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Abstract

We consider optimal pricing mechanisms of a profit maximizing platform running a
dynamic search and matching market. Buyers and sellers enter continuously, meet and
bargain under private information. Two market archetypes are investigated: flea markets,
which clear at discrete times, and bazaars, which clear continuously. The optimal alloca-
tion rule has no delay and can be decentralized through participation fees charged by the
intermediary to both sides. In a flea market the sum of buyers’ and sellers’ fees equals the
sum of semi-elasticities and their ratio equals the ratio of bargaining weights. Fees are the
same in a bazaar as in a flea market, except for an adjustment by the matching elasticities.
A flea market is balanced, in a bazaar the side with the higher matching elasticity is more
abundant. Finally, we show revenue equivalence between flea markets and market-makers’
bid-ask spreads; how per period, per match, and per transaction fees compare; and that a
monopolistic intermediary may be welfare enhancing in a search market.

Keywords: Dynamic random matching, two-sided private information, intermediaries

JEL Codes: D82, D83

1 Introduction

Search market intermediaries that charge participation fees to traders and let them search for

and bargain with trading partners play an important role in many markets. Examples include

online trade and auction web sites, job search platforms, and markets created by credit card

issuers. Such search market intermediaries have been at the center of attention for quite some

time and have received increased attention recently, in areas as diverse as labor markets,1
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1There have been diverging views on private labor market intermediaries for over a century: the International
Labor Organization of the United Nations passed a convention in 1949 that banned private fee-charging em-
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competition policy,2 and international trade and development;3 attention that seems justified

by the money at stake: as an example, intermediation services account for over a quarter of

GDP in the US (Spulber, 1999, p. 21).

Some markets are best approximated by discrete times at which trades may occur: flea

markets typically open once or twice a year, traditional markets for agricultural goods once a

week,4 other markets once a day.5 In other markets, buyers and sellers search for each other

continuously, such as traditional bazaars, NASDAQ, and online trading platforms.

We consider two archetypes of markets: flea markets and bazaars, capturing two main

types of clearing observed in reality: discrete and continuous time. A flea market opens at

regular periods of time, and the intermediary charges participation fees to the traders. Buyers

and sellers meet randomly and bargain bilaterally over the price. All potential traders enter

simultaneously at the market opening date and the mass of matches is the minimum of the mass

of buyers and sellers. In a bazaar, there is less centralization: it is open at all times, buyers

and sellers search continuously for each other, meet randomly, bargain bilaterally, and pay

participation fees to the intermediary. Search frictions arise because of a lack of coordination

of timing and the matching rate is determined by the stocks of buyers and sellers waiting in

the market.

In this paper, we develop a mechanism design based theory of optimal pricing by profit

maximizing intermediaries in a search market. Buyers and sellers arrive to the intermediary’s

platform continuously over time, match and bargain either at discrete periods or continuously.

ployment agencies, only to be revoked by a second convention by the International Labor Organization in 1997.
See conventions C96 and C181 of the International Labor Organization, C96 Fee-Charging Employment Agen-
cies Convention (Revised), 1949, http://www.ilo.org/ilolex/cgi-lex/convde.pl?C096, C181 Private Employment
Agencies Convention, 1997, http://www.ilo.org/ilolex/cgi-lex/convde.pl?C181. Similar developments were also
present in the US: in 1914 a referendum in Washington state banned private labor market intermediaries, a law
that was later overruled by the US supreme court. See Adams v. Tanner, 244 U.S. 590 (1917) and a description
of the controversy in Foner (1965, p. 177-185).

2For example, there is a controversy on the level and structure of credit card fees and their regulation.
There have been more than 50 lawsuits filed by merchant associations against credit card issuers. More than
20 countries and areas around the world have started regulating or investigating credit card fees. See e.g. Shy
and Wang (forthcoming) for a discussion of current regulatory issues and a double marginalization perspective
on credit card fees. See Rochet and Tirole (2006) for a two-sided markets perspective.

3See Antràs and Costinot (forthcoming) and the references therein for a discussion of the recent debate on
the role of profit-maximizing intermediaries in international trade, especially involving less-developed countries.

4Sometimes, market opening times even shape the evolution of a language: the Hungarian word for “Sunday”
is derived from “market day”, since in the middle ages markets were held on Sundays.

5One example is the Smithfield Market for meat in London, which opens and clears in the early hours every
day and has been operating for over 800 years. A similar example is the famous Tsukiji fish market in Tokyo.
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Sellers have one unit of an indivisible homogeneous good, buyers have unit demand. We focus

on steady-state equilibria in the search market. The matching technology is constant returns

to scale. To keep matters as simple as possible, the bargaining protocol is assumed to be a

random proposer one: a buyer makes a take-it-or-leave-it offer with some probability, and the

seller makes such an offer with a complementary probability.

We focus on three aspects of such markets. First, traders have private information about

their valuation for the good before they decide to join the platform. Second, we consider

dynamics in such markets. Hence buyers and sellers have an option value of future trade and

distributions in the market are endogenous, since inefficient traders may need longer time to

trade and may be overrepresented in the market. Third, prices are formed through bargaining

among buyers and sellers.

The main concern of this article is the optimal pricing by monopolistic flea market and

bazaar intermediaries in markets with these aspects. We focus on the following questions in

the context of stationary pricing. Can the profit maximizing allocation rule be implemented

with simple participation fees? What is the profit maximizing price structure?

For both markets, the flea market and the bazaar, we first analyze optimal direct revelation

mechanisms as a benchmark. We restrict attention to stationary and anonymous mechanisms.

In the flea market, this is a centralized mechanism: in each market opening, buyers and sellers

in the market report their types to the intermediary, who then determines the allocation of

the goods and transfers. In the bazaar, the mechanism has to satisfy the constraints of the

continuous time search technology.

In the optimal flea market, the most efficient traders (i.e. buyers above and sellers below a

certain threshold) enter and trade immediately upon matching. All other traders do not enter.

We call this the full trade property. The spread between the marginal entering buyer and

seller is equal to the sum of the inverse semi-elasticities of demand and supply at the margin.

The platform will ensure that there is the same number of buyers and sellers in the market

(balanced market) and that traders trade immediately when they get matched.

The optimal bazaar also has a full trade property, and the spread between the marginal

buyer and marginal seller is equal to the sum of inverse semi-elasticities at the margin. However,

the platform will shift the marginal types up or down depending on the search technology: the
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platform takes into account the matching elasticities on both sides of the market when choosing

the optimal marginal types. It will no longer desire a balanced market; instead, it will make

the side with the higher matching elasticity more abundant. At the same time, the trading

mechanism for the bazaar still has the full-trade property: traders who enter trade the first

time they are matched.

The maximal revenue from the optimal mechanisms provides upper bounds on the interme-

diary’s profit in the bargaining markets. We then show that these upper bounds are attainable

by setting appropriate participation fees in both the flea market and the bazaar. Therefore,

pricing through participation fees is in fact an optimal mechanism.

We show that the optimal allocation can be implemented with different types of fees: per

period participation fees (which correspond to “membership fees” in the two-sided markets

literature), per match fees (“per usage fees”), and per transaction fees. Our results on the per

period fee structure in flea markets are the following. The sum of the buyer and seller fees

is equal to the spread of the optimal mechanism and hence equal to the sum of the inverse

semi-elasticities of demand and supply at the margin. The ratio of fees for the buyer and seller

is equal to the ratio of the bargaining weights. The fee structure in a bazaar is the following.

The sum of fees is equal to the sum of semi-elasticities multiplied by the weighted average of

the matching rates of buyers and sellers, where the weights are equal to the bargaining weights.

The ratio of buyer and seller fees are equal to the ratio of the bargaining weights, multiplied

by the ratio of the inverse matching elasticities of demand. This multiplier is equal to the ratio

of matching rates and to the equilibrium market tightness, such that the scarcer side of the

market pays higher fees. The intermediary makes sure that traders are more abundant on the

side of the market which exhibits the higher elasticity of matching.

The optimal flea market is balanced and has the full trade property, so buyers and sellers

trade in the first market opening upon entry, and hence per period fees and per match fees are

equivalent. For the optimal bazaar, the ratio of per match buyer’s fees to seller’s fees is equal

to the ratio of bargaining weights of buyers and sellers, i.e. the same as for flea markets.

To gain some intuition for why the fee must be small when the bargaining power is small,

consider a marginal buyer. He makes a positive expected profit only when he is chosen as a

proposer. If his bargaining power is small, he can only break even if his participation fee is also
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small. Otherwise a market with endogenous entry would unravel, resulting in an equilibrium

with no traders entering.

Note that both for per match and per period fees, there is a non-neutrality of the fee struc-

ture: not only the sum, but also the composition of fees matters. This stands in contrast to

models in the two-sided markets literature, which typically imply fee neutrality under trans-

ferable utility and need the assumption of non-transferable utility to get non-neutrality. In

our setup, fee neutrality is restored with per transaction fees: here the optimal sum of fees is

given by the sum of semi-elasticities of demand and supply of marginal traders. The optimal

fee breakdown between buyers and sellers is indeterminate: a change of the fee structure will

be bargained away by traders.

Our framework provides a tractable way of thinking about markets run by profit maximiz-

ing intermediaries with selective entry and dynamics. We illustrate this by applying our model

to several practically relevant questions. How do different levels of centralization of an inter-

mediated market (market makers, flea markets, and bazaars) compare? What are the welfare

effects of a monopolistic search market intermediary?

Literature This paper relates to three strands of literature: dynamic random matching

(see e.g. Rubinstein and Wolinsky (1985); Gale (1987); Wolinsky (1988); Satterthwaite and

Shneyerov (2007, 2008); Atakan (2007a,b); Shneyerov and Wong (2010a,b); Lauermann (2011);

Lauermann, Merzyn, and Virág (2011)), intermediaries (see e.g. Rubinstein and Wolinsky

(1987); Gehrig (1993); Spulber (1996); Rust and Hall (2003); Loertscher and Niedermayer

(2008)), and two-sided markets (see e.g. Caillaud and Jullien (2003); Armstrong (2006); Rochet

and Tirole (2006)).

