, though positive, is insignificant. In Table 6 it is 

found that the coefficients of BCNC and BCAD are insignificant. Finally, Table 7 introduce 

industry-specific rank effects. 

Let us now turn attention to the yCAD equation. In Table 4, the coefficient for NC is 

negative and significant at 95%. Hence adoption of CNC leads to a smaller increase in the 

likelihood of subsequent adoption of CAD for plants that have previously adopted NC 

equipment. This suggests that NC and CNC equipments are substitutes as complements to 

                                                                                                                                                         
discrete-time binary model is unfeasible due to the excessively large number of parameters. For instance, the 
case of three innovations would require us to compute 19 transition probabilities. 
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CAD.6 As opposed to the estimate reported directly above, plant size does not play any role 

for subsequent CAD adopion, possibly because, as opposed to CNC machine tools, CAD 

equipment is less expensive. The marginal cost-spreading effect of plant size on CAD-CNC 

integration when adding CAD equipment after CNC equipment then would be less 

pronounced than when adding CNC equipment after CAD. As to the remaining plant-specific 

rank effects (see Table 5), BCAD has a positive coefficient and is significant at conventional 

confidence levels. This result suggests that the complementarity effects associated with the 

adoption of CAD once CNC is in place are positively influenced by the total amount of set-up 

costs; as costs are likely to increase with the number of design and engineering modifications, 

we expect to see greater joint use of CAD and CNC to reduce these costs through computer 

integration. As for industry-specific rank effects (see Table 6), there are significant effects for 

SCCAD and βB2,WD.  

6. Conclusions 

The aim of this paper is to study the simultaneous diffusion of two allegedly complementary 

ICTs. We have explored empirically whether CAD and CNC machine tools do indeed exhibit 

complementarities in their adoptions using a new and powerful empirical model and testing 

for strong one-step-ahead non-causality and strong simultaneous independence. The decisions 

to adopt the two technologies under consideration are modeled as a bivariate discrete-time 

binary process. There are some appreciable advantages of using this model over previous 

attempts at estimating complementarities. In particular, we are able to control more 

                                                 
6 The starting point is the positive and significant coefficient of NC driving the adoption of CAD alone (Table 3). 
This means that for plants that have not adopted CNC, adoption of NC equipment drives adoption of CAD due to 
complementarity effects. In addition, there are complementarities between CNC and CAD (positive β0 
coefficient): hence, the likelihood of adopting CAD increases after CNC adoption. The negative coefficient of 
NC in the beta vector then shows that the positive effect on CAD adoption by the adoption of CNC is smaller if a 
plant had previously adopted NC equipment and so was already exploiting (to some extent) the complementarity 
effects between design and production equipment. 
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effectively for unobserved heterogeneity across plants and the associated endogeneity bias, 

which may have led to inconsistent estimates in previous studies. 

Results indicate significant complementarities between CAD and CNC technologies. 

Prior adoption of either of the two technologies under scrutiny has a large positive effect on 

posterior adoption of the complementary technology, while simultaneous adoption is found to 

be more likely than adoption of either of the two technologies in isolation. Consistent with 

strong complementarities, we also find evidence of substantial price cross-effects: a decrease 

in the price of CAD (or CNC) increases the adoption probability of CNC (or CAD).  

We also explore the sources of these complementarities. It has been suggested that 

joint use of CNC and CAD allows for more efficient data transfer between design and 

production. But theory is not very specific as to how these complementarities arise. For 

example, we do not have a clear idea whether these benefits are scale dependent or are 

influenced by the characteristics of the industry in which plants operate. For this purpose, we 

investigate whether the extent of the detected complementarities is moderated by plant-

specific and industry-specific rank effects. Results are encouraging, even though they should 

be interpreted with caution due to the limited number of available observations. In particular, 

we are able to highlight that the additional benefits from subsequent adoption of CNC or 

CAD, once the complementary technology is in place over and above those benefits that arise 

from adoption of CNC or CAD in isolation, do depend on plant-specific effects.  

