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Abstract

I study a simple Neoclassical Growth Model with endogenous technical
change including a production externality from a fixed input, called ‘land’,
which represents the carrying capacity of the earth’s atmosphere. Land is
assumed to be congested by the use of labor and capital in production. In-
novation is induced, or cost-driven, and may be directed towards each of the
inputs to production. Optimal pricing of the fixed input will set in motion
the induced innovation engine and fostering land-augmenting technological
progress which will reduce environmental stress. The unique equilibrium of
this economy is found to be locally asymptotically stable in the numerical anal-
ysis for substitution elasticities smaller than 1. The corresponding direction of
technical change is characterized by a positive growth rate of land-augmenting
technologies and a Harrod-neutral growth path with respect to capital and la-
bor, and involves constant shares of all inputs. The share of land in output
can be interpreted as a mitigation function. A competitive economy where
land is free, instead, will fail to reach a steady state, and is therefore prone to
either environmental or industrial regress.
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1 Introduction

In recent years, the global level of attention on climate change has risen considerably,
spreading from the scientific community to policy-making and the general public.
Quoting from the 4th IPCC Synthesis Report 2007, which summarizes the agreement
reached by the nations of the world on the key findings and the uncertainties about
the issues at stakes:1

Warming of the climate system is unequivocal, as is now evident from
observations of increases in global average air and ocean temperatures,
widespread melting of snow and ice and rising global average sea level
(p. 30).

There is also a widespread consensus that greenhouse gases (GHGs) are to be as-
cribed among the causes of global warming: the concentration of CO2 (carbon
dioxide), CH4 (methane) and N2O (nitrous oxide) in the atmosphere increased as a
result of human activities, mostly because of fossil fuel use and agriculture. GHGs
accumulate in the atmosphere for very long time, and concentration of such gases
lead to warming of land and oceans, as data on global average surface temperature
and sea level display without any doubt for the more recent periods. In the words
of the 4th IPCC Synthesis Report,

There is very high confidence that the global average net effect of human
activities since 1750 has been one of warming (ibid., p. 37).

Other than melting of permanent ice packs and consequent sea rise, coastal ero-
sions, floods, climate change has important economic effects, too, as the nations
participating to the 1997 Kyoto Conference recognized in agreeing to put forward
a system of economic incentives to limit the emissions of GHGs.

Global warming is likely to display its economic consequences in the long-run,
due to geophysical time constants such as the half-life of atmospheric carbon dioxide,
so that climate change is naturally incorporated in growth models. On the other
hand, it is universally recognized that technological change is a key driving force of
economic growth in the world’s largest economies, which are also responsible . In a
world facing fundamental challenges from global warming, two important questions
for economic theory are: i) what can be the role of economic incentives on patterns
of technical change directed at reducing GHG emission or environmental stress in
general? ii) in particular, given that at each point in time the amount of resources
to allocate to R&D is limited, what should be a composition of technical progress
that will ensure economic growth and environmental preservation at once?

A framework in which the direction of technological change responds to eco-
nomic incentives appears to be appropriate to address these questions. The notion
along which this paper is centered is that of induced technical progress, that is
technological improvements developed in response to increases in production costs.
Theoretical models incorporating induced technical progress considerations have
been developed formally after the 1960s, starting with the thought-provoking con-
tribution by Kennedy [24], followed by a number of articles by some of the most
prominent scholars of the past century (Drandakis and Phelps [12], Samuelson [37],
Nordhaus [33] are only a few examples). The distinctive feature of the induced
innovation framework is Kennedy’s [24] concept of ‘Innovation Possibility Frontier’
(IPF henceforth), a reduced-form function describing the trade-off between differ-
ent types of factor-augmentation for given growth possibilities of the economy. A

1Available for download at http://www.ipcc.ch/ipccreports/index.htm.
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recent wave of interest on the bias of technical progress, stemming from the im-
portant contributions by Acemoglu [1], [2], explicitly considers the microeconomic
foundations behind the notion of an IPF. A microfoundation closer to the literature
on induced (as opposed to directed) technical change can be found in Funk [14].