It is closest to the dynamic random matching literature. We depart from this strand of

literature by assuming that the search and matching platform is owned by a profit maximizing

intermediary. It turns out that if the search costs incurred by traders are endogenously deter-

mined, as fees charged by the intermediary, the equilibrium becomes simpler in that it has the

full trade property. This enables us to obtain our characterization of the optimal fee structure

and a simple, tractable equilibrium characterization that is a helpful starting point for further

analysis.
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Our contribution to the intermediation literature is that we let the intermediary design

a mechanism that takes into account the possibility of delay, of changing the steady state

distributions in the market, and traders’ option values of future trade, and lets buyers and

sellers meet randomly and bargain bilaterally. In particular, the monopolistic intermediating

platform in this paper differs from the middlemen in papers such as Rubinstein and Wolinsky

(1987); Rust and Hall (2003); Loertscher and Niedermayer (2008) that do not have market

power and take the market equilibrium as given. Further, we provide a justification for the

monopolistic market maker considered in Spulber (1996) and Rust and Hall (2003) by showing

that setting bid-ask prices is indeed an optimal mechanism in the class of anonymous, stationary

mechanisms.6 We also show revenue equivalence between the mechanism of a market maker

and of a flea market intermediary.

Our contribution to the two sided markets literature is that we provide a comprehensive

analysis of a dynamic search market where prices are determined through bargaining by buyers

and sellers, analyze the entry decision of traders who know their private types before choosing

whether to enter the market, and again, by allowing the platform owner to influence distri-

butions and option values.7 We find that the participation fee structure depends on relative

bargaining weights rather than elasticities of demand, that trade occurs in equilibrium in every

match, and that the fee structure is non-neutral even with transferable utility. We also show

uniqueness of the non-trivial equilibrium in a static setup even if the intermediary is restricted

to simple participation fees.

The paper is organized as follows. Section 2 describes the setup. Sections 3 and 4 consider

the flea market and the bazaar. In both sections, we first investigate the optimal mechanisms,

and then show that their outcomes can be implemented by imposing participation fees in the

corresponding markets with bargaining. Section 5 discusses different levels of centralization;

the comparison of profits for flea markets and bazaars; the relation between per period, per

match, and per transaction fees; exogenous participation costs and entry subsidies; and welfare

6If one assumes that the intermediary is restricted to setting bid-ask prices, the possibility of delay and the
endogeneity of distributions in the market are not an issue, since traders either trade immediately or never enter
by assumption. In this article, this is a result rather than an assumption.

7This is the difference to the part of the two-sided markets literature closest to our paper, where buyers and
sellers have private information about their valuations of the good and payments between them are possible and
unrestricted. Many papers have a reduced form model of buyers’ and sellers’ utilities, which can be justified by
a random matching and bargaining microfoundation.
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effects of profit maximizing intermediaries. Section 6 concludes.

2 Setup

We consider an infinite horizon model of a market for a homogeneous, indivisible good. Buyers

and sellers enter continuously with an inflow rate 1. There are frictions of exogenous exit from

the market.8 The exit rate is δ > 0 for both buyers and sellers. Each buyer has a unit demand

for the good, while each seller has unit supply. All traders are risk neutral.

Potential buyers are heterogeneous in their valuations v of the good. Potential sellers are

also heterogeneous in their costs c of providing the good. In the following, we will also refer to

valuations and costs as types. The types of new potential buyers are private information and

are drawn independently from the continuously differentiable cumulative distribution function

FB(v) for buyers and FS(c) for sellers. Densities are denoted with fB(v) and fS(c) and have

support [0, 1]. We make the standard assumption that Myerson’s regularity condition holds,

that is the virtual type functions

JB(v) := v − 1− FB(v)

fB(v)
, JS(c) := c+

FS(c)

fS(c)
,

are increasing. Each trader’s type will not change once it is drawn. Entry (or participation,

or being active) is voluntary. Potential traders decide whether to enter the market once they

are born. Those who do not enter will get zero payoff. We consider stationary equilibria in an

infinite horizon setup.

3 Flea Market

The market opens and closes at times t = ...,−τ, 0, τ, .... Because of the exogenous exit rate δ,

traders that did not trade in the current opening exit the market before the next opening with

probability ǫ := 1 − e−δτ . This follows from the fact that the time until exit is exponentially

distributed with mean δ−1.

The net mass of entrants between two subsequent market openings, i.e. the total mass of

entrants minus entrants that drop out before the market reopens, is (1−e−δτ )/(δτ). The reason

8See Satterthwaite and Shneyerov (2008) regarding the relevance of the exogenous exit model, where some
examples are also provided.
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for this is the following. A trader entering at some time nτ + t after the market opening at nτ

with some t ∈ [0, τ ] will still be in the market at the next opening at (n+1)τ with probability

e−δ(τ−t). Since the inflow rate is 1, the net mass of entrants is

∫ τ

0
e−δ(τ−t)dt =

1− e−δτ

δ
.

To avoid carrying around a multiplying constant, we will compute profits per unit of net mass

of entrants per market opening in the following section. Profits per time interval of length 1 can

be obtained by multiplying these profits by (1− e−δτ )/(δτ). Dropping this constant multiplier

can be seen as temporarily normalizing both the net mass of entrants (1 − e−δτ )/δ and the

time between market reopenings τ to 1 in the section on flea markets. We will return to this

constant multiplier in Section 5 when comparing profits between a flea market and a bazaar.

In the next section, we characterize an optimal anonymous direct trading mechanism for

the flea market. The profit from this mechanism is an upper bound for the profit that can be

obtained in the flea market where buyers and sellers bargain and the intermediary charges per

period fees. After deriving the optimal mechanism, we will describe the assumptions of the flea

market in more detail and show that this upper bound can indeed be attained.

3.1 Optimal Mechanism

Consider a mechanism in which all entering buyers and sellers report their valuations and costs,

respectively, and the intermediary can arbitrarily match buyers and sellers. Since the good is

homogeneous, this can be expressed in the following equivalent way: the goods of sellers who

sell enter a pool, buyers get their goods from this pool. The only constraint is that the same

number of sellers sell as buyers buy. A buyer’s or seller’s probability of trade and transfers

are determined by his report. The highest profits that can be achieved in such a centralized

market will serve as an upper bound for the profits in the decentralized market, where the

intermediary cannot influence how buyers and sellers are matched.

To fit our matching and bargaining market’s setting, we restrict attention to stationary

anonymous mechanisms. By the revelation principle we can focus our attention to direct

mechanisms, in which buyers and sellers report their types truthfully and the intermediary

designs the mechanism such that traders have an incentive to tell the truth. In the direct
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mechanism design by the intermediary a buyer’s expected probability of trade in any market

opening is qB(v), his per period transfer to the intermediary is tB(v). In parallel, the mechanism

prescribes qS(c), tS(c) for the sellers.9 Denote the expected net present value of his transfers

as TB(v). As the total probability of exit by the end of the next market opening, either

exogenously or due to trading, is ǫ+ (1− ǫ)qB(v), we have

TB(v) =
tB(v)

ǫ+ (1− ǫ)qB(v)
, (1)

and analogously the “ultimate discounted probability of trade” is

QB(v) =
qB(v)

ǫ+ (1− ǫ)qB(v)
. (2)

Denote analogously for the seller, QS(c), and TS(c).

The utilities of buyers and sellers can be expressed in terms of expected net present values:

UB(v, v̂) = vQB(v̂)− TB(v̂), US(c, ĉ) = TS(ĉ)− cQS(ĉ),

where v, c are the true and v̂, ĉ are the reported types. As usual, the incentive compatibility

constraints ensure that participants have an incentive to report their types truthfully,

UB(v, v) ≥ UB(v, v̂), ∀v, v̂ ∈ [0, 1],

US(c, c) ≥ UB(c, ĉ), ∀c, ĉ ∈ [0, 1],

and the individual rationality constraints ensure that everyone is willing to participate in the

mechanism,10

UB(v, v) ≥ 0, ∀v ∈ [0, 1], US(c, c) ≥ 0, ∀c ∈ [0, 1].

An envelope-theorem type of argument applied to the incentive compatibility constraints

shows that the trading probabilities QB and QS pin down the transfers TB and TS .

Lemma 1. For any incentive compatible mechanism, transfers are given by

TB(v) = vQB(v)−
∫ v

0
QB(x)dx− UB(0, 0), (3)

TS(c) =

∫ 1

c

QS(x)dx− cQS(c) + US(1, 1). (4)

9See Lauermann (2011) and Shneyerov and Wong (2010b) for foundations of such mechanisms.
10We distinguish between an agent “participating” in the mechanism design problem and being “active” when

considering the dynamic random matching implementation later on. A participating agent reports his type, but
may or may not trade. An active agent trades with positive probability.
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Proof. This is a standard revenue equivalence result. The only difference to standard results is

that we have net present values of transfers and probabilities of trade (TB , TS , QB , QS) rather

than transfers and probabilities of trade themselves (tB, tS , qB, qS), but mathematically this

is the same. See for example Myerson and Satterthwaite (1983) for a proof.

A profit maximizing intermediary will always want to design the mechanism such that the

rents of the most inefficient types are fully extracted, UB(0, 0) = US(1, 1) = 0. From now on,

we drop the terms UB(0, 0) and US(1, 1).

The mechanism induces steady state distributions of active buyers and sellers in the market,

which we denote as ΦB and ΦS , and the steady state masses of active traders B and S. The

densities are denoted by φB and φS . The steady state condition for the buyers is that for each

value of v the mass of entering buyers is equal to the mass of exiting buyers. Since the net

entering mass of buyers between the openings has been normalized to 1, the probability of a

buyer trading is qB(v), and the probability of exiting without trading is ǫ(1 − qB(v)), for any

buyer type v who enters the market,

fB(v) = [qB(v) + ǫ(1− qB(v))]BφB(v).

Note that the expression in brackets can be rewritten as qB(v)/QB(v). Using the rewritten

condition and the analogous condition for the seller we get

fB(v)QB(v) = BqB(v)φB(v), (5)

fS(c)QS(c) = SqS(c)φS(c). (6)

Because the same mass of the good has to be sold and bought,

B

∫ 1

v

qB(v)dΦB(v) = S

∫ c̄

0
qS(c)dΦS(c).

For any incentive compatible and individually rational mechanism, the intermediary’s profit

is given by

T̄ = B

∫

tB(v)dΦB(v) − S

∫

tS(c)dΦS(c). (7)

The following lemma is our key result in this section, showing that T̄ admits a simple repre-

sentation in terms of exogenous objects: the distributions of incoming trader types FB and FS

and virtual type functions JB and JS .
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Lemma 2. The intermediary’s profit is equal to

T̄ =

∫ 1

0
JB(v)QB(v)dFB(v)−

∫ 1

0
JS(c)QS(c)dFS(c). (8)

Proof. First, from the steady state conditions (5) and (6), the endogenous stock distributions

are related to exogenous incoming flow distributions according to

BdΦB(v) =
QB(v)

qB(v)
dFB(v), SdΦS(c) =

QS(c)

qS(c)
dFS(c).

