
Code Development: Open vs. Proprietary Source�

(Preliminary - Comments welcome)

German Daniel Lambardiy

March 10, 2008

Abstract

We develop a model in which a software is obtained from an initial amount of code

after successfully overcoming a sequence of steps. The owner of the initial code must

decide between carrying out these steps under an open or a proprietary source environ-

ment. Open source development will allow the initial code owner to save on developing

cost aided by a community of "sophisticated" user-developers, however it will imply

lower future income on "unsophisticated" end-users. With this model we try to under-

stand why some pro�t seeking �rms may donate code and start open source projects.

The dynamic structure of sequential code improvement will provide an alternative ex-

planation on user - developers collaboration. Finally we introduce competition with

an existing proprietary source alternative. We show that the incumbent might �nd

optimal to lower prices to user-developers to reduce the aid provided by the commu-

nity and therefore deter entry or prevent the development of the alternative as Open

Source.
�I am endebted to Jacques Crémer for his advice and guidance. I am grateful to Guido Friebel and Yossi

Spiegel for early observations. I would also like to thank the participants of the 2nd ICT Telecom Paris

conference, the OSSEMP workshop at Limerick Ireland 2007, the First International Workshop FLOSS Nice

- Sophia Antipolis 2007 and the discussants Yann Ménière and Maria Laura Parisi. I am solely responsible

for any mistakes and errors.
yGREMAQ, Université de Toulouse glambardi@gmail.com

1

1 Introduction

The Open Source Software phenomena (hereafter denoted OS) has attracted considerable

attention from the economists�community in the last few years. Several OS projects became

successful alternatives to Proprietary Source Software (hereafter denoted PS) and despite

the heterogeneity of success it is now consider as a feasible way to develop code and produce

software. Moreover, judging by some recent �eld studies (i.e.: Dahlander and Magnusson

(2005), West and O�Mahony (2005), Bonaccorsi et. al (2004)) OS development besides

being feasible might also be a pro�table business model for �rms.

Although the OS phenomena is quite complex, a broad and useful taxonomy has been pro-

posed by West an O�Mahony (2005) between "community-initiated projects" and "spinout

projects". The �rst category is the most familiar model of OS development. Such projects

are usually initiated by one or more individuals that don�t share a common employer. This

projects tends to remain community managed and although they might allow �rms con-

tributions they are structured to prevent �rm takeover. Examples of this are Linux or

Apache software. In the second category, also called "sponsored", usually a for-pro�t �rm

(the sponsor) starts a OS project normally by releasing some valuable internally developed

code and inviting an external community to join and collaborate with the code develop-

ment. Along with the "sponsor" developing e¤orts, an important amount of development

help is obtained from users if the project is successful. This kind of projects tend to remain

sponsor-controlled1 and �rms usually make pro�ts on complementary software or services.

Some examples in this category are MySQL, JBoss or IBM�s Eclipse.

In this paper we will focus our attention to the "spinout" kind of projects. A motivating

example of the "spinout/sponsored" project is JBoss. This OS software is an application

server system based on the Java 2 Enterprise Edition (J2EE). Marc Fleury, founder of the

for-pro�t company JBoss Group, released the �rst version of the OS JBoss in 1999. By 2003

the company was successful in developing a community around the product and already

employed 30 full time developers. By that time, JBoss started to grow in popularity (over

1An important exemption is Mozilla.

2

two million downloads2) at the expense of IBM and BEA existing proprietary alternatives.

Since JBoss software is free of charge, pro�ts comes from providing support and consulting.

As Fleury stated in an interview3 "we just use open source as R&D and recruitment...". The

company was bought by RedHat in 2006 in $350 million.

Our main interest in this paper is to provide a model to understand and explore the

"spinout" OS development in contrast to the traditional Proprietary development. The way

we choose to approach this issue is to model a dynamic multistage process in which the

code is developed. The model assumes that a software is obtained from an initial amount of

code, after successfully overcoming a �xed sequence of stages. The probability that the code

advances from one stage to the next one is assumed to depend on the amount of individuals

devoted to the project at each stage. The owner of the initial code, a pro�t maximizing �rm,

must decide between carrying out these steps under an OS or a PS environment. Although

we initially assume that this �rm faces no competition from an alternative software, we later

extend the model to capture this aspect.

Open source development will allow the �rm to save on programming costs aided by the

free programming time provided by a community of "sophisticated" user-developers (here-

after denoted UD). These savings come at a cost, since the royalty free distribution of OS will

not allow the �rm to make money by selling licences once the software is obtained. We will

assume however that OS returns are not zero. OS �rms are usually able to sell complemen-

tary proprietary software as well as support and customization services to unsophisticated

end-users (hereafter denoted EU). 4

The PS development, on the contrary, faces higher development costs since the code

owner must pay for each individual working on the progress of the software. On the other

hand the �rm will be able to charge money once the software is obtained providing a higher

future income than the OS alternative.

The set up considers that UDs are able to pro�t from the raw code at each stage. They

2http://www.serverwatch.com/sreviews/article.php/2190151
3http://www.news.com/2008-1082-994819.html
4see Dahlander and Magnusson (2005)

3

derive utility from the use of the code but they must spend time programming to adapt

and make usable the code for their purposes. From the UD perspective each time the code

advances to the following step, it becomes more valuable (i.e.: they derive more utility) and

also it requires less programming time to be "usable". In a small extension of the model

we show that the dynamic structure of the sequential code improvement will also help us to

understand the dynamic of cooperation: UD will collaborate with the OS �rm because if their

contributions are included in the next version of the code, then they will save programming

time in the next stage.

