
Platform Competition under Asymmetric Information∗

— preliminary —

Hanna Ha laburda

Harvard Business School

Yaron Yehezkel

Tel Aviv University

First version: January 30, 2011

This version: March 14, 2011

Abstract

In the context of platform competition in a two-sided market, we study how uncer-

tainty and asymmetric information concerning the success of a new technology affects

the strategies of the platforms and the market outcome. We find that the incumbent

dominates the market by setting the welfare-maximizing quantity when the differ-

ence in the degree of asymmetric information between buyers and sellers is significant.

However, if this difference is below a certain threshold, then even the incumbent plat-

form will distort its quantity downward. Since a monopoly incumbent would set the

welfare-maximizing quantity, this result indicates that platform competition may lead

in a market failure: Competition results in a lower quantity and lower welfare than

a monopoly. We consider two applications of the model. First, the model provides

a compelling argument why it is usually entrants, not incumbents, that bring major

technological innovations to the market. Second, we consider multi-homing. We find

that the incumbent dominates the market and earns higher profit under multi-homing

than under single-homing. Multi-homing solves the market failure resulting from asym-

metric information in that the incumbent can motivate the two sides to trade for the

first-best quantity even if the difference in the degree of asymmetric information be-

tween the two sides is narrow.

∗We thank Ramon Casadesus-Masanell, Kobi Glazer, Gal Oestreicher, Jan Rivkin and Yossi Spiegel for

helpful comments and discussions.
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1 Introduction

When platforms adopt new technologies, the users often do not know how much utility they

will obtain from a new technology until they join the platform. However, they can privately

learn this utility afterward. A new generation of operating systems for smartphones, such

as Apple’s iOS and Google’s Android, for example, creates uncertainty among agents on

both sides of the market. Application developers may not know the costs of developing

an application for this new generation. Likewise, users may not know their utility from

using the new software. After developers and users join the platform, they privately learn

their respective costs and using habits, and thus, uncertainty is replaced with asymmetric

information. Similar examples abound. Gamers and third-part videogame developers may

privately lean their utility and cost from using a new technology for a videogame console,

such as Microsoft’s Xbox, Sony’s PlayStation, and Nintendo’s Wii, but only after they adopt

it. Book readers and publishers may privately learn their valuations from a new electronic

book (e-books), such as Amazon’s Kindle or Apple’s iPad, only after they start using it.

This paper considers platform competition in a two-sided market when agents on both

sides of the market face the informational problem. In this context we ask several questions.

First, we ask how the informational problem affects profits, prices, and market efficiency.

We find that asymmetric information may lead to a downward distortion of trade under

competition, while under monopoly full efficiency is achieved. Second, previous literature

has shown that platforms use a divide-and-conquer strategy by subsidizing one side of the

market in order to attract it. This raises the question of how the informational problem

affects the decision which side to subsidize. We show that it is optimal for a monopoly

platform to subsidize the side with the smaller information problem. Under competition,

the decision which side to subsidize is also affected by asymmetric information, though the

relation is not as straightforward. Given the results for the competition between platforms,

we study two applications: technology change and multi-homing. In the first application, we

ask how the informational problem affects the decision to adopt a new technology. We show

that a new technology and the resulting informational problem benefits the incumbent more

than the entrant; but despite that, the entrant has a higher incentive than the incumbent

to adopt a new technology. In the second application, we allow agents to multi-home (i.e.,

register to both competing platforms simultaneously). We find that the incumbent dom-

inates the market and earns higher profit under multi-homing than under single-homing.

Moreover, multi-homing solves market failure resulting from asymmetric information in that

the incumbent can always induce the efficient level of trade.
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We study competition between two platforms in a two-sided market that includes buyers

and sellers. The platforms are undifferentiated except for the beliefs they are facing. One of

the platforms is an incumbent that benefits from agents’ favorable beliefs. Under favorable

beliefs, agents expect all other agents to join the incumbent unless it is a dominant strategy

for them not to join the platform. The favorable beliefs that the incumbent enjoys make

it difficult for the second platform, the entrant, to gain market share. The two platforms

implement a new technology, such as a new generation of e-books or operating systems. All

players are uninformed about the buyers’ valuation and sellers’ costs from using the new

technology. Buyers and sellers privately learn this information after joining a platform, but

before they trade; they can only trade through a platform.

We assume that the two platforms compete by offering fixed access fees and menus of

quantities and transaction fees as a function of buyers’ valuation parameter and sellers’ costs.

Buyers and sellers then choose which platform to join and pay the relevant access fees. Once

they join the platform, they privately observe their valuation and cost, and choose a line

from the menu. Given their choices, they trade for the specified quantity.

Before studying competition, we first consider a monopoly benchmark. We find that a

monopolist who benefits from favorable beliefs sets a contract which motivates the sellers and

buyers to trade the quantity that maximizes total social welfare (i.e., maximizes the gains

from trade). A monopolist that suffers from unfavorable beliefs, however, sets a contract

that distorts the quantity below the welfare-maximizing level. Moreover, the monopolist fac-

ing unfavorable beliefs charges zero access fees from the side with the lowest informational

problem. Intuitively, both monopoly platforms need to pay ex-post information rents to the

buyers and sellers for motivating them to reveal their private information after they joined

the platform. A monopolist that benefits from favorable beliefs can ex-ante capture these

expected information rents through access fees. In contrast, a monopolist that faces unfa-

vorable beliefs needs to subsidize one side of the market in order to attract it and therefore

cannot extract the expected information rents from both sides. Thus, such a monopolist has

an incentive to distort the quantity downward in order to reduce the information rents.

We then consider competition between the incumbent and the entrant, facing favorable

and unfavorable beliefs respectively. Under competition, we find that the incumbent dom-

inates the market by setting the welfare-maximizing quantity — i.e., the same as under

monopoly — only if the difference in the degree of asymmetric information between buyers

and sellers is significant. However, if this difference is below a certain threshold, then even

the incumbent platform will distort its quantity downward. Since a monopoly benefiting
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from favorable beliefs always sets the welfare-maximizing quantity, this result indicates that

platform competition might result in a market failure: Competition results in a lower quan-

tity and lower welfare than monopoly. In this case, competition also leads the two platforms

to subsidize opposite sides in their divide-and-conquer strategies.

We present two applications of the model. First, we provide a compelling argument why

it is usually entrants, not the incumbents, that bring major technological innovations to the

market. Even though such a phenomenon is often observed (e.g. in video game console

industry), it is puzzling in the context of existing literature. The incumbent, enjoying the

installed base and favorable beliefs has higher returns from adopting a new technology. In

practice, however, incumbents often lag behind, even if they are aware of the entrant threat.

To explain this phenomenon, we extend the basic model to the case where the two platforms

can choose between two technologies: an incremental one and a risky but highly innovative

one. Since the incumbent wins the market if both platforms choose the same technologies,

we find that indeed the entrant will have a stronger incentive to take the risk of choosing

the innovative technologies.

As another application of our model, we examine how market outcome is affected by

the sellers’ ability to multi-home (i.e., join both platforms). A developer of a smartphone’s

application, for example, might choose to develop an application for more than one operating

system. Likewise, a videogame developer might choose to develop a videogame for more than

one videogame console. We find that the incumbent dominates the market and earns a higher

profit under multi-homing than under single-homing. Multi-homing solves the market failure

resulting from asymmetric information in that the incumbent can motivate the two sides to

trade for the welfare-maximizing quantity even if the difference in the degree of asymmetric

information between the two sides is small. However, the entrant will, if it can, prevent

the seller from multi-homing by imposing exclusive dealing or by making the technologies

of the two platforms incompatible. This will lead to the single-homing equilibrium and the

resulting market failure, where the quantity traded is below the welfare-maximizing level.

1.1 Related Literature

The economic literature on competing platforms extends the work of Katz and Shapiro

(1985) on competition with network effects, where the size of the network creates additional

value to the customers (e.g. telephone network). Caillaud and Jullien (2001) analyze a

market with price competition between two platforms. The platforms are undifferentiated,

except for the fact that one of the platforms (the incumbent) benefits from favorable beliefs,
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while the other platform (the entrant) faces unfavorable beliefs. Under favorable beliefs,

agents expect all other agents to join the incumbent, unless it is a dominant strategy for

them not to join the platform. Caillaud and Jullien show that both platforms will use a

divide-and-conquer strategy, where they charge a negative access price from one of the sides

of the market and positive from the other side. Moreover, their paper finds that if platforms

cannot use transaction fees, then the incumbent makes positive profit even without product

differentiation, while with transaction fees, both platforms make zero profit. Caillaud and

Jullien extend their results in their (2003) paper. In the (2003) paper, platforms have an

imperfect matching technology which identifies correctly and matches agents successfully

with probability λ ∈ [0, 1]. In this modified environment and under single-homing, the only

equilibria are dominant firm equilibria. However, because of the imperfect matching tech-

nology, there are also efficient multi-homing equilibria. Jullien (2008) considers platform

competition in the context of multi-sided markets with vertically differentiated platforms

and sequential game, and analyzes the resulting pricing strategies. Our model follows this

line of literature by considering two competing platforms where agents’ beliefs are favorable

toward one of the platforms and unfavorable toward the other. However, our model intro-

duces asymmetric information which has not been considered in this context. Introduction

of asymmetric information allows us to study how informational problem affects platform

competition.

Ellison, Möbius and Fudenberg (2004) analyze competing uniform-price auctions, where

the two sides of the market are buyers and sellers. The model in Ellison, Möbius and

Fudenberg (2004) shares the same information structure as in our model in that buyers and

sellers are uninformed about their valuations before joining the platform, and privately learn

their valuations after joining. However, Ellison, Mobius and Fudenberg (2004) consider a

very restrictive price competition between platforms (see their Section 7), where a platform

can only charge an access price that must be the same in both sides of the market. Therefore,

their paper does not allow for divide-and-conquer strategies.

An optimal strategy of a platform often involves subsidizing one side of the market. The

question which side of the market should be subsidized — which we address in our paper —

has been also present in the literature. Armstrong (2006) considers differentiated competing

matchmakers with a positive network externality. He shows that matchmakers compete

more aggressively on the side that generates larger benefits to the other side (i.e. the one

that has lower value from matching). This competition results in lower prices for the agents

on the lower-valuation side. Hagiu (2006) considers a model of competing platforms when
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agents are sellers and buyers. Moreover, the platforms first compete on one of the sides, and

only then move to compete on the other side. He finds that platforms’ ability to commit to

their second stage prices makes it less likely to have exclusive equilibria. However, the two

papers (Armstrong (2006) and Hagiu (2006)) do not consider the information problem that

we investigate.

Our model is also related to antitrust issues in two-sided markets. Amelio and Jul-

lien (2007) consider the case where platforms are forbidden to charge negative access price.

In such a case, platforms will use tying in order to increase the demand on one side of the

market, which in turn increases the demand on the other side. Choi (2007) shows that

tying induces consumers to multi-home (i.e. register with more than one matchmaker).

Casadesus-Masanell and Ruiz-Aliseda (2009) consider competing platforms that can choose

whether to offer compatible systems, and find that incompatibility results in an equilibrium

with a dominant platform that earns higher profits than under compatibility. These papers,

however, do not allow for asymmetric information in the context of platform competition.

2 Model and a Monopoly Platform Benchmark

Consider two sides of a market: seller side (S) and buyer side (B).1 The seller wishes to

sell a good to the buyer. For example, the buyer can represent a user of a new operating

system while the seller can represent a developer of an application for this new system; or,

the buyer can represent a reader that buys a new ebook while the seller can represent a

publisher that considers selling electronic copies of new releases. The two players may also

represent a game developer for a new videogame console and a gamer.

The utilities of the seller and the buyer from trading are t − C(q, c) and V (q, θ) − t,

respectively, where C(q, c) is the seller’s production cost, V (q, θ) is the value of the product

to the buyer, and t is the monetary transfer from the buyer to the seller. The seller’s

production cost depends on parameters q and c, while the buyer’s value depends on the

parameters q and θ. The parameter q describes the good exchanged between the buyer and

the seller, where we assume that Vq > 0 and Cq > 0. Specifically, the parameter q can

measure the quantity that the seller produces.2 For q = 0, C(0, c) = V (0, θ) = 0, so that no

trade occurs. The parameters θ and c affect the buyer’s willingness to pay and the seller’s

1Alternatively, we can assume that there is some other number of buyers and sellers, but agents on the

same side of the market are homogeneous.
2Alternatively, q may measure quality, in which case the seller sells one indivisible good to the buyer.
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production cost respectively, where Vθ > 0, Cc > 0, Vqθ > 0 and Cqc > 0 (subscripts denote

partial derivatives). One should think of θ as the buyer’s taste parameter that positively

affects the buyer’s marginal valuation of the product, and c as a technology parameter that

affects the seller’s marginal cost: higher c increases the marginal cost.

Let q∗(θ, c) denote the quantity that maximizes the gains from trade for given θ and c,

i.e.,

q∗(θ, c) = arg max
q

{
V (q, θ)− C(q, c)

}
.

Hence, q∗(θ, c) solves

Vq(q
∗(θ, c), θ) = Cq(q

∗(θ, c), c) . (1)

Suppose that Vqq ≤ 0 and Cqq ≥ 0 where at least one of these inequalities is strong and

Vq(0, θ) > Cq(0, c), while Vq(q, θ) < Cq(q, c) for q → ∞. Therefore, q∗(θ, c) is uniquely

defined by (1), and q∗(θ, c) is increasing with θ and decreasing with c. Let W ∗(θ, c) denote

the maximal welfare achievable for given θ and c, i.e., W ∗(θ, c) = V (q∗(θ, c), θ)−C(q∗(θ, c), c).

Consider a monopoly benchmark case, in which there is exactly one platform in the

market. The seller and the buyer cannot trade unless they join the platform. For example,

both game developers and gamers need a game console in order to benefit from trading.

Application developers and users can connect only if they use the same operating system.

