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When Does a Platform Create Value
by Limiting Choice?

Abstract

We present a theory for why it might be rational for a platform to limit the number

of applications available on it. Our model is based on the observation that even if

users prefer application variety, applications often also exhibit direct network effects.

When there are direct network effects, users prefer to consume the same applications

to benefit from consumption complementarities. We show that the combination of

preference for variety and consumption complementarities gives rise to (i) a commons

problem (to better satisfy their individual preference for variety, users have an incentive

to consume more applications than the number that maximizes joint utility); (ii) an

equilibrium selection problem (consumption complementarities often lead to multiple

equilibria, which result in different utility levels for the users); and (iii) a coordination

problem (lacking perfect foresight, it is unlikely that users will end up buying the same

set of applications). The analysis shows that the platform can resolve these problems

by limiting the number of applications available. By limiting choice, the platform may

create new equilibria (including the allocation that maximizes users’ utility); eliminate

equilibria that give lower utility to the users; and reduce the severity of the coordina-

tion problem faced by users.

Classification-JEL: D21, D42, L12, L82, L86

Keywords: platform governance, direct network effects, indirect network effects, com-

plements, tragedy of the commons, equilibrium selection, coordination, foresight.



1 Introduction

Platforms such as computer operating systems (Windows), video game systems (Nintendo),

betting exchanges (Betfair), stock exchanges (NYSE), or online gaming sites (Kaixin001)

are institutions that facilitate users’ access to applications (defined as opportunities to fulfill

users’ particular purposes—such as writing documents, playing games, betting money, or

investing capital).1 Among the many governance choices that platform providers make, they

determine the number of applications to provide access to (e.g., how many games to offer by

a given online gaming platform, how many firms to list by a given stock exchange, and so

on). In this paper, we study the relationship between the number of applications available on

a platform and users’ equilibrium utility. We find that narrow choice often increases utility

and thus creates value.

Platforms are characterized by the presence of indirect network effects: the larger the

number of users, the more firms are willing to join thus increasing the diversity of applications

available, which, in turn, raises users’ valuation of the platform. For example, firms’ desire

to list their shares in the New York Stock Exchange grows with the number of investors who

are expected to trade there; likewise, the larger the number of firms expected to be listed

in the NYSE, the more willing the investors are to invest there (Cantillon and Yin 2011).

Naturally, indirect network effects induced by users’ preference for application variety have

played a prominent role in models of platforms, beginning, at least, from the pioneering work

of Church and Gandal (1992) and Chou and Shy (1996) and spanning to recent contributions

such as Hagiu (2009) or Weyl (2010).

When the value of a platform increases with the number of applications offered, common

wisdom dictates that platforms should provide as many applications as possible. Indeed,

suboptimal exploitation of indirect network effects may have dreadful consequences: supe-

rior platforms (better technology, better capitalized, early movers...) may perish in their

competition against second-rate alternatives. Arthur (1990), for example, describes how

Sony lost its battle against JVC in the 1980s whose VHS standard was inferior to Betamax,

due largely to lesser movie availability on Sony’s standard. Likewise, it is widely believed

that Apple lost its battle against the PC in the late 1980s because of a dearth of applica-

tions. While Microsoft aggressively evangelized independent software vendors and provided

them with tools and support, Apple based its approach on in-house development of a small

1Examples of applications include: word processors or spreadsheet programs (in the case of computer op-
erating systems), games (in video game systems or online gaming sites), sports events (in betting exchanges),
and listed companies (in stock exchanges).
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number of applications. By the early 1990s, the number of applications available for the Mac

was a small fraction to that for the PC.

Given the wealth of evidence suggesting that maximizing application variety is a good

idea, it is puzzling that successful platform providers such as Betfair, Nintendo, or Kaixin001

appear to have actively limited the number of applications available on their platforms.

Betfair provides an electronic platform that allows its customers to back teams to win in

sports such as soccer or horse races, but also to lay odds for others to bet on. The company

began operations in the U.K. in 2000 as a second mover after Flutter.com. Although Flutter

was the first mover and had better access to capital (its initial funding was $43.7 million

vs. £1 million for Betfair), Betfair won over the market.2 A key difference between the

two betting exchanges was that while Flutter would allow users to bet on any event they

wished to create (such as next week’s weather), Betfair adamantly restricted the number of

events (applications) on which users could bet. Interestingly, the platform that offered fewer

applications ended up faring better.

Similarly, in the late 1980s Nintendo restricted the number of games that developers

were allowed to release each year for the Nintendo Entertainment System (NES) to five.

The company also restricted the number of developers who could sell games for the NES.

Nintendo went on to become the dominant player (market share and profit) for the 8-bit

generation.3 Likewise, the leading online social networking site, Kaixin001, provides a limited

number of games for users to engage in (e.g., Parking Cars and Stealing Crops) when many

more could be offered. The site offers the smallest number of social games among the top

social networking sites in China and lags behind its competitors in making its platform

open to third party application developers,4 but the site has the most highly active users

among them.5 These examples run counter the conventional wisdom that when considering

application variety in platforms “more is always better.”

In this paper, we ask: Why might it be rational for a platform to limit the number of

applications when indirect network effects are at play? Our answer is that by limiting the

number of applications the platform may resolve three problems faced by users: a commons

problem, an equilibrium selection problem, and a coordination problem.

2Betfair acquired Flutter in December 2001 and is currently the dominant betting exchange in Europe.
See Casadesus-Masanell and Campbell (2008).

3The NES was the leading second-generation (8-bit) game console. Nintendo’s global market share for
8-bit consoles in 1990 was greater than 90%. See Brandenburger (1995).

4http://www.nth-wave.com/wordpress/?p=32985
5http://www.nytimes.com/external/venturebeat/2010/04/07/07venturebeat-chinas-top-four-social-

networks-renren-kaixi-55248.html
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Our theory is based on the observation that even when platforms enjoy indirect net-

work effects, applications often exhibit direct network effects, i.e., users are better off using

the same applications as other users due to consumption complementarities. For example,

Cantillon and Yin (2010) demonstrate that there are important direct network effects in

derivatives’ trading. Specifically, as the number of traders for a particular derivative in-

creases, so does liquidity. Similarly, the richness of gameplay in massively multiplayer online

games (MMOG), such as World of Warcraft, is based on the number of interactions between

players; MMOGs are not fun if played alone. When users have limited resources (such as

finite time to enjoy applications or an income constraint) and there are many applications

available, they must pick and choose which ones to use. If direct network effects are at play,

users are better off by purchasing and consuming the same limited set of applications.

We show that when users prefer application variety but also benefit from consumption

complementarities, three issues may arise. First, the number of applications that maximizes

users’ utility may not be part of an equilibrium as each user may find it optimal to unilaterally

deviate to consume more applications so as to better satisfy her craving for variety. Second,

multiple equilibria often arise. With the usual assumption that users have perfect foresight,

any one of those equilibria could, in principle, be selected. While some equilibria lead

to higher user utility than others, nothing guarantees that the equilibrium yielding the

highest utility will be selected. Third, if users lack perfect foresight on each others’ choices

in equilibrium, it is unlikely that they will end up purchasing and consuming the exact

same set of applications, but such coordination is necessary to fully exploit consumption

complementarities.

Our analysis demonstrates that by limiting the choice of applications, the platform can

accomplish three tasks. First, it can create equilibria that did not exist when application

choice was broad. In particular, the allocation that maximizes users’ utility can be guar-

anteed to be an equilibrium thus relieving the commons problem. Second, it can eliminate

socially inferior equilibria, effectively resolving the equilibrium selection problem. Third, it

can reduce the severity of the coordination problem faced by users when they do not know

other users’ choices in equilibrium. With a smaller choice set, it is more likely that users will

end up purchasing and consuming the same applications and thus more likely that they will

enjoy consumption complementarities. We conclude that when direct and indirect network

effects are at play, platforms may create value by limiting choice.
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1.1 Literature

Our paper contributes to the literature on platforms and two-sided markets, a literature that

has flourished on the basis of industry-specific models. Rochet and Tirole (2003), for exam-

ple, is inspired by the credit card industry, Armstrong (2006) captures well the economics

of newspapers, and Hagiu (2009) is about competition between video game systems. While

most of the literature on platforms has studied questions related to pricing, our focus is on

one aspect of platform governance that has received little attention thus far: the effect of

limiting the choice of applications on user behavior and, ultimately, on the value created by

the platform.

The only two papers we are aware of that are directly related to the question that we

address here are Zhao (2010) and Ha laburda and Piskorski (2010). Zhao (2010) studies

hardware/software platforms and explores the effects of quantity constraints on product

quality and variety on a monopolistic two-sided platform where quality is uncontractible. He

finds that when users cannot perfectly observe application quality, developers underinvest in

quality and that the platform can then use quantity restraints to help mitigate free-riding

and increase overall application quality. While Zhao (2010) studies the effects of quantity

limitations on the behavior of developers, we study the effects on the behavior of users. A

second point of differentiation is that while he provides an explanation for why it may make

sense for the platform to limit the number of applications per developer, in his theory the

platform gains nothing from limiting the number of developers. Therefore, contrary to ours,

his theory is silent about the benefits of limiting the overall number of applications offered

by the platform.

Ha laburda and Piskorski (2010) study dating platforms, an environment with indirect

network effects: men prefer a market with a larger number of women, and women prefer

a market with more men. Nonetheless, they show that users may benefit when dating

platforms limit the number of candidates among which to find a match. This is because

dating platforms limit the number of candidates on both sides. Thus by limiting choice,

platforms also limit competition between agents in the same side. Some agents prefer a

platform with less choice, because it increases the probability that they will find a match.

The current paper differs from Ha laburda and Piskorski (2010) in two ways. First, Ha laburda

and Piskorski (2010) is the best suited for markets with one-to-one matching, like dating or

housing markets. The current paper focuses on markets where users can consume a large

number of applications. Moreover, applications are infinitely duplicable: When one user

consumes an application, it does not limit the availability of the same application to other
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users. Second, our setting lacks the competitive effect that drives the result in Ha laburda and

Piskorski (2010). To the contrary: as a result of consumption complementarity, the direct

network effect is positive. Users gain if more users (on the same side of the market) consume

the same applications. Thus users benefit when the platform restricts choice because it

helps them take advantage of consumption complementarities to a fuller extent, rather than

avoiding competition.

The paper is organized as follows. In Section 2 we present the game with perfect fore-

sight, solve for equilibria under direct and indirect network effects, and discuss the utility

implications of the platform limiting choice. In Section 3 we recast the model as one where

users have no foresight about other users’ choices in equilibrium. In Section 4 we discuss our

main modeling choices as well as some extensions to the analysis. Section 5 concludes. All

proofs are in an appendix.

2 Game with perfect foresight

We consider a platform which brings together developers and users of applications. There

is a set A of available applications and N users. We denote the cardinality of A by A. We

treat N and A as exogenous.

Let xka denote user k’s consumption of application a. The consumption utility that user k

derives from consuming xk = (xk1, x
k
2, . . . , x

k
A) applications is given by

u(xk; {xl}l 6=k) =

(∑
a∈A

(
xka
)1/R)R

︸ ︷︷ ︸
preference for variety

+ α
∑
a∈A

(
xka
∑
l 6=k

xla
)

︸ ︷︷ ︸
consumption complementarity

,

where α ≥ 0 captures the strength of consumption complementarity, and 1 ≤ R < 2 captures

the intensity of the user’s preference for variety.6 The larger is α, the more the users benefit

from consuming the same applications. Likewise, the larger is R, the more the users prefer

application variety, i.e., consuming a larger number of applications.

Consumption utility u captures both, direct and indirect network effects. Indirect net-

6Note that when α = 0, preferences are as in Dixit and Stiglitz (1977). Moreover, the analysis is only
interesting for R < 2. For such R the marginal benefit from consuming another application is positive but
decreasing. Conversely, for R ≥ 2, the marginal benefit from consuming another application is increasing or
constant. Thus, since for p < X a user finds it beneficial to consume one application, then for R ≥ 2 she
will always find beneficial to consume all applications. To keep the analysis interesting, we restrict R < 2.
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work effects originate from users’ preference for variety: users prefer platforms with more

users because it is more likely that more applications will be developed for that platform.

Therefore, when R is larger, the source of indirect network effects is stronger. When R = 1,

however, users have no preference for variety and, therefore, there are no indirect network

effects.

Direct network effects are present when a user’s utility from consuming an application

increases with other users’ consumption levels of the same application. For example, users

of video games enjoy a given game more if their friends also consume the same game, as they

can discuss strategies to beat the game. Direct network effects are captured by the term

α ·xka ·
∑

l 6=k x
l
a: user k’s enjoyment of her consumption of application a is larger the more the

other users (l 6= k) consume application a. We let α ≥ 0. When α = 0, there are no direct

network effects and as α increases, direct network effects become stronger. In summary, user

preferences may exhibit direct or indirect network effects, or both, depending on the value

of parameters α and R.

We assume that users have a budget of X units of time to consume applications and

interpret xka ≥ 0 as the amount of time that user k spends consuming application a. Thus, if

user k consumes a set Qk ⊆ A of applications, she must satisfy the time budget constraint:

X ≥
∑

a∈Qk xka. Each application is sold at exogenous monetary price p > 0, regardless

of how much time users spend consuming it.7 Since the monetary dimension is different

from the time dimension, spending p does not detract from the time budget X. We assume

that p is sufficiently low for users to find it desirable to purchase and consume at least

one application, i.e., we let p < X. Therefore, it follows that users consume at least one

application, i.e. Qk ≥ 1, where Qk denotes the cardinality of Qk.