Substituting these expressions in (7), we obtain

T̄ =

∫

tB(v)
QB(v)

qB(v)
dFB −

∫

tS(c)
QS(c)

qS(c)
dFS . (9)

Next, from (1) and the analogous expression for TS ,

tB(v) = (ǫ+ (1− ǫ)qB(v))TB(v), tS(c) = (ǫ+ (1− ǫ)qS(c))TS(c).

Substituting the expressions for TB(v) and TS(c), given by equations (3) and (4) in Lemma 1,

into (9), we further obtain

T̄ =

∫

ǫ+ (1− ǫ)qB(v)

qB(v)
QB(v)

[

vQB(v)−
∫ v

0
QB(x)dx

]

dFB(v)

−
∫ 1

0

ǫ+ (1− ǫ)qS(c)

qS(c)
QS(c)

[
∫ 1

c

QS(x)dx− cQS(c)

]

dFS(c) (10)

From (2) and the analogous expression for the sellers,

ǫ+ (1− ǫ)qB(v)

qB(v)
QB(v) = 1,

ǫ+ (1− ǫ)qS(c)

qS(c)
QS(c) = 1.

Substituting these identities into the expression for T̄ above, we obtain

T̄ =

∫ 1

0

[

vQB(v)−
∫ v

0
QB(x)dx

]

dFB(v)−
∫ 1

0

[
∫ 1

c

QS(x)dx− cQS(c)

]

dFS(c),

The above equation combined with Theorem 3 in Myerson and Satterthwaite (1983) implies

the statement in the proposition. (Note that Myerson and Satterthwaite (1983)’s Theorem 3 is

stated in terms of the probabilities of trade qB and qS in a static model, but the same reasoning

also applies to the “discounted net present value of future trade” QB and QS .)
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The intermediary maximizes his profit T̄ with respect to the constraint11 that the same

number of buyers and sellers trade:

∫ 1

0
QB(v)dFB(v) =

∫ 1

0
QB(c)dFS(c).

Note that both the objective function T̄ and the constraint can be expressed in terms of QB

and QS alone. And there is a one-to-one mapping between QB and qB. The same applies to

QS and qS. Hence the intermediary can maximize profits by choosing QB and QS .

The Lagrangian of this maximization problem is

∫ 1

0
JB(v)QB(v)dFB(v) −

∫ 1

0
JS(c)QS(c)dFS(c)− µ

[
∫ 1

0
QB(v)dFB(v)−

∫ 1

0
QS(c)dFS(c)

]

with the Lagrange multiplier µ.

The profit maximization problem can be solved by pointwise maximization with respect to

QB(v) and QS(c). The derivative with respect to QB(v) is

∂L

∂QB(v)
= JB(v) − µ,

and with respect to QS(c)
∂L

∂QS(c)
= µ− JS(c).

Since derivatives are constant with respect to QB and QS, this clearly gives a bang-bang

solution, which implies that the intermediary sets QB(v) = 1 for JB(v) ≥ µ and QB(v) = 0

otherwise. Similarly, QS(c) = 1 for JS(c) ≤ µ and QS(c) = 0. Denote the marginal buyer and

seller with v and c̄, where buyers with v ≥ v and sellers with c ≤ c̄ trade. This leads us to the

following proposition.

Proposition 1. The optimal allocation rule is to allow trade for buyers above and sellers below

a certain threshold. Formally,

QB(v) =

{

1 if v ≥ v,

0 otherwise,
QS(c) =

{

1 if c ≤ c̄,

0 otherwise.

11Note that this constraint is different from Myerson and Satterthwaite (1983)’s in two aspects. First, in
Myerson and Satterthwaite (1983) the probability of trade for a buyer and the seller matched to him has to be
the same, qB(v, c) = qS(v, c) for each realization of v and c. For us, they only have to be equal in expectation.
Second, and connected to the previous point, since we are dealing with a centralized mechanism, we do not need
to care about which buyer is matched to which seller. Sold goods are simply put into a common pool, buyers
get their goods from this pool, without having to care which seller sold it. Hence a buyers probability of trade
will only depend on his own valuation v. The same applies for the seller.
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The thresholds (or marginal types) v and c̄ are determined by

JB(v) = JS(c̄), 1− FB(v) = FS(c̄).

The following intuition can be given for this proposition. The optimal price pS set by a profit

maximizing seller with cost c is given by JB(pS) = c according to Myerson (1981).12 Similarly,

a profit maximizing buyer would set the price given by JS(pB) = v. Putting the optimal buying

and selling strategy and the goods market balance condition together determines the marginal

types.13 Another intuition following in spirit Bulow and Roberts (1989)’s characterization

of auction theory results in terms of marginal revenues is the following. JB can be seen as

marginal revenue and JS as marginal cost. The intermediary increases the quantity traded,

q = 1− FB(v) = FS(c), as long as marginal revenue is higher than marginal cost, JB(F
−1
B (1−

q)) > JS(F
−1
S (q)), and stops as soon as it is lower.

This allocation rule can be implemented by charging price v to buyers and offering price c̄

to sellers. Since traders either never enter or trade immediately after entering, the steady state

distributions ΦB and ΦS are the static distributions FB and FS , truncated at v and c̄.

Remark 1. The implied profit maximizing spread θ∗ = v − c̄ is given by

θ∗ =
1− FB(v)

fB(v)
+

FS(c̄)

fS(c̄)
=

v

ηB(v)
+

c̄

ηS(c̄)
, (11)

where the ηB(v) = vfB(v)/(1−FB(v)) and ηS(c) = −cfS(c)/FS(c) are the elasticities of demand

and supply, respectively, and v/ηB(v) and c/ηS(c) are the inverse semi-elasticities. This shows

that the mechanism of setting a bid and an ask price considered in Spulber (1996) and Rust

and Hall (2003) is the optimal stationary mechanism in a dynamic random matching model.14

Obviously, the profit generated by this centralized mechanism is an upper bound for the de-

centralized mechanism with random matching. This is because decentralization adds a further

12While the argument in Myerson (1981) is more subtle, a simplified version is that JB(pS) = c is the first
order condition when maximizing (pS − c)(1− FB(pS)) with respect to pS.

13See also Baliga and Vohra (2003) and Loertscher and Niedermayer (2008) for the optimal mechanism with
a discrete number of traders in a one-period model.

14While this appears intuitive, it this is not completely obvious a priori. The intermediary is willing to accept
efficiency losses by excluding buyers and sellers who would trade in a Walrasian equilibrium. It is not obvious
at first sight that he would not also incur some efficiency losses by delaying trade for some of the traders and
thus extract rents through price discrimination.
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constraint to the maximization problem: trade can only occur between a buyer and a seller

who are randomly matched.

An obvious way to implement the same allocation rule and the same profits with a decen-

tralized matching and centralized bargaining (or exchange) protocol is the following. Buyers

and seller are matched randomly. A matched buyer has to pay the price v and a seller gets

the price c̄. The intermediary keeps the spread v − c̄. A trader cannot get a better deal in the

future, hence he has no interest to delay. Buyers below v and seller above c̄ do not enter, since

they would have zero utility from participation. Hence buyers and sellers trade straight away

and we get the same allocation rule and the same payments as in the centralized mechanism.

Corollary 1. The optimal mechanism can be implemented by random matching with ask and

bid prices given by v and c̄.

3.2 Optimal Implementation with Participation Fees

After having derived the optimal profit maximizing mechanism, we can turn to a specific

mechanism the intermediary can use: charge buyers and sellers per period participation fees

KB and KS in a dynamic random matching environment with bargaining. We will show that

such a mechanism can generate the same profits as the optimal mechanism. For the moment,

we focus on per period fees. In Section 5.3 we show how results are changed when looking at

per match or per transaction fees. First, we characterize the fees for which the marginal types

given by the optimal mechanism are just indifferent between entering and not, provided that a

balanced full-trade equilibrium exists. Then, using this fee structure, we show that a balanced

full-trade equilibrium exists and implies the optimal allocation rule.

Active buyers and sellers meet randomly in each market opening. The mass of matches is

given by the constant elasticity of scale matching function M(B,S) = min{B,S}, where B and

S are the masses of active buyers and active sellers currently in the market.

Upon being matched, the buyer gets to make a take-it-or-leave-it price offer with probability

αB . With probability αS = 1−αB the seller gets to make the offer. If a type v buyer and a type

c seller trade at a price p, then they leave the market with payoff v−p and p−c, respectively. If

bargaining between the matched pair breaks down, both traders can either stay in the market

waiting for another match as if they were never matched, or simply exit and never come back.
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We assume the market is anonymous, so the traders do not know their partners’ market

history, e.g. how long they have been in the market, what they proposed previously, and what

offers they rejected previously.

It can be shown that in any equilibrium, buyers above some threshold v and sellers below

some threshold c are active. Non-active traders stay out of the market. This is stated formally

in the following Lemma.

Lemma 3. The set of active buyers is [v, 1] and the set of active sellers is [0, c] for some

v, c ∈ [0, 1] in any equilibrium.

Proof. The proof follows the same logic as Lemma 1 in Shneyerov and Wong (2010b) and

therefore omitted.

Lemma 3 allows us to focus our analysis on the marginal types v and c.

The marginal buyer v gets a zero net expected utility from participating, hence his option

value of future trade is also zero. Further, a seller would never set a price below v, hence the

buyer’s utility if the seller makes the offer is zero as well. Therefore, when looking for the

marginal buyer we only need to consider the buyer’s utility in case he makes the offer, which

gives us
M(B,S)

B
αBΦS(pB)(v − p

B
) = KB , (12)

where p
B

the optimal price set by the marginal buyer. The left-hand side of the equation is

the gross utility of participation of the marginal buyer: the product of the probability of being

matched M/B, the probability of making the offer αB, of the seller accepting the offer ΦS(pB),

and the buyer’s utility when buying at the price the marginal buyer sets v−p
B
. The right-hand

side is the cost of participation KB . Similarly, for the marginal seller c̄

M(B,S)

S
αS(1− ΦB(pS))(c̄ − pS) = KS . (13)

While deriving the market equilibrium is complicated in general in such setups, since there

may be multiple equilibria, a full trade equilibrium may not exist for all values of KB and

KS (see e.g. Satterthwaite and Shneyerov (2007)), and almost everything in (12) and (13)

is endogenous, it turns out that the analysis is strongly simplified by focussing on the profit

maximizing equilibrium.
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Figure 1: A full trade equilibrium: every offer is accepted. WB(v) and WS(c) are the option
values of future trade. p

B
is the price set by the marginal buyer, pS is the price set by the

marginal seller.