Readers and publishers cannot benefit from trading in electronic books without an ebook

reader. In this section we assume that there is a monopolistic platform that can connect the

two sides of the market. In the next section we consider the case of two competing platforms.

Throughout the paper, we assume that q is observable by all players and is contractible.

Amazon, for example, can easily observe the quantity sold on its website, and can charge

transaction fees from buyers, sellers, or both according to this quantity. Likewise, a console

manufacturer can make quality specifications for its video games and make a payment con-

tingent on this quality. However, we realize that this assumption does not hold in many two

sided markets.3

In Section 2.1 we analyze benchmark case where the paramters θ and c are common

knowledge. Then, in Section 2.2, we assume that the parameters θ and c are the buyer’s and

seller’s ex-post private information, respectively. That is, before the buyer and the seller join

the platform, all players are still uninformed about θ and c, and share a commonly known

prior that θ is distributed between [θ0, θ1] according to a distribution function k(θ) and a

cumulative distribution K(θ), and c is distributed between [c0, c1] according to a distribution

function g(c) and a cumulative distribution G(c). We make the standard assumptions that

3The analysis for markets with unobservable q deserves a separate paper.
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(1 −K(θ))/k(θ) is decreasing in θ and G(c)/g(c) is increasing in c. Then, after joining the

platform but before trading, the buyer and the seller each observes their private information

and chooses whether to trade or not. Moreover, we assume throughout that all players are

risk neutral.

More precisely, the timing of the game is the following. First, the platform offers a

contract to the buyer and the seller. We will explain the features of this contract below.

The buyer and the seller observe the offer and simultaneously decide whether to buy access

to the platform or not. At this point, they need to pay the access fees if they decide to join.

After joining, each agent observes the realization of his own private information, and decides

whether to trade or not. If both sides joined and decided to trade, the trade and transfers

occur.

Notice that this model corresponds to a principal-agent problem under asymmetric in-

formation, where the platform is the principal and the buyer and seller are the agents. The

features of the specific problem described here are closely related to Fudenberg and Ti-

role (1991), with the exception that here the principal is a platform that aims to “connect”

the agents. Asymmetric information is a typical feature of principal-agent problems. How-

ever, because the principal is a platform, it introduces a novel element: coordination problem

between the two sides that allows the platform to use a divide-and-conquer strategy.

The most general incentive contract that a platform can offer is a menu:

Cont = {FS, FB, tS(θ, c), tB(θ, c), q(θ, c)} ,

where FS and FB are access fees that the buyer and the seller pay the platform for joining the

platform before knowing their private information. These fees can be zero or even negative (as

is the case under platform competition). Moreover, tS(θ, c), tB(θ, c) and q(θ, c) are all menus

given (θ, c), such that after joining the platform and observing their private information, the

buyer and the seller simultaneously report θ and c (respectively) to the platform, and then

given these reports, the seller produces q(θ, c) and delivers it to the buyer. For simplicity,

it is more convenient to think of the case where the buyer and the seller pay tS(θ, c) and

tB(θ, c) directly to the platform instead of to each other. Naturally, we allow tS(θ, c) and

tB(θ, c) to be negative, so it would be possible to write an equivalent mechanism where one

agent pays the platform and the platform pays the other agent, or where one agent pays

directly to the other agent and the platform charges some royalty out of this transaction.

Also, suppose that the buyer and the seller can always refuse to trade after observing their

private information, in which case they do not need to pay tS(θ, c) and tB(θ, c). However,
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FS and FB cannot be refunded.4

Finally, we follow previous literature on two-sided markets (Caillaud and Jullien (2001),

Caillaud and Jullien (2003) and Jullien (2008), in particular) by distinguishing between a

platform about which the agents have “favorable” or “optimistic” beliefs, which we call Po,

and a platform about which they have “unfavorable” or “pessimistic” beliefs, Pp. Favorable

beliefs mean that side i = {B, S} expects side j = {B, S}, j 6= i, to join platform Po if side

j gains non-negative payoffs from joining given that side i joins. In other words, given the

contract, if there is an equilibrium in which both sides join Po, they will do so. In contrast,

under unfavorable beliefs side i = {B, S} does not expect side j = {B, S}, j 6= i, to join

platform Pp if side j gains negative payoffs from joining given that side i did not join. In

other words, given the contract, if there is an equilibrium in which neither side joins Pp, they

will play this equilibrium, even if there is another equilibrium in which both sides join the

platform.

The distinction between favorable and unfavorable beliefs may capture a difference in

agents’ ability to coordinate on joining an old or a new platform. If a certain platform is

a well known, established incumbent that had a significant market share in the past, then

agents from one side of the market may believe that agents from the other side are most

likely to continue using this platform and will decide to join the incumbent based on this

belief. A new entrant, however, may find it more difficult to convince agents that agents

from the opposite side will also join.

2.1 Full Information

To illustrate the role that information plays in our model, consider first a full information

benchmark.

The objective of a platform is to maximize its profit. We assume that the platform does

not bear any marginal cost. Therefore, the platform sets the contract to maximize

Π = FB + FS + tB(θ, c) + tS(θ, c) .

Suppose that θ and c are common knowledge from the beginning of the game, that is,

before the buyer and the seller join P . Then, both Po and Pp can implement the welfare-

4We acknowledge that allowing the platform to control all aspects of the trade is a strong assumption.

However, such contract structure allows to achieve the most efficient allocation. Despite this, the asymmetric

information induces inefficiency, which we show further in the paper. Thus, we expect that those inefficiencies

will be exacerbated by alternative contract structures. In a companion paper, we investigate alternative

contract structures.
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maximizing outcome, q∗(θ, c), and earnW ∗(θ, c) — i.e., the whole social surplus — by offering

the contract Cont = {FS, FB, tS(θ, c), tB(θ, c), q(θ, c)} = {0, 0,−C(q∗(θ, c), c), V (q∗(θ, c), θ), q∗(θ, c)}.
In the case of Pp, both sides do not need to pay access fees, and as they can always refuse

to participate in the trading stage, they cannot lose from joining Pp. Thus, both sides join

the platform if the platform is Pp,
5 and clearly they join the platform if it is Po as well.

Notice that the same argument holds if there is uncertainty but not asymmetric infor-

mation such that all players are uninformed about θ and c when they sign the contract, and

they are all informed after the buyer and the seller join but before they trade. To conclude,

under full information or uncertainty (without ex-post asymmetric information) there is no

difference between Po and Pp.

2.2 Monopolistic Platform under Ex-post Asymmetric Informa-

tion

Contrary to the full information benchmark, for the remainder of the paper we suppose that

in the contracting stage no player knows θ and c, and that the buyer and the seller privately

observe θ and c, respectively, after joining the platform but before they decide whether to

trade or not. We consider a truthfully revealing mechanism in which the buyer and the seller

pays FS and FB for joining the platform, and then they are induced by the offered menu

to truthfully report θ and c, respectively, and trade the quantity q(θ, c) for the payments

tS(θ, c) and tB(θ, c) to the platform.

Consider first the optimal contract for Po. Given that the buyer and the seller joined

Po, Po needs to specify a menu that induces both sides to trade and to truthfully report

their private information. As the buyer and the seller have ex-post private information, Po

will have to leave the buyer and the seller with ex-post utility (gross of the access fees), i.e.,

information rents, to motivate them to truthfully reveal their private information. Standard

calculations6 show that each side gains ex-post expected information rents of

UB(q, θ) = Ec
∫ θ

θ0

Vθ(q(θ̄, c), θ̄)dk(θ̄) , US(q, c) = Eθ
∫ c1

c

Cc(q(θ, c̄), c̄)dg(c̄) . (2)

(We use EX to denote the expectation with respect to variable X). Consequently, to ensure

that the buyer and the seller agree to trade after they joined the platform and learned their

5We assume that if an agent is indifferent between joining or not, he joins the platform. If the indifference

is resolved otherwise, Pp needs to set one of the access fees to −ε, with ε positive but arbitrarily close to 0.

Then, in the limit Pp and Po offer the same contract, which results in the same outcome.
6See Fudenberg and Tirole (1991).
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private information we need:

EctB(θ, c) = Ec
[
V (q(θ, c), θ)

]
− UB(q, θ) , EθtS(θ, c) = −Eθ

[
C(q(θ, c), c)

]
− Uc(q, c) .

(3)

Conditions (2) and (3) along with the property that q(θ, c) is nondecreasing in θ and nonin-

creasing with c ensure that once the buyer and the seller joined Po and privately observed θ

and c, they will truthfully report it to Po. To make sure that both sides agree to participate

ex-ante, that is, before they learn their private information, the maximum access fees that

Po can charge are:

FB = EθUB(q, θ) , FS = EcUS(q, c) . (4)

The platform has two sources of revenue: access fees and transaction fees. We assume

that the platform does not incur any marginal costs of serving the agents. Therefore, Po’s

objective is to set q(θ, c) to maximize

Π = FB + FS + Eθ c
[
tB(θ, c) + tS(θ, c)

]
, (5)

subject to the constraints (2), (3) and (4). After substituting (2), (3) and (4) into (5)

and rearranging, we see that Po’s problem is to set q(θ, c) to maximize Eθ c
[
V (q(θ, c), θ) −

C(q(θ, c), c)
]
. Hence, Po will set q∗(θ, c), and will be able to earn W ∗ = Eθ cW ∗(θ, c).

To conclude, with optimistic beliefs the platform behaves like the standard mechanism

designer. Despite the need to attract agents on two sides, the platform behaves exactly like a

standard firm that offers a product of initially unknown features. Intuitively, Po has to leave

ex-post information rents to the two sides, but Po can charge upfront access fees from the

two sides that are equal to their expected ex-post information rents. Therefore, Po has no

incentive to distort the specified quantity in order to reduce the agents’ information rents;

contrary to the platform facing pessimistic beliefs, which we analyze next.

Lemma 1 Consider a monopolistic platform, Po, facing favorable (optimistic) expectations.

In the equilibrium, the platform sets the Pareto-efficient quantity, q(θ, c) = q∗(θ, c) and earns

W ∗.

Next, consider Pp, a platform facing unfavorable (pessimistic) beliefs of agents. The dif-

ference in beliefs results in different equilibrium contract, and different outcome. In order

to satisfy ex-post incentive compatibility and individual rationality constraints, the con-

straints (2) and (3) remain the same. The main difference is in FB and FS. While a Po

can charge positive FB and FS from both sides, Pp cannot. Given positive FB and FS, each
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side loses if it pays access fees and the other side does not join. Therefore, under pessimistic

beliefs with respect to Pp, both sides will prefer not to join Pp. Notice that this is indeed

rational for the two sides to do so given their expectations: given that each side believe that

the other side do not join, both sides gains higher utility from not joining.

As a result, Pp needs to use a divide-and-conquer strategy, where it charges zero access

fees (or minimally negative) from one of the sides in order to attract it, and then charges

positive access fee from the other side. Platform Pp therefore has two options. The first

option is to attract the buyer by charging:

FB = 0 , FS = EcUS(q, c) . (6)

But now, after substituting (2), (3) and (6) into (5), Pp’s objective becomes to set q(θ, c) as

to maximize

Eθc
[
V (q(θ, c), θ)− C(q(θ, c), c)

]
− EθUB(q, θ) . (7)

Straightforward calculations show that the first order condition for the optimal quantity is

now:

Vq(q(θ, c), θ) = Cq(q(θ, c), c) +
1−K(θ)

k(θ)
Vθq(q(θ, c), θ) . (8)

Let q̃B(θ, c) denote the solution to (8). It follows that q̃B(θ, c) < q∗(θ, c) unless θ = θ1.

Intuitively, with pessimistic beliefs, when Pp attracts the buyer it cannot capture the buyer’s

information rents. Consequently, Pp will distort its quantity downwards to reduce the buyer’s

information rents. To simplify the analysis we focus on the case where (1 − K(θ))/k(θ) is

sufficiently small such that q̃B(θ, c) > 0 for all θ and c. Moreover notice that since by

assumption (1−K(θ))/k(θ) is decreasing with θ, q̃B(θ, c) is increasing with θ which ensures

the incentive compatibility constraints. We therefore have that Pp earns from this first

option: Eθc
[
V (q̃B(θ, c), θ)− C(q̃B(θ, c), c)

]
− EθUB(q̃B(θ, c), θ).

The second option for Pp is to attract the seller. Using the same logic as before, now Pp’

s profit function is

Eθc
[
V (q(θ, c), θ)− C(q(θ, c), c)

]
− EcUS(q, c) . (9)

From the first order condition, we obtain

Vq(q(θ, c), θ) = Cq(q(θ, c), c) +
G(c)

g(c)
Ccq(q(θ, c), c) . (10)

Let q̃S(θ, c) denote the solution to (10). It follows that q̃S(θ, c) < q∗(θ, c) unless c = c0. Now

Pp cannot capture S’s information rents so once again it will distort its quantity downward

to reduce the seller’s information rents. Again we focus on the case where G(c)/g(c) is
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sufficiently small such that q̃S(θ, c) > 0 for all θ and c. Moreover notice that since by

assumption G(c)/g(c) is increasing with c, q̃S(θ, c) is decreasing with c which ensures the

incentive compatibility constraints. We therefore have that Pp earns from this second option:

Eθc
[
V (q̃S(θ, c), θ)− C(q̃S(θ, c), c)

]
− EcUS(q̃S(θ, c), c).

Next we turn to compare between Pp’s two options. Let

∆ ≡ Eθc [V (q̃B(θ, c), θ)− C(q̃B(θ, c), c)− UB(q̃B(θ, c), θ)]−

− Eθc [V (q̃S(θ, c), θ)− C(q̃S(θ, c), c)− US(q̃S(θ, c), c)] .