With this model we explore when it is more likely that a for-pro�t �rm starts an OS

projects. Some results can be highlighted: a) If the �rm decides to develop the code as OS,

the overall probability to overcome all the stages to get the �nal software is smaller. This

might hurt the welfare of EU and represents a threat that should be taken in consideration

when doing welfare analysis of the OS phenomena. b) UD might �nd optimal to collaborate

in an OS project at early stages even if at that point they obtain negative utility in order to

spend less time in the future adapting the code. c) When competition is introduced in the

model and an existing alternative software is able to price discriminate, the incumbent might

�nd pro�table to lower the price charged to UD to deter entry or to avoid OS development,

by reducing the size of the community that cooperates with the development.

2 Basic Framework

The following model is inspired in Aghion, Dewatripont and Stein (2005) framework of

academic vs. private-sector research. Here a �rm E owns a certain amount of code C0 that

can be used to produce a software S. To obtain S, the code has to increase and undergo

certain transformations. This transformations are modeled as a �nite number k of stages

which the code must go through. At the �nal stage S is obtained. The overcoming of each

stage requires individuals (programmers) working on the development of the code, however

this development is stochastic and the probability that at any stage j the code Cj advances

4

one step towards Cj+1 is given by:

�(Nj) = 1� (1� q)Nj

where Nj is the amount of individuals working on the code development and q is the

probability that the code advances one step ahead (success) if only one individual is working

on the code. The function �(Nj) is just the probability of at least one success among a

group of Nj individuals working on the code.

This development of the code can be done in an open or proprietary environment. If the

�rm choose to make the code open, some users will be able to read and understand the code

and therefore cooperate with the development. By the same token the open environment

reduces the ability of the �rm to make pro�ts on S due to the royalty free distribution.

The �rm faces a population of potential code users. This population is composed by two

categories of individuals: "sophisticated" User Developers (UD) and "unsophisticated" End

Users (EU). If the �rm makes the code Cj open at stage j, the UDs are able to pro�t from it:

they can use Cj to perform some private activity for which they derive utility but they need

to spend time programming to be able to use the raw code. The EU group on the contrary

can only pro�t from the code if the software is obtained in the last stage.5

To be more speci�c, the utility a UD derives from the �nished software S is S: If Cj is

available at stage j; the gross utility per period a UD derives from using it is �jS; with

0 < �j < 1 and �j+1 > �j > �j�1. The parameter �j captures the idea that Cj is not a

"�nished" software: features could be missing and performance could be poor. To be able

to use the raw code, each UD must spend per period �j units of time programming, with

�j > 0 and �j+1 < �j < �j�1. We can interpret �j as a use and maintenance cost: while

using Cj an important amount "bugs" could show up that requires reprogramming fractions

of Cj; compatibility issues might appear with other software the UD is using that should be

solved. Also the use Cj would require new essential features to be developed.

5Through out the papers when we refer to UDs we will talk about "individuals" with IT capabilities.

However they could as well be other �rms with IT capabilities that use the code for their purposes.

5

As the software progresses, features are added and problems are solved, so the software

becomes more valuable (�j ! 1) and less costly to use (�j ! 0). The modi�cations and

changes each UD performs to use the code represent potential improvements that can make

Cj advance to Cj+1 if they are shared with the rest of the community. For the moment we

will assume that UDs are willing to cooperate by sharing their code modi�cations and they

face no cost in doing so. A "reduced form" to model the UD collaboration at stage j is to

say that from �rm�s E perspective it receives free help from an amount mj of individuals

working on the code development.

The desutility a UD derives from the time spent programming is l; therefore the net

utility per period of using the code at stage j < k is

Uj = �jS � �jl

This expression can be transformed without loss of generality to

Uj = S � �jl

with �j =
�j
�j
and �j+1 < �j < �j�1: At the �nal stage k the UD enjoys a "�nished"

software so �k = 1. For simplicity we also assume �k = 06.The utility per period derived

from the �nished software S is then S: Therefore:

Uj

8<: S � �jl

S

if use code at j < k

if use code at j = k

We further assume that UD are heterogeneous in the desutility l (i.e. they have di¤erent

IT capabilities)7. The total amount of UDs is given by M; and the fraction of them that

has l lower than a certain bl is G(bl): For simplicity in the rest of the paper we will consider
only l � 0, notice however that this formulations could also include individuals intrinsically

6However it can be said that usually even a "�nished" sofware has problems and demands a lot of time.
7At the end of the paper I present an alternative formulation where all UD have the same IT capabilities

and they are heterogeneous in the utility they derive from the code.

6

motivated to participate, just by assuming that l could be a negative number. In order to

have a well de�ned G�1(:) we will assume that G is continuous and strictly increasing.

At each stage j the decision of a UD to use Cj will depend on his net utility S � �jl

compared to an outside option. The outside option will be 0 if no alternative software exists

but will be positive with competition.

When S is obtained the �rm gets some income. The amount of income will depend on

the way the code was developed. Under Proprietary Source (PS) development the �rm gets

V; while under Open Source (OS) development gets �V with 0 < � < 1: The parameter �

represents a shortcut to the idea that the �rm E; although it is not able to sell S; can still

get some revenue from selling support services to EU or by selling some proprietary software

complementary to S.