User k’s net utility from consuming xk when price is p is given by

U(xk; {xl}l 6=k) = u(xk; {xl}l 6=k)− p ·
∑
a∈A

1(xka), (1)

where 1(·) is an indicator function taking value 1 when its argument is different from zero.

Since the focus of our analysis is on the value of limiting choice, we also assume that

absent action by the platform to constrain the set of available applications, the cardinality of

A is large. Specifically, we assume that A ≥
( (R−1)X

p

) 1
2−R . We will show that this guarantees

that there are sufficiently many different applications available for users to satisfy their

preference for variety.

7We present the results for p = 0 in Appendix B.
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We consider the following two-stage game: In the first stage, all users decide simultane-

ously which applications to purchase at price p. In the second stage, users decide simultane-

ously how to allocate their time budget X across the applications they have purchased. We

solve for the subgame-perfect Nash equilibria in pure strategies and follow Katz and Shapiro

(1985) in assuming that expectations are fulfilled in equilibrium.

Formally, given that user k has already purchased set of applications Qk, in the second

stage she chooses consumption xk to maximize her own consumption utility u given the

expected consumption of all other N − 1 users, xl for l 6= k:

max
xk

a, a∈Qk
u(xk; {xl}l 6=k) subject to X ≥

∑
a∈Qk

xka. (2)

In the first stage, users choose the set of applications to purchase, Qk ⊆ A, anticipating their

own consumption and that of all other users in the second stage. User k’s objective is to

maximize her own net utility U .

We end the description of the model by presenting two definitions that are helpful for

the discussion of equilibria.

Definition 1 (balanced strategy) Let Qk = {a|xka > 0} be the set of applications con-

sumed by user k. And let Qk be the cardinality of Qk. We say that user k’s strategy is

balanced if xka = X
Qk for all a ∈ Qk.

Thus, a balanced strategy is one where the user allocates her time budget equally across all

the applications she consumes. Note that balanced strategies are pure strategies and that

for any Qk there is a unique balanced strategy.

Definition 2 (balanced equilibrium) An equilibrium is balanced if all users play balanced

strategies.

In this section, we solve the game under the assumption that users have perfect foresight

about other users’ choices in equilibrium. This is a classic assumption of rational beliefs, a

part of Nash equilibrium. Later, in Section 3 we relax the perfect-foresight assumption.

In the remainder of this section, we investigate each type of network effect separately

before considering the interplay of both types together. We first study the model with direct

network effects and find that users consume one single application so as to take full advantage

of consumption complementarities (Section 2.1). Then, we move on to studying the model

with pure indirect network effects and find that users choose to consume a large number
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of applications, driven by their preference for variety (Section 2.2). Next, we study the

interplay between the two types of network effects and find that there is a tradeoff between

harnessing consumption complementarities and the utility gains from product variety. In the

equilibrium that yields the highest utility to users, they always consume a smaller number

of applications than under pure indirect network effects (Section 2.3). Finally, we show that

the platform can create value by limiting the number of applications available even if users

have perfect foresight about each others’ purchase and consumption decisions (Section 2.4).

2.1 Direct network effects

There are pure direct network effects when users derive utility from consuming the same

applications as other users but not from product variety. Therefore, consumption utility u

exhibits pure direct network effects when R = 1 and α > 0. In this case, user k’s net

utility (1) takes the form

UD(xk; {xl}l 6=k) =
∑
a∈A

xka + α
∑
a∈A

(
xka
∑
l 6=k

xla
)
− p ·

∑
a∈A

1(xka).

User k’s consumption of application a in an equilibrium is denoted by x̂ka. Let Qk
D ⊆ A be

a set of applications that user k consumes in equilibrium in an environment with pure direct

network effects. Then, the cardinality of Qk
D is Qk

D =
∑

a∈A 1(x̂ka). Remark 1 characterizes

the equilibria in this case.

Remark 1 When R = 1 and α > 0, in every equilibrium Qk
D = QD for all k and the number

of applications consumed is Qk
D = QD = 1 for all k. There are A equilibria. All equilibria

are balanced and yield the highest possible utility to the users.

Proof. See Appendix A, page 30.

Because R = 1, users derive no utility from product variety. However, because α > 0

they derive utility from other users consuming the same applications for longer periods of

time. Indeed, user k’s marginal utility of consuming application a is increasing in other

users’ aggregate consumption of a,

∂ uD(xk; {xl}l 6=k)
∂xka

= 1 + α ·
∑
l 6=k

xla .
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Therefore, the more other users consume application a, the more user k desires to consume

a. Since the same applies to all users, in equilibrium all users consume the same application.

Users could coordinate on any one of the A applications available, since all users and all

applications are homogeneous.

2.2 Indirect network effects

There are pure indirect network effects when users derive utility from product variety but

not from consuming the same applications as other users. Therefore, consumption utility u

exhibits pure indirect network effects when 1 < R < 2 and α = 0. In such a case, user k’s

net utility (1) takes the form

UI(x
k; {xl}l 6=k) =

(∑
a∈A

(
xka
)1/R)R − p ·∑

a∈A

1(xka). (3)

Note that (3) is essentially the same as the setup in Dixit and Stiglitz (1977), with two

exceptions. First, the cost of time spent using application a is set in our model to 1 for

all a ∈ A. Second, we impose a price p > 0 that users must pay to use an application.8

Remark 2 characterizes the equilibria under pure indirect network effects.

Remark 2 Assume 1 < R < 2 and α = 0. In every equilibrium the number of applications

consumed is Qk
I = QI for each user k, where QI = max{1,

( (R−1)X
p

) 1
2−R}. All equilibria are

balanced and yield the highest possible utility to the users.9

Proof. See Appendix A, page 31.

To understand this result, notice that Dixit and Stiglitz (1977) implies that when α = 0

and p → 0, the solution to optimization problem (2) is QI → ∞ and x̂ka = X
QI
→ 0. Users

derive utility from product variety and find it optimal to consume as many applicaitons

as possible in equal proportions. The result is driven by the fact that, as long as R > 1,

8More precisely, our cost of time (which we normalize to 1) corresponds to the application prices in the
original Dixit-Stiglitz’s formulation. In contrast to Dixit-Stiglitz, we assume that users must pay a fixed price
for access to each application she consumes, p > 0. This price is independent of the usage. For example,
when users buy a particular videogame title, they pay for it once regardless of the usage, and then they
allocate scarce time to playing the game. In our model, the price of the game is p and the opportunity cost
of time allocated to playing the game is 1.

9There are N ·A!
QI !(A−QI)! pure-strategy subgame-perfect Nash equilibria and continuum mixed strategy equi-

libria.
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applications have infinite marginal consumption utility around zero:

lim
xk

a→0

∂ uI(x
k; {xl}l 6=k)
∂xka

=∞

and that this marginal utility decreases as consumption increases. Therefore, spreading the

time budget evenly across Q + 1 applications yields more utility than spreading the same

time budget across Q applications.

To determine how many applications to purchase, users must compare the additional

benefit from consuming an additional application and the price p that they must pay for that

application. Specifically, if Q applications are consumed by a user in optimal consumption

schedule, her utility is
(
Q
(
X
Q

) 1
R
)R − pQ = QR−1X − pQ. Therefore, the marginal benefit

from increasing Q is (R − 1)QR−2X. The marginal cost of an additional application is p.

The number of applications at which the marginal benefit and marginal cost are equal is(
(R−1)X

p

) 1
2−R .

As customary in the platforms literature (e.g., Ellison and Fudenberg 2003), we ignore

the integer problem and treat the number of applications Q as a continuous variable. As

indicated on page 6, users consume at least one application. Thus, if
( (R−1)X

p

) 1
2−R < 1,

the user consumes one application. That is, the optimal consumption is characterized by

QI = max{1,
( (R−1)X

p

) 1
2−R}. As we show later, the number of applications consumed under

direct and indirect network effects is never larger than QI . Therefore, to focus on non-trivial

analysis, from now on we assume QI > 1,10 which implies QI =
( (R−1)X

p

) 1
2−R .

Let Qk
I ⊆ A be the set of applications that user k consumes in equilibrium in an environ-

ment with pure indirect network effects. Remark 2 states that all users consume the same

number of applications in equilibrium, i.e., Qk
I = QI for all k. However, it does not need to

be that users consume the same applications, i.e., it may be that Qk
I 6= Ql

I for k and l 6= k.

This is because users gain no utility from consuming the same applications as others. Thus,

any N subsets of A with cardinality QI constitutes an equilibrium.

2.3 Interplay between direct and indirect network effects

Now we investigate what happens when users in the platform experience both direct and

indirect network effects, so that they derive utility from product variety and from consuming

the same applications as other users. In such a case, 1 < R < 2 and α > 0. Let Qk
DI ⊆ A

10The working paper version (Casadesus-Masanell and Ha laburda 2010) also considers the case where
QI = 1.
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be a set of applications that user k consumes in equilibrium in an environment with direct

and indirect network effects, and let Qk
DI be the cardinality of Qk

DI . Note that in the

cases of pure direct and of pure indirect network effects, in all equilibria we could uniquelly

characterize the number of applications user k consumed in an equilibrium, i.e., Qk
D = 1 and

Qk
I =

(
(R−1)X

p

) 1
2−R > 1. However, as we show below, when both direct and indirect network

effects are present, multiple values of Qk
DI are possible.

The study of this hybrid specification is substantially more complex than the cases of pure

direct and pure indirect network effects. We will show that there is always a set of equilibria

close toQI , the number of applications that users would choose if only indirect network effects

were at play. And if consumption complementarity is sufficiently strong relative to preference

for variety, another set of equilibria emerges around consuming QD = 1, the equilibrium

number of applications consumed under pure direct network effects. Specifically, under the

hybrid network effects equilibria emerge which are not equilibria under pure network effects

of either type. Moreover, possible cardinalities of the consumption set in an equilibrium

depend on the strength of consumption complementarity relative to that of preference for

variety. We present the analysis in parts, beginning with two helpful lemmas.

Lemma 1 Assume that 1 < R < 2 and α > 0. In every balanced equilibrium Qk
DI = QDI

for all k.

Proof. See Appendix A, page 33.

Lemma 2 Assume that 1 < R < 2 and α > 0. If QDI is the cardinality of the consumption

set in a balanced equilibrium, then any set of applications QDI ⊆ A of cardinality QDI

constitutes a balanced equilibrium.

Proof. See Appendix A, page 35.

Lemma 1 says that in every balanced equilibrium all users consume the same applications.

It is driven by presence of direct network effects. Lemma 2 says that if QDI is the number of

applications consumed in a particular balanced equilibrium, then there are CA
QDI

equilibria

with the same number of applications consumed. For example, if A = {1, 2, 3, 4}, QDI = 2

characterizes six balanced equilibria: QDI1 = {1, 2}; QDI2 = {1, 3}; QDI3 = {1, 4}; QDI4 =

{2, 3}; QDI5 = {2, 4}; and QDI6 = {3, 4}. It is easy to see that users derive the same utility

in all of these equilibria and, thus, we think of them as equivalent. The lemmas imply that
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in the case of 1 < R < 2 and α > 0 we may completely characterize balanced equilibria by

simply stating equilibrium cardinalities QDI . For clarity of exposition, we refer to balanced

equilibria by just indicating their cardinality, QDI .

Suppose that all users play balanced strategies and consume the same set of applications

of cardinality Q. Then, each user’s net utility (1) is given by V (Q):

V (Q) = QR−1X + α
X2

Q
(N − 1)− pQ. (4)

Function V (Q) is helpful in studying balanced equilibria. Not every Q constitutes an equi-

librium. But Lemma 1 implies that the net utility in every balanced equilibrium must be

given by V (Q).

Figure 1: Shape of V for different values of α.
(R = 1.7135, A = 30, X = 2, N = 16, p = 0.646.)

Figure 1 illustrates the shape of V for different values of α. The shape of V is driven

by the weight of consumption complementarity relative to that of preference for variety. As

shown by Remark 1, consumption complementarity and the resulting direct network effects

induce users to consume one application only. Remark 2, however, shows that preference for

variety and the resulting indirect network effects induce users to consume more applications.

The graph in Figure 1 shows that when users have strong preference for variety compared to

consumption complementarity (low α relative to R), indirect network effects outweigh direct

network effects and the Q that maximizes V is interior. When preference for variety is weak

relative to consumption complementarity direct network effects outweigh indirect network

effects and Q = 1 maximizes V .
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Let

Q̂ = max

{
1, Q such that

dV

dQ
= 0

}
.

If V has interior maxima, then Q̂ is the unique interior maximum. Otherwise, V reaches its

maximum at Q̂ = 1. As we can see in Figure 1, when α is large, Q̂ = 1 (cf. α = 0.16 in

the figure). Otherwise, Q̂ > 1 (other values of α in the figure). The value Q̂ is important

for the shape of V . Specifically, for Q > Q̂, V is always decreasing. However, for Q̂ > 1,

when Q < Q̂, V first decreases and then increases. It is possible for some Q < Q̂ that

V (Q) > V (Q̂). Let Q? be Q < Q̂ such that V (Q?) = V (Q̂), when Q̂ > 1. (See Figure 2,

below, for an example.)

The following remark states that Q̂ is lower than QI , the equilibrium number of applica-

tions consumed when there are no direct network effects (as defined in Remark 2).