The parameter ∆ measures the difference in the degree of ex-post asymmetric information

between the buyer and the seller. If ∆ > 0, then the information problem is stronger on

the seller side, in that Eθc [US(q, θ)] > Eθc [UB(q, c)] for all q. Conversely, when ∆ < 0,

the information problem is more prominent on the buyer’s side. As it turns out, ∆ plays

a crucial role in our analysis as it is convenient to characterize the equilibrium outcome of

the competitive case given ∆.7 To illustrate the intuition behind ∆, consider the following

example:

Example 1 (uniform distributions of types) Suppose that the buyer has linear demand

and the seller has linear costs such that: V (q, θ) = θq− q2

2
, C(q, c) = cq. Also, suppose that θ

and c are distributed uniformly along the intervals [µθ−σθ, µθ+σθ] and [µc−σc, µc+σc]. The

parameters µθ and µc are the mean values of θ and c. The parameters σθ and σc measure the

degree to which Pp is uninformed about θ and c. To ensure that the market is fully covered,

suppose that µθ − µc > max{3σθ + σc, σθ + 3σc}. Then:

σc > σθ =⇒ ∆ > 0 ,

σc < σθ =⇒ ∆ < 0 ,

σc = σθ =⇒ ∆ = 0 .

Given ∆, the solution for the monopoly case becomes evident: if ∆ > 0 (∆ < 0), platform

Pp prefers to attract the buyer (seller) by charging him zero — or minimally negative —

access fee. Following Proposition 1 is a direct consequence of the discussion above.

Proposition 1 Under asymmetric information, a monopolistic platform that faces pessimistic

beliefs, Pp, distorts the quantity downwards in comparison with a monopolistic platform that

faces optimistic beliefs (who sets the welfare-maximizing , q∗). Moreover,

7Even though the sign of the gap Eθc [US(q, θ)] − Eθc [UB(q, c)] determines the sign of ∆, it is more

convenient to characterize the solution in terms of ∆ instead of Eθc [US(q, θ)]− Eθc [UB(q, c)].
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1. If ∆ > 0, then it is optimal for platform Pp to subsidize the buyer (FB = 0) and to set

q = q̃B(θ, c) < q∗(θ, c).

2. If ∆ < 0, then it is optimal for platform Pp to subsidize the seller (FS = 0) and to set

q = q̃S(θ, c) < q∗(θ, c).

3. It is optimal for platform Pp to set q = q∗(θ, c) only if (1−K(θ))/k(θ) = G(c)/g(c) = 0

for all θ and c. In such a case, it earns W ∗.

Proposition 1 offers a new explanation for the use of a divide-and-conquer strategy and

in particular, for the question of which side to subsidize. As Proposition 1 reveals, divide-

and-conquer emerge in the context of this model as a direct consequence of asymmetric

information: Pp implements the trade maximizing q∗ only if (1−K(θ))/k(θ) = G(c)/g(c) = 0

for all θ and c. Moreover, Proposition 1 provides the prediction that Pp will choose to

attract the side with the lowest informational problem, in the sense that this side is not

expected to learn much about its value from trade after joining the platform. If ∆ > 0,

asymmetric information is stronger on the seller side. Consequently, Pp has to leave higher

ex-post post information rents for the seller. Since under divide-and-conquer Pp loses the

expected information rents of the side that Pp subsidizes, it will choose to lose the information

rents of the buyer. The opposite case holds if asymmetric information is stronger on the

buyer side. Notice that the key force here is ex-post asymmetric information and not ex-

ante uncertainty. Recall that Section 2.1 showed that under uncertainty without ex-post

asymmetric information there is no difference between the two types of platforms.

In the context of Example 1, Proposition 1 indicates that if σc > σθ, then the spread of the

potential realizations of c is wider than θ, implying that the informational problem is more

significant from the seller side. Consequently, ∆ > 0 and the platform attracts the buyer

and sets q̃B(θ, c). The opposite case holds when σc > σθ. Moreover, if σc = σθ = 0 then

the informational problem vanishes and the platform implements the welfare-maximizing

quantity.

3 Competition between Platforms

In this section we consider platform competition. In contrast to the monopoly benchmark in

Section 2, we find that under competition also the platform benefiting from favorable beliefs

sometimes distorts its quantity downwards as a result of asymmetric information.
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Suppose that there are two platforms competing in the market. The platforms are un-

differentiated, except for the beliefs each is facing. We call one of the platforms incumbent

(I), and the other — entrant (E). The incumbent benefits from favorable beliefs, in the

same way as Po, while the entrant faces unfavorable beliefs, in the same way as Pp. The two

platforms use the same technology (we consider the case of different technologies and the

adoption of new technologies in Section 4).

Each platform sets contract ContP = {F P
B , F

P
S , t

P
B(θ, c), tPS (θ, c), qP (θ, c)}, for P = I, E

with the objective to maximize its profit,

ΠP (ContP ) = F P
B + F P

S + Eθ c
[
tPB(θ, c) + tPS (θ, c)

]
.

Because of the favorable beliefs, the incumbent attracts both sides of the market when an

equilibrium exists in which both sides join the incumbent. Conversely, the entrant attracts

both sides only when there is no other equilibrium than the equilibrium when both sides join

the entrant.

We focus on a sequential game where the incumbent announces its contract slightly

before the entrant (but users decide which platform to join after observing both contracts).8

To solve for the subgame perfect equilibrium, we start by characterizing the entrant’s best

response. Given the incumbent’s strategy, ContI = {F I
B, F

I
S , t

I
B(θ, c), tIS(θ, c), qI(θ, c)}, the

entrant has two options to win the market: one is to attract the buyer side, and the other

to attract the seller side. We analyze both in turn. For tractability, for now on we refer to

any q(θ, c) as just q, whenever possible.

To attract the buyer under unfavorable beliefs, the entrant needs to charge

− FE
B ' EθcUB(qI)− F I

B , (11)

where EθcUB(qI) is the expected information rent that the buyer obtains from the incumbent

if both sides join the incumbent under ContI , and symbol ' stands for “slightly greater but

almost equal”. Condition (11) ensures that even when the buyer believes that the seller

joins the incumbent, the buyer prefers to join the entrant. Therefore, when condition (11)

is satisfied, there is no equilibrium in which both sides join the incumbent. Given that the

8We analyze a simultaneous game between the two platforms in Appendix B. There we show that, for

some parameter values there is no pure-strategy Nash equilibrium in the simultaneous game. Where a pure-

strategy Nash equilibrium exists for the simultaneous game, it has similar qualitative features as subgame

perfect equilibrium in the sequential game considered here. To generate clean and tractable results we

therefore focus on the sequential game.
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buyer joins the entrant independently of the seller, the seller finds it attractive to join the

entrant when

− FE
S + EθcUS(qE) ' −min{F I

S , 0} . (12)

Therefore, the entrant’s best response is to set access fees: FE
B / F I

B − EθcUB(qI , θ) and

FE
S / EθcUS(qE, c) + min{F I

S , 0}. Then, the entrant’s profit when attracting the buyer side

is

ΠE(attracting B|qE , ContI) =Eθc(tEB + tES ) + FEB + FES /

/Eθc
[
V (qE , θ)− C(qE , c)− UB(qE , θ)

]
+ F IB − EθcUB(qI , θ) + min{F IS , 0}.

Given the strategy of the incumbent, this profit is a function of qE, which the entrant chooses.

Notice that qE that maximizes ΠE(attracting B|qE) is the same as q that maximizes (7).

Therefore, if the entrant aims at attracting the buyer, it sets qE = q̃B, and earns profit

ΠE(attracting B|q̃B, ContI) = Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)]−EθcUB(qI , θ)+F I
B+min{F I

S , 0} .

It is possible, however, that the entrant prefers to attract the seller side. Applying the

same logic as before (but replacing the buyer with the seller) the incumbent earns:

ΠE(attracting S|q̃S, ContI) = Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]−EθcUS(qI , c)+F I
S+min{F I

B, 0} .

Knowing the subsequent strategies of the entrant, the incumbent sets its contract to

maximize the expected profit. Given optimal tIB and tIS, the incumbent sets F I
B, F

I
S , and

qI(θ, c) in ContI to maximize

ΠI(qI) = Eθc
[
V (qI , θ)− C(qI , c)− UB(qI , c)− US(qI , c)

]
+ F I

B + F I
S

s.t.

Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)]− EθcUB(qI , θ) + F I
B + min{F I

S , 0} ≤ 0 , (13)

Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]− EθcUS(qI , c) + F I
S + min{F I

B, 0} ≤ 0 , (14)

EθcUB(qI , θ)− F I
B ≥ 0 , (15)

EθcUS(qI , c)− F I
S ≥ 0 . (16)

The first two constraints assure that the entrant cannot profitable from winning the

market, in that ΠE(attracting B|q̃B, ContI) ≤ 0 and ΠE(attracting S|q̃S, ContI) ≤ 0 respec-

tively. The third and forth constraints assure that the two sides indeed agree to join the

incumbent over the option of staying out of the market.

Recall that in the monopoly case, the optimal strategy of a platform with pessimistic

beliefs, Pp, is to attract the side with the lowest informational problem and therefore Pp
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sets q = q̃B if ∆ ≥ 0, and q = q̃S if ∆ ≤ 0. Moreover, a monopolistic platform with

optimistic beliefs, Po, always sets q = q∗ regardless of ∆. This raises the question of how ∆

affects the platforms’ strategies when they compete. We answer this question in the following

proposition:

Proposition 2 Suppose that ∆ ≥ 0. In equilibrium, the incumbent always dominates the

market and attracts the buyer (by providing him with a positive expected utility), while ex-

tracting all the seller’s expected information rents through F I
S . Moreover,

(i) If ∆ > Eθc[UB(q∗, θ)], then the entrant also attracts the buyer and sets qE = q̃B. The

incumbent sets the welfare-maximizing quantity, qI = q∗, and earns

ΠI = Eθc [V (q∗, θ)− C(q∗, c)]− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] .

(ii) If 0 ≤ ∆ < Eθc[UB(q̃B, θ)] then the entrant attracts the seller and sets qE = q̃S. The

incumbent distorts the quantity downwards to qI = q̃B, and earns ΠI = ∆.

(iii) If Eθc[UB(q̃B, θ)] ≤ ∆ ≤ Eθc[UB(q∗, θ)], then the entrant is indifferent between attracting

the buyer or the seller. The incumbent distorts the quantity downwards to qI = ˜̃q∆,

where ˜̃q∆ is an increasing function of ∆ on ˜̃q∆ ∈ [q̃B, q
∗] and the incumbent earns

ΠI = Eθc
[
V (˜̃q∆, θ)− C(˜̃q∆, c)

]
− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] .

The case where ∆ < 0 is similar, with the buyer replacing seller (see Figure 1 for a full

characterization of the equilibrium).9

Proof. See Appendix, page 32.

Proposition 2 offers several interesting observations. The first observation concerns

the equilibrium quantity of the dominant platform, the incumbent. If the difference in

the degree of ex-post asymmetric information between the sides, ∆, is large such that

∆ > Eθc[UB(q∗, θ)], then the incumbent sets the welfare-maximizing quantity as in the

monopoly case. However, if the difference is small, even though the incumbent benefits from

9The proposition describes subgame perfect equilibrium in sequential game. In a simultaneous game,

the unique Nash equilibrium is the same as the subgame perfect equilibrium in sequential game when

∆ > Eθc[UB(q∗, θ)]. However, for ∆ ≤ Eθc[UB(q∗, θ)], there does not exist a pure strategy Nash equilibrium

in the simultaneous move game (see Proposition 5 in Appendix B).
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Figure1: Properties of the equilibrium in sequential game, depending on the value of 
 

0

  ( )c B BE U q    

( *)c BE U q   

 ( )c S SE U q    

 ( *)c SE U q   

Incumbent attracts the buyer while the entrant attracts the seller. The 
incumbent sets *I

Bq q q   and earns:   

Incumbent attracts the seller while the entrant attracts the buyer. The 
incumbent sets *I

Sq q q   and earns:  –  ( > 0)  

Incumbent attracts the buyer and the entrant is indifferent between attracting 
the seller or the buyer. The incumbent sets *Iq q q  and earns: 

   ( ) ( ) ( ) ( ) ( )c c BE V q C q E V q C q U q                    

Both platforms attract the buyer's side. The incumbent sets qI = q* and earns: 
   ( *) ( *) ( ) ( ) ( )c c B B B BE V q C q E V q C q U q         

Incumbent attracts the seller and the entrant is indifferent between attracting 
the seller or the buyer. The incumbent sets *Iq q q  and earns: 

   ( ) ( ) ( ) ( ) ( )c c SE V q C q E V q C q U q                    

Both platforms attract the Seller's side. The incumbent sets qI = q* and earns: 
   ( *) ( *) ( ) ( ) ( )c c S S S SE V q C q E V q C q U q         

      

Figure 1: Properties of the equilibrium in sequential game, depending on the value of ∆.
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favorable beliefs, the incumbent distorts the quantity downwards. For Eθc[UB(q̃B, θ)] ≤ ∆ ≤
Eθc[UB(q∗, θ)], this distortion becomes stronger the smaller is ∆. This result is surprising as

it shows that competition actually reduces social welfare in comparison with a monopoly.

More precisely, the presence of competitive threat (even if not an active competitor) increases

the customer surplus for some customers, while creating a dead-weight loss.

The intuition for this result is the following. If, for example, ∆ > 0, then the informational

problem is more significant on the seller’s side. As in the monopoly benchmark, this creates

an incentive to attract the buyer and extract all the seller’s information rents. Now, if ∆ > 0

and is sufficiently large, then this incentive is strong and therefore both platforms compete

on attracting the buyer, while extracting all the seller’s information rents. If however ∆ > 0

but is not too large, then this incentive still prevails but it is weaker, and therefore the

incumbent will still attract the buyer and extract all the seller’s rent, but now the entrant

will attract the seller.