With respect to these plant-specific complementarities, we find that plant size has an 

interesting differential effect on the subsequent adoption of CNC and CAD. CNC adoption 

subsequent to CAD adoption is positively affected by plant size, while subsequent CAD 

adoption is not. We interpret this to mean that since CAD equipment is generally less 

expensive than CNC equipment, the cost-spreading benefit of size is more important for CNC 
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than CAD posterior adoption. Supporting this interpretation is the fact that the coefficient for 

plant size is 50% larger for exclusive-use of CNC versus exclusive-use of CAD. Previous use 

of NC equipment also has an interesting differential effect on the adoption of CNC after CAD 

versus CAD after CNC. Previous use of NC equipment has a weak positive effect on adopting 

CNC after CAD, while it has a strong negative effect of adopting CAD after CNC. The 

former is interpreted as a learning effect – CNC adoption is made easier by the plant already 

knowing something about NC technology. The latter is interpreted as a substitution effect – 

plants having previously adopted NC equipment may already enjoy the advantages of joint 

use of complementary design and production technologies. The moderating roles of industry-

specific rank effects are unclear. 

In our view, this work represents an important step forward in the empirical literature 

concerned with the diffusion of bundles of ICTs. It also opens the way to further additions to 

this literature. Two avenues for future research seem especially promising. First, it has been 

convincingly argued (e.g., Milgrom and Roberts, 1990; Bresnahan et al., 2002) that the 

returns to the adoption of ICTs are contingent on the organization of plants (and firms). In 

fact, plants that exhibit a “lean” organization with a small number of managerial layers and 

highly decentralized decision-making and that use “high performance” human resource 

management practices allegedly are those that benefit the most from use of the above-

mentioned technological innovations. In other words, technological and organizational 

innovations are complementary. The empirical model we have presented in this paper is 

suitable to rigorously test this proposition and is a significant improvement over those used in 

previous tests of this hypothesis (e.g. Hempell, 2003; Kaiser, 2003). For instance, Battisti et 

al. (2004) use a similar model to highlight the existence of complementarity effects between 

the adoption of CAD and an innovative management practice in design (i.e., the establishment 
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of joint design teams with customers and/or suppliers). Second, our results regarding how the 

complementarities are moderated by plant-specific factors are only suggestive and much 

remains to be done in this area. Our estimates suffer from lack of a sufficient number of 

observations in our dataset, especially regarding the simultaneous adoption of the two 

complementary technologies. More importantly, our findings beg the question of a theory that 

explicates how the complementarities arise and that would guide an empirical formulation and 

estimation beyond that undertaken here.  
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Figure 1 - The state space of the Markov process for Yt 
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Table 1: Notation and definition of covariates 
 

Variable Definition 

rpj(t)  Price index of technology j in U.S. $, at time t multiplied by the discount rate (measured by 
yield on 90-day Treasury Bills) and divided by Producer Price Index (PPI) 

dpj(t) Expected percentage change in the price index of technology j at time t (price is divided by 
PPI) 

M(t) Market demand for the industry to which plant i belongs, measured by Q(t), divided by 
industry-specific PPI 

G(t) Change in demand for the industry to which plant i belongs, measured by Q(t+1)-Q(t), where 
Q(t) is total sales of the industry at time t, divided by industry-specific PPI 

CR4(t) Concentration ratio in the industry to which plant i belongs, measured by the percentage 
share of gross output of the four largest firms in the industry at time t 

WR(t) Ratio of the wage level of non-production workers to the wage level of production workers in 
the industry to which plant i belongs at time t 

S(t) Size of the plant i, measured as log(q+1) where q is plant output in 1992, or plant output in 
1987 if t<= 1987, or q is a linear interpolated value of output between 1987 and 1992 if 
1987<t<1992. 

NC(t) Previous adoption of NC equipment, = 1 at time of NC adoption and onwards, 0 otherwise for 
plant i 

SCj Sunk costs of adoption of technology j, measured as industry average time spent on 
investment decision and industry average time spent learning to operate the technology 
before reaching 90% of its technical capability, both divided by extent of in-plant use of 
technology. Principal components analysis was used on the standardized values and a score 
was computed using the loadings on the first eigenvector. 