On the cost side, if the �rm E develops the code as PS, it has to pay for each individual

working on the code development, while under OS development the �rm gets free help from

mj individuals of the UD community. Therefore the OS probability of advancing to the next

step is:

�(Nj +mj) = 1� (1� q)Nj+mj

where mj is the amount UDs devoted to the project at stage j while Nj is the amount

of programmers paid by the �rm. Of course under PS development mj = 0: Once decided

between OS and PS development, the �rm must decide at each stage j the amount Nj of

programmers hired at wage W:

Before we move to the model we are going to apply a useful transformation that will give

us nicer expressions. We de�ne nj = �Nj where � = � ln(1� q) 2 (0; 1), so the �rm instead

of choosing Nj it chooses nj and pays wage w = W
�
: With this transformation if the �rm

hires Nj programmers paying them WNj and receives the free help from mj UDs, it would

be equivalent to say it hires nj paying them wnj and receives the free help from �mj UDs.

The probability of advancing to the next step given by

7

�(Nj +mj) = 1� (1� q)Nj+mj = �(nj + �mj) = 1� e�(nj+�mj)

In the rest of the paper we will just say the �rm hires the amount nj of programmers.

Finally we will de�ne

j = e
��mj < 1

so that

�(nj + �mj) = 1� e�njj

3 The simplest setting: Two stages and no competition

In this case the code C0 has to advance to C1 and S is obtained. Let us �rst solve the

problem of a OS �rm. In order to decide the amount n0 of programmers to hire it must

compute �rst the amount of help the �rm will receive from the UDs if the �rm develops as

OS. The utility per period derived by a UD at each stage (0 and 1) is given by:

U0

8<: S � �l

0

if use C0

if not

U1 = S

The expressions for U0 and U1 follow easily from the basic framework description. Since

we assumed that the �nished software S does not require any programming time, the asso-

ciated desutility l is 0. This also imply that all UDs will adopt the OS software at stage

1.

A UD will participate in OS development at stage 0 if

0 < S � �l =>

l <
S

�

8

The amount of UDs participating in OS development will be

m0 = G(
S

�
)M

In particular if we assume that G � U(0; l) then

m0 =
S=�

l
M

As expected, the amount of development help from UD will be higher, if the net utility

UD derive in OS is high (S " or � #) and if M is high.

Under OS, the pro�t maximization problem for �rm E is:

max
n0
�0 = (1� e�n00)�V � wn0

The �rst order conditions yields

0 = 0�V e
�n0 � w

en0 =
0�V

w

To make the problem interesting, we avoid having n0 � 0 by making the following

assumption

Assumption 1 0�V > w

nos0 = ln

�
0�V

w

�
= ��m0 + ln

�
�V

w

�
The second term of nos0 is just the amount of labor the �rm would hire if the �nal income

is �V and it received no help from the community. Given that the amount m0 of UDs

participating in OS the �rm perfectly o¤sets this help. Assumption 1 could be rearranged

as

9

m0 <
1

�
ln

�
�V

w

�
In words, we are ruling out that the help provided by the community, although it might

be signi�cant, can never be such that the �rm has a passive role while the whole developing

e¤ort comes from the community.8

The probability that the code advances will be given by

�(nos0) =
�
1� 0e� ln(

0�V
w)

�
=

�
1� w

�V

�
so the expected pro�t under OS development will be

�os0 =
�
1� w

�V

�
�V � w ln

�
0�V

w

�
= �V � w

�
1 + ln

�
0�V

w

��
= �V � w (1 + nos0)

The pro�t maximization problem under PS is:

max
n0
�0 = (1� e�n0)V � wn0

which yields the following results

nps0 = ln

�
V

w

�
�(nps0) =

�
1� w

V

�
�ps0 = V � w (1 + nps0)

At this point, some observations should be pointed out.

8This assumption seems reasonable since the "sponsor" �rm usually has an active role in spinout projects.

10

Proposition 1 The �rm E hires a lower amount of programmers n under OS

Comparing nos0 with n
ps
0 we can see where does this reduction comes from. First because

the revenue the �rm gets at the �nal stage is now lower (�VA instead of VA). Second, there

is a substitution e¤ect: the �rms perfectly o¤sets the help m0 from the community of UD.

Proposition 2 Under the assumption 1, the overall probability of obtaining the software S

is smaller under OS.

Since �rm E perfectly o¤sets the amount of help provided by the UDs, the smaller

probability comes exclusively from the lower revenue at the �nal stage (�) that reduces the

labor provision of the �rm.

An interesting policy observation steams from this proposition: Although EU might face

lower software expenditures with OS, the probability that the software is obtained is lower.

Therefore EU might end up worse under OS development compared with PS development.

If the weight of EU is su¢ ciently high, they might o¤set any welfare gain from the �rm and

the UDs, so PS development might be socially desirable.

OS will outperform PS if

w (nps0 � nos0) > (1� �)V

ln

�
V

w

�
� ln

�
0�V

w

�
>

(1� �)V
w

ln

�
V

w

�
� ln

�
e��m0�V

w

�
>

(1� �)V
w

m0 = G(
S

�
)M >

1

�

�
(1� �)V

w
+ ln �

�
= em

Notice that the threshold value em depends positively on the income di¤erence in terms

of wage between OS and PS : �V���V
w

: If this di¤erence is small (� ! 1; w " or V #) the

�rm will be willing to switch to OS development even for low values of community help.