Remark 3 Assume that 1 < R < 2, α > 0 and QI > 1. Then Q̂ < QI .

Proof. See Appendix A, page 35.

Intuitively, the presence of direct network effects prompts users to allocate their limited

time budget to fewer applications. Consumption complementarity, due to other users con-

suming the same applications, compensates for the loss of application variety. The fact that

we consider QI > 1 guarantees that the comparison between Q̂ and QI is nontrivial.11

As noted above, Q̂ > 1 is the unique interior maximum of V . The following proposition

shows that when Q̂ > 1, users face a commons problem. Specifically, when all users consume

Q̂ > 1 applications, every user finds it profitable to unilaterally deviate upwards. However,

when all of them deviate, they receive a lower utility. Notice that Q̂ > 1 when preference

for variety, R, is large relative to consumption complementarity, α.

Proposition 1 (commons problem) Assume that 1 < R < 2 and α > 0. If Q̂ > 1, then

Q̂ is not a balanced equilibrium. Specifically, for any user k, U(Qk = Q̂+ ε, {Ql = Q̂}l 6=k) >
V (Q̂) > V (Q̂+ ε).

Proof. See Appendix A, page 36.

The proposition states that when Q̂ is interior, it cannot be a balanced equilibrium. This

is because there is a profitable upward deviation, i.e., each user has incentive to consume more

11For QI = 1, Q̂ = QI = 1.
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applications. By the definition of Q̂, if Q̂ > 1, it must be that ∂V (Q)
∂Q

∣∣
Q= bQ = 0. Therefore, an

incremental balanced deviation upward to Q̂+ ε has no effect on the utility of the deviator.

However, the optimal unilateral deviation upward is not balanced.12 The optimal upward

deviation is strictly more beneficial to the user than the balanced deviation. Therefore, an

optimal upward deviation is strictly profitable. Since all users have the same incentives,

every user will deviate upwards to Q̂ + ε. As a consequence, every user will receive payoff

V (Q̂+ ε) which is lower than V (Q̂). Therefore, users face a commons problem.

The following lemma shows that there is a large set of Qs that cannot characterize

balanced equilibria. The result is helpful because it significantly constrains the set of Qs

that may characterize equilibria.

Lemma 3 Assume that 1 < R < 2 and α > 0. Then for any Q such that max{1, Q?} ≤
Q < Q̂ or Q > QI , Q cannot characterize a balanced equilibrium.

Proof. See Appendix A, page 37.

Figure 2 illustrates Lemma 3.

Figure 2: Intervals of Q that cannot be an equilibrium as described in Lemma 3.

To understand this result, consider first Q > QI . Given that all other users consume Q

applications, any user has incentive to deviate downward to QI . The utility for user k from

12In the case of deviation upward, the deviator consumes some applications that no other user consumes.
Due to consumption complementarity, an optimal consumption schedule then calls for more consumption of
those applications that other users consume, and less (but positive) consumption of applications that only
the deviator consumes.

14



deviating to Qk < Q is

UDI(Q
k ≤ Q) =

(
Qk
)R−1

X + α�
�Qk X

�
�Qk

(N − 1)
X

Q︸ ︷︷ ︸
consumption complementarity

−pQk . (5)

Note that the consumption complementarity term is independent of Qk. Since she consumes

Qk < Q, the deviator consumes only applications also consumed by the other users.13 Each

of those applications is consumed by all other users at the level of (N − 1)X
Q

. The deviator

divides her time budgetX amongst theQk applications that she consumes, Qk· X
Qk . Therefore,

the benefit of the direct network effect is constant, no matter what Qk < Q the deviator

chooses. However, the net benefit of variety (Qk)R−1X − pQk is maximized at QI which is

lower than Q. As a consequence, the deviator would want to deviate to QI . We conclude that

Q > QI may not be an equilibrium. Intuitively, consuming more than QI applications leads

to “too much” application variety for the price. Moreover, if it had an effect, consumption

complementarity would push users to consume fewer applications also.

For Q ∈ [max{1, Q?}, Q̂), however, there is a profitable deviation upwards. In what

follows we impose that the deviator balances her time budget across all the applications

that she consumes. Even though this is not the optimal deviation, we show that it is a

profitable deviation (and therefore, the optimal deviation is also profitable). Given that all

other users consume Q applications in a balanced way, the utility of the deviator from a

balanced consumption of Qk applications is:

UDI(Q
k ≥ Q) =

(
Qk
)R−1

X + α��Q
X

Qk
(N − 1)

X

��Q︸ ︷︷ ︸
consumption complementarity

−pQk . (6)

Note that UDI(Q
k ≥ Q) is the same function of Qk as V in equation (4) which has a local

maximum at Q̂ > Q. Moreover, for all Q ∈ [max{1, Q?}, Q̂), UDI(Q̂ > Q) > UDI(Q).

Thus, for all those values of Q, there is a profitable upward deviation. We conclude that

Q ∈ [max{1, Q?}, Q̂) may not be an equilibrium.

Intuitively, consuming more applications satisfies the deviator’s preference for variety to a

13Consider user k and suppose that all other users play balanced strategies consuming the same set of
applications Q. Directly, we can see that if user k decides to also consume Q applications, she consumes
exactly the applications in Q and no other. Moreover, it is optimal for her to consume them in equal amounts,
i.e., she consumes them according to a balanced strategy. However, user k may also consider deviations that
involve consuming a different number of applications.
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greater extent. However, consuming less of each application consumed by other users means

that the utility from consumption complementarity is lower. When Q ∈ [Q?, Q̂] the tradeoff

is resolved in favor of consuming more applications.

Note that for Q ∈ [1, Q?] and Q ∈ [Q̂, QI ] the same tradeoff is at play. However, it is

possible that the tradeoff is resolved in favor of consumption complementarity which means

that it is not worth it for users to deviate upwards. In combination with Lemma 4 this

observation implies that equilibria are possible in the intervals Q ∈ [1, Q?] and Q ∈ [Q̂, QI ].

Lemmas 5 and 6 show that multiple equilibria exist in these intervals. We show that there

are two aspects to this multiplicity. First, as described in Lemma 2, for any given cardinality

QDI there may exist multiple sets QDI—each constituting a separate equilibrium. Second,

there may exist many different values of QDI that characterize equilibria. The former type

of multiplicity is of no consequence to user utility while the latter has important utility

implications. Thus, we focus only on the second type of multiplicity in our analysis.

The following lemma assures that so long as Q ≤ QI , it is never beneficial for user k to

deviate to a strategy with a lower number of applications. Thus, in searching for balanced

equilibria, we need to focus only on deviations to a larger number of applications.

Lemma 4 Assume that 1 < R < 2 and α > 0. If all users play balanced strategy Q with

cardinality Q ≤ QI , then any unilateral deviation by user k to any other strategy with Qk < Q

leads to lower utility for player k.

Proof. See Appendix A, page 38.

To understand this result, suppose that all users are consuming Q ≤ QI and consider a

deviation to Qk < Q. We do not restrict the user to deviate to a balanced strategy with

Qk. However, from among all possible deviations to Qk < Q, a balanced consumption of Qk

applications from the set Q is the most profitable. Thus, the utility from the most profitable

deviation to Qk is given by formula (5):

UDI(Q
k ≤ Q) =

(
Qk
)R−1

X + α�
�Qk X

�
�Qk

(N − 1)
X

Q︸ ︷︷ ︸
consumption complementarity

− pQk .

Note that UDI(Q
k ≤ Q) is increasing for all Qk ≤ QI and therefore it is maximized at

Qk = Q. Thus, if Q ≤ QI , there is no incentive to deviate downward.
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Intuitively, consuming fewer applications satisfies user k’s preference for variety to a

lesser extent. At the same time, there is no benefit from consumption complementarity. The

reason is that each of the applications used by the deviator are consumed by all other users

at the level of (N − 1)X
Q

. Therefore, it is optimal to the deviator to divide her time budget

X equally among the Qk applications that she consumes, whereby she consumes X
Qk of each.

Since Qk · X
Qk = X, the benefit of the direct network effect is constant, no matter what Qk

the deviator chooses.

We use Lemma 4 to prove the result in Lemma 5. Lemma 5 states that there always

exists a balanced equilibrium where all users consume QI applications and that Qs close but

lower than QI also characterize equilibria. Together with Lemma 3, Lemma 5 indicates that

QI is the equilibrium with the largest number of applications consumed.

Lemma 5 When 1 < R < 2 and α > 0, there always exist balanced equilibria with QDI =

QI , where QI =
(

(R−1)X
p

) 1
2−R

> 1. Furthermore, there exists Qo < QI such that any

Q ∈ [Qo, QI ] characterizes balanced equilibria, i.e., Q = QDI .

Proof. See Appendix A, page 39.

Figure 3a illustrates the result in Lemma 5. This result means that so long as users

exhibit preference for variety, no matter how small, there are balanced equilibria with the

same number of applications, QI , that users would choose to consume if there were no direct

network effects.

To understand why QI is an equilibrium, by Lemma 4 we need only consider deviations

upward. By the same argument to that following equation (6), a deviation upward (balanced

or unbalanced) cannot improve the utility from consumption complementarity. Moreover, QI

maximizes utility from preference for variety. Therefore, there are no incentives to deviate

and QI is an equilibrium.

A deviation upward always decreases utility from consumption complementarity. Notwith-

standing, for Q < QI there is some benefit from increased variety. For Q less than but close

to QI , however, this benefit is infinitesimally small (the FOC is satisfied at QI) and it is

outweighed by the utility loss from consumption complementarity. Therefore, Qs less than

but close to QI also characterize equilibria.

Lemma 6 shows that for some parameters there may also exist equilibria with QDI = 1.

Lemma 6 Assume that 1 < R < 2 and α > 0. There exist parameter values such that

QDI = 1 while QI > 1.
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Proof. See Appendix A, page 41.

Notice that if Q̂ > 1, it is necessary that V (Q=1) > V (Q̂) for Q=1 to be an equilibrium.

It follows from Lemma 3. However, there is nothing in the proof that connects QDI = 1 to

Qo. So the equilibrium at QDI = 1 may be disconnected from the set of equilibria around

QI .

The result of Lemma 6 is illustrated in Figure 3b. There we can see that equilibria exist

in two disconnected intervals: one interval around Q = 1 (recall that following Remark 1

QD = 1 is the equilibrium under pure direct network effects) and the other one around QI .

In the interval around QD = 1, the strong consumption complementarities (users consume

the same few applications intensely) guarantee that users do not want to deviate to consume

more applications. In the interval around QI , the weak consumption complementarities

(users consume little of many applications) guarantee that users do not want to deviate to

consume fewer applications.

(a) (b)

Figure 3: Intervals of QDI .

Lemmas 5 and 6 show that there are always multiple equilibria. We now show that

the equilibria can be ranked according to users’ utility. In particular, equilibria with fewer

applications consumed yield higher utility than equilibria with more applications. However,

even when consumption complementarity is large relative to preference for variety and the

allocation that maximizes users’ utility is an equilibrium, the model does not predict which

of the many equilibria will be played or the utility that users will achieve. Therefore, users

face an equilibrium selection problem.

18



Proposition 2 (equilibrium selection problem) When 1 < R < 2 and α > 0 there

exist multiple balanced equilibria with different values of QDI . Equilibria with smaller QDI

yield higher utility than equilibria with larger QDI .

Proof. See Appendix A, page 42.

To understand the intuition, recall that function V (Q) is user utility in a situation where

every user consumes Q applications in a balanced way. Therefore, for values of QDI that

constitute a balanced equilibrium, V (QDI) is the utility that users obtain in equilibrium. As

follows from Lemma 3 and illustrated by Figure 2, equilibria only occur for values of Q such

that V (Q) is decreasing. Therefore, equilibrium utility must be decreasing in QDI .

In conclusion, Propositions 1 and 2 identify two undesirable properties of equilibria in

environments where both direct and indirect network effects are present. When preference

for variety is large relative to consumption complementarity, users face a commons problem

because the allocation that maximizes users’ utility is not an equilibrium. Moreover, regard-

less of the values of α and R there are always multiple equilibria which yield different levels

of utility. Thus users also face an equilibrium selection problem, even when consumption

complementarity is large relative to preference for variety and the allocation that maximizes

users’ utility is an equilibrium. In the following subsection we show how the platform can

alleviate these problems by limiting the number of applications available.

2.4 On the role of the platform: creating value by limiting choice

We conclude Section 2 by showing that users may benefit when the platform limits the

number of applications available; but only when both direct and indirect network effects are

present. To examine the platform’s choice of the number of applications available, A, we

relax the assumption that A ≥
(

(R−1)X
p

) 1
2−R .

Notice first that when pure direct network effects are present (i.e., R = 1), users achieve

the same net utility in an equilibrium, for any A ≥ 1. The platform cannot improve on this.

Corollary 1 Assume that R = 1 and α > 0. Then the platform cannot change the net

utility that users achieve in an equilibrium, for any A ≥ 1.

Likewise, the platform cannot improve the equilibrium under pure indirect network effects

(i.e., α = 0). From Section 2.2 we know that when A ≥ QI in an equilibrium under pure

indirect network effects, every user consumes QI applications. As Corollary 2 states, when
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the platform sets 1 < A < QI , users consume all available applications, but this yields lower

utility than consuming QI applications.

Corollary 2 Assume that 1 < R < 2 and α = 0. If 1 < A < QI , then there exists a unique

equilibrium. This is a balanced equilibrium where all users consume all A applications. The

net utility of users in equilibrium strictly increases with A for A < QI .