This paper develops a Neoclassical model of optimal growth incorporating in-
duced innovation to provide an answer to the questions above. The production
function of the stylized economy I study features, together with capital and labor,
a fixed input of production which, following Foley [13], I will call ‘land’ and which
represents the carrying capacity of the earth’s atmosphere. Consistently with the
agreement reached by the nations participating to the IPCC, atmosphere capacity
is assumed to be congested by ‘human activities’, namely by the use of labor and
capital in production. Another fundamental assumption is that the trade-off be-
tween factor-augmenting technological change represented by Kennedy’s [24] IPF
includes land-augmenting technologies.

Optimal growth requires (shadow-) pricing of every input including land, thus
setting in motion the induced innovation engine of technical change on it. The
equilibrium path of technical change is characterized by constant input shares, a
positive growth rate of both labor and land augmentation and a zero growth rate
of capital-augmenting technical progress. In a market economy where land is free,
instead, the induced technical change mechanism is prevented from operating by
failure to price the fixed resource. In the unpriced land case, if any, land aug-
mentation will be too small, and the economy will fail to reach its steady state
progressively reducing its production possibilities. This process can be character-
ized by either one of three scenarios, according to the actual shape of the IPF: (i)
never-ending capital deepening, which in turn will produce increasing congestion
on land; (ii) steady capital accumulation but decreasing land-efficiency; (iii) indus-
trial regress taking place through progressive capital decumulation. Therefore, in
all the three contexts failure to price land is a cause of concern for a market economy.

2 The Model

2.1 Basic Assumptions and Definitions

In a simple one-sector economy, production of output requires labor, L, capital, K
and a natural resource, which we call ‘land’, representing the carrying capacity of
the earth’s atmosphere. The production possibilities of this economy are bounded
by the following function:

Y = h(θ)F (AL,BK) (1)

where θ ≡ T/F (AL,BK), T being a productivity parameter which summarizes
the current state of knowledge on land. The total amount of land available in the
economy is normalized to 1, and we assume h′ > 0, h′′ < 0. The term h(θ) in the
production function is meant to capture the ‘effects of human activities’ on climate
change, and therefore is an instantaneous counterpart to a ‘damage function’ (see
Nordhaus [35]). The idea is that the way in which capital and labor are utilized
for production purposes (described in a stylized way by F ) congest atmosphere
capacity. On the other hand, F is the typical linearly homogeneous neoclassical
production function, with A, B being positive parameters denoting respectively
the current state of knowledge on labor and capital. It is easy to check that the
production function (1) displays constant returns to scale in inputs measured in
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their respective efficiency units. Defining y ≡ Y/L, x ≡ BK
AL , the intensive form of

(1) is:

y = h(θ)Af(x) = h

(
φ

Af(x)

)
Af(x) (2)

where φ ≡ T/L. Also, if k ≡ K/L, we have x = Bk/A. The standard regularity
(Inada) conditions on f are assumed to be satisfied. Population grows exponentially
at the exogenous rate n. There is no public sector: aggregate demand will equal
consumption plus investment. Denoting by δ the ‘radioactive’, exogenous depreci-
ation rate, the accumulation equation is K̇ = sY − δK, where s is the propensity
to save. From what above, accumulation of capital per worker follows the law of
motion:

k̇ = sh(θ)Af(x)− (δ + n)k (3)

Productive factors are paid their marginal product. Following Foley [13], let
us distinguish the case of a market economy not pricing land from the case of a
planned economy in which the land externality is accounted for. If land is not
priced, the land share in output will be zero (although the elasticity of output with
respect to land will not), and the production share in output will equal 1. The
capital share in the market economy is f ′(x)

f(x) x, and the market labor share is given

by f(x)−f ′(x)
f(x) x ≡ ω(x). Also, the elasticity of substitution between capital and labor

in f is defined as:

σ ≡ −f
′(x)[f(x)− xf ′(x)]
xf(x)f ′′(x)

(4)

Conversely, denote the land share in the planned economy as ∂Y/∂T
Y T = h′(θ)

h(θ) θ ≡
λ(θ). In this case, the capital share will be [xf ′(x)/f(x)][h(θ) − θh′(θ)]/h(θ) =
(1 − ω(x))(1 − λ(θ)), and the labor share will equal ω(x)(1 − λ(θ)). Hence, the
production share in the planned economy will be 1 − λ(θ). It is worth observing
that what I call ‘land share’ is comparable to what is traditionally referred to
as ‘mitigation’ in the climate change literature, as for instance in Nordhaus [35].
Symmetrically, we define:

η ≡ −h
′(θ)[h(θ)− θh′(θ)]
θh(θ)h′′(θ)

(5)

Finally, we extend the traditional framework of induced innovation by assum-
ing that at each moment in time the growth rates of labor-, land- and capital-
augmenting technical change are related by a three-dimensional version of Kennedy’s
[1964] IPF. Denoting Ȧ

A ≡ α,
Ṫ
T ≡ τ , ḂB ≡ β, (α, τ, β) ∈ Υ ⊂ R3, the IPF written in

explicit form is :

β = g(α, τ), with ∇g < 0, D2g negative definite (6)

and we assume, following Drandakis and Phelps [12], that there exist 0 < ᾱ <
∞, 0 < τ̄ <∞ such that g(ᾱ, τ̄) = −∞, so that the frontier is allowed to cross the
axes and take values below zero for finite values of its arguments.

The induced innovation theorists of the ’60s and ’70s utilized a functional speci-
fication of the kind β = g(α), thus imposing that land-augmenting technical change
doesn’t enter the trade-off between factor-augmenting improvements. The inclusion
of τ in the domain of the IPF, together with the form of the production function
(1), are the building blocks of the analysis carried in this paper.
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2.2 Optimal Direction of Technical Change

Let us start with the problem of allocating the given growth possibilities of the
economy into different factor-augmenting technologies, similarly to the models by
Kennedy [24], Drandakis and Phelps [12], Samuelson [37]. The analysis, which ex-
tends the framework by Nordhaus [33] is notationally simpler than that including
the choice of optimal rate of technical change, and thus leads to an easier under-
standing of the implications arising from the assumptions made on technology for
the patterns of technical change and income distribution arising when the congestion
effects of human activities on atmosphere are optimally accounted for.

Consider a representative agent willing to maximize the present discounted value
of consumption per capita over an infinite horizon taking into account the external-
ity from the fixed input. It is convenient for our purposes to use the savings rate
instead of consumption per capita as a control variable. On the other hand, the
frontier (6) describes the trade-off in allocating the given growth rate of technologi-
cal progress in different factor-augmenting improvements, so that the other control
variable in the problem are α and τ . Hence, the planning authority solves:

Choose s, α, τ to maximize V (0) =
∫ ∞

0

e−ρt
[
(1− s)h(θ)Af

(
Bk

A

)]
dt

subject to k̇ = sh(θ)Af(x)− (δ + n)k
Ḃ = g(α, τ)B
Ȧ = αA

Ṫ = τT

(7)

Also, the initial conditions

A(0) = A0, B(0) = B0, T (0) = T0, k(0) = k0 given (8)

must be fulfilled, together with non-negativity of the shadow-prices pi(t) ≥ 0 ∀t,∀i =
1, . . . , 4, and the transversality conditions, which we state in terms of the shadow-
prices given that our problem has a free-end point:2

lim
t→∞

e−ρtp1(t) = lim
t→∞

e−(ρ−αss)tp2(t) = lim
t→∞

e−ρtp3(t) = lim
t→∞

e−ρtp4(t) = 0 (9)

from which ρ > αss must hold for any positive value of p2(t). The associated
Hamiltonian is:

H = e−ρt
{

(1− s)h
(

φ
Af(BkA )

)
Af
(
Bk
A

)
+ p1

[
sh
(

φ
Af(BkA )

)
Af
(
Bk
A

)
− (δ + n)k

]}
+e−ρt {p2e

αsstg(α, τ)B + p3αA+ p4τT}
(10)

where αss denotes the steady state value for the growth rate of labor augmentation.3

The first order necessary conditions for an ordinary maximum of the Hamiltonian
are:

∂H
∂s

= (p1 − 1)Ah(θ)f(x) = 0 (11)

∂H
∂α

= p2e
αsstBgα + p3A = 0 (12)

∂H
∂τ

= p2e
αsstBgτ + p4T = 0 (13)

2See Sethi and Thompson [38], p.75 for a taxonomy of terminal conditions for a broad class of
models.