BCAD Benefit to CAD use, measured as number of design and/or engineering modifications made 
by plant i of its major product line in 1992 

BCNC Benefit to CNC use, measured as closest machining tolerance of parts for major product line 
of plant i in 1992 

Nj(t) Number of plants in the industry owing technology j at time t 
(1/r)dNj(t) Expected change in the cumulative number of adopters of technology j in the interval (t+1,t), 

measured as [NA(t+1)- NA(t)], divided by the discount rate 

Notes: For more details on SCCAD and SCCNC, see Åstebro (2004). 
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Table 2: Expected effects of covariates on the likelihood of adoption of CNC and CAD 

CNC CAD Variable 
Direct effect Indirect effect Direct effect Indirect effect 

rpCNC -  / - 
dpCNC +  / + 
rpCAD / - -  
dpCAD / + +  
G +  +  
M +  +  
CR4 ?  ?  
WR -  -  
NC +  +  
S +  +  
SCCNC -  / - 
SCCAD / - -  
BCNC +  / + 
BCAD / + +  
NCNC -/+a  -a -/+ a 
(1/r)dNCNC +  / + 
NCAD - a -/+ a -/+a  
(1/r)dNCAD / + +  

Notes: a) -: stock/order effect; +: epidemic effect 
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 Table 3: Estimates of the CNC and CAD adoption model 

 CNC  CAD 
 βCNC σCNC t test p  βCAD σCAD t test p 

Const -2.1443 0.4459 -4.8086 0.0000  -1.5528 0.3857 -4.0260 0.0001 

rpCNC -0.0358 0.0192 -1.8586 0.0631  -0.0514 0.0240 -2.1387 0.0325 

dpCNC -0.3613 0.2973 -1.2154 0.2242  -0.1760 0.3419 -0.5149 0.6066 

rpCAD  -0.0024 0.0006 -3.9586 0.0001  -0.0043 0.0011 -3.9735 0.0001 

dpCAD  1.0008 0.4737 2.1129 0.0346  1.8282 0.5818 3.1423 0.0017 

M 0.0045 0.0063 0.7058 0.4803  -0.0063 0.0056 -1.1142 0.2652 

G -0.0210 0.0358 -0.5880 0.5565  0.0307 0.0579 0.5297 0.5963 

CR4 -0.0023 0.0018 -1.2900 0.1971  -0.0020 0.0018 -1.1389 0.2547 

WR -0.1689 0.2118 -0.7976 0.4251  -0.2592 0.1702 -1.5232 0.1277 

S 0.0288 0.0097 2.9682 0.0030  0.0241 0.0122 1.9835 0.0473 

NC 0.8278 0.0848 9.7667 0.0000  0.1743 0.0902 1.9319 0.0534 

SCCNC -0.0241 0.0585 -0.4122 0.6802  -0.0673 0.0468 -1.4376 0.1506 

SCCAD -0.0324 0.0471 -0.6865 0.4924  -0.0016 0.0422 -0.0378 0.9699 

BCAD -0.0060 0.0151 -0.3965 0.6917  0.0645 0.0145 4.4419 0.0000 

BCNC 0.0999 0.0260 3.8463 0.0001  -0.0182 0.0266 -0.6855 0.4931 

NCNC 0.1493 0.0176 8.4614 0.0000  -0.0649 0.0172 -3.7802 0.0002 

NCAD -0.1400 0.0209 -6.6958 0.0000  0.1297 0.0177 7.3425 0.0000 

(1/r)dNCNC -0.2871 0.3557 -0.8070 0.4197  -0.2986 0.3537 -0.8443 0.3985 

(1/r)dNCAD  -0.3702 0.3404 -1.0874 0.2769  -0.2635 0.2722 -0.9683 0.3329 

         
CNC adoption 

after CAD 
βCNC2 σCNC2 t test P 

    
Const 0.7130 0.1229 5.8016 0.0000      

         
CAD adoption 

after CNC 
βCAD2 σCAD2 t test P 

    
Const 0.7113 0.0831 8.5618 0.0000      

          
Joint adoption 

of CNC & CAD 
γ0 σγ t test P  

    