But then the question is why the incumbent sets the welfare-maximizing quantity when

the two platforms compete on the same side, while distorting the quantity downwards when

they compete on opposite sides? Intuitively, if both platforms compete on the buyer’s side,

then the incumbent extract the entire seller’s rent. Moreover, as the buyer expects the seller

to joint the incumbent, the buyer expects to gain positive rents from joining the incumbent,

implying that the incumbent can extract the buyer’s rents as well. Formally, the buyer

will join the incumbent as long as −FE
B / EθcUB(qI) − F I

B, or F I
B / EθcUB(qI) + FE

B .

Consequently, the incumbent extracts the rents of both sides, and as in the monopoly case,

will set the welfare-maximizing quantity. If however the incumbent attracts the buyer while

the entrant attracts the seller, then the incumbent extracts the entire seller’s rent, but the

entrant provides the seller with a subsidy, FE
S / 0. This implies that now the buyer expects

the seller to join the entrant, and therefore the buyer will not expect to gain any rents

from joining the incumbent. Formally, in this case the buyer joins the incumbent as long as

−F I
B / EθcUB(qE)−FE

B , or F I
B / −EθcUB(qE) +FE

B . Consequently, now the incumbent can

only extract the seller’s rents, and will therefore distort the quantity in order to reduce the

buyer’s rents.

The second observation concerns the incumbent’s equilibrium profit. If the difference in

the degree of ex-post asymmetric information is large such that ∆ > Eθc[UB(q∗, θ)], then

the incumbent earns the difference between the Po’s and the Pp’s profits under monopoly.

Notice that this difference is higher the higher are the information rents that the entrant

cannot extract from the buyer: UB(q̃B, θ). Hence, the incumbent’s profit approaches zero at
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the limit as UB(q̃B, θ) → 0. This result implies that the incumbent gains more competitive

advantage the larger is the informational problem from the buyer’s side. However, if ∆ is

sufficiently small (i.e., 0 < ∆ < Eθc[UB(q∗, θ)]), the incumbent gains a higher profit the

higher is the difference in the ex-post asymmetric information problem of the two sides, ∆,

and the incumbent’s profit approaches zero at the limit as ∆→ 0.

Notice that the special case of ∆ = 0 may occur even if the distributions of types, K(θ)

and G(c), are not degenerate, i.e., there is uncertainty and asymmetric information. In

the assumptions of Example 1, this will occur if σc = σθ even though σc and σθ might be

significantly high. When this is the case, both platforms distort their quantities downwards

(the incumbent to q̃B and the entrant to q̃S). And since ∆ = 0, both platforms earn no

profit.

However, when the type distribution is degenerate on (at least) one side of the mar-

ket, both platforms set the trade-maximizing q∗ and earn zero profits. Therefore, without

uncertainty on both sides, the market behaves as in Caillaud and Jullien (2001 and 2003).

Corollary 1 Suppose that there is no uncertainty on the buyer side, i.e., (1−K(θ))/k(θ) = 0

for all θ. Then, for ∆ ≥ 0, qI = qE = q∗ and both platforms earn zero profits.

The same market outcome occurs for G(c)/g(c) = 0 and ∆ ≤ 0.

Proof. See Appendix, page 39.

The result of Proposition 2 differs from Proposition 2 in Caillaud and Jullien (2001) and

Proposition 1 in Caillaud and Jullien (2003). The propositions in Caillaud and Jullien papers

show that undifferentiated platforms competing with both access fees and transaction fees

make zero profit. In these papers, with no differentiation, the two platforms set the highest

possible transaction fees and then compete in access fees (as in Bertrand competition),

resulting in zero profits. The results of our Proposition 2 contribute to the above papers by

showing that asymmetric information restores the incumbent’s competitive advantage and

enable the incumbent to earn positive payoff even without product differentiation.

4 Application: Technology Choice under Platform Com-

petition

In this section, we explore a scenario where the two competing platforms choose between an

incremental or radically innovative technology before they compete on prices. Suppose that
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there is a preliminary stage to the pricing game described in Section 3. In this preliminary

stage the platforms simultaneously and non-cooperatively choose which of the two available

new technologies to adopt.10 The technologies differ in their expected benefits and the

probability with which they succeed. The benefits of a new technology are realized by

increasing the value, V , across the buyer types, and by decreasing the cost, C, across the

seller types. One of the new technologies is an incremental technology with little risk but

little expected benefits. It is possible to think of it as an upgrade of an existing technology.

The other technology is a radically innovative technology, which may fail or succeed with

a certain probability. But if successful, the radical technology provides significantly higher

benefits to the buyer and the seller than the incremental technology.

We show that under two (very reasonable) conditions, there exists a unique equilibrium,

where the incumbent chooses the incremental technology, and the entrant chooses the radical

technology. The first condition is that the radical technology is so risky that its probability

of success is below some cutoff. The second condition is that the reward of the radical

technology in case of a success is high enough (even though it may be very unlikely), i.e,

if successful, the radical technology is beneficial enough that the entrant may earn positive

profits in the best case scenario.

As we show below, if the later condition is not satisfied, the entrant prefers to stay out of

the market at all times. When the former condition is violated, the incumbent always goes

for the radical technology, no matter whether it is a competitive environment or not. But if

this is the case, it is optimal for the entrant to stay out of the market.

4.1 Game of Technology Choice

Before deciding on its pricing, each platform chooses a technology. There are two technolo-

gies for the platforms to choose from. We assume that there are no costs to implement

either technology. However, the two technologies differ in the benefits and in the risk. One

technology is incremental, denoted by E . This technology generates V E and CE with cer-

tainty. The other technology is radically innovative, which we also call radical and denote

by R. The radical technology is successful with some probability ρ. When it is successful,

it generates V H and CH such that for any θ and q, V H(q, θ) > V E(q, θ), and for any c and

q, CH(q, c) < CE(q, c). With probability 1 − ρ, the radical technology fails, and generates

V L = 0 for any θ and q. That is, if the radical technology fails, no agents join the platform

10Not adopting either of the new technologies is a dominated strategy, as it leads surely to demise of the

platform.
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that has adopted it. Notice that in comparison with the incremental technology, the radical

technology is more risky if ρ is sufficiently low, as it is more likely that the incremental tech-

nology will turn out to be better than the radical technology. The opposite case occurs when

ρ is sufficiently close to 1, in which case the incremental technology is the more risky one as

it is more likely that the radical technology will turn out to be better than the incremental

technology. In our analysis we provide a solution for all possible values of ρ.

The game has two stages. In the first stage, the platforms simultaneously choose a

technology. If any platform chose the radical technology, at the end of the first stage it is

(publicly) known if the technology was successful or not. In the second stage, knowing the

technology choices, the platforms play a simultaneous pricing game similar to the one in

Section 3. To assure that all possible second stage subgames have unique Nash equilibria

in pure strategies, we assume that ∆T > EθcUTB (q∗(T ), c) for T = E ,H, where q∗(T ) is the

trade-maximizing quantity under technology T = E ,H.11, 12

We begin by considering only those situations when both platforms implement the same

technology. We assume that the radical technology turns out to be successful or not, inde-

pendently of which platform decided to implement it. If both platforms adopt the radical

technology, they either both succeed or both fail. Hence, the profits of the platforms when

both implement the same technology directly follows from our analysis of competition in

Section 3.

When both platforms choose the radical technology, and the technology fails, neither

makes any profit. When they both succeed, they earn:

ΠI(H,H) = Eθc[V H(q∗(H), θ)− CH(q∗(H), c)]− Eθc[V H(q̃B(H), θ)− CH(q̃B(H), c)− UHB (q̃B(H), θ)] ,

ΠE(H,H) = 0 .

When both platforms choose the incremental technology E , they earn:

ΠI(E , E) = Eθc[V E(q∗(E), θ)− CE(q∗(E), c)]− Eθc[V E(q̃B(E), θ)− CE(q̃B(E), c)− UEB(q̃B(E), θ)] ,

ΠE(E , E) = 0.

11Similarly to the derivations in Section 3, q̃B(T ) is a function q(θ, c) maximizing

Eθc
[
V T (q(θ, c), θ)− CT (q(θ, c), c)

]
− EθUTB (q, θ), where UTB (q, θ) = Ec

∫ θ
θ0
V Tθ (q(θ̄, c), θ̄)dk(θ̄), while

q∗(T ) maximizes Eθc
[
V T (q(θ, c), θ)− CT (q(θ, c), c)

]
, etc.

12The assumption of sufficiently large ∆ assures that a pure strategy Nash equilibrium exists in the

simultaneous pricing game, and is the same as the subgame perfect equilibrium in the sequential game (see

Proposition 2(i) and footnote 9).
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We turn now to the situations where platforms chose different technologies. First, con-

sider the case where the incumbent chooses E and the entrant chooses R. If the radical

technology fails, ΠE(E ,L) = 0 and the incumbent becomes the monopolist platform facing

optimistic expectations, i.e., Po from the Section 2, and earns

ΠI(E ,L) = Eθc[V E(q∗(E), θ)− CE(q∗(E), c)] .

If the radical technology is successful, then the entrant can dominate the market as

long as the quality of the successful innovative technology is sufficiently high. The result of

Lemma 2 uses similar arguments as in the proof of Proposition 2 to find a condition for such

an equilibrium.

Lemma 2 Suppose that the incumbent chose the incremental technology while the entrant

chose the innovative technology. When the innovative technology is successful and

ΠE(E ,H) = Eθc[V H(q̃B(H), θ)−CH(q̃B(H), c)−UHB (q̃B(H), θ)]−Eθc[V E(q∗(E), θ)−CE(q∗(E), c)] > 0,

(17)

then there is a unique equilibrium where the incumbent earns ΠI(E ,H) = 0 and the entrant

earns ΠE(E ,H).

Proof. See Appendix, page 39.

Now, suppose that the incumbent chooses the radical technology R, while the entrant

chooses E . If the radical technology fails, the incumbent does not make any profit ΠI(L, E) =

0 and the entrant becomes the monopolist facing pessimistic beliefs, i.e., Pp in Section 2.

Therefore, the entrant earns ΠE(L, E) = Eθc[V E(q̃B(E), θ)−CE(q̃B(E), c)−UEB(q̃B(E), θ)] . The

outcome of the market in case the radical technology succeeds is presented in Lemma 3. This

result is obtained by the similar arguments as in the proofs of Proposition 2 and Lemma 2.

Lemma 3 Suppose that the entrant chose the incremental technology while the incumbent

chose the radical technology. When the innovative technology is successful, in the unique

equilibrium the entrant does not earn any profit, ΠE(H, E) = 0. The incumbents earns

ΠI(H, E) = Eθc[V H(q∗(H), θ)−CH(q∗(H), c)]−Eθc[V E(q̃B(E), θ)−CE(q̃B(E), c)−UEB(q̃B(E), θ)] .

Proof. It follows directly from the proof of Proposition 2(i).
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E R (expected)

E ΠI(E , E), 0 (1−ρ) ΠI(E ,L), ρ ΠE(E ,H)

R (expected) ρ ΠI(H, E), (1−ρ) ΠE(L, E) ρ ΠI(H,H), 0

Table 1: Payoff matrix in technology adoption game. The incumbent is the row player, and

the entrant is the column player.

4.2 Equilibrium in the Technology Choice Game

Given the platforms’ profits in the pricing game under different technology adoption sce-

narios, we can put together the payoffs in the first stage of the game, i.e. in the stage of

technology choice. Given the payoffs when the radical technology is successful and when it

fails, the expected payoffs from choosing each technology are represented in Table 1.

We can see from that payoff matrix that the entrant’s best response is always to adopt a

different technology than the incumbent. Consider now the incumbent’s best response. Un-

like the entrant, the incumbent does not need to avoid competition in the same technologies.

Proposition 3 identifies Nash equilibria in this game.

Proposition 3 In the two stage technology adoption game, there are two cutoffs, ρ and ρ,

where 0 ≤ρ< ρ ≤ 1, such that:

1. If ρ ∈ [0,ρ], (the radical technology is more risky than the incremental technology), there

is a unique Nash equilibrium where the incumbent chooses the incremental technology

while the entrant chooses the radical (and risky) technology.

2. If ρ ∈ [ρ, 1] (the radical technology is less risky than the incremental technology), there

is a unique Nash equilibrium where the incumbent chooses the radical technology while

the entrant chooses the incremental (and risky) technology.

3. If ρ ∈ [ρ, ρ], there are two Nash equilibria in which the two platforms choose different

technologies.

Proof. See Appendix, page 41.

Proposition 3 reveals that if there is a clear distinction on which of the two technologies

is more risky (i.e., when ρ is either very low or very high), it is always the incumbent that

chooses the safer technology while the entrant chooses the riskier one. Only if there is no such
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clear distinction (i.e., intermediate values of ρ), there are two equilibria. As it is more likely

to expect that a new and radically innovative technology will be riskier than a familiar,

incremental technology, this result can explain why entrants are more willing to take the

chance of adopting a new and unfamiliar technology.

We conclude this section by highlighting the role that the informational problem plays

in the analysis. Notice that if there is no informational problem, i.e., (1 − k(θ))/K(θ) =

G(c)/g(c) = 0 for all θ and c, then ΠI(E , E) = ΠI(H,H) = 0. Corollary 2 below follows

directly from the proof of Proposition 3.

Corollary 2 Suppose that there is no informational problem ((1 − k(θ))/K(θ) −→ 0 and

G(c)/g(c) −→ 0 ). Then, ρ−→ 0, ρ −→ 1, and there are two Nash equilibria in which the

two platforms choose different technologies for all ρ ∈ [0, 1].

Corollary 2 shows that without the informational problem, either platform may choose

the radical (or the incremental) technology for all values of ρ. Therefore, the presence

of the informational problem is crucial for the result that it is only the incumbent that

chooses the safer technology and only the entrant that chooses the risky one. Intuitively,

the informational problem is responsible for creating the incumbent’s advantage over the

entrant when they both choose the same technology. This forces the entrant to take risks

that an incumbent would not take. If fact, the proof of Proposition 3 implies that as the

informational problem becomes stronger (i.e., (1−k(θ))/K(θ) and G(c)/g(c) become larger),

then ρ increases, ρ decreases and therefore the set of parameters in which there is a unique

equilibrium increases.