Therefore, in the case of pure indirect network effects the platform can only decrease

users’ utility when limiting the number of available applications. When A < QI users

strictly gain from access to a larger number of applications. And when A ≥ QI , the users

do not gain or lose by having more applications available.

We now turn to the case where both direct and indirect network effects are present (i.e.,

1 < R < 2 and α > 0). The following definition is helpful for the arguments that follow. Let

Q∗∗ = arg maxV (Q). (7)

From the shape of V follows that Q∗∗ may be either 1 or Q̂. In both cases Q∗∗ ≤ Q̂ < QI .
14

When Q∗∗ = Q̂ > 1, then by Proposition 1, Q∗∗ never characterizes a balanced equilibrium.

When Q∗∗ = 1, it may characterize a balanced equilibrium (as Lemma 6 shows), but it

not always does. We show that by limiting choice when Q∗∗ is not an equilibrium, the

platform helps users solve the commons problem shown in Proposition 1. I.e., the platform

creates an equilibrium at Q∗∗. And when Q∗∗ is an equilibrium, it will typically be one of

many equilibria which yield lower utility than Q∗∗. Thus in this case, by limiting choice the

platform helps users solve the selection problem in Proposition 2.

Proposition 3 shows that regardless of whether Q∗∗ is in the equilibrium set of the orig-

inal game, the platform can ensure that Q∗∗ becomes the only equilibrium of the game by

restricting A to Q∗∗.

Proposition 3 Assume that 1 < R < 2 and α > 0. If the platform sets A = Q∗∗, then there

exists a unique balanced equilibrium where all users consume Q∗∗ applications.

Proof. See Appendix A, page 43.

14Notice that whether Q∗∗ = 1 or Q∗∗ = Q̂ > 1 depends on the value of α relative to R. For small α
(as α = 0.03 in Figure 1) Q∗∗ = Q̂ > 1. For larger α (as α = 0.06 and α = 0.1 in the figure), Q̂ > 1, but
Q∗∗ = 1. For even larger α (as α = 0.16 in the figure), Q∗∗ = Q̂ = 1.
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The proposition implies that the equilibrium set may change with changes in A. In

particular, when the platform sets A = Q∗∗, Q∗∗ becomes the unique equilibrium. Therefore,

when Q∗∗ is in the original equilibrium set, if the platform constrains A to be equal to Q∗∗,

it eliminates all equilibria that yield lower utility for the users and, thus, eliminates the

possibility that users select an inferior equilibrium. Hence,

Corollary 3 Assume that 1 < R < 2 and α > 0. When Q∗∗ is in the equilibrium set, users

may benefit when platform restricts the number of available applications to Q∗∗.

On the other hand, if Q∗∗ is not in the original equilibrium set, when the platform

constrains A to be equal to Q∗∗, it creates a new equilibrium that makes users better off

than all the original equilibria. Thus,

Corollary 4 Assume that 1 < R < 2 and α > 0. When Q∗∗ is not in the equilibrium set,

users strictly benefit when platform restricts the number of available applications to Q∗∗.

In summary, when consumption complementarity is large relative to preference for variety,

then Q∗∗ is in the equilibrium set and the platform can eliminate other equilibria (which yield

lower utility) by limiting the number of applications available. When preference for variety

is large relative to consumption complementarity, then Q∗∗ is not in the equilibrium set and

by limiting the number of applications the platform creates a new, unique, equilibrium that

yields highest possible utility.

3 Game with no foresight

Whenever direct network effects are present, the equilibria studied in Section 2 require

users to know exactly which applications are consumed by all other users. That is, our

assumption has been one of perfect foresight about other users’ choices in equilibrium. In

many environments, such perfect foresight may be difficult to achieve.

The literature has pointed out that in the presence of network effects, equilibria are

influenced by the way users form their expectations.15 Therefore, it is important to analyze

how the equilibrium set in our model changes when we step away from perfect foresight

in beliefs formation. We focus here on a specific alternative way in which users form their

beliefs. Specifically, we assume that users have no way of knowing which applications other

users will consume when they make their own choices.

15See, for example, Hurkens and Lopez (2010).
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Perfect foresight assumes that in equilibrium player k knows the cardinality and the

identity of the applications that all other users will consume. Moreover, she also knows how

much of each application other users consume. As an alternative, now we assume no foresight

by which we mean that users initially assign equal probability to any feasible strategy of

other users. However, they refine their beliefs by Bayesian updating and eventually reach

equilibrium beliefs.16

In the game with no foresight, users face a coordination problem. Since users do not

know which applications are consumed by other users, some of the benefit to the direct net-

work effects is lost. The utility that users can achieve in this environment is lower than in

the environment with perfect foresight, because users cannot exploit consumption comple-

mentarities as well due to lack of coordination. In such a situation, the platform can create

value by limiting the number of available applications. By providing fewer applications, the

platform alleviates this coordination problem.

Absence of perfect foresight may be interpreted as a situation where it is costly for users to

obtain information about other users’ consumption. The no-foresight game that we analyze

below assume the extreme case where acquiring such information is prohibitively costly and

thus users make their decisions without knowing other users’ consumption.

The economic literature on platforms has focused on the case of perfect foresight which is

embedded in the notion of Nash equilibrium. We are aware that neither of the two extreme

cases (perfect foresight and no-foresight) are likely to hold in reality. However, understanding

no-foresight equilibria provides insight into the in-between cases.17

3.1 Setup

We now describe the game with no foresight. The only difference with the game in Section 2 is

what we assume about users’ beliefs. Recall that xk = {xk1, xk2, . . . , xkA} such that
∑

a∈A x
k
a =

X denotes a feasible consumption vector. We use xk to also denote a pure strategy. Because

all users are identical, they all have access to the same set of pure strategies. Let X denote

the set of all pure strategies for any given user. Let φkl ∼ U [X] denote user k’s beliefs on

user l’s choice of pure strategy. Let φk = {φkl }l 6=k be a vector that denotes user k’s beliefs

on all other users’ choices of pure strategy.

16We consider such updating to be realistic. In the experiment of El-Gamal and Grether (1995) over-
whelming majority of subjects used Bayes updating rule.

17A detailed analysis of the in-between case of imperfect foresight is complex and deserves separate study
in another paper.
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With this, user k’s utility from consuming vector xk is:

Eφku(xk) =

(∑
a∈A

(
xka
)1/R)R

+ α
∑
a∈A

(
xka Eφk

∑
l 6=k

xla
)
,

and the optimization problem (2) becomes

max
xk

a, a∈A

{
Eφku(xk)− p ·

∑
a∈A

1(xka)
}

subject to X ≥
∑
a∈A

xka. (8)

As Lemma 7 shows, under no foresight the expectation over consumption of any appli-

cation a by any other user l 6= k significantly simplifies.

Lemma 7 For every l and k and a,

Eφk
l
xla =

X

A
.

Proof. See Appendix A, page 43.

Therefore,

Eφk

∑
l 6=k

xla =
∑
l 6=k

Eφk
l
xla =

∑
l 6=k

X

A
= (N − 1)

X

A
. (9)

Note that this expectation does not depend on how many applications or which applica-

tions all other users consume, therefore there is no interdependence between users’ choices.

Given this, we now can find the optimal choice by user k (which in our setting is independent

of what all other users do). Whatever is the number of applications Gk that user k wishes

to consume, her optimal consumption pattern is balanced consumption, i.e., dividing the

time budget equally among the applications consumed. Once user k decides that G∗ is the

optimal number of applications for her to consume, it does not matter which subset of A she

chooses, as all yield the same utility. Therefore, G∗ fully describes k’s set of best responses.

Moreover, G∗ identifies what are the dominated strategies for user k: any strategy with

cardinality different from G∗ and any strategy with cardinality equal to G∗ but with non-

balanced consumption pattern. User k knows that all other users are the same and she

knows that all other users are rational. Therefore, user k cannot believe that other users

will play dominated strategies. Because users are homogeneous, user k can infer dominated

strategies of other users. When user k finds an optimal number of applications for her to
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consume, G∗, she knows that that number is the same for all other users and also that all

users are going to consume the G∗ applications in a balanced way.

User k updates her beliefs using Bayes’ Rule. Therefore, she assigns zero probability

to dominated strategies and equal probability to undominated strategies. Since with no

foresight she does not know which applications they consume, she believes that every subset

of A with cardinality G∗ is equally likely to be consumed by user l 6= k. That is, the updating

does not tell her which precise applications other users will consume.

Finally, user k recalculates her best response under the updated beliefs. This recalculated

best response is exactly the same as the original best response. This is because under the

new beliefs the expected consumption of any application a by agent l 6= k is still X
A

, as

in Lemma 7. If every user behaves this way, beliefs are consistent with strategies and this

constitutes a no-foresight equilibrium .

3.2 No-foresight equilibrium

We consider the case where both direct and indirect network effects are present (i.e., 1 <

R < 2 and α > 0).18 Let Gk
DI be the number of applications consumed by user k in a

no-foresight equilibrium.

The next proposition shows that in a game with no foresight users will typically consume

different applications. Moreover, the more applications are available, the less likely it is that

users will end up consuming the same applications. Due to this lack of coordination, users

achieve lower expected utility the larger the number of applications available.

Proposition 4 (Coordination Problem) Suppose 1 < R < 2 and α > 0. In every no-

foresight equilibrium, every user k consumes Gk
DI = GDI = QI applications in equal amount,

where QI =
(

(R−1)X
p

) 1
2−R

> 1. The expected equilibrium net utility is

EUDI(GDI) = GR−1
DI X + αX(N − 1)

X

A
− pGDI . (10)

Proof. See Appendix A, page 44.

Notice that the equilibrium net utility decreases with A for A ≥ GDI . Clearly, the

platform may increase users’ utility by limiting A to GDI . In Section 3.3 we show that the

18The analysis of pure direct and pure indirect network effects is straightforward and can be found in the
working paper Casadesus-Masanell and Ha laburda (2010).
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platform may further increase users’ utility by setting A below GDI .

Equation (9) shows that Eφk

∑
l 6=k x

l
a = (N − 1)X

A
. This says that the expected con-

sumption of any application by other users does not depend on the number of applications

consumed. Therefore, the direct network effect does not influence the number of applications

consumed in equilibrium, i.e., GDI = QI . Still, the direct network effects affect the expected

utility achieved in equilibrium (see (10)).

Combining this result with Lemmas 3 and 5, we see that the number of applications

consumed in equilibria with perfect foresight is weakly lower than in the no-foresight equi-

librium, i.e., QDI ≤ GDI . Moreover, as shown in Proposition 2, the worst of the equilibria

with perfect foresight in terms of users’ utility occurs when QDI = QI . Since GDI = QI , the

platform can create value by limiting the number of applications available. We turn to this

issue in the next subsection.

3.3 On the role of the platform: creating value by limiting choice

In Section 2 we have shown that with perfect foresight and in the presence of direct and

indirect network effects, users may benefit when the platform limits the set of applications

available. Specifically, users always face an equilibrium selection problem and may also face a

commons problem. Both of these issues can be resolved by the platform limiting the number

of applications available.

We now show that under no foresight there is a different reason why users benefit from

limited choice: resolving the coordination problem that users face when direct network effects

are at play. We note that under no foresight, users do not face neither equilibrium selection

nor commons problems.

Proposition 5 Suppose that α > 0, 1 ≤ R < 2. Under no foresight, the platform maximizes

users’ net utility by setting the number of available applications to A = Q∗∗, where Q∗∗ is

given by (7).

Proof. See Appendix A, page 44.

Note that the result applies whenever direct network effects are at play, regardless of the

preference for variety. Intuitively, by reducing A the platform alleviates the coordination

problem as it is more likely that users consume the same applications and gain utility from

direct network effects.
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So long as A > Q∗∗, the equilibrium is inefficient, especially when A is large. Only when

A = Q∗∗ the efficient outcome is an equilibrium. The platform creates value by creating a

new equilibrium.

4 Discussion

In this section we discuss several aspects of our approach. First, although for expositional

simplicity we have presented the model with reference to network effects, all that we need for

the results to go through is the presence of consumption complementarities and preference

for variety. Consumption complementarities always imply direct network effects. Preference

for variety, however, not always implies indirect network effects. To illustrate this point, note

a key difference between hardware-software platforms (e.g., Nintendo) and betting platforms

(e.g., Betfair). In the case of Nintendo, users benefit from game variety as provided by a large

number of independent developers, and developers benefit from a large number of users to

sell games. Thus preference for variety and indirect network effects go hand-in-hand in this

case. This contrasts with Betfair where punters (back and lay sides) benefit from a large

variety of sporting events to bet on, but where there are no independent event providers

that benefit from there being more punters (as Betfair is the only provider of events on

its platform). Although there are no indirect network effects in this case, our analysis and

results apply.