We know from the analysis in the previous section that if an intermediary can implement

the allocation rule of the centralized mechanism in the decentralized dynamic random matching

setup, then he cannot do better. In the following we will show that choosing KB and KS indeed

enables the intermediary to do this. We will hence focus our attention on the optimal allocation

rule, which has the properties that there is full trade (anyone who gets matched, trades with

probability 1, here: p
B

= c̄ and pS = v) and that the market is balanced 1 − FB(v) = FS(c̄)

(or, in this case also, M = B = S). See Figure 1 for an illustration of full trade. We will first

characterize the fee structure that is implied by the marginal types in a balanced full trade

equilibrium. Then we will show, in Proposition 2 below, that this fee structure indeed induces

a balanced full trade equilibrium.

Denote the optimal fees as K∗
B and K∗

S . For full trade balanced market equilibria, the
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conditions for the marginal types (12) and (13) reduce to

αBθ = K∗
B , (14)

αSθ = K∗
S , (15)

where θ = v − c̄ is the spread. This is due to the balanced market M/B = M/S = 1 and full

trade ΦS(pB) = 1− ΦB(pS) = 1. Dividing the first with the second equation gives us

αB

αS

=
KB

KS

. (16)

Adding the two equations gives us

θ∗ = K∗
B +K∗

S ,

where θ∗ is the profit maximizing spread chosen by the intermediary. Following Remark 1 this

can also be written in terms of the elasticities

K∗
B +K∗

S =
v

ηB(v)
+

c̄

ηS(c̄)
, (17)

where v and c̄ are given by the optimal allocation rule. These results mean that the sum of the

fees is equal to the sum of the semi-elasticities of demand and supply for marginal traders. It

further means that the ratio of the fees (the price structure) is independent of the elasticities

and is equal to the ratio of the bargaining weights. Therefore, the side of the market with the

stronger bargaining power will be charged a higher fee. Take e.g. the special case where the

sellers set the price (i.e. αS = 1). In this case participation is free for buyers, K∗
B = 0, and

sellers bear the full burden of the fee, K∗
S = θ∗.

Existence of a full trade equilibrium. Before showing existence of a balanced full trade

equilibrium in a dynamic setup, the following intuition for existence can be given in the simpler

static setup with ǫ = 1. A seller faces the following trade-off when considering raising the price:

a higher price increases profits in case of trade, but it also decreases the probability of trade.

An intermediary faces the same trade-off, but can additionally lower his costs as he raises the

price for buyers. This is because less entry on the buyer side means that he can decrease

the number of sellers entering while keeping the trade volume constant, which lowers his cost.

Hence, if the intermediary is not willing to deviate from full trade in the centralized optimal
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mechanism, neither are the sellers in the decentralized setup. The same reasoning applies to

the buyers.

Returning to the dynamic case (arbitrary ǫ), recall that the profit maximizing spread of the

intermediary is given by

JB(v) = JS(c̄). (18)

It can be shown that if the spread between v and c̄ is large enough, then a full trade

equilibrium exists. Intuitively, the reason is that the marginal seller c does not have an interest

to set a price above v if the difference v− c is large enough. The same applies to the marginal

buyer v. We show this formally in the following Lemma, the proof of which is in the Appendix.

Lemma 4. A full trade equilibrium exists if the marginal types satisfy the following conditions:

ǫJB(v) + (1− ǫ)v ≥ c̄, (19)

ǫJS(c̄) + (1− ǫ)c̄ ≤ v. (20)

We can use Lemma 4 to show existence of a profit maximizing equilibrium. Using the profit

maximizing spread in (18) and JS(c) ≥ c we can find a lower bound for the left-hand side of

(19) in Lemma 4:

ǫJB(v) + (1− ǫ)v = ǫJS(c̄) + (1− ǫ)v ≥ ǫc̄+ (1− ǫ)v

which is greater or equal c̄, since v ≥ c̄ for a profit maximizing intermediary. Hence, condition

(19) is always fulfilled for the profit maximizing spread. By an analogous reasoning, condition

(20) is also always satisfied. Since the ratio of the fees KB/KS is chosen such that a balanced

market is achieved if there is full trade, we have shown existence of a full trade balanced market

equilibrium that maximizes the intermediary’s profit.

Proposition 2. The intermediary’s profit maximizing per period fees K∗
B for the buyer and

K∗
S for the seller in the flea market setup are given by

K∗
B +K∗

S =
1− FB(v)

fB(v)
+

FS(c)

fS(c)
,

K∗
B

K∗
S

=
αB

αS

,
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where the marginal types v and c are given by Prop. 1. For these fees, a balanced full trade

market equilibrium exists in the flea market setup, i.e. an equilibrium such that M(B,S)/B =

M(B,S)/S = 1 and ΦS(pB) = 1−ΦS(pS) = 1, where p
B

is the lowest price set by a buyer and

pS is the highest price set by a seller.

Uniqueness It is well known that there is typically a multiplicity of equilibria in such dy-

namic random matching setups. There is always a no-trade equilibrium, where neither buyers

nor sellers enter and, therefore, not entering is an optimal best response. In the dynamic ran-

dom matching literature this is called the trivial no-trade equilibrium. In the two-sided markets

literature, such issues are called the “chicken-and-egg-problem”: if merchants are not willing to

accept credit cards, consumers will not use them and vice versa. Note, however, that a small

change of the mechanism by the platform can make sure that any other equilibrium than the

profit maximizing one is destroyed. For the no-trade equilibrium it is e.g. sufficient to offer a

small net reward to entering sellers if there are no (or only few) sellers in the market. In case

of an equilibrium with an abundance of sellers, the intermediary can commit in advance to

charge a small penalty to sellers (or a small reward for exiting), so that the marginal seller in

the original equilibrium is not indifferent between entering or not any more. If all equilibria are

destroyed except the profit maximizing one, the platform will never have to pay these rewards

(or charge these penalties) on the equilibrium path. Destroying the no-trade equilibrium can

be interpreted as the story of Diner’s Club initially subsidizing participation by restaurants

and consumers to jump start their credit card system.

Despite the fact that the platform could easily construct off equilibrium payments addi-

tionally to the simple participation fees in order to make sure that its preferred equilibrium is

unique, it is remarkable that for a static setup (ǫ = 1) simple participation fees by themselves

lead to a unique non-trivial equilibrium, as shown in the next Proposition, the proof being

relegated to the Appendix.

Proposition 3. The profit maximizing balanced full trade equilibrium is the unique non-trivial

equilibrium in the static setup (ǫ = 1) given the profit maximizing fees K∗
B and K∗

S.

The proof is by contradiction. It shows that if more than the traders [0, c] and [v, 1] were

to enter, then the marginal entering traders would have strictly negative utility. If less were to
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enter, then they would have strictly positive utility.

4 Bazaar

In a bazaar, a profit maximizing intermediary runs a continuous time search market. We make

the standard assumption of constant returns to scale for the search technology:

M(B,S) = BM(
B

S
, 1) = SM(1,

S

B
).

Denote market tightness with ζ = B/S and the relative matching rate with m(ζ) = M(ζ, 1) =

ζM(1, 1/ζ). Further, denote search intensity λ = M(1, 1) = m(1). The search intensity

parameter scales up the matching rate by a constant factor; λ → ∞ means instantaneous

matching. Denote the elasticities of the matching function as

σB(ζ) =
dM/M

dB/B
=

ζm′(ζ)

m(ζ)
, σS(ζ) =

dM/M

dS/S
=

(

1− ζm′(ζ)

m(ζ)

)

.

An example of constant returns to scale functions is the Cobb-Douglas search technology:

M(B,S) = λBσ̄BSσ̄S ,

with σ̄B + σ̄S = 1 where σ̄B and σ̄S are the (constant) elasticities of the matching function.15

The matching function for a Cobb-Douglas search technology is m(ζ) = ζσB . Another example

is the min search function M(B,S) = λmin{B,S}.16

We will further use the matching rates for buyers and sellers

lB(ζ) =
m(ζ)

ζ
, lS(ζ) = m(ζ).

Note that for Cobb-Douglas, lB(ζ) = ζ−σS and lS(ζ) = ζσB .

We will first consider an intermediary that chooses an optimal trade mechanism subject to

matching occurring according to the search technology. Similarly to Section 3, the profit from

this mechanism will serve as an upper bound for the one that can be obtained in the bazaar.

Also here, we will then show that this upper bound can indeed be attained.

15The Cobb-Douglas matching technology is often used in labor economics to model the search of workers for
jobs; see e.g. Rogerson, Shimer, and Wright (2005).

16It arises as a limiting case of constant returns to scale and constant elasticity of substitution functions in
our setup.
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4.1 Optimal Mechanism

The intermediary designs a trade mechanism for a buyer and a seller that meet, but we assume

it cannot directly influence the matching technology. We depart from the previous sections

in that now buyers and sellers are not constrained to meet at discrete matching periods that

occur after time τ passes. Instead they meet continuously according to a continuous time search

technology.

Note that a mechanism design problem in continuous time without restrictions imposed by

the search technology would not be helpful, since it would be optimal to match buyers and

sellers instantaneously after they enter the market (according to the allocation rule derived in

the previous mechanism). Such an allocation rule could only be achieved by a search technology

with an infinite search intensity. Therefore, we will solve the mechanism design problem under

the constraint of the continuous time matching technology, without the market microbalance

constraint of the original problem. No market microbalance constraint means that a buyer and

a seller are not restricted to trade with their matching partner, but can trade with anyone.

Consequently, the solution of the mechanism design problem delivers an upper bound to the

search problem; one that can be reached, as we will show.

Denote by qB(v) and qS(c) the probability that a buyer or seller with valuation v or cost

c trades in the mechanism in a particular match. Denote by tB(v) and tS(c) the transfer per

match that a buyer pays or a seller gets.

The exposition is simplified by introducing the (continuous time version of) the expected net

present values of transfers TB(v) and TS(c). Since the effective “discount rate” is δ+ lB(ζ)qB(v)

for the buyers and δ + lS(ζ)qS(c) for the sellers, we have

TB(v) =
lB(ζ)tB(v)

δ + lB(ζ)qB(v)
, TS(c) =

lS(ζ)tS(c)

δ + lS(ζ)qS(c)
.