5 Multi-homing

In this section, we extend the competition model from Section 3 by allowing one of the sides

to “multi-home” by joining both platforms. This raises the question of whether a platform

may want to restrict the agent’s ability to join the competing platform by imposing exclusive

dealing. This question has important implication for antitrust policy towards such exclusive

arrangements.

As we show in this section, the equilibrium under multi-homing differs from single-homing

only for some cases. For those cases, the multi-homing equilibrium yields efficient levels of

trade (welfare-maximizing q∗), while in the single-homing equilibrium the trade levels are

distorted downward. Moreover, in those cases, the incumbent prefers the multi-homing equi-

librium. However, if the incumbent plays as in the multi-homing equilibrium, the entrant’s
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best response is to impose exclusive dealing. This, in effect, leads to the single-homing

equilibrium.

Suppose that it is the seller who can join more than one platform.13 A third-party video

game developer, for example, can choose to write a video game for more than one console.

A smartphone application developer, can choose to write an application compatible with

more than one operating system. We focus on multi-homing coming from only one side of

the market following the observation that in many markets usually there is only one side

that can choose to join more than one platform. Smartphone users, for example, usually

do not carry more than one smartphone. Likewise, videogame players usually buy only one

console.14

As before, we solve for a sequential game were the incumbent announces its contract to

both sides slightly earlier than the entrant, and then the two sides simultaneously decide to

which platform to join. Unlike in Section 3, now the incumbent should take into account

the seller’s ability to sign with both platforms. If the seller indeed joins both platforms,

the buyer may join either the incumbent or the entrant. If both these situations constitute

an equilibrium, then the equilibrium where the buyer joins the incumbent is played, since

the incumbent enjoys favorable beliefs. The entrant can succeed in attracting both sides of

the market only if it ensures that the equilibrium with buyer and seller joining incumbent

does not exist while also ensuring that there is an equilibrium in which both sides join the

entrant.

As in the previous sections, we assume that the incumbent announces its contract,

ContI = {F I
B, F

I
S , t

I
B(θ, c), tIS(θ, c), qI(θ, c)} , slightly earlier than the entrant. The entrant’s

best response to incumbent’s strategy differs under single- and multi-homing. The main

difference is that under multi-homing the entrant only needs to provide the seller with non-

negative expected payoff in order for the seller to join, regardless of the seller’s expected

payoff from joining the incumbent.

To be successful in the market, the entrant needs to subsidize (attract) one of the sides.

It has two options: to attract the buyer, or to attract the seller. The entrant can attract the

13The situation where only buyer multi-homes is symmetric. Our analysis, where only the seller multi-

homes, is conducted for all values of ∆. If the buyer multi-homes under ∆ > 0, it equivalent to seller

multi-homing under ∆ < 0.
14Indeed, in the above examples even users can potentially join more than one platform, but for the most

part they choose not to do so for exogenous, not strategic, reasons. Smartphone users, for example, may

find it cumbersome to carry more than one smartphone with them. Likewise, gamers may find it difficult

to store more than one videogame console with all the relevant accessories. We take these constraints as

exogenous and therefore assume that buyers cannot multi-home.
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buyer by charging

−FE
B ' EθcUB(qI , θ)− F I

B =⇒ FE
B = F I

B − EθcUB(qI , θ).

This condition is identical to the single-homing case because by assumption a buyer

cannot multi-home. Given that buyer joins the entrant, the seller will join as well if only the

entrant provides him with a non-negative expected payoff. Hence

−FE
S + EθcUS(qE, c) ' 0 =⇒ FE

S = EθcUS(qE, c).

Notice that now FE
S differs from the case of single-homing in that the incumbent’s offer

to the seller does not affect the seller’s decision to join the entrant, because the seller can

multi-home and therefore it joins the entrant whenever doing so provides positive payoff.

The entrant’s profit function when attracting the buyer is

ΠE(attracting B|qE) = Eθc(tEB + tES ) + FE
B + FE

S =

= Eθc
[
V (qE, θ)− C(qE, c)− UB(qE, θ)

]
+ F I

B − EθcUB(qI , θ).

To maximize this profit, the entrant sets qE(θ, c) = q̃B(θ, c).

Next, suppose that the entrant chooses to attract the seller. Given unfavorable beliefs

against the entrant, the entrant needs to make it worthwhile for the seller to join even if the

buyer would not join. That is, the entrant needs to set −FE
S ' 0, which we approximate

by FE
S = 0. This is again because the seller can always join both platforms and therefore

the incumbent’s offer to the seller does not affect the seller’s decision on whether to join

the entrant. Given FE
S = 0, the buyer now expects the seller to join both platforms, and

therefore will agree to join the entrant only if

EθcUB(qE, θ)− FE
B ' EθcUB(qI , θ)− F I

B =⇒ FE
B = EθcUB(qE, θ)− EθcUB(qI , θ) + F I

B.

(18)

This condition also differs from the single-homing case. To see the intuition behind this

condition, notice that if EθcUB(qE)− FE
B ≤ EθcUB(qI)− F I

B, then there is an equilibrium in

which the seller joins both platforms while the buyer joins only the incumbent. As beliefs

are unfavorable against the entrant, the two sides of the market will play this equilibrium

and as FE
S = 0, the entrant will not make positive profit. Condition (18) ensures that the

buyer prefers to join the entrant even if he believes that the seller joined both platforms.

The entrant’s profit function when attracting the seller is then

ΠE(attracting S|qE) = Eθc(tEB + tES ) + FE
B + FE

S =

= Eθc
[
V (qE, θ)− C(qE, c)− US(qE, c)

]
+ F I

B − EθcUB(qI , θ).
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To maximize this profit, the entrant sets qE(θ, c) = q̃S(θ, c). A direct comparison of the

entrant’s profits under the two scenarios reveals that the entrant attracts the buyer when

∆ > 0, and attracts the seller when ∆ < 0, independently of the incumbent’s strategy.15

The incumbent’s objective is therefore to maximize:

ΠI(qI) = Eθc
[
V (qI , θ)− C(qI , c)− UB(qI , θ)− US(qI , c)

]
+ F I

B + F I
S

s.t.

Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)]− EθcUB(qI , θ) + F I
B ≤ 0, (19)

Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]− EθcUB(qI , θ) + F I
B ≤ 0, (20)

EθcUB(qI , θ)− F I
B ≥ 0, (21)

EθcUS(qI , c)− F I
S ≥ 0. (22)

As follows from the entrant’s decision which side to attract, regardless of the incumbent’s

strategy, if ∆ > 0, then constraint (19) is binding while (20) is slack. Likewise, if ∆ < 0,

then constraint (20) is binding while (19) is slack. Moreover, in both cases the incumbent

uses F I
B for imposing zero profit on the entrant and therefore would like to set F I

S as high

as possible implying that (22) also binds while (21) is slack. This leads us to the following

result:

Proposition 4 Suppose that the seller can multihome by joining both platforms. Then, in

the equilibrium of the sequential game:

1. If ∆ > 0, then the incumbent sets qI = q∗, F I
B = −Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)]+

EθcUB(q∗, θ), F I
S = EθcUS(q∗, c) and earns

ΠI(q∗) = Eθc [V (q∗, θ)− C(q∗, c)]− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] .

2. If ∆ < 0, then the incumbent sets qI = q∗, F I
B = −Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]+

EθcUB(q∗, θ), F I
S = EθcUS(q∗, c) and earns:

ΠI(q∗) = Eθc [V (q∗, θ)− C(q∗, c)]− Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)] .

Comparing Proposition 4 with Proposition 2 reveals that with multi-homing, the in-

cumbent always offers the welfare-maximizing quantity regardless of ∆, thus the market is

always efficient. Intuitively, if the entrant chooses to attract the seller but the seller can

15For ∆ = 0, the entrant is indifferent between attracting the buyer or the seller.
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multi-home, then the buyer still gains the payoff EθcUB(qI , θ) − F I
B from staying with the

incumbent because the seller joined both platforms. As the buyer still benefits from the

presence of the seller in the incumbent’s platform, the entrant needs to charge the buyer

a lower access price in order to convince the buyer to sign with the entrant. This in turn

reduces the entrant’s profit from attracting the seller to begin with, and therefore enables

the incumbent to dominate the market without distorting its quantity.

Given that now we have characterized the equilibrium under multi-homing, for the re-

minder of this section we will analyze each platform’s incentives to prevent multi-homing. A

platform can prevent multi-homing by imposing exclusive dealing restriction. For example, a

videogame console manufacturer can impose exclusive dealing on third-party developer that

prevents developers from dealing with competing manufacturers. In other cases, a platform

can use indirect ways for preventing multi-homing, by making their platform incompati-

ble with other platforms and therefore imposing additional cost on the agent’s ability to

multi-home.

In the context of our model, the platforms’ profits and q in an equilibrium with multi-

homing are the same as under single-homing for ∆ ≥ Eθc [UB(q̃B, θ)] or ∆ ≤ −Eθc [US(q̃S, c)].

Therefore, we focus our analysis of exclusivity on the case where −Eθc [US(q̃S, c)] < ∆ <

Eθc [UB(q̃B, θ)].

Consider first the incumbent. Comparing the incumbent’s profits in competition under

multi-homing and under single-homing yields the following result.

Corollary 3 Suppose that −Eθc [US(q̃S, c)] < ∆ < Eθc [UB(q̃B, θ)]. Then, the incumbent

earns higher profit in the multi-homing equilibrium than in the single-homing equilibrium.

Proof. See Appendix, page 42.

Corollary 3 states that the incumbent always prefers the multi-homing equilibrium to

the single-homing equilibrium where the two equilibria yield different profits. However,

Corollary 4 below shows that if the incumbent offers a contract consistent with multi-homing

equilibrium, the entrant’s best response is to impose exclusivity. We assume here that if one

platform imposes exclusivity, it de facto leads to a single-homing equilibrium. This is because

an agreement of both platforms is needed for multi-homing.

Corollary 4 Suppose that −Eθc [US(q̃S, c)] < ∆ < Eθc [UB(q̃B, θ)]. Then, given the incum-

bent’s equilibrium multi-homing strategies, the entrant finds it optimal to impose exclusive

dealing on the seller.
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Proof. See Appendix, page 43.

Corollary 4 implies that if the entrant can impose exclusivity, there is no multi-homing

equilibrium because even though the incumbent prefers multi-homing, given that the incum-

bent sets the multi-homing strategies the entrant will impose exclusivity and gain positive

payoff. Given this response of the entrant, it cannot be an equilibrium strategy for the

incumbent to offer a multi-homing contract. Instead, the incumbent will offer the single-

homing contract in anticipation of entrant’s best response. Therefore, the single-homing

equilibrium will be played.

The intuition behind this result and Corollaries 3 and 4 is following. Multi-homing pro-

vides the entrant with an advantage and a disadvantage over single homing. In comparison

with single-homing, on one hand, it is easier for the entrant to attract the seller under multi-

homing because the seller can join both platforms, and therefore joins the entrant as long

as the seller gains non-negative payoff. At the same time, it is more difficult for the entrant

to attract the buyer under multi-homing for the same reason: if the buyer expects the seller

to join both platforms, the entrant needs to leave the buyer with higher payoff to motivate

the buyer to choose the entrant over the incumbent. In the multi-homing equilibrium, the

incumbent eliminates the former, positive effect of multi-homing on the entrant by providing

the seller with zero payoff. In such a case, the seller’s incentive to join the entrant becomes

the same under single- and multi-homing. Then, the incumbent can amplify the latter, neg-

ative effect of multi-homing by offering a low, possibly negative access fees to the buyer. As

the incumbent turns the multi-homing effects against the entrant, the entrant would like to

correct this by imposing exclusive dealing.

This result can explain why platforms may sometime choose to impose exclusivity on

their agents either by writing explicit exclusive dealing clauses in their contracts or by mak-

ing their technologies incompatible with other platforms. In the context of this model,

single-homing decreases social welfare because it forces the incumbent to distort its quan-

tity downwards. This result supports a more restrictive approach by antitrust authorities

towards such practices.

Finally, we conclude this section by highlighting the role that asymmetric information

plays in the analysis. Notice that without any asymmetric information, both platforms earn

zero profits under both single- and multi-homing. Therefore, the incumbent loses all the

advantages of multi-homing, while the entrant has nothing to gain by imposing exclusive

dealing. Since the equilibria under multi- and single-homing are the same, no platform has
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incentive to impose exclusivity or seek multi-homing.

6 Conclusions

This paper considers platform competition in a two-sided market, when agents do not know

their valuations from joining the platform and they privately learn this information only

after they join. The paper shows that this informational problem significantly affects pricing,

profits, and market efficiency.

Our first main result is that the dominant platform may distort its quantity (or quality)

downwards in comparison with the quantity that maximizes social welfare. A monopoly

facing the same informational problem does not distort its quantity, and under competition

with full information, again there is no distortion. Therefore, it is the combination of the

informational problem and the presence of competition that creates the market inefficiency.

Our second main result concerns with the adoption of a new technology. We find that an

entrant platform who suffers from unfavorable beliefs is more likely to adopt a new, highly

risky technology, while and incumbent is more likely to adopt a safer, incremental technology.

This result again emerges because of the informational problem: if the two platforms adopt

the same technology, the incumbent dominates the market and earns positive payoff because

of asymmetric information (under full information, both platforms earn zero profits). The

only way an entrant can dominate the market is by offering a new and highly innovative

technology that should it turned out to be successful, it will enable the entrant to overcome

the informational problem.

A third main result concerns multi-homing. We find that the incumbent platform earns

higher profit under multi-homing, and multi-homing eliminates the incumbent’s need to

distort the quantity downwards. However, if possible, the entrant will prefer to prevent

agents from multi-homing by imposing exclusive dealing or by making the technologies of

the two platforms incompatible. In the context of this model, exclusive dealing decreases

social welfare because it forces the incumbent to distort its quantity downwards.