11

In the same fashion, em depends negatively � or in other words is negatively related to the

individual probability of success q: If each individual is more successful, the �rm will be

willing to switch to OS even for low values of help. Recall also that if the net utility UDs

derive in OS is high (S " or � #) and if M is high, m0 will be large and this increases the

chances that OS outperforms PS development.

Proposition 3 OS development will outperform PS development if the amount of individ-

uals provided by the community m0 exceeds the threshold value em: Signs @m0

@�
< 0; @m0

@S
> 0;

@m0

@M
> 0 and @ em

@�
< 0; @ em

@V
> 0; @ em

@w
< 0; @ em

@�
< 0 are obtained under assumption 1.

4 Adding stages

When there are only two stages, the development (one stage) could only be made under OS

or PS. However if we add stages the �rm might be willing to switch from one to the other. In

general OS licences in order to foster collaboration and adoption they usually forbid the code

owner to make the code proprietary in the future. Therefore we are reasonably assuming

that this is not a possibility in our model. However we can allow the �rm to start the project

as PS and then switch to OS development. A natural question is wether this is optimal for

the �rm or not

Proposition 4 The �rm will never �nd pro�table to start as PS and then turn to the OS

development

This is a natural result from our modeling setup. A project that starts as OS versus one

that starts as PS and then changes to OS will have the same �nal income but the later will

have higher developing costs. A simple way to illustrate this is to analyze the three stage

case (C0 must advance to C1 and then to C2 where S is obtained). The two developing

stages could be done as OS or alternatively the �rst one as PS and the second one as OS.

For both cases the problem at the �nal stage is the same:

12

max
n1
�1 = (1� e�n11)�V � wn1

The optimal n for both cases is given by nos1 = ��m1 + ln
�
�V
w

�
: The expected pro�t is:

�os1 = �V � w (1 + nos1) :

In the �rst stage the problem di¤ers. If the �rm develops OS the problem is:

max
n0
�0 = (1� e�n00)�os1 � wn0

The optimal n is nos0 = ��m0+ ln
�
�os1
w

�
: Recall that mj = G(

S
�j
)M . Since �0 > �1 and

G(:) is an increasing function then m0 < m1: So

�os0 = �
os
1 � w(1 + nos0):

If the �rm develops the �rst step as PS then the problem is

max
n0
�0 = (1� e�n0)�os1 � wn0

The optimal n is nps0 = ln
�
�os1
w

�
:So:

�ps0 = �
os
1 � w(1 + n

ps
0):

Since nps0 > n
os
0 then �

ps
0 < �

os
0 :

Because OS development produces less �nal income, the whole point in choosing OS is

to save on developing cost. Therefore the �rm always values the help m provided by the OS

community. A key element in this analysis is that this m is decided at each period and does

not depend on the history or the future of the project since the UD�s opportunity cost is 0.

Another thing to notice is that for PS or OS development it is always the case that

�j < �j+1. Then if we compute at any j�1 the di¤erence between PS and OS we have that

�psj�1 � �osj�1 = �
ps
j � �osj + w(nosj�1 � n

ps
j�1)

so

13

�psj�1 � �osj�1 = �
ps
j � �osj + w

�
ln

�
j�1

�osj
�psj

��
From this expression we can see that, since j�1 = e

��mj�1 < 1; the di¤erence between

�psj�1 � �osj�1 if positive, is reduced as we move to stage 0. Therefore

Proposition 5 Given two projects with the same �nal V , if one of them has more stages

than the other it is more likely that OS development will outperform PS development, if the

pool of UD is su¢ ciently high.

Therefore, controlling for V , we would tend to see that projects requiring long develop-

ment periods are carried out as OS.

5 Adding competition. The entry game.

The framework described above assumes that the code development is made in isolation,

however, in many cases the OS software development occurs under the competition of an

existing proprietary alternative.

To understand how a proprietary alternative can a¤ect the development of an OS alter-

native we will consider a two period entry game. We assume that a Firm I is already selling

a developed proprietary software in the market. Firm E must decide to enter or not the

market and whether to develop a software as OS or PS. To make the problem interesting we

assume that Firm I can price discriminate between sophisticated users (potential UD of a

OS alternative) and unsophisticated ones (EU). We also consider that the Firm E faces some

entry costs F . To keep the problem simple we continue to assume a two stage developing

process (i.e. C0 ! C1 and S is obtained)

5.1 Timing

The timing of the problem is as follows

14

t=0

1. Incumbent PS �rm I, decides price p charged to UDs. p is observed by Firm E and

UDs

2. Firm E decides to pay cost F to enter the market or not. If enter, E choose between

OS or PS development and hires the amount of programmers n accordingly.

3. UD�s buy �rms I software or use �rm E code (if E enters and develops OS) depending

on their programming desutility l: Depending on their decision, �rst period utility Ut=0

is realized.

t=1

Payo¤s for �rms I and E and UD�s second period utility Ut=1 are realized. Payo¤s

depend on the fact that �rm�s E code has advanced or not.