Analogously, the expected net present value of the probability of trade QB(v) and QS(c) (the

“ultimate discounted probability of trade”) is:

QB(v) =
lB(ζ)qB(v)

δ + lB(ζ)qB(v)
, (21)

QS(c) =
lS(ζ)qS(c)

δ + lS(ζ)qS(c)
. (22)
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In contrast to the discrete time setup, the upper bounds of QB(v) and QS(c) are not 1, but

are constrained by the matching technology: e.g. if there are much more buyers than sellers, a

buyer is matched only infrequently and will ultimately drop out for exogenous reasons without

having been matched. These upper bounds are given by setting qB(v) and qS(c) to 1:

QB(ζ) :=
lB(ζ)

δ + lB(ζ)
, QS(ζ) :=

lS(ζ)

δ + lS(ζ)
.

Similar to the discrete time setup, the profit maximization problem of the intermediary can

be shown to be

max
QB(v),QS (c),ζ

∫ 1

0
JB(v)QB(v)dFB(v)−

∫ 1

0
JS(c)QS(c)dFS(c)

s.t.(i)

∫ 1

0
QB(v)dFB(v) =

∫ 1

0
QS(c)dFS(c)

(ii)

∫ 1

v

(1−QB(v))dFB(v) = ζ

∫ c̄

0
(1−QS(c))dFS(c)

(iii) 0 ≤ QB(v) ≤ QB(ζ), 0 ≤ QS(c) ≤ QS(ζ), ∀v, c

The constraints and the notation used are described in the following. (i) is the balanced goods

constraint, i.e. the number of buyers who buy and the sellers who sell is equal. (ii) is the

market tightness constraint. It ensures that the market tightness (ratio of buyers to sellers)

implied by the mechanism is equal to the market tightness assumed when choosing the controls.

Since buyers of type v exit with the overall rate δ + lB(ζ)qB(v), and sellers of type c exit with

the overall rate δ + lS(ζ)qS(c), the steady-state stocks of buyers and sellers are

B =

∫ 1

v

dFB(v)

δ + lB(ζ)qB(v)
, S =

∫ c̄

0

dFS(c)

δ + lS(ζ)qS(c)
.

In view of (21) and (22), these stocks can be alternatively written as

B =
1

δ

∫ 1

v

(1−QB(v))dFB(v), S =
1

δ

∫ c̄

0
(1−QS(c))dFS(c).

Noting that B/S = ζ, we obtain constraint (ii). Finally, (iii) are the boundaries of the ultimate

probabilities of sale.

We can use the following reasoning to simplify the problem. Similarly as for flea markets,

we can show that the solution has a bang-bang property by showing that the derivatives of the

Lagrangian with respect to QB(v) and QS(c) are constant:

∂L

∂QB(v)
= JB(v)− µ− γ,

∂L

∂QS(c)
= JS(c) − µ− γζ, (23)
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where µ and γ are the Lagrange multipliers of constraints (i) and (ii) respectively.

Combining this with QB being increasing and QS decreasing, we get QB(v) = QB(ζ) for

v ∈ [v, 1] and QB(v) = 0 otherwise. Similarly for sellers. Hence, constraint (i) becomes

QB(ζ)(1− FB(v)) = QS(ζ)FS(c̄), (24)

and constraint (ii) becomes (1−QB(ζ))(1 − FB(v)) = ζ̄(1 −QS(ζ))FS(c̄). Dividing (ii) by (i)

gives
1−QB(ζ)

QB(ζ)
= ζ

1−QS(ζ)

QS(ζ)
.

Note that this is always satisfied by the definitions of QB and QS. Hence, constraint (ii) is

redundant and γ = 0.

Also note that it is not optimal for the intermediary to allow entry of a positive mass

of traders who will not trade with positive probability. Doing so could only be beneficial if

it increased the range of market tightness values ζ that are implementable. But the trade

balance constraint (24) implies QB(ζ)/QS(ζ) = FS(c̄)/(1 − FB(v)), so any value of ζ > 0 can

be implemented with a suitable choice of c̄, v ∈ (0, 1).

By this reasoning, the intermediary’s problem is reduced to maximizing
∫ 1
v
JB(v)Q̄B(ζ)dFB(v)−

∫ c

0 JS(c)Q̄S(ζ)dFS(c) subject to the constraint Q̄B(ζ)(1−FB(v)) = Q̄S(ζ)FS(c) using the con-

trol variables v, c, and ζ. The following Lemma characterizes the optimal ζ.

Lemma 5. The profit maximizing market tightness ζ∗ satisfies

ζ∗ =
σB(ζ

∗)

σS(ζ∗)

fB(v)

fS(c̄)

The proof of the Lemma is in the Appendix. Intuitively, Lemma 5 describes the interme-

diary’s trade-off when choosing how to balance the market. The intermediary is more willing

to tilt the market towards more buyers (i.e. ζ = B/S larger) if the elasticity of the match-

ing function σB(ζ) is large for buyers, since this will have a large impact on the number of

matches. A large marginal density fB(v) has similar effects, since lowering v has a large effect

on additional entry by buyers.

Using (23), (24), γ = 0, and Lemma 5 leads us to the following characterization of the

optimal mechanism.
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Proposition 4. The optimal allocation rule is to allow trade for buyers above and sellers

below certain thresholds v and c̄, as in Proposition 1. The thresholds are now determined by

the system of equations

JB(v) = JS(c̄),

QB(ζ
∗)(1− FB(v)) = QS(ζ

∗)FS(c̄),

where ζ∗ satisfies

ζ∗ =
σB(ζ

∗)

σS(ζ∗)

fB(v)

fS(c̄)
.

A few remarks are in order before moving to the search market implementation of the opti-

mal mechanism. Note that for a Cobb-Douglas search technology the elasticities are constant,

σB(ζ) = σ̄B, σS(ζ) = σ̄S and hence ζ∗ = σ̄BfB(v)/(σ̄SfS(c̄)). Note further that for the min

search technology M(B,S) = λmin{B,S} (as the limiting case of a CES-function) ζ∗ = 1 and

the allocation rule is the same as for discrete matching. Further, as search frictions disappear,

i.e. search intensity goes to infinity (λ → ∞), the allocation rule converges to the discrete time

allocation. However, market tightness remains the same as for a finite λ.

Under the symmetry assumptions σB(1) = σS(1) and fB(x) = fS(1−x) (i.e. fB is a mirror

image of fS) we get ζ
∗ = 1, i.e. it is optimal to make sure that the market is balanced (B = S).

This in turn implies QB(ζ
∗) = QS(ζ

∗) and hence the marginal types v and c̄ in Prop. 4 are the

same as for the discrete time matching setup in Prop. 1.

4.2 Optimal Implementation with Participation Fees

In a bazaar, a matched buyer and seller bargain according to the same take-it-or-leave-it proto-

col as in the flea market. In this section, we show that the outcome of the optimal continuous

time mechanism can be attained in a bazaar where buyers and sellers bargain. We continue to

assume that the intermediary prices its services through per period fees, KB and KS . As for

flea markets, we defer the discussion of per match and per transaction fees to Section 5.3. We

can use a similar logic for marginal types and fees as for flea markets. The optimal allocation

rule also has the full trade property in this setup, but the optimal market is not balanced in

general: the probability of being matched in a certain period is given by the matching rates

M/B and M/S rather than 1. The zero utility condition for marginal types under full trade is
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hence

M(B,S)

B
αBθ

∗ = KB ,
M(B,S)

S
αSθ

∗ = KS .

Hence, the sum of fees is

KB +KS =

(

v

ηB(v)
+

c

ηS(c)

)(

αB
M(B,S)

B
+ αS

M(B,S)

S

)

,

and their ratio
KB

KS
=

αB

αS

M(B,S)/B

M(B,S)/S
.

Alternatively, this can be written as

KB

KS
=

αB

αS

1/B

1/S
=

αB/[σB(ζ
∗)fB(v)]

αS/[σS(ζ∗)fS(c)]
.

Hence, a larger proportion of the fee is charged to the side that has the larger bargaining weight

and that is more abundant in the market in equilibrium;17 which is equivalent to the ratio of

bargaining weights being multiplied by the ratio of the inverse matching elasticities of demand.

For the example of a Cobb-Douglas matching function with uniform distributions over [0, 1],

we have S/B = σ̄S/σ̄B , and therefore the above equation reduces to

KB

KS
=

αB/σ̄B
αS/σ̄S

.

The Hosios (1990) condition is equivalent to the right-hand side being equal to 1. If the Hosios

condition is satisfied, the market is constrained efficient in absence of the intermediary.18 Under

this condition, the intermediary’s optimal fee structure is balanced: KB/KS = 1. For general

distributions, the fee ratio in a constrained efficient market is KB/KS = fS(c)/fB(v).

In order to show existence of a full trade equilibrium, we need the following lemma, in

parallel to Lemma 4 for the flea market. The proof is in the Appendix.

Lemma 6. A full trade equilibrium exists if the marginal types satisfy the following conditions:

(

1−QB(ζ)
)

JB(v) +QB(ζ)v ≥ c̄, (25)

(

1−QS(ζ)
)

JS(c̄) +QS(ζ)c̄ ≤ v. (26)

17Here, one has to be careful with the interpretation of this ratio, since B/S is endogenous. It can also be
seen as the platform making sure that the side with the larger bargaining weight is tighter.

18Strictly speaking, we need a small exogenous search cost to claim that the market is constrained efficient
without the intermediary. See Mortensen and Wright (2002).
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Note that while the optimal marginal types v and c in Propositions 1 and 4 are different,

for both cases they satisfy the condition JB(v) = JS(c). Hence, we can use the same logic as

for Proposition 2 to show that the profit maximizing fees indeed induce an equilibrium which

implements the allocation rule given by the optimal mechanism: JB(v) = JS(c) implies the

conditions in Lemma 6 and hence we get the following Proposition.

Proposition 5. The intermediary’s profit maximizing per period fees K∗
B for the buyer and

K∗
S for the seller in the bazaar setup are given by

K∗
B +K∗

S =

(

1− FB(v)

fB(v)
+

FS(c)

fS(c)

)(

αB
M(B,S)

B
+ αS

M(B,S)

S

)

,

K∗
B

K∗
S

=
αB/[σB(ζ

∗)fB(v)]

αS/[σS(ζ∗)fS(c)]
,

where the marginal types v and c are given by Prop. 4. For these fees, a full trade market

equilibrium exists in the bazaar setup, i.e. an equilibrium such that ΦS(pB) = 1−ΦS(pS) = 1,

where p
B

is the lowest price set by a buyer and pS is the highest price set by a seller.

As for the discrete time setup, the intermediary can achieve uniqueness by a slight modifi-

cation of the mechanism.