3Observe that the adjoint variable for Ḃ is assumed to be p2eαsst, so that the paper compares
directly with the analysis in Nordhaus [33].
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and are also sufficient because of strict concavity of g with respect of both α, τ
and the fact that ∂2H/∂s2 = 0. Also, recall that even if in principle B is allowed
to grow exponentially, we are not maximizing over B but on what makes it grow,
and our assumptions on the production function and the IPF are enough to ensure
concavity. On the other hand, the necessary conditions for optimality are existence
of continuous function pi(t), i = 1, . . . , 4 such that, denoting γ ≡ 1− s(1− p1):

ρp1 − ṗ1 = γBf ′(x)[h(θ)− θh′(θ)]− (δ + n)p1 (14)
(ρ− αss)p2 − ṗ2 = γe−αsstkf ′(x)[h(θ)− θh′(θ)] + g(α, τ)p2 (15)

ρp3 − ṗ3 = γ[h(θ)− θh′(θ)][f(x)− f ′(x)x] + αp3 (16)

ρp4 − ṗ4 = γ
h′(θ)
L

+ τp4 (17)

Since the constraint set is convex, for f, h, g being strictly concave and the other
state variables being described by linear functions, the above equations together
with the transversality conditions are also sufficient to characterize the optimal
path.

2.2.1 Steady State

Equations (8)-(17) describe a system of necessary and sufficient conditions for op-
timality of the program (7) whose long-run solution we are interested in. One way
to find such solution, followed by Nordhaus [33], is to note that at a steady state all
shadow-prices must be constant. Using the resulting equilibrium values of the ad-
joint variables, we are able to solve for the long-run quantities we are interested in,
that is the effective capital-labor ratio x, the effective land θ, and the growth rates of
labor-augmenting and land-augmenting technical change. Setting all shadow-prices
constant, and noting that at an equilibrium p1 = 1 = γ from (11), we obtain:

Bf ′(x) =
(ρ+ δ + n)
h(θ)− θh′(θ)

=
(ρ+ δ + n)

[1− λ(θ)]h(θ)
(18)

p2 =
A[h(θ)− θh′(θ)]xf ′(x)
B[ρ− αss − g(α, τ)]

e−αsst =
A[1− λ(θ)]h(θ)[1− ω(x)]f(x)

B[ρ− αss − g(α, τ)]
e−αsst (19)

p3 =
[h(θ)− θh′(θ)][f(x)− f ′(x)x]

ρ− α
=

[1− λ(θ)]h(θ)ω(x)f(x)
ρ− α

(20)

p4 =
h′(θ)

(ρ− τ)L
(21)

It is first useful to derive an equation of motion for θ. Logarithmic differentiation
of φ

Af(x) yields:
θ̇
θ =

(
φ̇
φ −

Ȧ
A −

xf ′(x)
f(x)

ẋ
x

)
=
{

(τ − α− n)− [1− ω(x)] ẋx
} (22)

This equation is important in the present model. It tells that the only force pre-
venting the stock of effective land from deteriorating because of human activities is
land-augmenting technical progress.

The next step is to find a dynamic equation for x. Because p1 = 1 always along
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an optimal control, we can differentiate totally with respect to time (18) to derive:

Ḃf ′(x) +Bf ′′(x)ẋ = ρ+δ+n
(1−λ)2h2 [λ′h− h′(1− λ)] θ̇

= Bf ′(x)
[
λ′

1−λ −
h′

h

]
θ̇

= Bf ′(x)
[
η−1
η

λ
θ −

λ
θ

]
θ̇

= −Bf ′(x)λη
θ̇
θ

Divide both sides by Bf ′(x), multiply and divide the second addendum in the LHS
of the last equation by xf(x)

f(x)−xf ′(x) , and use (4) to get:

Ḃ

B
− ω

σ

ẋ

x
= −λ

η

θ̇

θ

Substituting (22) and solving for ẋ/x, we obtain the law of motion for the effective
capital-labor ratio:

ẋ

x
=

ησ

ηω(x) + σ[1− ω(x)]λ(θ)

[
g(α, τ)− λ(θ)

η
(α+ n− τ)

]
(23)

where it is understood that η, λ are functions of θ and σ, ω depend on x.
Evaluation of (15) and (16) at constant shadow-prices and substitution in (12)

yields the optimal direction of labor-augmenting technical change:

− gα =
ω(x)

1− ω(x)

[
ρ− αss − g(αss, τss)

ρ− αss

]
(24)

Whereas, inserting the equilibrium values (19) and (21) into (13) yields the optimal
direction of land augmentation:

− gτ =
λ(θ)

1− λ(θ)
1

1− ω(x)

[
ρ− αss − g(αss, τss)

ρ− τss

]
(25)

From which it is apparent that when land is not priced gτ = 0 as in the model
without land.