Our paper is derived under some simplifying assumptions that are worth mentioning.

First, we assume that the platform can fully regulate the trade between the two sides in that

the contract specifies the quantity and prices. This assumption might be suitable in some

cases. Operating systems and manufacturers of videogames for example, sometimes regulate

the quality of independent developers. In other cases, however, a platform’s contracting

possibilities might be more limited. Assuming a platform that can fully regulate the trade
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enables us to generate clean results and to highlight the net effect of asymmetric information

on market’s outcome and efficiency. It also allows us to separate the efficiency resulting from

asymmetric information from inefficiency that may result from other contract structures.

In an accompanied research, we investigate platform competition with limited contracting

possibilities.

Second, we assume that there is only one agent on each side (i.e., one buyer and one

seller). The results should follow to more than one agent on each side as long as there

is no negative externalities within each group and as long as the valuations of the agents

in the same side are independently drown (that is, theta and c are not correlated among

different buyers and sellers, respectively). Introducing negative externalities within each

side (for example, because of competition between sellers), might change our results if it

may make it easier for the entrant to gain market share. Likewise, allowing for correlation in

agents’ valuations may affect the result as it may make it easier for the platform to extract

private information from agents. We leave these potential extensions of our model for future

research.

Appendix

A Proofs

Proof of Proposition 2 (page 17)

Proof. The plan of the proof is the following. We first establish that at least (13) or (14)

has to bind. Then, we consider three cases separately: the case where only (13) binds, the

case where only (14) binds, and the case were both (13) and (14) binds. Finally, we compare

the incumbent’s profit under the three cases.

Starting with the first part of the proof, suppose that all constraints are slack. Then in-

creasing F I
B and/or F I

S increases profit, until some constraints are binding. Now suppose that

both (15) and (16) are binding, but (13) and (14) are slack. Then F I
B = EθcUB(qI , θ) > 0 and

F I
S = EθcUS(qI , c) > 0. But then constraints (14) and (14) lead to Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] <

0 and Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)] < 0, which is a contradiction. We therefore have

that at least (13) or (14) has to bind.

Next, we move to the second part of solving each case separately. Notice that con-

straints (13) and (14) of the incumbent’s maximization problem can be expressed as

ΠE(attracting B|q̃B, ContI) ≤ 0 and ΠE(attracting S|q̃S, ContI) ≤ 0, respectively. Then,
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for any ContI that solves the maximization problem, it must be that one of the three cases

occurs:

Case 1: 0=ΠE(attracting B|q̃B, ContI) > ΠE(attracting S|q̃S, ContI);

Case 2: 0=ΠE(attracting S|q̃S, ContI) > ΠE(attracting B|q̃B, ContI);

Case 3: 0=ΠE(attracting B|q̃B, ContI) = ΠE(attracting S|q̃S, ContI) .

The proof proceeds by considering those three cases in turn.

Case 1: 0 = ΠE(attracting B|q̃B, ContI) > ΠE(attracting S|q̃S, ContI)
Suppose that the condition for Case 1 holds. Then, whenever the constraint (13) is

binding, i.e, ΠE(attracting B|q̃B, ContI) = 0, then it must be that the constraint (14) is also

satisfied, i.e., ΠE(attracting S|q̃S, ContI) < 0.

We first show that in the optimal solution constraint (15) does not bind. If both con-

straints (13) and (15) bind, the incumbent’s profit function is

ΠI(qI) = Eθc
[
V (qI , θ)− C(qI , c)− US(qI , c)

]
− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] .

This profit is maximized for qI = q̃S. And then the profit is ΠI(q̃S) = −∆ < 0. This is

not an optimal solution for the incumbent, because there exists another solution that brings

positive profit.

Since constraint (13) binds, the incumbent sets:

F I
B = −Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] + EθcUB(qI , θ)−min{F I

S , 0} .

Substituting F I
B into the incumbent’s profit function yields:

ΠI(qI) =Eθc
[
V (qI , θ)− C(qI , c)− UB(qI , c)− US(qI , c)

]
+ F I

B + F I
S

=Eθc
[
V (qI , θ)− C(qI , c)− UB(qI , θ)− US(qI , c)

]
+

− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] + EθcUB(qI , θ)−min{F I
S , 0}+ F I

S .

The profit ΠI(qI) is independent of F I
S for F I

S ≤ 0 and ΠI(qI) is increasing with F I
S for

F I
S > 0. Therefore, the incumbent sets the highest possible F I

S = EθcUS(qI , c).

Notice that with F I
S = EθcUS(qI , c), the condition for Case 1 satisfied and constraint (1)

binding, constraint (2) yields

Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]︸ ︷︷ ︸
>0

−EθcUS(qI , c) + F I
S︸ ︷︷ ︸

=0

+ min{F I
B, 0} < 0 .
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Therefore, F I
B must be negative

F I
B < −Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)] < 0 .

Substituting F I
S = EθcUS(qI , c) back into ΠI(qI) and rearranging yields:

ΠI(qI) =Eθc
[
V (qI , θ)− C(qI , c)− UB(qI , θ)− US(qI , c)

]
+

− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] + EθcUB(qI , θ)− EθcUS(qI , c) =

= Eθc
[
V (qI , θ)− C(qI , c)

]
− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] .

To maximize the profit, the incumbent will set qI = q∗. The maximized profit then is

ΠI(q∗) = Eθc
[
V (q∗, θ)− C(q∗, c)

]
− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] . (23)

Given the optimal values, and the condition that characterizes Case 1, we conclude that

this solution is available to the incumbent when

Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]− EθcUS(qI , c) + F I
S + min{F I

B, 0} <

< Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)]− EθcUB(qI , θ) + F I
B + min{F I

S , 0}

After substituting for F I
B, F I

S and qI and rearranging the terms, this inequality is equivalent

to

∆ > EθcUB(q∗, θ).

Case 2: ΠE(attracting B|q̃B, ContI) < ΠE(attracting S|q̃S, ContI) = 0

Suppose that the condition for Case 2 holds. Then, whenever the constraint (14) is

satisfied, i.e, ΠE(attracting S|q̃S, ContI)=0, then it must be that the constraint (13) is also

satisfied, i.e., ΠE(attracting B|q̃B, ContI) < 0.

Since constraint (14) binds, it takes the following form

Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]− EθcUS(qI , c) + F I
S + min{F I

B, 0} = 0 .

This equation takes a different form depending on whether F I
B is positive or negative. We

first show that it cannot be positive.

To the contrary, suppose that F I
B is positive. Then, the binding constraint (14) becomes

Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]− EθcUS(qI , c) + F I
S = 0

=⇒ F I
S = EθcUS(qI , c)− Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)] .
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The incumbent’s profit increases with F I
B, and this is now only constrained by constraint (15).

Then the incumbent sets the highest possible F I
B = EθcUB(qI , θ). But then the condition for

Case 2 is

=0︷ ︸︸ ︷
Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]− EθcUS(qI , c) + F I

S +

=0︷ ︸︸ ︷
min{F I

B, 0} >

> Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)]︸ ︷︷ ︸
≥0, due to ∆≥0

−EθcUB(qI , θ) + F I
B︸ ︷︷ ︸

=0

+ min{F I
S , 0} ,

which comes down to

0 > Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] + min{F I
S , 0}

=⇒ F I
S < −Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] .

This, however, contradicts

F I
S = EθcUS(qI , c)−Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)] ≥ −Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]

because EθcUS(qI , c) ≥ 0.

Therefore, in Case 2, F I
B must be negative. Then, according to the binding constraint (14),

the incumbents sets:

F I
B = −Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)] + EθcUS(qI , c)− F I

S .

Substituting this F I
B into the incumbent’s profit function yields:

ΠI(qI) =Eθc
[
V (qI , θ)− C(qI , c)− UB(qI , θ)− US(qI , c)

]
+ F I

B + F I
S =

=Eθc
[
V (qI , θ)− C(qI , c)− UB(qI , θ)− US(qI , c)

]
− Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)] + EθcUS(qI , c)− F I

S + F I
S =

=Eθc
[
V (qI , θ)− C(qI , c)− UB(qI , θ)

]
− Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)] .

Notice that ΠI(qI) is independent of F I
S for all F I

S . To maximize its profit, the incumbent

sets qI = q̃B. The maximized profit then is

ΠI(q̃B) = Eθc
[
V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)

]
− Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)] = ∆ . (24)

Given the optimal values and the condition that characterizes Case 2, this solution is

available to the incumbent when

Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]− EθcUS(qI , c) + F I
S + min{F I

B, 0} >

> Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)]− EθcUB(qI , θ) + F I
B + min{F I

S , 0} .
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Substituting F I
B and qI into this inequality, yields

∆− EθcUB(q̃B, θ) < F I
S − EθcUS(q̃B, c)−min{F I

S , 0} .

Suppose that F I
S < 0. Then the LHS of this inequality is −EθcUS(q̃B, c) < 0. If F I

S ≥ 0, then

LHS is −EθcUS(q̃B, c) ≤ F I
S − EθcUS(q̃B, c) ≤ 0. Hence, either way

F I
S − EθcUS(q̃B, c)−min{F I

S , 0} ≤ 0 .

Moreover, the incumbent can always set (but does not have to) F I
S up to EθcUS(q̃B, c), so

that F I
S − EθcUS(q̃B, c)−min{F I

S , 0} = 0.

Therefore, for any 0 ≤ ∆ < EθcUB(q̃B, θ) there exists a solution that falls into Case 2,

i.e., the incumbent sets qI = q̃B.

Case 3: 0 = ΠE(attracting B|q̃B, ContI) = ΠE(attracting S|q̃S, ContI)
Notice that if the strategy that maximizes incumbent’s profit exists when only one of

the constraints (13) or (14) bind, it must yield a higher profit than the most profitable

strategy with both constraints assumed to be binding. Therefore, Case 3 is relevant only

for parameters for which neither Case 1 or Case 2 solutions are available. Thus, we consider

this case only for such ∆ where EθcUB(q̃B, θ) ≤ ∆ ≤ EθcUB(q∗, θ).

When the condition for Case 3 holds, the constraint (13) binds if and only if con-

straint (14) binds. Before proceeding further, we show that in an optimal solution for this

case, constraint (16) also binds.

• Suppose that only constraints (13) and (14) are binding. Then,

F I
B = −Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] + EθcUB(qI , θ)−min{F I

S , 0}

and

F I
S = −Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)] + EθcUS(qI , c)−min{F I

B, 0} ,

which leads to the incumbent’s profit function:

ΠI(qI) = Eθc
[
V (qI , θ)− C(qI , c)− UB(qI , θ)− US(qI , c)

]
+ F I

B + F I
S

= Eθc
[
V (qI , θ)− C(qI , c)− UB(qI , θ)− US(qI , c)

]
+

−Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] + EθcUB(qI , θ)−min{F I
S , 0}+

−Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)] + EθcUS(qI , c)−min{F I
B, 0} =

= Eθc
[
V (qI , θ)− C(qI , c)

]
− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)]−min{F I

S , 0}+

−Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]−min{F I
B, 0}
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Increasing both F I
B and F I

S increases the incumbent’s profits. Thus, the incumbent

will increase those fees until either constraint (15) or constraint (16) is binding.

• Therefore, it must be that both constraints (13) and (14) and at least one of the other

ones is binding. Suppose that it is constraint (15) that is binding. Then, from the

binding constraint (15), we obtain F I
B = EθcUB(qI , θ). Substituting this value into the

constraint (1) binding yields

Eθc
[
V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)

]
+ min{F I

S , 0} = 0

=⇒ F I
S = −Eθc

[
V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)

]
< 0 . (25)

Since F I
B > 0, constraint (14) takes the form of

Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]− EθcUS(qI , c) + F I
S = 0 .

After substituting in (25) for F I
S , and rearranging the terms, we obtain ∆ = −EθcUS(qI , c)+

F I
S < 0. This contradicts our assumption that ∆ ≥ 0.

• Therefore, any solution of the incumbent maximizing its profit in Case 3 must involve

binding constraints (13) and (14) as well as constraint (16).

From the binding constraints (13) and (16) we obtain that the incumbent sets: F I
S =

EθcUS(qI , c) and:

F I
B = −Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] + EθcUB(qI , θ).

Constraint (14) then becomes

Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]− EθcUS(qI , c) + F I
S + min{F I

B, 0} =

= Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] + EθcUB(qI , θ) =

= −∆ + EθcUB(qI , θ) = 0 ⇐⇒ ∆− EθcUB(qI , θ) = 0 .

Given this constraint, the incumbent profit can be expressed as

ΠI(qI) =Eθc
[
V (qI , θ)− C(qI , c)− UB(qI , θ)− US(qI , c)

]
+ F I

B + F I
S =

=Eθc
[
V (qI , θ)− C(qI , c)− UB(qI , θ)− US(qI , c)

]
+

− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] + EθcUB(qI , θ) + EθcUS(qI , c) + λ[∆− EθcUB(qI , θ)] =

= Eθc
[
V (qI , θ)− C(qI , c)

]
− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] + λ[∆− EθcUB(qI , θ)] ,
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where λ is the Lagrange multiplier. Differentiating with respect to qI and λ yields

following conditions for the optimal ˜̃q∆ and λ:

Vq(˜̃q∆, θ)− Cq(˜̃q∆, c)− λ
1− F (θ)

f(θ)
Vθc(˜̃q∆, θ) = 0 , (26)

∆− EθcUB(˜̃q∆, θ) = 0 .

We turn to establishing that the optimal solution involves 0 ≤ λ ≤ 1 and q∗ ≥ ˜̃q∆ ≥ q̃B.

To see why, suppose first that ∆ = EθcUB(q∗, θ). Then, it is easy to see that the solution to

the two equations above is at ˜̃q∆ = q∗ and λ = 0.