5 Discussion

5.1 Different Levels of Centralization

Our paper also touches a more general question in economics: what level of centralization is

desirable? Our article gives insights about this question in the context of profit maximizing

intermediaries rather than social welfare, i.e. what level of centralization is desirable for a profit

maximizing intermediary running a market?

The relation to centralization becomes more evident if we consider the third most wide

spread archetype of intermediaries that was briefly alluded to before: market makers. Market

makers take orders from buyers and sellers and decide on a centralized mechanism that deter-

mines how the good is exchanged multilaterally. A prominent example are specialists at the

New York Stock Exchange. Market makers, flea markets, and bazaars can be seen as decreas-

ing levels of centralization: a market maker opens the market at discrete periods of time and

centrally determines the exchange mechanism; in a flea market the intermediary determines
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the discrete opening times but leaves matching and bargaining to traders; in a bazaar the in-

termediary does not even determine the opening time, traders enter the market at times not

coordinated.

The discussion in Section 3.1 shows that the mechanism typically used by market makers,

namely setting an ask and bid price v and c, is indeed optimal in the class of stationary

anonymous mechanisms. It further shows revenue equivalence between a market maker’s bid-

ask prices and a flea market: expected profits of the intermediary and (interim) expected

utilities of all buyers and sellers are the same in both types of markets. This is due to the fact

that the intermediary makes sure that there is full trade in a flea market, i.e. every offer is

accepted in equilibrium, and that the market is balanced. This leads to the same allocation

rule and the same profits as with a market maker. Whether an intermediary wants to run a

market as a market maker or as a flea market hence depends on factors not explicitly modeled

here. Such factors can be the cost of setting up a centralized system, the costs of search

and bargaining, and how well the intermediary is informed about the details of the market.19

Further decentralizing the market, namely moving to a bazaar, does change the profits of the

intermediary as outlined below.

5.2 Profit Comparison Flea Market versus Bazaar

In this subsection, we compare the revenue performance of the flea market and bazaar for

different levels of frictions δ. For tractability, we assume that buyers and sellers are symmetric:

fB(x) = fS(1−x) and σB(1) = σS(1). In a flea market, ratio 1−(1−e−δτ )/(δτ) of traders drop

out without trading between two subsequent market openings. The remainder gets matched

and trades with probability 1. In a bazaar, the meeting rates are lB = lS = λ and the drop

out rate δ under the symmetry assumption (which leads to ζ∗ = 1). Hence, ratio δ/(δ + λ)

drop out without trading. When frictions vanish (δ → 0) nobody drops out without trading

both for discrete and for continuous time. Since the allocation rule is the same for discrete

and continuous time under the symmetry assumption, profits will be the same for discrete and

continuous time as δ → 0. Denote these profits as Π. Since losses only occur through drop-outs,

19A market maker would typically need better information about the distributions of traders’ valuations to
get the mechanism right than the organizer of a flea market.
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profits in the flea market are

ΠF =
1

δτ
(1− e−δτ )Π, (27)

and in a bazaar

ΠB =
λ

δ + λ
Π, (28)

where

Π := v(1− FB(v))− cFS(c),

and v and c̄ are determined in Proposition 1.

As mentioned before, profits are the same for the flea market and the bazaar as fric-

tions vanish, limδ→0 ΠF = limδ→0ΠB = Π. Further, for search frictions becoming large

limδ→∞ΠF /ΠB = 1/(λτ).

Search frictions δ can be seen as costs of decentralization. This makes it all the more

surprising that a decentralized bazaar can become more attractive for the intermediary as δ

increases. The ratio of flea market versus bazaar profits ΠF /ΠB can be non-monotone in the

exit rate δ. Rearranging the expressions for ΠF and ΠB reveals that ΠF /ΠB increases in δ at

δ = 0 iff λ < 2/τ . For intermediate values of the search intensity λ ∈ (1/τ, 2/τ), ΠF > ΠB for

δ close to 0 and ΠF < ΠB for δ close to ∞. A graphical illustration is given in Figure 2. For

τ = 1 and λ = (1− e−10)/(0.1e−10 +0.9) ≈ 1.111 in Fig. 2, a flea market is preferred for δ < 10

and a bazaar is preferred for δ > 10.

We can shed more light on the issue at hand by normalizing the time between rematchings

to τ = 1. For any value of δ > 0, the flea market yields a higher profit than the bazaar if the

search intensity λ is sufficiently low. For a given δ > 0, ΠF > ΠB if and only if

λ < λ̄(δ) :=
δ(1 − e−δ)

e−δ − 1 + δ
.

The function λ̄(δ) can be shown to be decreasing, with limδ→0 λ(δ) = 2 and limδ→∞ λ̄(δ) = 1.

See Figure 3. Furthermore, we can compare (27) and (28) for a fixed level of λ across different

levels of δ. For λ ∈ (0, 1], profits for a flea market are larger, ΠF > ΠB for all δ > 0. For

λ ∈ (1, 2) profits in the flea market are larger, ΠF > ΠB, if and only if δ ∈ (0, δ̄(λ)), where
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where δ̄(·) is the inverse of λ̄(·). For λ ≥ 2, profits in the bazaar are larger, ΠB > ΠF for all

δ > 0.

For λ ∈ (1, 2), the intermediary prefers a greater degree of centralization with smaller

frictions δ. Intuitively, in a market with patient traders (low exit rate δ), the intermediary is

willing to wait until enough traders gather and then opens a flea market. If, on the other hand,

traders are impatient, most would exit before the next opening of the flea market. Therefore,

it is worth incurring the search frictions of the search market.

The result that more frictions make decentralization more attractive of course depends on

the specific kind of frictions: the exit rate. The result is driven by the different ways the exit

rate enters the profit function: close to exponentially for the flea market, close to hyperbolically

for the bazaar.
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Figure 2: Ratio of flea market profits ΠF to bazaar profits ΠB as a function of the exit rate δ
(solid line) for parameters τ = 1 and λ = (1− e−10)/(0.1e−10 + 0.9) ≈ 1.111. The dashed line
is at ΠF/ΠB = 1 and intersects the solid line at δ = 0 and δ = 10. The dotted line is at 1/(λτ)
and is the asymptotic value of ΠF /ΠB as δ goes to infinity.

An issue we have not dealt with, but which can be addressed by a straightforward extension

of our model, is that the time between subsequent openings of a flea market τ and the search

intensity in a bazaar λ might be endogenously chosen. Assume that the intermediary incurs

per period costs κτ (τ) of running the market, more frequent market opening times being more
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Figure 3: Profit comparison of flea market and bazaar. The curve indicates the values of the
search intensity λ = λ̄(δ) such that ΠF = ΠB for δ > 0. The profit is higher for the flea market
above the curve, and lower below. ΠF = ΠB for all λ if δ = 0.

costly. Likewise, it is costly to increase search intensity, per period costs of running a bazaar

being κλ(λ). A flea market intermediary will choose τ∗ to maximize [(1−e−δτ )/(δτ)]Π−κτ (τ). A

bazaar intermediary chooses λ∗ to maximize [λ/(δ+λ)]Π−κλ(λ). The above profit comparison

is the same, except that τ∗ and λ∗ are endogenously chosen values and the costs κτ (τ
∗) and

κλ(λ
∗) of running the market also have to be taken into account.

5.3 Other Types of Fees

Per Match Fees. In a flea market, a trader gets matched immediately in the period he

enters the market and his probability of being matched is independent of his actions. Hence,

per match fees and per period participation fees are equivalent.

In a bazaar, per period and per match fees are different, since traders do not get matched

once a period, but according to the matching rates M/B and M/S, respectively. Further, the

market is not necessarily balanced. Therefore, if per match rather than per period fees are

charged, the condition for the marginal types is that gross utility per match is equal to fees per

match. Retaining the same notation for the fees, we have

αBθ = KB , αSθ = KS ,
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where KB and KS are now per match fees. Since this condition is the same as in a flea market,

optimal fees are also the same, i.e. given by KB +KS = θ∗ and KB/KS = αB/αS .

Transaction fees. Once again, we retain the same notation for per transaction fees, KB and

KS . Since transaction fees are only paid in case of a transaction, a buyer only accepts a price

pS if it is at most v −KB − (1 − ǫ)WB(v), where KB is the transaction fee and (1 − ǫ)WB(v)

is his option value of future trade. For the marginal buyer v the option value of future trade is

zero, WB(v) = 0, hence in a full trade equilibrium he will get the price offer pS = v −KB . By

a similar logic, the marginal seller will get the price offer pB = c + KS . A profit maximizing

intermediary will set KB +KS = v− c. Combining this with the expressions for pB and pS we

get pB = pS = v −KB = c+KS . Hence with transaction fees we get fee neutrality: the sum

of the fees is given by the semi-elasticities KB +KS = v/ηB(v) + c/ηS(c), but the composition

of the fees does not matter for the profits of the platform, it will merely move the transaction

price p = pB = pS , the ratio of the fees satisfying KB/KS = (v − p)/(p − c).

5.4 Exogenous participation costs

The model can be easily extended to include both participation fees KB and KS set by the

intermediary and exogenously given search costs xB and xS per period. The conditions for the

marginal types are

αBθ
∗ = KB + xB αSθ

∗ = KS + xS ,

which is essentially the same as before, except that total participation costs KB + xB and

KS + xS are decomposed to fees and exogenous search costs. The optimal spread is v − c =

θ∗ = v/ηB(v) + c/ηS(c) + xB + xS and the market balancing condition becomes αB/αS =

(KB + xB)/(KS + xS). As an example, in a market where sellers always get to make take-it-

or-leave-it offers to buyers (αS = 1) and buyers have positive exogenous search costs (xB > 0),

the platform should charge high fees to sellers (KS = θ∗ − xS + xB) and subsidize buyers

(KB = −xB).
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5.5 Welfare Effects of Intermediaries

Our model can be used to shed light on the debate whether intermediaries are welfare decreasing

(see conventions of the International Labor Organization and the referendum in Washington

state mentioned in the Introduction). While a detailed analysis is outside of the scope of this

paper, we add a brief discussion of these issues in light of our theoretical framework. Would

welfare increase or decrease if the intermediary was removed from the market?20

In this section, we compare a flea market without fees with the same flea market run

by a for-profit intermediary. (A similar reasoning holds for continuous time search markets

without search fees.) We will use the Walrasian outcome as a benchmark, in which buyers

above and sellers below the Walrasian price p∗ trade and the Walrasian price is given by

1 − FB(p
∗) = FS(p

∗). The payoffs of buyers, sellers, and the intermediary are the same for a

flea market and a market maker setting bid and ask prices v and c. We can hence simplify the

analysis by looking at payoffs of the market maker. Here, buyers above v and sellers below c

enter and trade occurs at price v and c. The marginal types satisfy 1 − FB(v) = FS(c) and

JB(v) = JS(c).