5.2 Payo¤s

The payo¤s of the di¤erent agents are as follows:

a If �rm E enters as PS and succeeds, the �nal income V is shared in the following way,

�psV goes to �rm E and (1� �ps)V to �rm I.

b If �rm E enters as OS and succeeds, we will assume that the overall income of the industry

is reduced in a proportion (1��) with (� < 1) then �os�V goes to �rmE and (1��os)�V

to �rm I. The variable � captures the idea that the competition in the EU market is

tougher under OS. Since OS development entails lower costs we will assume, to make

the problem interesting, that �psV > �os�V: Moreover, to simplify expressions we will

assume that �os = �ps = �: The parameter � is just a shortcut to the result of a market

game in t = 1:

c The utility of a UD derived at each period from buying the PS software of �rm I is:

15

U It=0

8<: S � p

0

if buy

if not

U It=1

8<: S

0

if bought in 0

if not

d The utility of UD derived from using OS of �rm E is

U ost=0

8<: S � �l

0

if use C0

if not

U ost=1

8>>><>>>:
S

S � �l

0

if code advanced

if code not advanced

otherwise

Notice that U ost=1 is the utility at period t = 1 and not the utility at stage 1 as we

considered before. Therefore at period t = 1 if the OS project has not been successful the

UD will derive stage 0 utility. Another important thing is that Firm E entry threat already

makes UDs better o¤: if �rm I faced no entry it could extract all the UD surplus by charging

the price pm = 2S; however the maximum price for which �rm I has some demand is lower

that pm since UD can always wait until t = 1 to get the software.

In particular, under OS development, if a UD with S < �l waits until t = 1 he has an

expected surplus of �osS so the maximum price I can charge at t = 0 is pmax os = 2S��osS:

If I sets p > pmax os it would face no UD demand. Since the expected UD surplus is positive

when buying I software we conclude that if E develops as OS, the whole population M of

UDs will be divided between those that adopt OS and those that buy I�s software at t = 0.

We are not de�ning a Upst=1 : if �rm E develops as PS and it is successful the software

would appear in the market at t = 1 and �rm I can always �x a price such that all UDs buy

at t = 0:Under reasonable conditions, the price that deters OS development is su¢ ciently

low such that all UDs buy at t = 0:

Having de�ned the payo¤s at t = 1; to solve the game we �rst solve the decision problem

of the UDs and �rm E optimal level of n: Finally determine the optimal level p of �rm I:

16

5.3 Determination of m

If the �rm E has entered as OS, a UD will choose it if:

S � �l + �os(S) + (1� �os)(S � �l) > 2S � p

l <
p

(2� �os)� =
bl

The UD with l = bl has desutility high enough such that he is indi¤erent between paying
or spending time on OS. The whole population of UD is divided between those with low

programming desutility l < bl that adopt the OS, and those with high desutility l > bl that
buy software from �rm I:

This implies the following amount of labor available to �rm E:

m(�os; p) = G

�
p

(2� �os)�

�
M

Since we have assumed that @G
@l
> 0 The expected signs @m

@p
> 0,@m

@�
> 0,@m

@�
< 0 are

obtained.

Proposition 6 The amount of UD help the OS project receives is increasing in the price of

the proprietary alternative, increasing in the in the probability �os of advancing to the next

step and increasing in the net utility the code provides at the developing stage.

5.4 Determination of n, � and ep
For a given amount m we can compute the optimal choice of labor nos0 by the OS �rm. To

avoid negative nos0 we need again

Assumption 2 ��V > w

17

nos0 (m) = ln

�
��V

w

�
= ln

�
e��m��V

w

�
= ��m(�; p) + ln

�
��V

w

�
for a given m and n the probability that the code advances next step is

�os =
�
1� w

��V

�
Then the probability �os does not depend on n or m itself. Therefore for a given p we

solve for m and nos0 : The pro�t of �rm E developing as OS is

�os0 (p) =
�
1� w

��V

�
��V � w ln

�
(p)��V

w

�
� F

��V � w (1 + nos0 (p))� F

If the �rm decides to develop as PS the optimal amount of labor is given by

nps0 = ln

�
�V

w

�
so

�ps =
�
1� w

�V

�
Of course, since the �rm is no longer relying on the community of UD�s, the amount of

labor it hires does not depend on the price p the �rm I charges to UD�s. Therefore PS pro�ts

will not depend on p :

18

�ps0 =
�
1� w

�V

�
�V � w ln

�
�V

w

�
� F

�V � w
�
1 + ln

�
�V

w

��
� F

�V � w (1 + nps0)� F

Notice also that �ps > �os, so competition has not a¤ected proposition 2.

Comparing �ps0 and �
os
0 (p); �rm E will prefer OS if

m0(p) >
1

�

�
(1� �)�V

w
+ ln �

�
= em

Except for � this is the same expression we found in section 3. Recall that @ em
@�
< 0; @ em

@V
>

0; @ em
@w
< 0; @ em

@�
< 0: We also have@ em

@�
> 0:

The p that makes �rm E indi¤erent between OS and PS is

m0(p) =
1

�

�
(1� �)�V

w
+ ln �

�
= em

G

�
p

(2� �os)�

�
M = em
ep = G�1

� em
M

�
(2� �os)�

From the expression above we can see that ep is positive. The expression is quite intuitive:
notice that the level ep to prevent OS will be small if the threshold level em is small compared

to the size of the UD market or, as stated before, if the income di¤erence in terms of wage

between OS and PS is small. Also ep will be small if the probability of obtaining the software
is higher or if net utility the code provides at the developing stage is smaller.

Proposition 7 If the �rm I, charges a price p � ep and the �rm E decides to enter, the code
will be developed as PS. If the �rm I charges a price p > ep and the �rm E decides to enter,

the code will be developed as OS. Signs @ep
@�
> 0; @ep

@�
> 0 and @ep

@�
< 0 are obtained.