Second, we have analyzed the user side only and assumed that the price of accessing

an application p is exogenous. While to better understand the interactions between users

and developers it would be interesting to extend the model to endogenous p, to do so would

require imposing substantial assumptions on industry structure on the developer side (en-

try conditions, production cost, number of games sold by each developer, and so on). Of

course, the equilibrium p would not be innocuous to such assumptions. However, a critical

implication of our analysis is that the platform cannot induce users to consume the optimal

number of applications by manipulating p.19 Put differently, we have shown that regardless

of the value of p, the commons, equilibrium selection, and coordination problems will arise

when, in addition to preference for variety, there are direct network effects. Therefore, our

conclusion that it is valuable for platforms to manage the number of applications available

19The exception is a situation where the platform drives p so high that QI = 1, which we assumed away
on page 10. In this case, users consume one application which is the optimal number. For details, see the
working paper version (Casadesus-Masanell and Ha laburda 2010).
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holds regardless of whether p is endogenous or exogenous.20

Third, while the method we have considered in Sections 2.4 and 3.3 for correcting the

distortions which can exist in consumer decisions on platforms—outright restriction on the

number of applications available—might seem brutally direct, there are indirect ways to

implement it. One such way is through manipulation of the access fees and/or royalties

charged to developers. High prices to developers will lead to less entry and a smaller set

of applications available and, thus, to possibly more value for users. An interesting and

counterintuitive implication of our results is that to the extent that higher access prices to

developers result in net utility gains to users, the platform will be able to charge higher

prices to the user side. Of course, this runs counter to the conventional wisdom that to earn

more from one side of the market, the platform must set lower prices to the other side.

Another indirect way to narrow down the set of applications available is by tinkering with

user search. For example, in the late 1980s and 1990s, Nintendo used Nintendo Power—an

in-house magazine priced to break even and carried no advertising—to promote particular

games. Two years after it had launched, it had become the highest-circulation publication

targeted to children in the United States. Games not featured on Nintendo Power were

much less likely to become commercial successes.21 Likewise, the current search capabilities

on Apple’s App Store are notoriously deficient.22 Applications appear ranked by number of

downloads which, of course, reinforces direct network effects for applications—such as word

processors (Pages), spreadsheet programs (Numbers), or presentation software (Keynote)—

that exhibit consumption complementarities.

Fourth, our results suggest a possible resolution to an issue in the video game market that

has traditionally been seen as a puzzle. Console makers typically charge royalties to game

developers. This seems like a bad idea due to double marginalization. One explanation is

that royalties are an instrument to compel developers to raise the quality of games. Because

games are more expensive in the presence of royalties, fewer but better games are developed.

Thus, royalties are often seen as resolving a tradeoff between quality and quantity. Our

analysis shows that there may be no tradeoff because the platform may prefer both, better-

20Although p is often endogenous, it is not hard to think of cases where it is exogenous, particularly when
technological reasons constrain p to be zero. For example, open television channels are free to users as it is
impossible to exclude access to them. In this case, p may not be used as a coordinating device. (In Appendix
B we present the complete analysis of the model with p = 0.)

21See Brandenburger (1995).
22See, for example, http://accidentaltechnologist.com/apple/apple-please-fix-the-app-store-search/ or

http://www.eweek.com/c/a/Mobile-and-Wireless/10-Apple-App-Store-Problems-That-Need-Fixing-Now-
412975/
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quality games but also fewer games. Moreover, because they ultimately limit the number of

applications available, the motive for royalties in the video game industry could be exactly

the same as the rationale for Betfair to limit the number of betting events on its platform.

To the best of our knowledge, the idea that royalties and restrictions on application variety

might be derived from the same underlying force is new to the literature.

Last, while analysis of competing platforms is well beyond the scope of this paper, it is

easy to see an interesting tradeoff that is likely to emerge when direct and indirect network

effects are at play. Consider a situation with two platforms competing for a given set of

users. If one of the platforms limits the number of applications when there is preference

for variety, users will likely expend some of their budget on applications from the second

platform. Thus, by limiting choice, the platform may potentially create additional value,

but users are more likely to multi-home and crowd out some of their limited resources to the

other platform. As a result, competition for users is likely to have a mitigating effect on the

platform’s desire to limit choice.

5 Conclusion

We have shown that when users enjoy application variety but also benefit from consumption

complementarities, three problems may arise: the socially optimal number of applications

may not be part of an equilibrium; multiple equilibria ensue; and, users will likely find it hard

to coordinate consumption. The analysis has demonstrated that by limiting the number of

applications, the platform can provide a fix to these problems. Specifically, by limiting choice

the platform may create new equilibria that do not exist when application choice is broad.

In addition, it can eliminate equilibria that yield lower utility. Moreover, it can reduce the

severity of the coordination problem faced by users.

The overall conclusion is that when direct and indirect network effects are at play, an

important governance decision that platforms face is the choice of the number of applications

that should be allowed to run on them. To implement such a choice, the platform may directly

suppress access to developers and impose quantity constraints, or it may limit the number

of applications indirectly through setting high access prices to developers.

While we have shown that the platform may create value by limiting choice, the rec-

ommendation to practitioners is obviously not “provide as few applications as possible.”

Rather, it is that even in settings where users have a strong preference for variety, the plat-

form provider must be cognizant that there may be a number beyond which offering more

28



applications will decrease users’ utility and, thus, overall platform value. This recommen-

dation is in stark contrast to the conventional wisdom that platforms should encourage the

development of complements to the maximal possible extent.

The obvious next step in this research is the endogenization of access prices in a setting

with competing platforms and direct and indirect network effects. Given the complexity

of the analysis when users are the only strategic players, we expect these extensions to be

challenging. It is our hope to have provided a solid first step on which to build general

theories of platform competition that will shed further light on the value that platforms may

create by acting as gatekeepers.
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Appendix

A Proofs

Proof of Remark 1 (page 8)

Proof. Let R = 1 and α > 0. Suppose that users l 6= k play pure strategies xl. The

proof proceeds in following steps: First, we find the optimal consumption patterns, given

that user k has access to some set Q ⊆ A of applications, where the cardinality of Q is

Q ≥ 1. Second, given the consumption pattern, we find the optimal set of applications

consumed, Qk
D. We characterize subgame-perfect Nash equilibria where all users decide

which applications to consume and at which level.

Suppose that user k has access to a set Q ⊆ A applications. Given Q, user k’s objective

is to allocate the consumption in order to maximize her utility, i.e.,

max
xk

a ,a∈Q

{∑
a∈Q

xka + α
∑
a∈Q

(
xka
∑
l 6=k

xla

)}
s.t. X ≥

∑
xka .

The Lagrangian of this maximization problem, including the constraint is

L =
∑
a∈Q

xka + α
∑
a∈Q

(
xka
∑
l 6=k

xla

)
+ λ(X −

∑
xka) .

The derivative of the Lagrangian with respect to xka is

∂L
∂xka

= 1 + α
∑
l 6=k

xla − λ .

This derivative does not depend on xka. Let a′ be an application such that
∑

l 6=k x
l
a′ ≥

∑
l 6=k x

l
a

for all a ∈ Q. There may be one or more such applications. Those applications yield

the largest derivative ∂L
∂xk

a′
, i.e., additional consumption of those applications brings more

additional consumption utility than other applications. In equilibrium, user k does not

consume other applications than a′. If there is only one a′, the best response of user k is

to consume only this one application, i.e., xka′ = X and xka = 0 for a 6= a′. If there is more

than one a′, any allocation of time budget X across all those applications yields exactly the

same consumption utility. A special case of such allocation is allocating whole X to one

application a′.
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Given this consumption pattern, user k needs to decide on the set of applications that

she consumes, Q, in order to maximize her net utility. If there exists unique a′ ∈ A such that∑
l 6=k x

l
a′ ≥

∑
l 6=k x

l
a for all a ∈ A, then the optimal set of applications consumed by user

k is a singleton Qk
D = {a′}. Notice that it leads to an equilibrium, where all users allocate

their whole time budget to the same application, i.e. Qk
D = QD = {a′} and xka′ = X for

all k. Therefore, it is a balanced equilibrium. Since any a′ ∈ A would constitute such an

equilibrium, there are A equilibria of this form. Every user’s net utility in such an equilibrium

is X +αX2(N − 1)− p. The following paragraph shows that no other equilibrium exists. In

particular, there is no equilibrium that makes users better off than an equilibrium with QD.

Therefore, all those equilibria yield the highest possible utility to the users.

Suppose now that there is more than one a′ such that
∑

l 6=k x
l
a′ ≥

∑
l 6=k x

l
a. Since the

price p > 0, user k’s best response is to consume only one of a′ applications. This is because

consuming more of those applications yields exactly the same consumption utility, but user k

needs to pay additional price p for each additional application. The net utility is lower when

more applications are consumed. Therefore, there cannot be an equilibrium with QD ≥ 2.

Moreover, since p < X, it is always better for any user to consume one application to none.

We conclude that in each equilibrium exactly one application is consumed by all users.

This completes the proof of Remark 1.

Proof of Remark 2 (page 9)

Proof. Suppose that 1 < R < 2 and α = 0. User k’s consumption utility (and net

utility) does not depend on other users’ consumption, due to α = 0. Thus, the equilibrium

consumption decision of user k does not depend on the decisions of other users (i.e., the

equilibrium strategy is simply the optimization result of each user).

The proof proceeds in two steps: First, we find the optimal consumption pattern, given

that user k has access to some set Q of applications, where cardinality of Q is Q ≥ 1. Second,

given the consumption pattern, we find the optimal set of applications consumed, Qk
I .

Suppose that user k has access to set Q ⊆ A of applications. Given Q, user k’s objective

is to allocate the consumption in order to maximize her utility, i.e.,

max
xk

a ,a∈Q

(∑
a∈Q

(xka)
1
R

)R
s.t. X ≥

∑
a∈Q

xka .

31



The Lagrangian associated with this problem, including the constraint is

L =
(∑
a∈Q

(xka)
1
R

)R
+ λ(X −

∑
a∈Q

xka) .

The first order condition for a particular application a′ ∈ Q, ∂L
∂xk

a′
= 0 yields

(∑
a∈Q

(xka)
1
R

)R−1

· (xka′)
1
R
−1 = λ ⇐⇒ xka′ =

(∑
a∈Q(xka)

1
R

)R
λ

R
R−1

, ∀a′ ∈ Q .

Thus, in the consumption schedule that maximizes the consumption utility, every application

is consumed in the same amount, i.e., x̂ka = x̂ for all a ∈ Q. To reach the maximum the

constraint X ≥
∑

a∈Q x
k
a needs to bind. Therefore Q·x̂ = X and x̂ = X

Q
. That implies that

every equilibrium must be a balanced equilibrium.

With x̂ = X
Q

the maximal consumption utility given Q is

uI(x̂; Q) =

(∑
a∈Q

(
X

Q

) 1
R
)R

=

(
Q

(
X

Q

) 1
R

)R

= QR−1X .

This consumption utility is the same for any set Q of cardinality Q. The net utility also

depends solely on the cardinality of set Q. For any set Q with cardinality Q, the user k’s

maximal net utility is

UI(x̂;Q) = QR−1X − pQ .

For p > 0, the optimal number of applications consumed by user k is characterized by the

first order condition

(R− 1)QR−2X = p ⇐⇒ Q =

(
X(R− 1)

p

) 1
2−R

. (11)

Let qI =
(
X(R−1)

p

) 1
2−R

.

The number of applications consumed cannot be greater than A or smaller than 1. We

have assumed that the number of applications is large enough.23 Specifically, we have as-

sumed that A ≥ qI . Therefore, we need to assure that the number of applications consumed

23If we had allowed for A < qI , it would be optimal for a user to consume all A applications. This is
because the derivative of UI(x̂;Q) is strictly positive for all Q < qI . So it would be positive on the whole
domain [1, A] for A < qI .
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is not lower than 1. Therefore, the optimal number of applications consumed by any user k

is Qk
I = max{1, qI}.

Since the optimal number of applications consumed is the same for all users, let QI

denote Qk
I for any k. Each user is indifferent between consumption of any subset with

cardinality QI . Any collection of sets {Q1
I , . . . ,QN

I } constitutes an equilibrium, as long as

for any k, cardinality of Qk
I is QI . There are A!

QI !(A−QI)!
·N such collections of sets. Therefore

there is that many pure strategy Nash equilibria. There is also a continuum of mixed

strategy equilibria: any probability distribution over all the pure strategies described above

constitutes an equilibrium strategy for user k (given that all the subsets have the same

cardinality, any of such mixed strategies yields the same utility as a pure strategy).

If there existed any other equilibrium, it would involve some users consuming other

number of applications than QI with a positive probability. That is suboptimal strategy for

those users. Therefore, there are no other equilibria.

Since in all subgame perfect Nash equilibria every user consumes QI applications, each

in equal amount, all the equilibria yield the same net utility to all users. Moreover, there

does not exist an equilibrium where some users could achieve a higher net utility. Thus, all

equilibria yield the highest possible utility to the users.

This completes the proof of Remark 2.

Proof of Lemma 1 (page 11)

Proof. Assume that 1 < R < 2 and α > 0. Suppose, to the contrary, that in some

equilibrium Qk 6= Ql for some l and k (we drop the subscript DI in this proof for clarity of

exposition). We show that this cannot be an equilibrium.

First, consider the case where Qk = Ql, i.e., user k and user l consume the same amount

of applications, but different ones. This cannot be an equilibrium. Take an application

a′ that k consumes, but l does not, and application a′′ that l consumes but k does not.

Suppose, without loss of generality that
∑

j 6=l, k x
j
a′ ≤

∑
j 6=l, k x

j
a′ (otherwise, we switch k and

l). User k’s net utility in such a candidate equilibrium is( ∑
a∈Qk

(
xka
) 1

R

)R
+ α

∑
a∈Qkr{a′}

(
xka
∑
j 6=k

xja

)
+ αxka′

∑
j 6=k, l

xja′ − pQ
k .