We are now able to characterize the steady state of this model. Since in steady
state ẋ/x = 0, τss = αss + n in (22). Hence, g(αss, τss) = 0. Summarizing, a
long-run equilibrium of our system is:

τss = αss + n (26)
g(αss, τss) = βss = 0 (27)

−gα,ss =
ω(xss)

1− ω(xss)
(28)

λ(θss)
1− λ(θss)

= −gτ,ss[1− ω(xss)]
(
ρ− αss − n
ρ− αss

)
(29)

where the last equation is solved for the ratio λ/(1 − λ) for comparative statics
purposes, and requires as an additional condition that ρ > αss − n = τss. As the
battery of equations above shows, at the long-run equilibrium, there is no growth in
capital-augmenting technologies, and a constant growth rate of labor-augmenting
technological progress, meaning that technical change is Harrod-neutral with respect
to capital and labor. Also, the long-run equilibrium involves the constancy of factor
shares, once θss and xss are pinned down by equations (28) and (29).

7



The long-run equilibrium described by equations (26)-(29) exists and is unique
for σ 6= 1∩η 6= 1, paralleling what shown by the cited authors. In fact, when either of
the substitution elasticities equals one, the innovation possibility frontier is not able
to pin down the ratio of factor shares, for it is only the form of the (Cobb-Douglas, in
this case) production function determining the factor distribution of income. When
σ 6= 1, instead, ω(x) ∈ [0, 1] and ω(x)/(1 − ω(x)) ∈ [0,∞). Similarly, for η 6= 1,
λ(θ) ∈ [0, 1] and λ(θ)/(1− λ(θ)) ∈ [0,∞). Observe also that, since (26) is sufficient
to determine the equilibrium rate of land augmentation given (28), the role of (29)
is to pin down the equilibrium value of θ.

The optimal direction of land-augmenting technical progress resulting from this
model compares interestingly to the results in Foley [13]. In his paper, he expands
on Kennedy’s result assuming that the growth rate of land-augmenting technologies
is a function of the land share only. If we increase the dimensionality of IPF,
instead, we see that (i) land augmentation depends negatively on the capital share
and thus positively on the labor share, and (ii) the direction of land augmentation
relates positively on both the rate of labor-augmenting technical progress and on
population growth rate. Hence, being the direction of land-augmenting technical
change derived in an optimizing framework, it will display important feedback effects
from the other endogenous and exogenous variables of the model, which were ruled
out by assumption in the previous treatments of the subject.

We can also compute the optimal long-run savings rate for the planned economy.
Since ẋ

x =
(
Ḃ
B + k̇

k −
Ȧ
A

)
= 0, we have:

g(αss, τss) +
sBh(θ)f(xss)

xss
− (δ + n)− αss = 0

so that, using (18):

sss = [1− ω(xss)][1− λ(θss)]
(
αss + δ + n

ρ+ δ + n

)
(30)

The optimal savings rate is always less than 1, for ρ > αss from the transversality
conditions. The savings rate of the benchmark model with no land is easily obtained
setting λ = 0.

2.3 The Dynamical System

The solution approach we adopted above amounts to find a long-run equilibrium of
the system as values for the variables of interest that ensure constant shadow-prices
of all the state variables. This method has the disadvantage of being silent of what
happens out of equilibrium.

On the other hand, a closer look at the sufficient conditions for a maximum of
(10) reveals that we can exploit (11) on the one hand, and make use of the IPF
and of its relative shadow-price on the other, to end up in a fully determined 4-
dimensional system in two state variables, θ, x, and two control variables, α, τ . In
order to do so, we proceed as it is usually done in standard courses on growth theory
in ‘eliminating’ the adjoint variables of the Hamiltonian by repeated substitutions,
so that we can focus on the behavior of the control variables and state variables
only.