To simplify the exposition, we look at the extreme case in which search frictions are so

high, that traders only consider one trade opportunity and then exit, that is ǫ = 1. This

is essentially a static model. To get an analytically tractable example, we also assume that

traders’ types follow power distributions, FB(v) = 1 − (1 − v)β and FS(c) = cβ with β > 0.

Power distributions result in linear virtual types, JB(v) = (1+ 1
β
)v− 1

β
and JS(c) = (1+ 1

β
)c.21

The Walrasian price is p∗ = 1
2 because of symmetry and welfare of buyers and sellers in a

Walrasian market is

W ∗
S =

∫ p∗

0
(p∗ − c)dFS(c) =

1

(β + 1)2β+1
, W ∗

B =

∫ 1

p∗
(v − p∗)dFB(v) =

1

(β + 1)2β+1
,

Welfare with a profit maximizing intermediary for buyersWP
B , sellersWP

S , and the intermediary

20There are several other questions that arise when dealing with these issues. How should costs of running a
platform be recouped? Is it optimal to choose participation fees to be positive rather than zero from a social
planner’s point of view? How does competition between a for-profit and a non-profit platform look like and what
are the welfare and policy implications? Our results may be a helpful starting point for an analysis dealing with
these questions.

21A higher β can be seen as a higher elasticity of demand and supply, since the elasticities are ηB(v) = βv/(1−v)
and ηS(c) = β. Further, as β → 0, informational asymmetries vanish, since in the limit buyers have valuation 1
with probability 1 and seller have valuation 0 with probability 1.
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WP
I is

WP
S =

∫ c

0
(c− c)dFS(c) =

(

β

β + 1

)β+1

W ∗
S , WP

B =

∫ 1

v

(v − v)dFB(v) =

(

β

β + 1

)β+1

W ∗
B ,

WP
I = (v − c)FS(c) =

ββ

(β + 1)β−1
(W ∗

S +W ∗
B).

In a flea market with free entry and no profit maximizing intermediary, all sellers enter. This is

because a seller with cost c close to 1 still has a positive probability of making the price offer.

Since we are in an essentially static setup, a buyer with v ≥ c will accept the offer, which leads

to a positive expected utility of sellers with c < 1. By the same reasoning, all buyers enter.

Welfare for a seller with cost c is WN
S (c) = αS(PS(c)−c)(1−FB(PS(c)))+αB

∫ 1
0 max{0, PB(v)−

c}dFB(v), where the price set by a seller is PS(c) = argmaxp(p − c)(1 − FB(p)) = J−1
B (c)

and by a buyer PB(v) = J−1
S (v). The analogous expression holds for the welfare WN

B (v)

of a buyer with valuation v. Total welfare for sellers WN
S =

∫ 1
0 WN

S (c)dFS(c) and buyers

WN
B =

∫ 1
0 WN

B (v)dFB(v) can be computed as

WN
S =

√
πββ(αS + β)Γ(β + 1)

22β+1(β + 1)β+1Γ
(

3
2 + β

) , WN
B =

ββ(αB + β)Γ(β + 1)2

(β + 1)β+1Γ(2(β + 1))
,

where Γ is the gamma function.

Figure 4 shows how buyer and seller welfare as a ratio of Walrasian welfare compares for

different values of β. The solid line is welfare with an intermediary. The dashed line is total

welfare without an intermediary for large search frictions ǫ → 1. What is striking in Figure 4 is

that welfare with an intermediary may be higher – even if excluding the intermediary’s profits

and only looking at buyer and seller welfare. The reason for this result is that in a search

market, there may be excessive entry: inefficient buyers and sellers who would not trade in

a Walrasian equilibrium (v < p∗ and c > p∗) enter, hoping to find a very efficient trading

partner who prefers accepting an unattractive offer to incurring search costs to find another

trading partner. An intermediary excludes some of the traders, which has the effect of reducing

excessive entry additionally to the effect of the deadweight loss of monopoly. In some cases,

efficiency gains resulting from the reduction of excessive entry dominate efficiency losses from

the standard deadweight loss of exclusion.22

22The example provided was chosen for the sake of simplicity, since it allows for a closed form solution and there
is a unique non-trivial equilibrium. For this particular example, overall welfare with an intermediary (including
the intermediary’s profits) is always higher in a static setup (ǫ → 1). However, one can easily construct examples,
in which there is ambiguity even in the static setup.
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Figure 4: Welfare of buyers and sellers as a ratio of Walrasian (i.e. first-best) welfare
W ∗ = W ∗

B + W ∗
S for different setups: with an intermediary (WP

B + WP
S )/W ∗ (solid), with-

out an intermediary and large search frictions, ǫ → 1, (WN
B +WN

S )/W ∗ (dashed), without an
intermediary and small search frictions, ǫ → 0, (WN

B +WN
S )/W ∗ (dotted).

When search frictions are small (the exit probability between two subsequent matches

vanishes, ǫ → 0), it is known from the literature (see Satterthwaite and Shneyerov (2007)

and Shneyerov and Wong (2010b)) that a dynamic random matching market converges to

a Walrasian outcome (for any distribution). The allocation rule and hence welfare with an

intermediary are independent of ǫ and still given by the marginal types v and c satisfying

1−FB(v) = FS(c) and JB(v) = JS(c). Therefore, welfare is clearly lower with an intermediary,

since buyers and sellers that would have traded in a Walrasian equilibrium are excluded by a

profit maximizing intermediary (since c < p∗ < v). This is the standard result of the deadweight

loss of monopoly. Figure 4 illustrates the welfare of buyers and sellers with (solid line) and

without (dotted line) an intermediary, for small search frictions ǫ → 0.

6 Conclusions

We have investigated two types of search and bargaining markets organized by a profit-

maximizing platform: periodically clearing flea markets and continuously clearing bazaars.

In both markets, the optimal allocation rule takes the form of two thresholds: buyers above
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the upper threshold trade with probability 1, below they trade with probability 0. Similarly,

sellers below the lower threshold trade for sure and never trade above it. The thresholds,

however, are different in flea markets and bazaars.

The optimal allocation can be achieved by setting per match participation fees in a bar-

gaining market, in which the ratio of buyers’ and sellers’ fees is proportional to their bargaining

weights. This result is obtained in a class of simple equilibria that have a full trade property:

every meeting in the market results in trade. Even though a full trade equilibrium may not

exist for certain values of fees, we show that it does exist for the optimal level of fees. This

allows us to develop a tractable model of intermediation for markets with bargaining, with clear

implications on total fees and fee structure. The intermediary can achieve the same outcome

by charging per period or per transaction fees. The structure of per period fees is the same for

a flea market as that of per match fees. For a bazaar, per period fees have to be adjusted by

the relative abundance of traders on the buyer or seller side. For transaction fees, fee neutrality

holds: only the sum of the buyer’s and the seller’s fee matters, not their composition.

This simple and tractable solution allows us to investigate several other important questions.

How much centralization is desirable for the intermediary? Which market structure, flea market

or bazaar, generates more profits for the intermediary? It turns out that the flea market is

optimal for small frictions, while the bazaar is optimal when frictions are large. Next, focusing

on markets with small frictions, we show that the presence of the intermediary may actually

increase the welfare of the traders. The intuition is that the intermediary excludes inefficient

buyers and sellers, which reduces search frictions.

This tractable framework also points to an intriguing issue for future research concerning

the regulation of intermediaries: in our setup, buyer fees and seller fees are complements. This

is because lower fees for sellers lead to additional entry by sellers, which make more entry by

buyers (and lower fees) more attractive for the intermediary. Hence, putting a regulatory price

cap on fees on one side of the market can lead to lower fees for the other side of the market,

provided the price cap is not too far from the unregulated fee level. This stands in contrast

to the markets analyzed in the two-sided markets literature, in which buyer and seller fees are

substitutes and price caps on one side lead to higher fees on the other side.
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Appendix: Proofs

Proof of Lemma 4. We only need to show that sellers do not have an incentive to deviate to

an ask price higher than v, and buyers do not have an incentive to deviate to a bid price lower

than c̄. We will only prove the result for sellers; for buyers, the argument is parallel.

Consider a static setup first, ǫ = 1. The expected profit of a seller of type c in any match

where she deviates from equilibrium and proposes an ask price pS is

πS(c, pS) : = αS(pS − c)ΦB(pS) + αB(c̄− c)

= αS(pS − c)
1− FB(pS)

1− FB(v)
+ αB(c̄− c), (29)

and its slope is23

∂πS(c, pS)

∂pS
=

1− FB(pS)− fB(pS)(pS − c)

1− FB(v)

=
fB(pS)

1− FB(v)

(

c− pS +
1− FB(pS)

fB(pS)

)

,

∂πS(c, pS)

∂pS
∝ c− JB(pS).

At pS = v, this slope is nonpositive for all c ≤ c̄ if JB(v) ≥ c̄, which implies that the seller will

not prefer such a deviation. This is our condition (19) in the statement of the lemma when

ǫ = 1.

In a dynamic setup, ǫ < 1, the probability that an offer pS is accepted depends on the

market distribution of buyers’ reservation values. Consider a buyer of type v. His expected

profit in the next market opening, discounted back to the current one, is equal to

WB(v) = (1− ǫ) (αB(v − c̄) + αS(v − v)−K∗
B) ,

= (1− ǫ)(αB + αS)(v − v) + (1− ǫ)αB(v − c̄)− (1− ǫ)K∗
B

= (1− ǫ)(v − v), (30)

where the equality in the last line follows from the fact that, in a full trade equilibrium,

αB(v − c̄) = αBθ = KB . In the current period, he will accept any price pS if v − pS ≥ WB(v).

Equivalently, he will accept any pS at or above his reservation value

ṽ(v) := v −WB(v) = ǫv + (1− ǫ)v. (31)

23Here and below, we use the notation “∝” for “has the same sign as”.
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Going in the reverse direction, the buyer’s type v as a function of his reservation value ṽ is

v =
ṽ − (1− ǫ)v

ǫ
,

and therefore the market distribution of reservation values is

Φ̃B(ṽ) = ΦB

(

ṽ − (1− ǫ)v

ǫ

)

.