As ∆ decreases below EθcUB(q∗, θ), the constraint ∆ = EθcUB(˜̃q∆, θ) requires that ˜̃q∆

decreases below q∗. This is because by assumption Vqθ > 0, and therefore Eθc [UB(q, θ)] is

increasing in q. At the same time, for ∆ < EθcUB(q∗, θ) the condition (26) requires that λ

increases above 0. This is because the LHS of (26) is decreasing with λ, and therefore the q

that solves (26) is decreasing with λ.

For ∆ = EθcUB(q̃B, θ), the constraint ∆ = EθcUB(˜̃q∆, θ) requires that ˜̃q∆ = q̃B, while the

condition (26) requires that λ = 1. This is because by definition q = q̃B is the solution

to Vq(q, θ) − Cq(q, c) − 1 · 1−F (θ)
f(θ)

Vθc(q, θ) = 0. Therefore, it must be that 1 ≤ λ ≤ 0,

q∗ ≥ ˜̃q∆ ≥ q̃B, and ˜̃q∆ is decreasing with ∆, while λ is decreasing with ∆. Moreover, in the

optimal solution (13), (14) and (16) bind only if EθcUB(q̃B, θ) ≤ ∆ ≤ EθcUB(q∗, θ). When

this is the case, the incumbent earns

ΠI(˜̃q∆) = Eθc
[
V (˜̃q∆, θ)− C(˜̃q∆, c)

]
− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] .

To sum up the three possible cases, we conclude that:

• For ∆ > EθcUB(q∗, c) the optimal solution for the incumbent falls into Case 1. The

incumbent sets qI = q∗, and induces the entrant to set qE = q̃B and to attract the

buyer’s side. The entrant earns zero profits, while the incumbent earns

ΠI(q∗) = Eθc
[
V (q∗, θ)− C(q∗, c)

]
− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] .

• For ∆ < EθcUB(q̃B, c) the optimal solution for the incumbent falls into Case 2. The

incumbent sets qI = q̃B, and induces the entrant to set qE = q̃S and to attract the

seller’s side. The entrant earns zero profits, while the incumbent earns ΠI(q̃B) = ∆.

• For EθcUB(q̃B, θ) ≤ ∆ ≤ EθcUB(q∗, θ) the only available solution is Case 3. The

incumbent sets ˜̃q∆, as described in Case 3. The entrant is indifferent between setting
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qE = q̃B and attracting the buyer, or setting qE = q̃S and attracting the seller. The

entrant earns zero and the incumbent earns

ΠI(˜̃q∆) = Eθc
[
V (˜̃q∆, θ)− C(˜̃q∆, c)

]
− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] .

This completes the proof of Proposition 2.

Proof of Corollary 1 (page 20)

Proof. Since EθUB(q, θ) = 0, then formula (7) becomes

Eθc [V (qB, θ)− C(qB, c)− UB(qB, c)] = Eθc [V (qB, θ)− C(qB, c)] ,

and it is maximized by q̃B = q∗.

For ∆ > 0, ∆ > EθUB(q, θ), and case (i) of Proposition 2 applies. But since q̃B = q∗

and Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, c)] = Eθc [V (q∗B, θ)− C(q∗B, c)], then qI = qE = q∗ and

both platforms’ profits are 0.

For ∆ = 0, ∆ = EθUB(q, θ), and the special case of (iii) in Proposition 2 applies. It yields

the same result.

Proof of Lemma 2 (page 23)

Proof. Suppose that the incumbent adopted incremental technology, E , while the entrant

adopted the radical technology. Moreover, the radical technology turned out to be successful,

H. Consider now the simultaneous pricing game.

By the same method as in the Section 3, we find that the best profit the incumbent may

achieve while deterring the entrant from the market is

Eθc
[
V E(q∗(E), θ)− CE(q∗(E), c)

]
− Eθc

[
V H(q̃B(H), θ)− CH(q̃B(H), c)− UH(q̃B(H), θ)

]
.

Our analysis is interesting only if this profit is negative,16 hence condition (17).

Since under (17) it is too costly for the incumbent to prevent the entrant from serving

the market, we now solve the profit maximization problem of the entrant preventing the

incumbent from serving the market.

16If the incumbent’s profit in this case is positive, the entrant’s dominant strategy is to adopt the incre-

mental technology, and the only equilibrium is where both platforms adopt E .
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For a given strategy of the entrant under successful radical technology, ContE(H), the

incumbent’s best response is

F I
S(E) /EθcUES (qI(E), c) + min{FE

S (H), 0}

F I
B(E) .EθcUEB(qI(E), θ) + min{FE

B (H), 0} .

Those are new participation constraints. And these are the only constraints for the incum-

bent in this situation. Substituting for F I
S(E) and F I

B(E) in the incumbent’s profit yields

ΠI(qI |E ,H) = Eθc[V E(qI(E), θ)− CE(qI(E), c)− UEB(qI(E), θ)− UES (qI(E), c)] + EθcUES (qI(E), c) +

+ min{FE
S (H), 0}+ EθcUEB(qI(E), θ) + min{FE

B (H), 0} =

= Eθc[V E(qI(E), θ)− CE(qI(E), c)] + min{FE
S (H), 0}+ min{FE

B (H), 0} .

This profit is maximized for qI = q∗(E).

The entrant attracts the buyer’s side:

−FE
B (H) ≥ EθcUEB(q∗(E), θ)−F I

B(E) = −min{FE
B (H), 0} ⇐⇒ FE

B (H) ≤ min{FE
B (H), 0} .

Suppose that FE
B (H) > 0, then FE

B (H) ≤ 0 — a contradiction. Hence, it must be that

FE
B (H) ≤ 0.

After the entrant attracted the buyer’s side, the seller’s side joins the entrant when

−FE
S (H) + EθcUHS (qE(H), c) ≥ −min{F I

S(E), 0} ,

where F I
S(E) = EθcUES (q∗(E), c) + min{FE

S (H), 0}. Increasing FE
S (H) increases the entrant’s

profit without affecting other constraints. Therefore, it is optimal for the incumbent to

increase FE
S (H) as high as possible, i.e., −FE

S (H) + EθcUHS (qE(H), c) = 0.

Therefore, the entrant’s objective is to maximize

ΠE(qE|E ,H) = Eθc[V H(qE, θ)− CH(qE, c)− UHB (qE, θ)− UHS (qE, c)] + FE
B (H) + FE

S (H)

s.t.,

Eθc[V E(q∗(E), θ)− CE(q∗(E), c)] + min{FE
S (H), 0}+ min{FE

B (H), 0} ≤0 ,

FE
B (H) ≤0 ,

−FE
S (H) + EθcUHS (qE, c) =0 .

It is straightforward to show that the first constraint also binds. Therefore, we obtain

FE
S (H) = EθcUHS (qE(H), c), and

Eθc[V E(q∗(E), θ)−CE(q∗(E), c)]+FE
B (H) = 0 =⇒ FE

B (H) = −Eθc[V E(q∗(E), θ)−CE(q∗(E), c)] .
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After substituting those into the profit function,

ΠE(qE|E ,H) = Eθc[V H(qE, θ)− CH(qE, c)− UHB (qE, θ)− Eθc[V E(q∗(E), θ)− CE(q∗(E), c)] .

This profit is maximized for qE = q̃B(H), and yields

ΠE(q̃B(H)|E ,H) = Eθc[V H(q̃B(H), θ)−CH(q̃B(H), c)−UHB (q̃B(H), θ)−Eθc[V E(q∗(E), θ)−CE(q∗(E), c)] > 0 .

The profit is positive due to (17).

This completes the proof of Lemma 2.

Proof of Proposition 3 (page 24)

Consider first a condition for an equilibrium (not necessarily a unique one) in which the

entrant chooses the radical technology and the incumbent chooses the incremental tech-

nology. Given that the incumbent chooses the incremental technology, Table 1 reveals

that the entrant will always choose the radical technology. Moreover, given that the en-

trant chooses the radical technology, the incumbent chooses the incremental technology if:

(1−ρ)ΠI(E ,L) > ρΠI(H,H), or ρ < ρ, where:

ρ ≡ Eθc[V E(q∗(E), θ)− CE(q∗(E), c)]

Eθc[V H(q∗(H), θ)− CH(q∗(H), c)]− (Eθc[V H(q̃B(H), θ)− CH(q̃B(H), c)− UHB (q̃B(H), θ)]− Eθc[V E(q∗(E), θ)− CE(q∗(E), c)])
.

Since Eθc[V H(q∗(H), θ)−CH(q∗(H), c)] > Eθc[V H(q̃B(H), θ)−CH(q̃B(H), c)−UHB (q̃B(H), θ)] >

Eθc[V E(q∗(E), θ)− CE(q∗(E), c)], 0 ≤ ρ ≤ 1. Moreover, notice that if (1− k(θ))/K(θ) −→ 0

andG(c)/g(c) −→ 0, then Eθc[V H(q̃B(H), θ)−CH(q̃B(H), c)−UHB (q̃B(H), θ)] −→ Eθc[V H(q∗(H), θ)−
CH(q∗(H), c)], implying that ρ −→ 1.

Next, consider a condition for an equilibrium (not necessarily a unique one) in which

the entrant chooses the incremental technology and the incumbent chooses the radical tech-

nology. Given that the incumbent chooses the radical technology, Table 1 reveals that

the entrant will always choose the incremental technology. Moreover, given that the en-

trant chooses the incremental technology, the incumbent chooses the radical technology if:

ΠI(E , E) < ρ ΠI(H, E), or:ρ >ρ, where:

ρ ≡ Eθc[V E(q∗(E), θ)− CE(q∗(E), c)]− Eθc[V E(q̃B(E), θ)− CE(q̃B(E), c)− UEB(q̃B(E), θ)]

Eθc[V H(q∗(H), θ)− CH(q∗(H), c)]− Eθc[V E(q̃B(E), θ)− CE(q̃B(E), c)− UEB(q̃B(E), θ)]
.

Since both the numerator and the denominator are positives and since Eθc[V H(q∗(H), θ)−
CH(q∗(H), c)] > Eθc[V E(q∗(E), θ) − CE(q∗(E), c)], 0 ≤ ρ ≤ 1. Moreover, notice that if (1 −
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k(θ))/K(θ) −→ 0 andG(c)/g(c) −→ 0, then Eθc[V E(q̃B(E), θ)−CE(q̃B(E), c)−UEB(q̃B(E), θ)] −→
Eθc[V E(q∗(E), θ)− CE(q∗(E), c)], implying that ρ −→ 0.

Next we turn to compare between ρ and ρ. To facilitate notations, let:

X ≡ Eθc[V E(q̃B(E), θ)− CE(q̃B(E), c)− UEB(q̃B(E), θ)],

Y ≡ Eθc[V E(q∗(E), θ)− CE(q∗(E), c)],

Z ≡ Eθc[V H(q∗(H), θ)− CH(q∗(H), c)].

Notice that Z > Y > X. Therefore:

ρ ≡ Y

Z − (Eθc[V H(q̃B(H), θ)− CH(q̃B(H), c)− UHB (q̃B(H), θ)]− Y )

>
Y

Z
=
Y (Z −X)

Z(Z −X)
=
Y Z − Y X
Z2 − ZX

>
Y Z − ZX
Z2 − ZX

=
Y −X
Z −X

= ρ,

where the first inequality follows because Eθc[V H(q̃B(H), θ)−CH(q̃B(H), c)−UHB (q̃B(H), θ)] >

Y and the second inequality follows because Z > Y > X. Since ρ > ρ, we have that for

ρ ∈ [0, ρ], there is a unique Nash equilibrium in which the incumbent chooses the incremental

technology while the entrant chooses the radical technology, for ρ ∈ [ρ, 1] there is a unique

Nash equilibrium in which the incumbent chooses the radical technology while the entrant

chooses the incremental technology, while for ρ ∈ [ρ, ρ] there are two Nash equilibria in which

the two platforms choose different technologies.

Proof of Corollary 3 (page 29)

Proof. Suppose first that 0 < ∆ < Eθc [UB(q̃B, θ)]. Under single-homing, the incumbent

earns:

∆ = Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)]− Eθc [V (q̃B, θ)− C(q̃B, c)− US(q̃S, c)]

< Eθc [UB(q̃B, θ)]

≤ Eθc [UB(q̃B, θ)] + Eθc [V (q∗, θ)− C(q∗, c)]− Eθc [V (q̃B, θ)− C(q̃B, c)]

= Eθc [V (q∗, θ)− C(q∗, c)]− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] ,

where the first inequality follows because by assumption ∆ < Eθc [UB(q̃B, θ)] and the second

inequality follows because by definition q∗ maximizes Eθc [V (q, θ)− C(q, c)] and the last term
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is the incumbent’s profit from multi-homing. Next suppose that −Eθc [US(q̃S, c)] < ∆ < 0.

Under single-homing, the incumbent earns:

−∆ = Eθc [V (q̃B, θ)− C(q̃B, c)− US(q̃S, c)]− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)]

< Eθc [US(q̃S, c)]

≤ Eθc [US(q̃S, c)] + Eθc [V (q∗, θ)− C(q∗, c)]− Eθc [V (q̃S, θ)− C(q̃S, c)]

= Eθc [V (q∗, θ)− C(q∗, c)]− Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)] ,

where again the first inequality follows because by assumption −∆ < Eθc [US(q̃S, c)] and the

second inequality follows because by definition q∗ maximizes Eθc [V (q, θ)− C(q, c)] and the

last term is the incumbent’s profit from multi-homing.

Proof of Corollary 4 (page 29)

Proof. Suppose first that 0 < ∆ < Eθc [UB(q̃B, θ)]. Under multihoming the incumbent sets:

qI = q∗, F I
B = −Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] + EθcUB(q∗, θ) and F I

S = EθcUS(q∗, c).

If the entrant does not impose exclusivity then the entrant earns zero profit. Suppose however

that the entrant imposed exclusivity on the seller. Then, the entrant can attract the seller

by charging:

−FE
S & −F I

S + EθcUS(q∗, c) = 0 =⇒ FE
S = 0.