To make the problem interesting we are going to assume that OS is a viable development

strategy. That is to say m0(p
max os) = S

�
> em:

19

5.5 Determination of p

The optimal problem of the incumbent �rm I is to decide p:The minimum price �rm I would

charge is ep: under PS development setting p further down has no e¤ect on �rm E�s pro�t

since it is not relying on UDs to develop the code. A price p < ep would only reduce �rm I 0s

pro�ts on UDs. Therefore:

Proposition 8 entry deterrence using p as an instrument is not possible if at price ep, �rm
E pro�ts �ps0 (ep) = �ps0 (ep) are positive. If F is such that �ps0 (ep) = �ps0 (ep) are negative then
pd � ep exists such that OS development is deterred.
If we de�ne eF as the level of F such that �ps0 = �os0 (ep) = 0

eF = �V � w (1 + nps0)
Then the proposition above is telling us that if F � eF �rm I is facing the choice between

inducing OS development or deterring entry. If F < eF then �rm I is facing the choice

between inducing PS or OS development. Then the pro�ts of I are given by:

If F � eF

�I

8<: �os(1� �)�V + (1� �os)V + p(1�G(p))M

V + pM

for p > ep such that E enter and chooses OS
for p � ep such that E does not enter

If F < eF

�I

8<: �os(1� �)�V + (1� �os)V + p(1�G(p))M

�ps(1� �)V + (1� �ps)V + pM

for p > ep such that E chooses OS
for p = ep such that E chooses PS

5.5.1 Case F � eF
If F � eF entry deterrence is possible, it will be optimal for �rm I to induce it if:

V + pdM > �os(1� �)�V + (1� �os)V + pnd
�
1�G(pnd)

�
M

20

Where pd denotes deterrence price and pnd no deterrence price. Notice �rst that because

�os does not depend on p, the p that maximizes the RHS comes from

max
p
p (1�G(p))M

so the F.O.C gives us

�
1�G(pnd

�
)� pnd@G(p

nd)

@p
= 0

or in terms of price elasticity

�
1�G(pnd

�
)(1 + �p) = 0

Since (1�G(p)) is positive, then the optimal pnd is such that makes �p = �1

On the other side pd is the highest price that makes �os0 (p
d) = 0: If we de�ne bm as the

level of m that yields 0 pro�t for �rm E :

bm =
1

�

�
ln

�
��V

w

�
� �

os��V � F
w

�
then pd is just:

pd = G�1
� bm
M

�
(2� �os)�

Since V > �os(1 � �)�V + (1 � �os)V; it is required for deterrence to be optimal that

pd > pnd(1�G(pnd)) and this is not always true.

If pd > pnd the condition for deterrence will hold trivially. This could happen if for

example �rm I �s UDs demand is very sensitive to price changes (@(1�G(p))
@p

) or if bm is very

high.9

It might be more interesting instead, to think on what is needed to make entry deterrence

not optimal:

9If we assume for example that G � U(0; l); then we would have: pd = l
� bm
M

�
(2 � �os)� and pnd =

l
2 (2� �

os)� so to have pd > pnd we need bm
M > 1

2 . The condition p
d > pnd(1�G(pnd)) is veri�ed if bm

M > 1
4 ;

21

V + pdM < �os(1� �)�V + (1� �os)V + pnd
�
1�G(pnd)

�
M

Again, since V > �os(1 � �)�V + (1 � �os)V , then pdM < pnd
�
1�G(pnd)

�
M must be

big enough such that the inequality is reversed. Then, not only pnd
�
1�G(pnd)

�
� pd > 0

is needed but also M should be big enough. This suggests that it might be more likely

to observe entry accommodation of a OS alternative when the market of sophisticated UD

is rather big (compared to EU) and on the contrary a more aggressive behavior should be

expected if this market is rather small.

Proposition 9 If pnd
�
1�G(pnd)

�
> pd; entry accommodation of an OS alternative is more

likely, the larger the share of sophisticated users in the market.

5.5.2 Case F < eF
Finally if entry deterrence is not possible, then �rm I must decide whether to set p = ep to
trigger PS development or set p > ep and have OS development.
PS development will be preferred if

�ps(1� �)V + (1� �ps)V + epM > �os(1� �)�V + (1� �os)V + pnd(1�G(pnd))M

or

(�ps � �os�)(1� �)V � (�ps � �os)V + (ep� pnd(1�G(pnd)))M > 0

Several trade o¤s work at the same time and might o¤set each other. First notice the

second term �(�ps��os)V : since �ps > �os; �rm I faces a lower probability of competition in

the future under OS development, and this works against inducing PS development. On the

other hand, the �rst term (�ps��os�)(1� �)V captures the fact that if OS project succeeds

it reduces industry income due to parameter �; so although less probable than PS, OS hurts

more I pro�ts. Therefore the di¤erence between PS and OS expected income on EU remains

22

undetermined. The third term captures the pro�ts on the UDs side: if ep > pnd(1 � G(pnd)
this term will work in favor of PS development. However we face a similar issue as in the

F � eF case, given that pnd is set to make �p = �1 so pnd 7 ep:
The main intuition from this section is that, despite the fact that low prices to sophis-

ticated users (compared to �nal users) by incumbent �rms might be natural due to price

elasticity, it might also hide some entry/OS development deterrence. The key point is that

the incumbent �rm by lowering the price to UDs is taking away development help provided

by the community to the OS alternative. Rather that reducing the entrant future income,

the incumbent is deterring by increasing the entrant development cost.