Const 0.9793 0.1637 5.9821 0.0000      
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Table 4: Complementarity effects: the role of plant- and industry-specific moderating 
factors  
 CNC  CAD 

 βCNC σCNC t test p  βCAD σCAD t test p 

Const -2.0709 0.4461 -4.6421 0.0000  -1.5202 0.3934 -3.8647 0.0001 

rpCNC -0.0373 0.0193 -1.9300 0.0536  -0.0530 0.0241 -2.1965 0.0281 

dpCNC -0.3675 0.2973 -1.2362 0.2164  -0.1992 0.3430 -0.5807 0.5614 

rpCAD  -0.0024 0.0006 -3.8168 0.0001  -0.0041 0.0011 -3.8349 0.0001 

dpCAD  0.9847 0.4743 2.0762 0.0379  1.8486 0.5849 3.1608 0.0016 

M 0.0008 0.0067 0.1254 0.9002  -0.0053 0.0057 -0.9429 0.3457 

G -0.0166 0.0356 -0.4683 0.6396  0.0292 0.0593 0.4933 0.6218 

CR4 -0.0026 0.0018 -1.4572 0.1451  -0.0022 0.0018 -1.2277 0.2196 

WR -0.1740 0.2122 -0.8198 0.4124  -0.2627 0.1711 -1.5354 0.1247 

S 0.0259 0.0098 2.6494 0.0081  0.0209 0.0129 1.6124 0.1069 

NC 0.8332 0.0913 9.1297 0.0000  0.3693 0.1192 3.0976 0.0020 

SCCNC -0.0221 0.0585 -0.3782 0.7053  -0.0630 0.0473 -1.3310 0.1832 

SCCAD -0.0365 0.0474 -0.7695 0.4416  0.0034 0.0428 0.0791 0.9369 

BCAD -0.0041 0.0151 -0.2711 0.7863  0.0652 0.0146 4.4686 0.0000 

BCNC 0.1029 0.0260 3.9511 0.0001  -0.0190 0.0267 -0.7113 0.4769 

NCNC 0.1469 0.0176 8.3643 0.0000  -0.0640 0.0172 -3.7294 0.0002 

NCAD -0.1370 0.0210 -6.5134 0.0000  0.1300 0.0178 7.3181 0.0000 

(1/r)dNCNC -0.3038 0.3551 -0.8557 0.3922  -0.3133 0.3535 -0.8862 0.3755 

(1/r)dNCAD -0.3809 0.3401 -1.1199 0.2628  -0.2428 0.2725 -0.8909 0.3730 

         
CNC adoption 

after CAD 
βCNC2 σCNC2 t test p 

    
Const -0.7477 0.7088 -1.0549 0.2915      
S 0.0927 0.0442 2.0980 0.0359      
NC 0.1836 0.2559 0.7173 0.4732      

         
CAD adoption 

after CNC 
βCAD2 σCAD2 t test p 

    
Const 0.6315 0.2782 2.2702 0.0232      
S 0.0113 0.0177 0.6360 0.5248      
NC -0.3910 0.1758 -2.2242 0.0261      

          
Joint adoption 

of CNC & CAD 
γ0 σγ t test p  

    
Const 1.0557 0.6441 1.6389 0.1012      
S -0.0120 0.0417 -0.2882 0.7732      
NC 0.5955 0.4395 1.3550 0.1754      
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Table 5: Complementarity effects: the role of plant-specific moderating factors  