The expected seller’s profit in any match is of the same form as in (29), with ΦB(pS) replaced

with Φ̃B(pS). The corresponding virtual valuations are

J̃B(ṽ) : = ṽ − 1− Φ̃B(ṽ)

φ̃B(ṽ)

= ǫv + (1− ǫ)v − ǫ
1− ΦB(v)

φB(v)

= ǫv + (1− ǫ)v − ǫ
1− FB(v)

fB(v)
(32)

= ǫJB(v) + (1− ǫ)v. (33)

In parallel to the static setup,

∂πS(c, v)

∂pS
∝ c− J̃B(v)

= c− ǫJB(v) + (1− ǫ)v

so (33) implies (19) in the lemma.

Proof of Proposition 3. First, we will show that no other equilibrium with expansion on at

least one side of the market exists (i.e. there is either more entry by buyers, more entry by

sellers, or both). Then we will show that there is no other equilibrium with contraction (i.e.

less entry by both buyers and sellers).

In the following we will take a non-full-trade-equilibrium where buyers v ∈ [ṽ, 1] and sellers

with c ∈ [0, c̃] enter. As a comparison, we will denote the marginal types in the full-trade-

equilibrium that maximizes the intermediary’s profits as v and c̄. We will show that any other

equilibrium leads to a contradiction.

Recall that for full trade, the marginal types are given by

αB(v − c̄) = KB

αS(v − c̄) = KS
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Similarly for the alternative non-full-trade-equilibrium

αB(ṽ − pB)
M

B
Φ̃S(pB) = KB

αS(pS − c̃)
M

S
(1− Φ̃B(pS)) = KS .

The endogenous distributions Φ̃B and Φ̃S are given by truncation of non-entering types in the

static model:

Φ̃B(v) =

{

(FB(v)− FB(ṽ))/(1 − FB(ṽ)) if v ≥ ṽ,

0 otherwise,

Φ̃S(c) =

{

FS(c)/FS(c̃) if c ≤ c̃,

1 otherwise.

In the following we will show for all cases of ṽ 6= v or c̃ 6= c̄ that there is a contradiction, which

gives us uniqueness.

First, expansion on both sides of the market (ṽ < v and c̃ > c̄) is not possible.

Lemma 7. There cannot be an equilibrium with marginal types ṽ and c̃ where ṽ < v and c̃ > c̄.

Proof. In the full trade equilibirum the utility of a type v buyer is

max
pB

αB(v − pB) {1}
{

ΦS(pB)
}

= KB (34)

where ΦS is the distribution of sellers when truncating sellers above c̄.

Compare this with the utility of the v buyer in the non-full-trade-equilibrium:

max
pB

αB(v − pB)

{

M

B

}

{

Φ̃S(pB)
}

(35)

Clearly, the two expressions in curly braces are both weakly less than the corresponding ex-

pressions in the previous equation, hence the maximized function in (35) is weakly less than

the maximized function in (34) for all pB, hence (35) is weakly less than KB. Therefore, the

marginal seller in the non-full-trade-equilibrium, ṽ < v, will have a utility strictly less than

KB , which is a contradiction. Intuitively, v is less likely to be matched in the non-full-trade-

equilibrium and in case of being matched he is less likely to sell at a given price. Hence entering

is less attractive to him. The same reasoning applies to the marginal seller c̃.

Second, expansion on one and contraction on the other side cannot be an equilibrium.
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Lemma 8. There cannot be an equilibrium with marginal types ṽ and c̃ where either of the two

conditions holds: (i) ṽ > v and c̃ > c̄ or (ii) ṽ < v and c̃ < c̄

Proof. We will only consider case (i), the same reasoning applies for case (ii). For case (i), the

sellers are the long side of the market, i.e. S > B, which is equivalent to FS(c̄) > 1− FB(ṽ).

Consider the profit of seller c̄ in the full trade equilibrium if he makes the offer:

max
pS

(pS− c̄)(1−ΦB(pS)) = max
pS

(pS− c̄)
1− FB(v)

FS(c̄)

1− FB(pS)

1− FB(v)
= max

pS
(pS− c̄)

1

FS(c̄)
(1−FB(pS))

(36)

where the first equality follows from 1 − FB(v) = FS(c̄) in the full trade equilibrium and the

definition of the truncated distribution ΦB .

The profit of the seller c̄ in the non-full-trade-equilibrium if he makes the offer is

max
pS

(pS−c̄)
M

S
(1−Φ̃B(pS)) = max

pS
(pS−c̄)

1− FB(ṽ)

FS(c̃)

1− FB(pS)

1− FB(ṽ)
= max

pS
(pS−c̄)

1

FS(c̃)
(1−FB(pS))

(37)

where the first equality follows from the definitions of M/S when sellers are on the long side

of the market and the truncated distribution Φ̃B. Comparing the maximized functions on the

RHS of (36) and (37) reveals that profits are lower in the non-full-trade-equilibrium, since c̃ > c̄.

The profit of the marginal seller in the non-full-trade-equilibrium c̃

max
pS

(pS − c̃)
1

FS(c̃)
(1− FB(pS))

are even lower than in (37). Neither the c̄ seller in the full trade equilibrium nor the c̃ seller in

the non-full-trade-equilibrium make any profits in case the buyer makes the offer. Hence, the

profit of the c̃ seller in the non-full-trade-equilibrium are belowKS , which is a contradiction.

Third, contraction on both sides of the market cannot be an equilibrium.

Lemma 9. There cannot be an equilibrium with marginal types ṽ and c̃ where c̃ < c̄ and ṽ > v.

Proof. We will show that the marginal utility of increasing the price is positive for the marginal

buyer in any equilibrium with two sided contraction. Since the same argument holds also for

sellers, we know that buyers price at c̃ and sellers at ṽ. Then we will show that an equilibrium

with this pricing cannot exist for a spread less than the profit maximizing one, i.e. ṽ− c̃ < v− c̄.
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The marginal buyer’s utility when setting price pB is

πB(pB) = (ṽ − pB)
FS(pB)

FS(c̃)

M

B

Looking at the marginal utility of pricing, leaving aside constants, we get

π′
B(pB) ∝ −FS(c̃) + (ṽ − c̃)fS(c̃)

= (ṽ − JS(c̃))fS(c̃)

> (v − JS(c̃))fS(c̃)

≥ (v − JS(c̄))fS(c̃)

≥ 0

where the first two inequalities follow from ṽ > v and c̃ < c̄ and the third from the fact that

there is full trade at v, c̄. A positive π′
B means that the buyer will set a price equal to the cost

of the marginal seller c̃. By monotonicity, all other buyers (who have v > ṽ), will also price

at c̃. By an analogous argument, all sellers will price at ṽ. Since the probability of trading

conditional on being matched is 1, the utility of the marginal types is

αB(ṽ − c̃)
M

B
= KB (38)

αS(ṽ − c̃)
M

S
= KS (39)

Dividing the two equations and using the fact that the intermediary makes sure that αB/αS =

KB/KS we get B/S = 1. Substituting this back into (38) and (39) gives us a contradiction to

the full trade marginal type conditions

αB(v − c̄) = KB , αS(v − c̄) = KS ,

since ṽ − c̃ > v − c̄. Hence, a contraction equilibrium cannot exist.

Putting Lemmas 7, 8, and 9 together, we get the result in Proposition 3 that the full trade

equilibrium is unique in the static model.

Proof of Lemma 5. The Lagrangian of the intermediary’s problem is

L =

∫ 1

v

JB(v)QB(ζ)dFB(v) −
∫ c̄

0
JS(c)QS(ζ)dFS(c)− µ

[

QB(ζ)(1 − FB(v))−QS(ζ)FS(c̄)
]

.
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Since it can be shown by partial integration that
∫ 1

v

JB(v)dFB(v) = v(1− FB(v)),

∫ c̄

0
JS(c)dFS(c) = c̄FS(c̄),

the Lagrangian can be rewritten as

L = QB(ζ)(v − µ)(1− FB(v)) +QS(ζ)(µ − c̄)FS(c̄)

= QB(ζ)
1− FB(v)

fB(v)
(1− FB(v)) +QS(ζ)

FS(c̄)

fS(c̄)
FS(c̄),

where the second line follows from JB(v) = µ = JS(c̄) and substituting in the definitions of JB

and JS . The first order condition with respect to ζ is

−Q
′
B(ζ)

(1− FB(v))
2

fB(v)
= Q

′
S(ζ)

FS(c̄)
2

fS(c̄)
.

Dividing by constraint (i) twice to get rid of 1− FB(v) and FS(c̄) we get

− Q
′

B(ζ)

QB(ζ)
2

1

fB(v)
=

Q
′

S(ζ)

QS(ζ)
2

1

fS(c̄)
. (40)

Using the definitions of QB , QS, σB, and σS , some algebra reveals that

Q
′

B(ζ)

QB(ζ)
2
= −δ

m′(ζ)ζ −m(ζ)

m(ζ)2
= −δσS(ζ)

m(ζ)
,

Q
′

S(ζ)

QS(ζ)
2
= δ

m′(ζ)

m(ζ)2
=

δσB(ζ)

ζm(ζ)
.

Substituting this back into (40) yields

σS(ζ
∗)

fB(v)
=

σB(ζ
∗)

ζ∗fS(c̄)
,

which completes the proof.

Proof of Lemma 6. As in the proof of the parallel result for discrete time matching, Lemma 4,

it is sufficient to verify that buyers do not have an incentive to bid less than c̄, and marginal

sellers do not have an incentive to ask more than v. As in Lemma 4, we only prove the result

for sellers, i.e. (25); the proof of (26) is parallel.

In a full trade equilibrium, the type v buyer’s profit in a given match is αB(c̄−v)+αS(v−v),

as in discrete time. Since the effective “discount rate” is δ+ lB(ζ), the net present value of the

participation fee flow is KB/ (δ + lB(ζ)), and the market continuation value is

WB(v) = QB(v) (αB(v − c̄) + αS(v − v))− KB

δ + lB(ζ)
.

=
lB(ζ) (αB(v − c̄) + αS(v − v))−KB

δ + lB(ζ)
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where we substituted QB(v), the “ultimate discounted probability of trade”, from (21). The

numerator in the above expression simplifies to

lB(ζ) (αB(v − c̄) + αS(v − v))−KB = lB(ζ) (v − v + αB(v − c̄))−KB

= lB(ζ)(v − v),

where we have used the fact that in a full trade equilibrium, lB(ζ)αB(v − c̄) = KB. Therefore

WB(v) =
lB(ζ)

δ + lB(ζ)
(v − v)

= QB(ζ)(v − v),

and the reservation value is

ṽ = v −WB(v)

= (1−QB(ζ))v +QB(ζ)v.

The rest of the proof proceeds exactly as in Lemma 4 following (31), with ǫ replaced by

1−QB(ζ).
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