6 Alternative formulation

UD instead of being heterogenous in l they could di¤er in the utility they derive from the

code. The utility derived from a �nished software S is �: If the software is developed as OS,

the gross utility derived from using the code at stage j is �j� with 0 < �j < 1: If UDs have

to spend some programming time, normalized to 1, to adapt the code. Therefore the net

utility of using the code at stage j is

�j� � 1

The total amount of UD is given by M; and the fraction that has � higher than e� is
1� F (e�): The decision of a UD to participate in OS will depend on �j� compared to 1 and
to its outside option. At each stage only individuals such that � > 1

�j
will participate.

A variation on this could be that the net utility is �j�t � 1
2
t2: And t is the amount of

time the UD spends in the project. The optimal amount of time at each period would be

given by t� = �j�. Individuals with high � are those who participate more in the project,

and this participation is increasing in at each stage since �j+1� > �j�

23

6.1 Extension: Dynamics of cooperation

The alternative formulation presented before results very useful to understand the dynamics

of UDs collaboration. As we saw in the introduction of the basic framework, UDs have to

spend time to be able to use the code since it is not "�nished": it might contain "bugs" or

it might need the development of new features to be useful. Along the paper we assumed

that UDs are willing to share their code modi�cations and face no cost in doing so. Here we

propose a new perspective that adds up to the literature about motives to participate in OS

projects. We develop the idea that a UD will share his code modi�cations because if their

contributions are included in the next version of the code, then they will need to spend less

time to be able to use it.

The key ingredients that trigger collaboration are the sequential code improvement (which

makes the newer versions of the code more desirable) and the savings in programming time

to be able to use the code.

This is modeled assuming that in the next period it will be necessary to spend only �

(0 < � < 1) units of time to be able to use the code (� can be interpreted as a probability

or the fraction of what was included in the code). Contributing, however, will not be free:

it implies a desutility c (this could be interpreted for example as time spent submitting bug

�ndings or code modi�cations). To simplify the analysis we are going to assume that the

savings last one period and they are not permanent.

The utility of a UD at stage j and j + 1 is given by

U osj

8>>><>>>:
�j� � 1� c

�j� � 1

0

if use OS and contribute

if use OS and not contribute

otherwise

U osj+1

8>>><>>>:
�j+1� � �

�j+1� � 1

0

if contributed at j

if not contributed at j

otherwise

UDs will collaborate if savings are big enough

24

c 6 �(1� �)

The UD with the minimum � that will collaborate is

e� = c+ ��+ 1

�j + ��j+1

assuming the worst situation, that is a c such that c = �(1� �) then

f�w = 1

�j

�+ 1

�+
�j+1
�j

the minimum � that would use the code in a world without collaboration is just

b� > 1

�j

since �j and �j+1 2 (0; 1) and �j < �j+1 then

f�w < b�
Future cost reductions, generates that some UD with U osj < 0 engage in OS

Proposition 10 The possibility of cost reductions in the use of future stages of the code,

could imply that some UDs with current negative utility from the use of the code, participate

in OS development.

This proposition might help to explain why some UDs or �rms are attracted to collaborate

with OS projects even at very early stages where the code seems of very little use for them:

If the code progresses they expect to use it. If the future version of the code incorporates the

modi�cations they have costly shared with the community in the past, then the code will

be less costly for them to use when the moment comes (i.e. it will require less modi�cations

and maintenance or it will have less compatibility problems, etc.).

I believe that this explanation about motives to participate �ts well with MySQL and

JBoss stories. In this cases, besides bugs reports, UDs code contributions rather than being

25

focused towards the core of the program, are aimed towards extensions they manly use for

their own purposes (but that can be of use for others).

7 Related Literature

The paper that is more closely related to our way of modeling OS v.s. PS code development

is Aghion, Dewatripont and Stein (2005). Their aim is to clarify the respective advantages

and disadvantages of academic and private-sector research. As in our model an idea must

overcome a �x number of stages to become a marketable product. With their model they

determine the optimal path of academia/private sector stages the idea has to follow. While

academia�s (low focus) creative freedom implies a lower probability to advance stages, private

research higher focus is more costly. Academia research is less expensive since lower wages

paid to academic scientists re�ect their willingness to forgo earnings in exchange for academic

freedom. Their main �nding is that private sector�s "expensive" focus strategy only pays in

later-stage research.

An important source of stylized facts on OS �rms comes from Dahlander (2005). This

paper provides a multiple case study on OS �rms and the main goal is to address how OS

�rms generate returns and how that changes over time. From the six cases of small �rms

in Sweden and Finland, two of them where particularly useful to our model. One of the

cases is related to a well established "second generation" OS �rm that produces a database

software (MySQL). The second �rm exploits a webserver software solution (Roxen). Both

OS projects were started by the �rms and the software was developed using the support

of UD. Firms now make pro�ts on a combination of support services, software installation

and customization (making the software "�t the customers") and from selling licences on

complementary software. The paper stress the importance of being �rst movers and building

a signi�cantly big "community" that will help on the product development. This is closely

related to our threshold value em that makes OS development feasible.

The idea that �rms might collaborate with and bene�t from OS is not new in the OS liter-

26

ature. Schmidtke (2006) views OS phenomena as the private provision of a public good. The

model suggests that although improvements in such a non-excludable public good cannot be

appropriated, companies can bene�t indirectly from the OS "quality" in a complementary

proprietary segment. The model assumes that OS software already exist (no code develop-

ment is modeled) and the author is interested in crowding in/out form public investment

and pricing strategies on the complementary good under market entry.