 CNC  CAD 
 βCNC σCNC t test p  βCAD σCAD t test p 

Const -2.0686 0.4488 -4.6088 0.0000 -1.4738 0.3949 -3.7318 0.0002

rpCNC -0.0354 0.0193 -1.8313 0.0671 -0.0532 0.0242 -2.1935 0.0283

dpCNC -0.3892 0.2970 -1.3106 0.1900 -0.1917 0.3438 -0.5576 0.5772

rpCAD  -0.0024 0.0006 -3.8251 0.0001 -0.0042 0.0011 -3.8726 0.0001

dpCAD  0.9514 0.4738 2.0082 0.0446 1.8760 0.5855 3.2042 0.0014

M 0.0004 0.0068 0.0618 0.9507 -0.0046 0.0056 -0.8274 0.4080

G -0.0186 0.0356 -0.5216 0.6019 0.0274 0.0591 0.4638 0.6428

CR4 -0.0026 0.0018 -1.4337 0.1517 -0.0021 0.0018 -1.1834 0.2366

WR -0.1803 0.2131 -0.8459 0.3976 -0.2474 0.1711 -1.4454 0.1484

S 0.0268 0.0098 2.7275 0.0064 0.0242 0.0131 1.8455 0.0650

NC 0.8345 0.0909 9.1784 0.0000 0.3786 0.1186 3.1922 0.0014

SCCNC -0.0180 0.0585 -0.3080 0.7581 -0.0624 0.0475 -1.3126 0.1893

SCCAD  -0.0368 0.0473 -0.7782 0.4364 -0.0023 0.0430 -0.0527 0.9580

BCAD -0.0053 0.0158 -0.3342 0.7382 0.0484 0.0173 2.7933 0.0052

BCNC 0.0969 0.0272 3.5598 0.0004 -0.0330 0.0319 -1.0342 0.3010

NCNC 0.1446 0.0177 8.1717 0.0000 -0.0665 0.0173 -3.8487 0.0001

NCAD  -0.1347 0.0213 -6.3360 0.0000 0.1327 0.0179 7.4196 0.0000

(1/r)dNCNC -0.3455 0.3566 -0.9690 0.3326 -0.2352 0.3537 -0.6649 0.5061

(1/r)dNCAD  -0.3261 0.3426 -0.9519 0.3412 -0.2835 0.2741 -1.0344 0.3009

         
CNC adoption 

after CAD 
βCNC2 σCNC2 t test p 

    
Const -1.3143 0.9459 -1.3894 0.1647      
S 0.1017 0.0470 2.1627 0.0306      
NC 0.2677 0.2723 0.9831 0.3255      
BCAD 0.0361 0.0598 0.6041 0.5458      
BCNC 0.0751 0.0825 0.9095 0.3631      

         
CAD adoption 

after CNC 
βCAD2 σCAD2 t test p 

    
Const 0.3736 0.3167 1.1796 0.2382      
S -0.0045 0.0196 -0.2293 0.8186      
NC -0.4165 0.1771 -2.3520 0.0187      
BCAD 0.0614 0.0309 1.9845 0.0472      
BCNC 0.0576 0.0532 1.0827 0.2790      
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Joint adoption 
of CNC & CAD 

γ0 σγ t test p  
    

Const 0.0970 0.9284 0.1045 0.9168      
S -0.0097 0.0431 -0.2258 0.8214      
NC 0.6461 0.4401 1.4681 0.1421      
BCAD 0.0992 0.0885 1.1205 0.2625      
BCNC 0.1428 0.1222 1.1684 0.2426      
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Table 6: Complementarity effects: the role of plant- and industry-specific moderating 
factors 
 CNC  CAD 