Given that the seller now moves exclusively to the entrant, the entrant can charge the buyer:

EθcUB(qE, θ)− FE
B & −min{−F I

B, 0} =⇒ FE
B = EθcUB(qE, θ) + min{F I

B, 0}.

The entrant earns:

ΠE(attracting S|qE) = Eθc [V (q̃B, θ)− C(q̃B, c)− US(q̃S, c)] + min{F I
B, 0}.

If F I
B = −Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)]+EθcUB(q∗, θ) > 0, then the entrant earns

Eθc [V (q̃B, θ)− C(q̃B, c)− US(q̃S, c)] > 0. If F I
B = −Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] +

EθcUB(q∗, θ) < 0, then the entrant earns:

ΠE(attracting S|qE) = Eθc [V (q̃B, θ)− C(q̃B, c)− US(q̃S , c)] + min{F IB, 0}

= Eθc [V (q̃B, θ)− C(q̃B, c)− US(q̃S , c)]− Eθc [V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)] + EθcUB(q∗, θ)

= Eθc[UB(q∗, θ)]−∆

> Eθc [UB(q̃B, θ)]−∆

> 0,
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where the first inequality follows because Eθc[UB(q∗, θ)] > Eθc [UB(q̃B, θ)] and the second

inequality follows because by assumption ∆ < Eθc [UB(q̃B, θ)].

Next suppose that −Eθc [US(q̃S, c)] < ∆ < 0. Under multihoming the incumbent sets:

qI = q∗, F I
B = −Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)]+EθcUB(q∗, θ) and F I

S = EθcUS(q∗, c). If

the entrant does not impose exclusivity then the entrant earns zero profit. Suppose however

that the entrant imposed exclusivity on the seller. Then, the entrant can attract the seller

by charging:

−FE
S ' −F I

S + EθcUS(q∗, c) = 0 =⇒ FE
S = 0.

Given that the seller now moves exclusively to the entrant, the entrant can charge the buyer:

EθcUB(qE, θ)− FE
B ' −min{−F I

B, 0} =⇒ FE
B = EθcUB(qE, θ) + min{F I

B, 0}.

The entrant earns:

ΠE(attracting S|qE) = Eθc [V (q̃B, θ)− C(q̃B, c)− US(q̃S, c)] + min{F I
B, 0}.

If F I
B = −Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)] + EθcUB(q∗, θ) > 0, then the entrant earns

Eθc [V (q̃B, θ)− C(q̃B, c)− US(q̃S, c)] > 0. If F I
B = −Eθc [V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)] +

EθcUB(q∗, θ) < 0, then the entrant earns:

ΠE(attracting S|qE) = Eθc [V (q̃B, θ)− C(q̃B, c)− US(q̃S , c)] + min{F IB, 0}

= Eθc [V (q̃B, θ)− C(q̃B, c)− US(q̃S , c)]− Eθc [V (q̃S , θ)− C(q̃S , c)− US(q̃S , c)] + EθcUB(q∗, θ)

= Eθc[UB(q∗, θ)]

> 0.

This completes the proof of Corollary 4.

B Competition under Simultaneous Move Game

In Section 3 we have analyzed a game of competition between the incumbent and the entrant

platform, where the incumbent announced its contract slightly earlier than the entrant. In

this section, we consider a version of the competition game, where the incumbent and the

entrant announce their contracts simultaneously. In such a game we look for pure strategy

Nash equilibria. We show that for ∆ such that −EθcUS(q∗, c) < ∆ < EθcUB(q∗, θ), there

does not exist a pure strategy Nash equilibrium. And otherwise there always exists a unique

pure strategy Nash equilibrium.
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Just as in the monopoly case and in the sequential move game, the entrant needs to

subsidize one side of the market to attract the agents. The entrant either subsidizes the

buyer or the seller. Suppose first, that the entrant subsidizes the buyer. By similar reasoning

as in Section 3, we find that the entrant’s best response to the incumbent’s contract involves

−FE
B ' EθcUB(qI , θ)− F I

B

−FE
S + EθcUS(qE, c) ' 0 .

Then the entrant’s profit function becomes Eθc
[
V (qE, θ) − C(qE, c) − UB(qE, θ)

]
+ F I

B −
EθcUB(qI , θ) + min{F I

S , 0}, which is maximized by qE = q̃B.

At the same time, the incumbent’s best response to entrant’s strategy of attracting the

buyer involves

−F I
B + EθcUB(qI , θ) ' −FE

B

−F I
S + EθcUS(qI , c) ' 0 .

Then the incumbent’s profit function becomes Eθc
[
V (qI , θ)−C(qI , c)

]
+ FE

B , which is max-

imized by qI = q∗. Moreover, F I
S = EθcUS(q∗). The incumbent sets F I

B low enough to

deter the entrant from the market (but not lower, because it would decrease the incumbent’s

profit), i.e., to set the entrant’s profit to 0. The incumbent achieves this by setting

F I
B = EθcUB(q∗, θ)− Eθc

[
V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)

]
.

Then the incumbent achieves the profit of Eθc
[
V (q∗, θ)− C(q∗, c)

]
−
[
V (q̃B, θ)− C(q̃B, c)−

UB(q̃B, θ)
]
> 0.

Now suppose that the entrant subsidizes the seller. Then its best response to the incum-

bent’s strategy involves

−FE
S ' EθcUS(qI , c)− F I

S

−FE
B + EθcUB(qE, θ) ' −min{F I

B, 0} .

And the entrant’s profit Eθc
[
V (qE, θ)−C(qE, c)−US(qE, c)

]
+F I

S−EθcUS(qI , c)+min{F I
B, 0}

is maximized by qE = q̃S.

The incumbent’s best response when the entrant subsidizes the seller involves

−F I
S + EθcUS(qI , c) ' −FE

S

−F I
B + EθcUB(qI , θ) ' 0 .
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The incumbent’s profit of Eθc
[
V (qI , θ)−C(qI , c)

]
+FE

S is maximized by qI = q∗. Moreover,

F I
B = EθcUB(q∗, θ) and the incumbent sets F I

S = EθcUS(q∗, c) − Eθc
[
V (q̃S, θ) − C(q̃S, c) −

US(q̃S, c)
]

to induce zero profit for the entrant.

However, in the simultaneous move game, the incumbent does not know a priori whether

the entrant will offer subsidizing for the buyer or the seller.

Suppose that the incumbent believes that the entrant subsidizes the buyer, and sets

qI = q∗, F I
S = EθcUS(q∗, c) and F I

B = EθcUB(q∗, θ)−Eθc
[
V (q̃B, θ)−C(q̃B, c)−UB(q̃B, θ)

]
. If

the entrant responds by subsidizing the buyer, it gets zero profit. If, however, the entrant

responds by subsidizing the seller, its profit is

Eθc
[
[V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)

]
+ min{F I

B, 0} .

If this profit is larger than zero, the entrant prefers to respond with subsidizing the seller.

This happens when

Eθc
[
[V (q̃S, θ)−C(q̃S, c)−US(q̃S, c)

]
> EθcUB(q∗, θ)−Eθc

[
V (q̃B, θ)−C(q̃B, c)−UB(q̃B, θ)

]
⇐⇒

⇐⇒ ∆ < EθcUB(q∗, θ) .

Therefore, if ∆ < EθcUB(q∗, θ) then the entrant has incentive do deviate away from subsi-

dizing the buyer. Conversely, if ∆ ≥ EθcUB(q∗, θ) there exists a pure strategy equilibrium

where the entrant subsidizes the buyer, and the incumbent responds optimally.

Suppose now that the incumbent believes that the entrant subsidizes the seller, and

sets its strategy optimally under this belief. By similar reasoning we can show that if

∆ > −EθcUS(q∗, c), then the entrant has incentive to deviate away from subsidizing the

seller. And if ∆ ≤ −EθcUS(q∗, c), then there exists a pure strategy equilibrium where the

entrant subsidizes the seller, and the incumbent responds optimally.

Notice that for ∆ such that −EθcUS(q∗, c) < ∆ < EθcUB(q∗, θ) there does not exist a

pure strategy equilibrium. If the incumbent believes that the entrant subsidizes the buyers,

the entrant’s best response is to subsidize the sellers and vice versa. That is, there does not

exists a pure strategy for the entrant which fulfills incumbent’s expectations. Therefore, a

pure strategy Nash equilibrium does not exist.

The discussion above directly leads to Proposition 5.

Proposition 5 Suppose that the incumbent and the entrant compete in a simultaneous move

game. Then
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1. For ∆ ≥ EθcUB(q∗, θ) there exists a unique pure strategy Nash equilibrium, where the

entrant subsidizes the buyer.

2. For ∆ ≤ −EθcUS(q∗, c) there exists a unique pure strategy Nash equilibrium, where the

entrant subsidizes the seller.

3. For −EθcUS(q∗, c) < ∆ < EθcUB(q∗, θ) there does not exist a pure strategy Nash equi-

librium.

C Competition under sequential move game where the

entrant plays first

In Section 3 we considered the case where the incumbent sets the contract slightly before

the entrant. In this section, we consider a version of the competition game, in which the

entrant moves before the incumbent. We show that there are multiple equilibria. In all of

them the incumbent dominates the market and sets qI = q∗, regardless of ∆. Therefore,

unlike the opposite case where the incumbent moves first, here the incumbent never distorts

the quantity. Moreover, we provide a minimal boundary on the incumbent’s profit, and show

that the incumbent can earn at least as much as it earns in the competition game under

simultaneous move game or the sequential move game when the incumbent moves first, for

the case where ∆ is sufficiently high.

To this end, suppose that the entrant offers a contract {FE
B , F

E
S , t

E
B(θ, c), tES (θ, c), qE(θ, c)},

and consider first the incumbent’s best response to the entrant’s contract. As the incumbent

only needs to ensure that there is an equilibrium in which both sides join the incumbent,

the incumbent will charge:

−F I
B + EθcUB(qI , θ) ' −min{FE

B , 0},

−F I
S + EθcUS(qI , c) ' −min{FE

S , 0}.

Hence the incumbent earns:

ΠI(qI) = Eθc
[
V (qI , θ)− C(qI , c)

]
+ min{FE

S , 0}+ min{FE
B , 0}.

Maximizing the incumbent’s profit with respect to qI yields that the incumbent sets qI

= q∗. Consequently, regardless of the entrant’s first-stage strategies, the incumbent sets the

welfare-maximizing quantity.
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Next we turn to showing that there is no equilibrium in which the entrant dominates the

market. To dominate the market, the entrant has to ensure that the incumbent earns non-

positive payoff from the above strategies. Moreover, as the entrant suffers from unfavorable

beliefs, the entrant has to set negative access fees for at least one side. Suppose first that in

entrant sets FE
B < 0. To ensure that the incumbent earns negative profit, the entrant sets:

FE
B = −Eθc

[
V (q∗, θ)− C(q∗, c)

]
−min{FE

S , 0}.

Hence, the entrant earns:

ΠE(attracting B|qE) = Eθc
[
V (qE, θ)− C(qE, c)− UB(qE, θ)− US(qE, c)

]
+FE

S −min{FE
S , 0} − Eθc

[
V (q∗, θ)− C(q∗, c)

]
.

Notice that for FE
S < 0, the entrant’s profit is independent of FE

S , while for FE
S > 0, the

entrant’s profit is incre

asing in FE
S . Therefore, the entrant sets the highest FE

S possible: FE
S = EθcUS(qE, c),

implying that teh entrant sets FE
B = −Eθc

[
V (q∗, θ)− C(q∗, c)

]
and earns:

ΠE(attracting B|qE) = Eθc
[
V (qE, θ)− C(qE, c)− UB(qE, θ)

]
− Eθc

[
V (q∗, θ)− C(q∗, c)

]
.

The entrant’s profit is maximized at qE = q̃B, and the entrant earns:

ΠE(attracting B|q̃B) = Eθc
[
V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)

]
− Eθc

[
V (q∗, θ)− C(q∗, c)

]
< 0.

Following the same argument, if the entrant sets FE
S < 0, the entrant’s maximal profit

is:

ΠE(attracting S|q̃S) = Eθc
[
V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)

]
− Eθc

[
V (q∗, θ)− C(q∗, c)

]
< 0.

Therefore, the entrant cannot earn positive profit, implying that there are multiple equi-

libria in which the incumbent dominates the market. Next we provide a minimum boundary

on the incumbent’s equilibrium profit. We focus on the more realistic case where the entrant

does not set prices that inflict negative profit for the entrant, should both sides choose to

join the entrant given these prices. Without this restriction, the entrant could dissipate the

entire incumbent’s profit. To this end, notice that if the entrant sets FE
B < 0, then the above

discussion indicates that the entrant sets FE
S = EθcUS(q̃B, c) and earns:

ΠE(attractingB|q̃B) = Eθc
[
V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)

]
+ FE

B .
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Therefore the lowest FE
B that the entrant can set is FE

B = − Eθc
[
V (q̃B, θ) − C(q̃B, c) −

UB(q̃B, θ)
]

and the incumbent earns:

ΠI = Eθc
[
V (q∗, θ)− C(q∗, c)

]
− Eθc

[
V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)

]
.

Likewise, if the entrant sets FE
S < 0, the incumbent earns:

ΠI = Eθc
[
V (q∗, θ)− C(q∗, c)

]
− Eθc

[
V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)

]
.

Therefore, the incumbent’s minimum equilibrium profit is:

ΠI = Eθc
[
V (q∗, θ)− C(q∗, c)

]
−max{Eθc

[
V (q̃B, θ)− C(q̃B, c)− UB(q̃B, θ)

]
,Eθc

[
V (q̃S, θ)− C(q̃S, c)− US(q̃S, c)

]
}.

We summarize these results in the following proposition:

Proposition 6 Suppose that the entrant moves slightly before the incumbent. Then, there

are multiple equilibria. In all equilibria, the incumbent dominates the market and sets the

welfare-maximizing quantity, q∗. Moreover, the incumbent earns at least as much as in the

simultaneous move game or the opposite sequential move game for the case where ∆ is high.
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