If user k spends xka′ consuming application a′′ instead of a′ (without changing anything else),
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she increases her utility to( ∑
a∈Qk

(
xka
) 1

R

)R
+ α

∑
a∈Qkr{a′}

(
xka
∑
j 6=k

xja

)
+ αxka′

( ∑
j 6=k, l

xja′′ + xla′′︸ ︷︷ ︸
>

P
j 6=k, l x

j

a′

)
− pQk .

Therefore, it is not an equilibrium for users to consume different application, since α > 0.

For the same reason, if Qk < Ql, user k consumes only applications that l consumes, i.e.,

Qk ⊂ Ql. However, Qk < Ql cannot be an equilibrium.

Suppose, to the contrary, that in a balanced equilibrium Ql > Qk and Qk ⊂ Ql. Since

they place balanced strategies, xla = X
Ql for a ∈ Ql, and xka = X

Qk for a ∈ Qk and xka = 0

for all other applications, especially for a ∈ Qk \ Qk. The consumption of all other users is∑
j 6=k, l x

j
a for all a ∈ A. For k, it is optimal to consume Qk. Such consumption yields the

net utility ( ∑
a∈Qk

(
xka
) 1

R

)R
+
∑
a∈Qk

xka

( ∑
j 6=k, l

xja + xla

)
− pQk .

And after substituting xka = X
Qk and xla = X

Ql

(Qk)R−1X + α
X

Qk

∑
a∈Qk

( ∑
j 6=k, l

xja

)
+ α

X

Qk
QkX

Ql
− pQk.

In particular, consuming Qk applications yields higher utility for user k than consuming the

same Ql applications as user l, i.e.24

(Ql)R−1X+α(
X

Ql
)2Qk+α

X

Ql

∑
a∈Ql

( ∑
j 6=k, l

xja

)
−pQl ≤ (Qk)R−1X+α

X2

Ql
+α

X

Qk

∑
a∈Qk

( ∑
j 6=k, l

xja

)
−pQk =⇒

=⇒ X
(

(Ql)R−1−(Qk)R−1
)

+αX
(

1
Ql

∑
a∈Ql

( ∑
j 6=k, l

xja

)
− 1
Qk

∑
a∈Qk

( ∑
j 6=k, l

xja

))
−p
(
Ql−Qk

)
≤ α

X2

Ql

(
1−Q

k

Ql

)
.

(12)

24The utility if user k would consume Ql applications in a balanced strategy is calculated with the following
formula:

(Ql)R−1X + α
X

Ql

(
QKDI

X

Qk
+
∑
a∈Qk

DI

( ∑
j 6=k, l

xja

))
+ α

X

Ql

∑
a∈Qk\Ql

( ∑
j 6=k, l

xja

)
− pQl .
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For l it is optimal to consume

(∑
a∈Ql

(
xla
) 1

R

)R
+
∑
a∈Qk

xla

( ∑
j 6=k, l

xja + xka

)
+

∑
a∈Ql\Qk

xla

( ∑
j 6=k, l

xja

)
− pQl =

=
(
Q
)R−1

+ α
X

Ql
X + α

X

Ql

∑
a∈Ql

( ∑
j 6=k, l

xja

)
− pQl .

In particular, consuming Ql applications yields higher utility for user l than consuming only

Qk applications, i.e.,

X
(

(Ql)R−1−(Qk)R−1
)

+αX

(
1

Ql

∑
a∈Ql

( ∑
j 6=k, l

xja

)
− 1

Qk

∑
a∈Qk

( ∑
j 6=k, l

xja

))
−p
(
Ql−Qk

)
≥ αX2

(
1

Qk
− 1

Ql

)
.

(13)

However, for Ql > Qk ≥ 1, α X2

Ql

(
1− Qk

Ql

)
< αX2

(
1
Qk − 1

Ql

)
. Therefore, both inequal-

ities (12) and (13) cannot be satisfied at the same time. Thus, it cannot be that there is a

balanced equilibrium where Ql > Qk.

This completes the proof of Lemma 1.

Proof of Lemma 2 (page 11)

Proof. Suppose that in a balanced equilibrium user k consumes Qk
DI = QDI applications.

By Lemma 1, we know that all users consume the same QDI applications, where QDI denotes

the consumption set. Notice that the net utility of users does not depend on the identity

of the applications. The net utility is the same as long as all users consume the same QDI

applications, whichever they are. Therefore, any subset of applications QDI of cardinality

QDI constitutes an equilibrium.

Proof of Remark 3 (page 13)

The remark directly follows from Lemma 8.

Lemma 8 For all parameters α ≥ 0 and 1 ≤ R < 2, QI ≥ Q̂. Moreover when QI > 1, then

Q̂ < QI , and when QI = 1 then Q̂ = QI .

Proof. Recall that QI is defined based on the solution (qI) to the following first order

condition

(R− 1)QR−2X − p︸ ︷︷ ︸
DI(Q)

= 0. (14)
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For Q→ 0+ the derivative DI →∞. Moreover, the derivative is always decreasing. For any

p > 0, the first order condition DI(Q) = 0 has exactly one solution, at qI .

Similarly, Q̂ is defined based on the solution to another first order condition

D̂(Q) = (R− 1)QR−2X − p︸ ︷︷ ︸
DI(Q)

− αX(N − 1)
X

Q2︸ ︷︷ ︸
+

= 0. (15)

For any Q the derivative D̂ is smaller than the derivative DI . Therefore, whenever D̂ = 0

for some Q̃, then DI > 0 for this Q̃. Moreover, since the derivative DI is decreasing, DI = 0

for a larger Q than Q̃. Therefore, the solution (qI) to the first order condition (14) is always

larger than any solution to the first order condition (15), if the solution to the latter exists.

We focus on the non-trivial case when QI > 1.25 This happens when qI > 1. The value

of Q̂ is either a solution to (15) or 1. In either case Q̂ < qI = QI .

This completes the proof of Lemma 8.

Proof of Proposition 1 (page 13)

Proof. The optimal upward deviation involves non-balanced consumption. It yields strictly

higher utility than an upward deviation with balanced consumption. Suppose that Q̂ > 1.

Then V ′(Q̂) = 0. Note that the payoff from an upward deviation to Qk under balanced

consumption is

UDI(Q
k ≥ Q̂|balanced) =

(
Qk
)R−1

X + �
�̂Qα

X

Qk
(N − 1)

X

�
�̂Q
− pQk ,

which is the same as V (Qk). And since V ′(Q̂) = 0, an incremental upward deviation with

balanced consumption from Q̂ yields 0 benefit. But that means that the optimal upward

deviation (which is better then balanced deviation) from Q̂ yields strictly positive benefit.

Thus, Q̂ is not a balanced equilibrium.

This completes the proof of Proposition 1.26

25For QI = 1, which happens when qI < 1. Therefore, any solution to (15) must also be smaller than 1.
Then Q̂ = 1 = QI .

26Notice the implication of this result for the incentives in the market: Suppose that the platform limits
the number of applications to Q̂, and Q̂ is optimal. Thus, the platform guarantees users the best equilibrium
outcome. Nonetheless, the users are not happy with this restriction. They may believe (because they look
at their profitable deviation upward) that if one more application would be available, they would be better
off. But, of course, in an equilibrium they wouldn’t.
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Proof of Lemma 3 (page 14)

Proof. Let 1 < R < 2 and α > 0. Suppose that all users play a balanced strategy, where

they consume a set of applications Q with cardinality Q.

The proof proceeds in two steps: In the first step, we show that for Q > QI any user

has incentive to deviate from this strategy and consume fewer applications. In the second

step, we show that for Q such that max{1, Q?} ≤ Q < Q̂ any user has incentive to deviate

and consume more applications. Therefore, no Q in those two intervals can characterize a

balanced equilibrium.

Suppose that Q > QI . If user k consumes Q or fewer applications, i.e., Qk ≤ Q, she

consumes the same applications as other users, i.e., Qk ⊆ Q. This is because, due to direct

network effects (α > 0), user k’s consumption utility would be lower if she consumed other

applications instead. Moreover, if user k consumes Qk ≤ Q applications, it is optimal for

her to consume them according to a balanced consumption schedule: X
Qk of each. This is

because each application presents the same benefit through consumption complementarity.

Therefore, the net utility when user k consumes Qk ≤ Q applications is

UDI(Q
k ≤ Q) =

(
Qk
)R−1

X +�
�Qkα

X

�
�Qk

(N − 1)
X

Q
− pQk .

Since p > 0, the optimal number of applications that user k would like to consume is

characterize by the first order condition

∂UDI(Q
k ≤ Q)

∂Qk
= (R− 1)

(
Qk
)R−2

X − p = 0 . (16)

Note that this is the same condition as (11) in the proof of Remark 2. So Qk = qI is the

only positive value satisfying this condition. Moreover, for any Qk > qI , the derivative in

(16) is negative. Therefore, for any Q > QI , user k can profitably deviate to consuming QI

applications.

In the second step of the proof, we turn to Q such that max{1, Q?} ≤ Q < Q̂, and we show

that any user can profitably deviate by consuming more applications. When user k consumes

more applications than Q, she consumes all applications in Q, and Qk−Q applications that

no other user consumes. The optimal consumptions schedule in such a deviation is not a

balanced consumption schedule. If we impose the balanced consumption schedule on the

upward deviation, it yields lower utility than the optimal deviation. Even though it is not

the optimal deviation, we show that an upward deviation with a balanced consumption
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schedule is profitable for any user. The net utility from user k’s balanced consumption of

Qk ≥ Q applications is

UDI(Q
k ≥ Q|balanced) =

(
Qk
)R−1

X + ��Qα
X

Qk
(N − 1)

X

��Q
− pQk .

Note that UDI(Q
k ≥ Q|balanced) is the same as V (Q) in equation (4) which has a local

maximum at Q̂ > Q. Moreover, if there does not exist Q? ≤ 1, then for any Q ∈ [1, Q̂),

and when Q? ≤ 1 exists, then for any Q ∈ (Q?, Q̂), UDI(Q̂ > Q) > UDI(Q). That is, it

is strictly profitable for a user to deviate upwards (to Q̂ from those Qs). It reminds to

show that there exists a profitable deviation away from Q? ≤ 1. By the definition of Q?,

UDI(Q̂ > Q) = UDI(Q?). The most profitable deviation, however involves a non-balanced

consumption schedule, and yields strictly higher utility than UDI(Q
k > Q). Therefore, the

optimal deviation away from Q? is profitable.

This completes the proof of Lemma 3.

Proof of Lemma 4 (page 16)

Proof. Let 1 < R < 2 and α > 0. Suppose that all other users l 6= k play a balanced

strategy where they consume a set of applications Q with cardinality Q. If user k consumes

Q or fewer applications, i.e. Qk ≤ Q, she consumes the same applications as other users, i.e.

Qk ⊆ Q. This is because, due to direct network effects (α > 0), user k’s net utility would

be lower if she consumed other applications instead.

User k’s consumption utility from consuming Qk ≤ Q applications is

u(xk, Qk;Q) =
( ∑
a∈Qk

(
xka
) 1

R

)R
+ α

∑
a∈Qk

xka︸ ︷︷ ︸
=X

(N − 1)
X

Q
.

By usual arguments we find that the consumption schedule maximizing the consumption

utility, under the constraint
∑

a∈Qk xka ≤ X is balanced strategy, i.e., xka = X
Qk for all a ∈ Qk.

Therefore, the net utility of user k from consuming Qk applications is

UDI(Q
k;Q) =

(
Qk
)R−1

X + αX(N − 1)
X

Q
− pQk . (17)

Notice that this utility is strictly increasing for Qk < qI and strictly decreasing for Qk > qI .
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Under QI > 1, suppose that Q ≤ QI .
27 Then if Qk < Q ≤ QI , then the utility in (17)

increases with Qk. That is, the user achieves a lower utility if she deviates from Q to

Qk < Q.

This completes the proof of Lemma 4.

Proof of Lemma 5 (page 17)

Proof. Let 1 < R < 2 and α > 0. Suppose that all other users play balanced strategies and

consume the same set of applications QI with cardinality QI . Since Lemma 4 shows that

there is no profitable deviation downward, it is enough to show that there is no profitable

deviation upward to prove that QI is a balanced equilibrium.

Consider user k who consumes Qk > QI applications. When user k diverts part of her

time y away from the QI applications that all other users consume, it is optimal for her

to consume the same amount of each application in QI ,
X−y
QI

. Moreover, it is also optimal

to consume the same amount of each application that user k consumes outside QI ,
y

Qk−QI
.

Then, the net utility of user k is

UDI(Q
k > QI | y) =

(
QI

(
X − y
QI

) 1
R

+ (Qk −QI)

(
y

Qk −QI

) 1
R

)R

+α
X(X − y)

QI

(N−1)−pQk .

Consider first only the part of the net utility without the direct network effects:(
QI

(
X − y
QI

) 1
R

+ (Qk −QI)

(
y

Qk −QI

) 1
R

)R

− pQk .

This is the same as the utility under pure indirect network effects. We know from the proof

of Remark 2 that for any Qk, the utility maximizing consumption schedule is balanced.

However, since α > 0, in this case the optimal deviation upward must involve un-balanced

consumption (in an optimal deviation user consumes more of each application that other

users consume and less of each applications that she alone consumes), i.e., y < X
Qk (Qk−QI).

Therefore, if Qk > QI , then(
QI

(
X − y
QI

) 1
R

+ (Qk −QI)

(
y

Qk −QI

) 1
R

)R

− pQk <

(
Qk

(
X

Qk

) 1
R

)R

− pQk .