The idea of competition between OS and a PS alternative has also been studied. Sen

(2005) analyses the competition game between a freely available open source software (OSS),

the commercial version of the same (OSS-SS) and a proprietary software (PS). Two dimen-

sions characterize the software: its network bene�ts and the usability. Conditions under

which PS dominates the market are analyzed and OSS-SS is not always found to hurt PS

alternative. Our model di¤ers from this one because we rather study the pricing strategy

of the PS �rm towards the UD to prevent the development of the OS alternative. Verani

(2006) builds a model were �rms compete in a di¤erentiated duopoly. Each �rm sells a good

made of two components, one of them a software. Demand depends on prices and quality of

the "software" component. If goods are substitutes, the author �nds that the investment in

"software" quality is bigger under OS due to spillover e¤ects across �rms.

There has been a signi�cant amount of literature to explain motivation of programmers

to collaborate in OS development. Dewan et. al (2005) suggest a Principal (�rm)-Agent

(programmer) model with learning. The �rm bene�ts from the programmer�s participation

in OS because he acquires skills that are useful for the �rms own project. The �rm cannot

monitor the programmers e¤ort division and too much OS attention might hurt �rms project

success. The programmer, on the other hand, wants to work in OS because it allows him

to signal his talent to other �rms and increase his wage. Spiegel (2005) also builds on a

Principal - Agent model where programmers participate on OS to signal their talent to

potential employers. In our model we point out another possible source of cooperation that

di¤ers from this literature: the dynamics of sequential code improvement and the possibility

of saving programming time in future versions of the code.

27

Finally Athey and Ellison (2006) with a di¤erent modeling strategy also focus on the

dynamics of OS. In their model, altruism and the anticipation of altruism are the key element

that triggers OS development. The rate of decay of altruism jointly with the arrival of new

programmers needs are the ingredients that govern the growth of the OS software. They also

consider the e¤ects of commercial competition on OS dynamics and they show commercial

�rms might reduce their prices to slow the growth of OS projects.

8 Conclusions

Although the model we presented here is a very stylized story of OS v.s. PS development we

believe that it gives some interesting insights on the motivation of for-pro�t �rms to start OS

projects and when this is more likely to happen. High development cost, long development

periods, low pro�ts on EU and a signi�cant population of UD are important ingredients to

trigger OS development. We also �nd that the overall success probability is lower under

OS development, this might hurt the welfare and should be taken in consideration when

doing welfare analysis. The introduction of an existing PS alternative in the model allows to

stress the importance of the UD community on the OS development. The incumbent �rm by

reducing prices charged to sophisticated users, is able to reduce the size of the community of

UD that collaborate on the OS development and in this way it can deter entry or induce the

PS development. Finally the dynamic structure of sequential code improvement provides an

alternative explanation on user - developers collaboration.

Besides the existing results we consider that this set up has a signi�cant potential for

future extensions and improvements:

� Competition between UDs can be introduced to see to which extent the code develop-

ment is a¤ected and to study the rivalry conditions that allow OS success.

� The di¤erence between UD and EU could be endogenized so the amount of EU could be

made a choice variable for the �rm (i.e.: a EU is just someone that veri�es �S� l < 0):

If the �rm�s income comes mainly from selling support to EU, and the number of EU

28

is reduced as the OS progresses, the �rm might choose not to develop the code too

much.

� Issues on Governance structure could be studied under this setting (i.e. might the �rm

�nd pro�table to forgo the control of the code development?)

9 References.

References

[1] Aghion, Philippe, Mathias Dewatripont, and Jeremy C. Stein, (2005), "Academic Free-

dom, Private-Sector Focus, and the Process of Innovation", NBER Working Paper No.

11542.

[2] Athey, S and G. Ellison (2006), "Dynamics of Open Source Movements". Working Paper.

[3] Bonaccorsi A., Rossi C., and S. Giannangeli (2004), "Adaptive entry strategies under

dominant standards. Hybrid business models in the Open Source software industry�

[4] Dahlander, L. and M. G. Magnusson (2005), "Relationships between open source soft-

ware companies and communities: Observations from Nordic �rms", Research Policy

34, pp. 481�493

[5] Dewan, Rajiv, Marshall Freimer, and Amit Mehra, (2005), "When a �rm�s employees

work on open source projects"

[6] Lerner, Josh and Jean Tirole (2002),"Some simple economics of open source" Journal

of Industrial Economics 50 no. 2, 197�234.

[7] Schmidtke, Richard, (2006), "Private Provision of a Complementary Public Good,"

Discussion Papers in Economics 964, University of Munich, Department of Economics.

29

[8] Sen, Ravi (2005). "A Strategic Analysis of Competition Between Open Source and

Proprietary Software," Industrial Organization 0510004, EconWPA.

[9] Spiegel, Yossi (2005). "The Incentive To Participate In Open Source Projects: A Sig-

naling Approach," Working Papers 05-23, NET Institute.

[10] West, J. and S. O�Mahony, (2005), "Contrasting Community Building in Sponsored and

Community Founded Open Source Projects" Proceedings of the 38th Annual Hawai�s

International Conference on System Sciences, Waikoloa, Hawaii, January 3-6, 2005.

[11] Verani, Stephane, (2006). "Open Source Development in a Di¤erentiated Duopoly,"

Economics Discussion / Working Papers 06-05, The University of Western Australia,

Department of Economics.

30