 βCNC σCNC t test p  βCAD σCAD t test p 

Const -2.0887 0.4634 -4.5069 0.0000 -1.7493 0.4142 -4.2237 0.0000

rpCNC -0.0394 0.0195 -2.0229 0.0215 -0.0603 0.0244 -2.4756 0.0067

dpCNC -0.4676 0.2993 -1.5626 0.0591 -0.2613 0.3458 -0.7556 0.2249

rpCAD  -0.0023 0.0006 -3.7679 0.0001 -0.0043 0.0011 -4.0227 0.0000

dpCAD  0.9880 0.4755 2.0778 0.0189 1.9726 0.5862 3.3652 0.0004

M 0.0106 0.0068 1.5555 0.0599 -0.0098 0.0066 -1.4936 0.0676

G -0.0173 0.0355 -0.4887 0.3125 0.0584 0.0497 1.1733 0.1203

CR4 -0.0032 0.0019 -1.7111 0.0435 -0.0016 0.0022 -0.7411 0.2293

WR -0.1560 0.2234 -0.6986 0.2424 -0.0544 0.1819 -0.2990 0.3825

S 0.0261 0.0098 2.6621 0.0039 0.0248 0.0133 1.8557 0.0317

NC 0.8618 0.0919 9.3760 0.0000 0.3776 0.1183 3.1905 0.0007

SCCNC -0.0153 0.0591 -0.2597 0.3976 -0.0886 0.0482 -1.8399 0.0329

SCCAD  -0.0332 0.0482 -0.6882 0.2457 0.0037 0.0431 0.0860 0.4657

BCAD -0.0044 0.0157 -0.2776 0.3907 0.0499 0.0174 2.8691 0.0021

BCNC 0.0966 0.0275 3.5115 0.0002 -0.0280 0.0323 -0.8672 0.1929

NCNC 0.1475 0.0179 8.2574 0.0000 -0.0683 0.0177 -3.8649 0.0001

NCAD  -0.1422 0.0216 -6.5803 0.0000 0.1306 0.0182 7.1917 0.0000

(1/r)dNCNC -0.4166 0.3593 -1.1593 0.1232 -0.2256 0.3591 -0.6284 0.2649

(1/r)dNCAD  -0.3466 0.3460 -1.0019 0.1582 -0.3075 0.2763 -1.1129 0.1329

         
CNC adoption 

after CAD 
βCNC2 σCNC2 t test p 

    
Const -1.9976 1.4562 -1.3718 0.0851      
S 0.1541 0.0576 2.6737 0.0038      
NC 0.3643 0.2874 1.2674 0.1025      
M -0.0469 0.0171 -2.7430 0.0030      
G 0.2264 0.3636 0.6226 0.2668      
CR4 0.0029 0.0063 0.4578 0.3235      
WD -0.0629 0.4742 -0.1326 0.4473      
BCAD 0.1162 0.0922 1.2601 0.1038      
BCNC 0.0405 0.0610 0.6651 0.2530      

         
CAD adoption 

after CNC 
βCAD2 σCAD2 t test p 

    
Const 2.6854 0.8412 3.1925 0.0007      
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S -0.0143 0.0219 -0.6528 0.2570      
NC -0.4700 0.1806 -2.6027 0.0046      
M 0.0311 0.0135 2.3043 0.0106      
G -0.1592 0.1685 -0.9447 0.1724      
CR4 -0.0016 0.0037 -0.4194 0.3375      
WD -1.4409 0.4273 -3.3722 0.0004      
BCAD 0.0935 0.0335 2.7895 0.0026      
BCNC -0.0333 0.0597 -0.5583 0.2883      

          
Joint adoption 

of CNC & CAD 
γ0 σγ t test p  

    
Const 1.9960 1.9740 1.0111 0.1560      
S -0.0361 0.0600 -0.6028 0.2733      
NC 0.7355 0.4595 1.6006 0.0547      
M -0.0335 0.0294 -1.1389 0.1274      
G 0.5546 0.3277 1.6924 0.0453      
CR4 -0.0025 0.0098 -0.2541 0.3997      
WD -0.6944 0.9534 -0.7283 0.2332      
BCAD 0.1024 0.0950 1.0781 0.1405      
BCNC 0.0918 0.1361 0.6750 0.2498      
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Table 7: Likelihoods of the models 

Table Loglikelihood Observations Parameters 

3 -10,207,454.4 6739 41 

4 -10,169,071.2 6739 47 

5 -10,137,473.8 6739 53 

6 -10,014,441.2 6739 65 

 

 