27If qI < 1, then QI = 1 and it is not possible that Qk < QI .
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Recall that QI maximizes the net utility under pure indirect network effects. Therefore, for

Qk > QI , (
Qk

(
X

Qk

) 1
R

)R

− pQk <

(
QI

(
X

QI

) 1
R

)R

− pQI .

Putting those two inequalities together yields(
QI

(
X − y
QI

) 1
R

+ (Qk −QI)

(
y

Qk −QI

) 1
R

)R

− pQk <

(
QI

(
X

QI

) 1
R

)R

− pQI .

Moreover, for any y > 0,

α
X(X − y)

QI

(N − 1) < α
X2

QI

(N − 1) .

Therefore, any positive deviation, y > 0, toward consuming more applications, Qk > QI ,

yields strictly worse net utility for user k,

UDI(Q
k > QI | y) =

(
QI

(
X − y
QI

) 1
R

+ (Qk −QI)

(
y

Qk −QI

) 1
R

)R

+α
X(X − y)

QI

(N−1)−pQk <

<

(
QI

(
X

QI

) 1
R

)R

+ α
X(X − y)

QI

(N − 1)− pQI <

<

(
QI

(
X

QI

) 1
R

)R

+ α
X2

QI

(N − 1)− pQI = UDI(QI) .

Therefore, any set of applications QI with cardinality QI constitutes a balanced equilibrium.

Notice that the optimal deviation y∗ that maximizes the consumption utility is always

positive.28 That is, if y∗ satisfies the first order condition ∂UDI(Qk>QI | y)
∂y

∣∣∣
y=y∗

= 0, it must be

that y∗ > 0. However, because the user needs to pay a positive price p > 0 for diverting

even small y, it is not optimal to do so at QI . (As shown by declining net utility.)

Below we show that since QI > 1, then also for Qs slightly smaller than QI , users have

no incentive to deviate upward. And so those Qs constitute balanced equilibria.

Suppose that Q̂ > 1. By Lemma 4, for any Q such that Q̂ < Q < QI , no user has a

profitable deviation downward. Any such Q constitutes a balanced equilibrium if there is

also no profitable deviation upward.

28For formal proof of this property, see the proof of Proposition 6, for p = 0.
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For Q such that Q̂ < Q < QI , suppose that all other users consume Q applications, while

user k consider diverting y of her time toward more applications, Qk > Q. Utility at this

deviation is

UDI(Q
k > Q| y > 0) =

(
Q

(
X − y
Q

) 1
R

+ (Qk −Q)

(
y

Qk −Q

) 1
R

)R

+α
X(X − y)

Q
(N−1)−pQk .

User k chooses a deviation y > 0 andQK > Q to maximize this utility, maxy>0, Qk>0 UDI(Q
k >

Q| y > 0). The profitability of the deviation

DevProf(Q) = max
y>0, Qk>0

UDI(Q
k > Q| y > 0)− V (Q) .

From Proposition 1, we know thatDevProf(Q̂) > 0. We can also show thatDevProf(QI) <

0. This follows from the fact that an infinitisimal upward deviation from QI under pure in-

direct yields 0 profit. Due to the loss of the consumption complementarity, under both

indirect and direct network effects the optimal deviation yields smaller utility. Therefore,

the deviation is not profitable. Function DevProf(Q) is continuous in Q. Therefore, there

must exist Q0, Q̂ < Q0 < QI such that DevProf(Q0) = 0. If there are multiple Q satisfying

this condition, let Q0 be the largest. Then, for all Q ∈ [Q0, QI ], DevProf(Q) ≤ 0, i.e., there

is no profitable deviation from Q. Hence, all Q ∈ [Q0, QI ] constitute balanced equilibria.

This completes the proof of Lemma 5.

Proof of Lemma 6 (page 17)

Proof. Suppose that QI > 1, which implies that qI > 1 or (R − 1)X > p. When all users

consume one application only, their consumption utility is:

u(Q=1) = X + αX2(N − 1).

Now, if a user deviates to consume y of second application, her consumption utility is:

u(Q=2) =
(

(X − y)
1
R + y

1
R

)R
+ αX(N − 1)(X − y).
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The optimal level of deviation y∗ is characterized by the first order condition:

∂u(Q=2)

∂y
=
(

(X − y∗)
1
R + y∗

1
R

)R−1
((

1

y∗

)1− 1
R

−
(

1

X − y∗

)1− 1
R

)
− αX(N − 1) = 0.

Notice that y∗ decreases with N and y∗ → 0 as N → ∞. Therefore, as N increases, y∗

decreases but QI is not affected.

To find out if the value of the optimal deviation is larger than the price of the second

application, we compute:

u(Q=2| y=y∗)− u(Q=1) =

=
(

(X − y∗)
1
R + y∗

1
R

)R
+ αX(N − 1)(X − y∗)− (X + αX2(N − 1)) <

<
(

(X − y∗)
1
R + y∗

1
R

)R
−X.

Note that ((X − y∗) 1
R + y∗

1
R )R−X is continuous, takes value zero at y∗ = 0 and it is strictly

increasing in y∗. Therefore for any price p, we can find N large enough so that y∗ is low

enough so that

u(Q=2| y=y∗)− u(Q=1) < p,

and the deviation is not profitable.

This completes the proof of Lemma 6.

Proof of Proposition 2 (page 18)

Proof. Directly from Lemma 5 we obtain the existence of multiple equilibria with different

values of QDI .

The result that the equilibria with a smaller QDI yield higher utility follows directly

from the shape of V (Q) and Lemma 3: All possible equilibria need to be included in the

interval [1, Q?)∪ (Q̂, QI ]. (The set of equilibria is a strict subset of this interval). The utility

obtained by every user in each equilibrium Q is V (Q). Since V (Q) is strictly increasing on

the interval [1, Q?) ∪ (Q̂, QI ], a lower equilibrium Q yields higher utility for every user than

a higher equilibrium Q.
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Proof of Proposition 3 (page 20)

Proof. The shape of V implies that either Q∗∗ = 1 or Q∗∗ = Q̂. The proof first considers

Q∗∗ = Q̂ > 1, and then Q∗∗ = 1.

Suppose that Q∗∗ = Q̂ > 1. Then, Q? (as defined for Lemma 3) does not exist. Therefore,

by Lemma 3, no Q < Q̂ may constitute a balanced equilibrium. As in the proof of Lemma 3,

users are better off deviating upward to consuming Q̂ applications. When A > Q̂, then Q̂ is

not a balanced equilibrium, by Proposition 1. This is because there exists profitable deviation

upward, toward consuming larger number of applications. However, when A = Q∗∗ = Q̂,

such deviation is not possible. Therefore, consuming all Q̂ constitutes the only equilibrium.

Now, suppose that Q∗∗ = 1. When platform sets A = Q∗∗ = 1 then trivially, in the only

equilibrium all users consume the only application in the market.

This completes the proof of Proposition 3.

Proof of Lemma 7 (page 23)

Proof. Suppose that l consumes G applications for some G. Given G, any application a is

consumed by l with probability G
A

. Since when every strategy is equally likely, any subset of

cardinality G is equally likely to be consumed. The probability that particular application

a is in a consumption set is

how many subsets with G can you choose from A that will include a

how many subsets with G can you choose from A overall
=

=
choose G− 1 out of A− 1

choose G out of A
=

(A− 1)!

(G− 1)! (A−G)!

/
A!

G! (A−G)!
=
G

A
.

Now, we calculate the expected level of consumption E(xla|xla ∈ G) conditionally on a

being in a given consumption set G of l. Since we know that all the consumption schedules

over the set G satisfy
∑

a∈G x
l
a = X, therefore

E(
∑

x) = X =⇒
∑

E(x) = X ,

due to the linearity of the sum.

But the applications are not distinct (they are interchangeable). If every consumption

schedule is equally likely, the expected consumption of every a in the consumption set is the

same.

Suppose to the contrary, that the expected consumption of some a′ ∈ G is higher than
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some other application, a′′, E(xla′) > E(xla′′). Then, in the set of all possible consumption

schedules, switch a′ and a′′ in every schedule. The set of all possible consumption schedules

remains unchanged, but now E(xla′′) > E(xla′). Hence, contradiction. Therefore, the expected

consumption of every a ∈ G is the same E(xla) = X
G

.

Then, the overall expected level of consumption of any application a is

Eφk
l
xla =

G

A
· X
G

=
X

A
.

(Technically, it is for a given G. But since the expectation for any G is the same, any

probability distribution over G’s gives the same expected value.)

This completes the proof of Lemma 7.

Proof of Proposition 4 (page 24)

Proof. Let 1 < R < 2 and α > 0. Suppose that user k consumes Gk applications in a no-

foresight environment. For any given number of applications, Gk, the optimal consumption

schedule is a balanced consumption. This is because for any application, the expected level

of consumption by other users is the same (Lemma 7). User k’s expected net utility (using

Lemma 7) is then

EUDI(G
k) =

(
Gk
)R−1

X + α (N − 1)
X2

A
− pGk . (18)

Note that the benefit from the direct network effect does not depend on Gk. This leads to a

result similar to the one in Remark 2: The above function UDI is maximized by Gk = qI =( (R−1)X
p

) 1
2−R , for any k.

This completes the proof of Proposition 4.

Proof of Proposition 5 (page 25)

Proof. Let’s consider separately the case for R = 1 and for 1 < R < 2.

Suppose first that α > 0 and R = 1. It is easy to show that for any A ≥ 1, every user

optimally consumes one application. The expected net utility for any user in an equilibrium

for A ≥ 1 is

EU∗D = X + α(N − 1)
X2

A
− p .

Clearly, EU∗D is maximized by A = 1. Moreover, for α > 0 and R = 1, the unique maximum
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of V (Q) is always Q∗∗ = 1. Therefore, the platform maximizes users’ net utility when it sets

the number of available applications to A = Q∗∗ = 1.

Suppose now that α > 0 and 1 < R < 2. By Proposition 4, we know that when

A ≥
( (R−1)X

p

) 1
2−R , the optimal number of applications consumed by any user k is Gk

DI = QI ,

as this number maximizes EUDI(G
k) in (18).

Since QI > 1,29 when A ≥ QI =
( (R−1)X

p

) 1
2−R , the expected net utility of a user in

equilibrium is

EU∗DI(QI |A ≥ QI) = (QI)
R−1X + α (N − 1)

X2

A
− pQI .

On the possible range of A ≥ QI , this utility is maximized for A = QI .

Since EUDI(G
k) strictly increases in Gk for Gk < QI , every user consumes all applica-

tions, if there is fewer applications available than QI . Thus, for A ≤ QI =
( (R−1)X

p

) 1
2−R , the

expected net utility of a user in equilibrium is

EU∗DI(A|A ≤ QI) = (A)R−1X + α (N − 1)
X2

A
− pA .

Note that this function of A is the same as V (with the exception that V is a function of Q).

Moreover, since QI > 1, it must be that Q∗∗ < QI . Because Q∗∗ is the value that maximizes

V , then A = Q∗∗ < QI also maximizes the expected net utility EU∗DI(A|A ≤ QI). Moreover,

notice that EU∗DI(QI |A ≥ QI) is maximized at A = QI , but EU∗DI(Q
∗∗) > EU∗DI(QI). So,

A = Q∗∗ maximizes the expected utility EU∗DI on the whole range A ≥ 1. Therefore, the

platform maximizes users’ net utility when it sets the number of available applications to

A = Q∗∗ < QI .

This completes the proof of Proposition 5.

29When QI = 1, the expected net utility of any user in equilibrium for A ≥ 1 is

EU∗DI(QI =1) = X + α(N − 1)
X2

A
− p ,

which is maximized by A = 1. By Lemma 8, Q̂ = 1 when QI = 1. Thus, the unique maximum of V (Q) is
always Q∗∗ = 1. In result, the platform maximizes user’s net utility when it sets the number of available
applications to A = Q∗∗ = 1.

45



B Results for p = 0

Suppose that the access price for any application is p = 0. Then, the net utility is the same

as the consumption utility, and every user chooses the set of consumed applications and the

consumption schedule to maximize her consumption utility.

Note that under p = 0 the assumption on A does not make sense any more. It is not

possible to make A “large enough.” In this appendix, we allow for arbitrary A.

B.1 Game with perfect foresight

In this section, we assume that every agent knows (or correctly predicts) the number and

identity of applications consumed by all other users (i.e., the user knows the consumption

sets and consumption schedules of all other users) in equilibrium.

B.1.1 Game with perfect foresight: direct network effects

Remark 4 Assume R = 1, α > 0 and p = 0. For any Q ⊆ A, there exists a balanced

equilibrium where all users consume the set of applications Q. There is no other balanced

equilibrium.

Proof. Let R = 1, α > 0 and p = 0. Suppose that all other users play a balanced

strategy where they consume a set Q ⊆ A applications. If user k consumes fewer applications

than other users, she consumes the same applications as other users (due to consumption

complementarity it would make sense otherwise). The optimal consumption schedule then

is balanced. User k’s net utility of consuming Qk ≤ Q applications is

UD(Qk ≤ Q) =���
��(Qk)R−1X +@@Q

kα
X

@
@Q
k
(N − 1)

X

Q
.

(The term (Qk)R−1 cancels because R = 1.) This utility does not depend on Qk. Thus,

user k does not have incentive to deviate downward, i.e., consume fewer applications than

other users.

Now suppose that user k consumes more applications than other users. She diverts y ≤ X

of her time to applications that no other users consume. It is optimal for her to still consume

all Q applications that other users consume (hence y < X), and among those applications,

each application is consumed at the same lever, X−y
Q

. Because R = 1, independently of how
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many more applications user k consume, her net utility is

UD(Qk ≥ Q) = X + αX(N − 1)
X − y
Q

.

This utility is strictly decreasing in y, and it reaches its maximum for y = 0, i.e., when

user k does not divert any time to applications other than those consumed by other users.

So, user k has no incentive to deviate upward, i.e., consume more applications.

Therefore, if all users consume Q applications in a balanced strategy, it constitutes a

balanced equilibrium, for any Q ⊆ A.

To show that there is no other balanced equilibrium, notice that if other balanced equi-

librium existed, users would need to consume different applications or different number of

applications in an equilibrium. Suppose that Q ⊆ A is a set of applications that is consumed

at strictly positive level by at least one other user,

Q = {a,∃l 6= k s.t. xla > 0} .

If the aggregate consumption of all other users is not the same for all applications in Q,

the best response of user k is an un-balanced strategy, where she consumes larger levels of

applications that have higher aggregate consumption levels by other users. Therefore, it

cannot be a balanced equilibrium.

Suppose then that aggregate consumption by all other users is the same for all applica-

tions in Q,
∑

l 6=k x
l
a =

∑
l 6=k x

l
a′ for all a, a′ ∈ Q. Then user k’s best response is a balanced

strategy where she consumes all Q applications. But if xla = xla′ for all l and all a, a′ ∈ Q,

then it is a balanced equilibrium where all users consume Q. To show that it cannot be any

other balanced equilibrium, suppose that for some l and l′ and some a, xla 6= xl
′
a . But then

for user l it is not true that
∑

j 6=l x
j
a =

∑
j 6=l x

j
a′ . Therefore, it cannot be that user l’s best

response is a balanced strategy. Therefore, it cannot be a balanced equilibrium. The only

balanced equilibrium is when all users consume all applications in Q.

This completes the proof of Remark 4.

Corollary 5 Assume R = 1, α > 0 and p = 0. Suppose that in an equilibrium users

consume Q applications, where Q is cardinality of Q. The equilibria with Q = 1 yield the

highest utility to the users.

Proof. Let R = 1, α > 0 and p = 0, and suppose that in an equilibrium users consume Q
applications, where Q is cardinality of Q. The net utility of each user in an equilibrium with
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Q ≥ 1 is

U∗D(Q) = X + α

Q∑
a=1

(
X

Q
(N − 1)

X

Q

)
= X + α(N − 1)

X2

Q
.

This utility strictly decreases with Q, and is maximized when Q = 1. Whenever more than

one application is consumed in equilibrium, the equilibrium yields lower utility to the users

than an equilibrium where one application is consumed.

Therefore, the equilibria where Qk
D = QD = {a} for some a ∈ A and all k—i.e., equilibria

where all users consume one and the same application—yield the highest utility.

B.1.2 Game with perfect foresight: indirect network effects

Remark 5 Assume 1 < R < 2, α = 0 and p = 0. There exists a unique equilibrium, where

Qk
I = A each user k, i.e., every user k consumes all available applications. Moreover, the

unique equilibrium is balanced.

Proof. Let 1 < R < 2, α = 0 and p = 0.

As in the proof for p > 0, we find that the optimal consumption schedule, given that user

k has access to some set Q applications is to consume each of them in the amount of x̂ = X
Q

.

Therefore, every equilibrium is balanced equilibrium.

To find the equilibrium consumption set for user k, recall that her consumption utility

given Q is

uI(x̂;Q) =

(
Q

(
X

Q

) 1
R

)R

= QR−1X .

This utility is always strictly increasing in Q, i.e., user k always prefers to consume as many

applications as possible. In such a case, user k’s consumption set is only limited by A, i.e.,

she optimally consumes all applications available, each at the level x̂ = X
A

.

This completes the proof of Remark 5.

Equilibria may differ in the utility that the users achieve. However, sometimes there

exist allocations that are not equilibria, but that yield higher utility to the users than any

equilibrium. The following corollary shows that this is not the case when only indirect

network effects are present.

Corollary 6 In the case for 1 < R < 2, α = 0 and p = 0, the unique balanced equilibrium

also yields the highest possible utility to the users.
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Proof. For α = 0, the equilibrium utility does not depend on other users’ consumption, and

no other number of consumed application yields higher utility for user k than the equilibrium

number, A. Therefore, this equilibrium yields the highest possible utility to the users.

B.1.3 Game with perfect foresight: interplay between direct and indirect net-

work effects

Proposition 6 Assume 1 < R < 2, α > 0 and p = 0. There exists a unique balanced equi-

librium, where Qk
DI = A each user k, i.e., every user k consumes all available applications.

Proof. Let 1 < R < 2, α > 0 and p = 0. Suppose that all other users consume Q appli-

cations according to a balanced strategy. If user k consumes fewer applications than other

users, Qk ≤ Q, it is optimal for her to consume them according to a balanced consumptions

schedule. Then, the net utility of user k is

UDI(Q
k ≤ Q) =

(
Qk
)R−1

X +�
�Qk X

�
�Qk
α
X

Q
(N − 1) .

This utility strictly increases with Qk, and yields the highest value for Qk = Q. Therefore,

user k has no incentive do deviate downward, and consume fewer applications than other

users.

Now, we show that if Q < A, then user k always has incentive to consume more applica-

tions than other users. Suppose that user k consumes one more application than other users.

She diverts some y of her time to the new application, while it is optimal for her to consume

at the same level all the applications that other users consume, X−y
Q

. Then, user k’s utility

is (
Q

(
X − y
Q

) 1
R

+ y
1
R

)R

+ ��Q
X

��Q
(X − y)α(N − 1) .

Using additional application brings user k benefit due to preference for variety. However,

diverting time from applications that are consumed by other users decreases user k payoff

due to consumption complementarity (the direct network effect). The marginal “cost” of

diverting consumption due to direct network effect is ∂X(X−y)α(N−1)
∂y

= αX(N − 1). The

marginal benefit due to preference for variety is

∂
(
Q1− 1

R (X − y)
1
R + y

1
R

)R
∂ y

=
(
Q1− 1

R (X − y)
1
R + y

1
R

)R−1 (
y1− 1

R −Q1− 1
R (X − y)

1
R
−1
)

︸ ︷︷ ︸
f(y)

.
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Function f(y) is strictly decreasing in y, and as y → 0+, f(y)→∞. Therefore, for any value

of αX(N − 1), there exists small enough y for which f(y) > αX(N − 1). That means that

there always exists a consumption schedule (characterized by y for which it is beneficial for

user k to deviate from Q and consume one more application.30

Since for all Q < A user k has incentive to deviate toward consuming more applications,

such Q cannot characterize an equilibrium. When Q = A a deviation upward is not feasible,

and no user finds it profitable to deviate downward. Therefore, in a balanced equilibrium

all applications are consumed by all users. There is only one such equilibrium.

This completes the proof of Proposition 6.

Corollary 7 In the case for 1 < R < 2, α > 0 and p = 0, the unique balanced equilibrium

may or may not yield the highest possible utility to the users. When V (A) ≥ V (1), then the

unique balanced equilibrium, QDI = A, yields the highest possible utility to the users. But

when V (A) < V (1), the maximal utility is achieved at Q = 1.

Proof. Let 1 < R < 2, α > 0 and p = 0. In the unique balanced equilibrium all users

consume all A available applications, which yields utility

U∗DI(QDI =A) = AR−1X + α
X2

A
(N − 1) .

Now, suppose that all users would play a balanced strategy where they all consume a set of

applications Q of cardinality Q. Then, user k’s payoff is

QR−1X + α
X2

Q
(N − 1)︸ ︷︷ ︸

V (Q)

,

30Notice that here it is fine to compare derivatives, while in the case of p > 0 it is not. Here for every little
bit of y, we lose y ·αX(N −1), and we benefit more than y ·f(y) (this is because it is an underestimation, for
lower y’s, f(y) is higher). In the case of p > 0, user k needs to pay the whole p, even if using infinitesimally
small amount of y.
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which is the same function as V for p = 0. This function V (Q) has only one optimum,31

at Q =
(
αX(N−1)
R−1

) 1
R

. This is a minimum.32 So, if
(
αX(N−1)
R−1

) 1
R ≤ 1, V (Q) is increasing for

all A ≥ 1. When
(
αX(N−1)
R−1

) 1
R
> 1, V (Q) is first decreasing and then increasing. In such a

case, V (Q) has two local maxima: at Q = 1 and at Q = A. It is possible that V (1) > V (A),

even though Q = 1 is not an equilibrium. When V (A) ≥ V (1), then the unique balanced

equilibrium yields the highest possible utility to the users. But when V (A) < V (1), the

equilibrium yields lower utility than the allocation where Q = 1.

This completes the proof of Corollary 7.

B.1.4 Game with perfect foresight: on the role of the platform

With pure direct network effects there exist many possible equilibria. However, equilibira

where exactly one application is consumed yield higher utility to the users than other equi-

libria. Equilibria where exactly one application is consumed always exist. But if more than

one application is available, A > 1, there also exist other equilibria, which yield lower utility.

The platform eliminates the equilibria that yield lower utility by setting A = 1.

With pure indirect network effects there exists a unique equilibrium. This equilibrium

yields the highest possible utility to the users for a given A, i.e., in a given environment,

users could not be better off if they consumed any other number of applications. However,

the equilibrium net utility of each user: AR−1X increases with A. Therefore, the larger

the number of applications the platform provides, the larger is users’ net utility in the

equilibrium.

31The first order condition

∂ V (Q)
∂ Q

=
X

Q2

[
(R− 1)QR − αX(N − 1)

]
= 0

is satisfied only for Q =
(
αX(N−1)
R−1

) 1
R

.
32This result may be obtained in two ways: First, it is enough to show that for Q lower than this

threshold, the derivative is negative; and for Q higher than the threshold, the derivative is positive. In the

second approach, we show that the second derivative of V (Q) is negative for Q =
(
αX(N−1)
R−1

) 1
R

.

V ′′(Q) = (R− 1) (R− 2)︸ ︷︷ ︸
−

QR−3X + 2α
X2

Q3
(N − 1) = 0 ⇐⇒ QR =

2αX(N − 1)
(R− 1)(2−R)

.

For Q <
(

2αX(N−1)
(R−1)(2−R)

) 1
R

, V ′′(Q) < 0. And
(
αX(N−1)
R−1

) 1
R

<
(

2αX(N−1)
(R−1)(2−R)

) 1
R

, so the second derivative is
negative where the first order condition is satisfied.
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In the presence of both direct and indirect network effect there exists a unique equilib-

rium. But for a given A it may or may not yield the highest possible utility to the users

(Corollary 7). If the platform is bounded in setting A and cannot provide more applications

than A, then it needs to consider whether V (1) ≤ V (A) or not. When V (1) ≤ V (A), then

setting A = A would maximize users’ net utility. But when V (1) > V (A), then A = 1

maximizes users’ utility.

If the platform is not bounded in setting A. It should set as large A as possible. This is

because U∗DI(A)→∞ when A→∞. Therefore, for large enough A, U∗DI(A) = V (A) > V (1),

and then U∗DI(A) is only decreasing in A.

B.2 Game with no foresight

B.2.1 No-foresight equilibrium

Proposition 7 Assume that 1 < R < 2 and α > 0. There exists a unique no-foresight equi-

librium, where Gk
DI = A each user k, i.e., every user k consumes all available applications.

Moreover, all users play balanced strategies in this equilibrium.

Proof. Suppose that that 1 < R < 2 and α > 0. Under the assumption of no-foresight, and

p = 0, user k’s net utility from consuming a set of applications Gk is

UDI({xka}|xka ∈ Gk) =
( ∑
xk

a∈Gk

(
xka
) 1

R

)R
+ α(N − 1)

X2

A
.

Maximizing UDI({xka}|xki ∈ Gk) under the constraint that
∑

x∈Gk xka ≤ X, yields the same

first order condition for every xka. Therefore, the optimal consumption schedule is a balanced

consumption.

Under balanced consumption, the utility of user k’s from consuming Gk applications is

UDI(G
k) =

(
Gk
)R−1

X + α(N − 1)X
2

A
. This utility is strictly increasing in Gk. Therefore,

every user finds it optimal to consume all A available applications, and in equilibrium all

users play a balanced strategy and consume Gk
DI = A.

This completes the proof of Proposition 7.
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B.2.2 On the role of the platform

Under pure direct network effects, when the platform provides A ≥ 1 applications, each

user’s utility in any equilibrium is

U∗D = X + α(N − 1)
X2

A
.

This utility strictly decreases with A. The platform with the objective to maximize users’

net utility should set A = 1.

Under pure indirect network effects, foresight plays no role. The cases of no-foresight

and perfect foresight are the same: The users’ utility strictly increases in A and, therefore,

the platform should provide as many applications as possible.

When both network effects are present, the unique equilibrium under no-foresight equi-

librium is the same as the unique balanced equilibrium under perfect foresight: All users

consume all A available applications according to the balanced consumption schedule, and

achieve the equilibrium utility of

U∗DI(G
k
DI =A) = AR−1X + α

X2

A
(N − 1) .

Therefore, the same analysis as in the case of perfect foresight leads us to conclusion that if

the platform is unbounded while setting A, it should set as large A as possible. When it is

bounded by A, it needs to consider whether V (A) ≥ V (1) or not.
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