Let us start in standard fashion by totally differentiating (12) with respect to
time:

ṗ2e
αsstBgα + αp2e

αsstBgα + p2e
αsstḂgα + p2e

αsstBgααα̇ = −ṗ3A− p3Ȧ

8



Using (12) and (15), we have, rearranging:

eαsstBgα

[
(ρ− αss)p2 −

A

B
e−αsst(1− ω(x)f(x)(1− λ(θ)h(θ)

]
+p2e

αsstBgααα̇ = −ṗ3A

Making use of (16), and then of (12) again, we obtain:

eαsstBgα

[
(ρ− αss)p2 −

A

B
e−αsst[1− ω(x)]f(x)[1− λ(θ)]h(θ)

]
+ p2e

αsstBgααα̇

= A(1− λ(θ)h(θ)ω(x)f(x) + (ρ− α)p2e
αsstBgα

We can now harmlessly substitute (19) in the previous equation. Simplifying, we
obtain:

1
ρ− αss − g(α, τ)

gααα̇[1− ω(x)] = ω(x) +
ρ− α

ρ− αss − g(α, τ)
gα[1− ω(x)]

from which, finally:

α̇ =
1
gαα

{
gα(ρ− α) +

ω(x)
1− ω(x)

[ρ− αss − g(α, τ)]
}

(31)

Similar calculations lead to:

τ̇ =
1
gττ

{
gτ (ρ− τ) +

λ(θ)
1− λ(θ)

1
1− ω(x)

[ρ− αss − g(α, τ)]
}

(32)

It is obvious that equations (31) and (32) alone have the same equilibrium values
as (24) and (25), and yield the same long-run equilibrium we found above when
considered together with (22) and (23).

Summing up, we have derived a dynamical system formed by (22), (23), (31)
and (32). We can now study the local stability properties of this system.

2.4 Stability Analysis

I now study the behavior of the dynamical system above in a neighborhood of its
steady state. I will consider the following three cases: (i) competitive economy
without land; (ii) competitive economy with unpriced land, and (iii) competitive
economy pricing land. Although the first case is not immediately relevant for the
purposes of this paper, it is of interest in itself because Nordhaus [33], who first
studied the model without land, did not provide an analysis of the solution paths
outside the equilibrium. This special case is also interesting because it is simple
enough to be studied analytically.

2.4.1 Competitive Economy without Land Constraint on Production

Suppose for a moment that land poses no limits to production anymore. That is,
suppose to scrap the externality altogether in order to study the simplest scenario
arising in the special case where h(θ) = 1, θ̇/θ = 0 always. A reason for studying
such special case might be a strong prior on atmosphere carrying capacity as a
non-scarce factor, or disagreement on the conclusions about the relation between
human activities and environmental stress reached by the IPCC.4 In this simple

4The expression ‘very high confidence’ in the quotation in the introduction means that 9/10 of
the IPCC members agreed on the sentence. We may think about the remaining 10% of the panel
engaging in solving the special case exercise.
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case, the dynamics of our system take place in the two-dimensional plane (x, α). The
nontrivial rest point of this economy is −gα = ω(xss)

1−ω(xss)
, g(αss) = 0 which ensures

constancy of the effective capital-labor ratio. The Jacobian matrix evaluated at the
steady state is:

JNordhaus,ss =

 0 − σ(xss)
1−ω(xss)

xss

1
gαα

(
1−σ
σ

) [ ω(xss)
(1−ω(xss))xss

]
ρ− αss + 1

gαα

(
ω(xss)

1−ω(xss)

)2


The determinant is finite and negative if and only if σ ∈ (0, 1) and positive if σ > 1,
for gαα < 0. Thus, if 0 < σ < 1 the two eigenvalues are of opposite sign, and the
so-called Harrod equilibrium5 is saddle-path stable. Conversely, when σ > 1, we
need to look at the trace of the matrix, too. A necessary and sufficient condition
for the trace to be negative is:

− gαα >
1

ρ− αss

(
ω(xss)

1− ω(xss)

)2

(33)

If this is the case, under σ > 1 both eigenvalues are of equal sign and sum up to
a negative number: the long-run equilibrium is stable. Conversely, if the inequal-
ity has the wrong sign, both eigenvalues are positive and the system is unstable.
Therefore, the term in the RHS of the inequality (33) acts as a bifurcation param-
eter of the two-dimensional version of our system, provided that labor and capital
are gross-substitutes in the production function.6 The inequality (33) says that,
even when σ > 1, the system may be stable or unstable according to how concave
is Kennedy’s IPF. It is important to point out, however, that there is very little
empirical evidence supporting a substitution elasticity between capital and labor
greater than 1. I will briefly survey this evidence in describing the calibration and
simulation exercise I carry in the general four-dimensional case. In light of such
evidence, the analysis of the case σ > 1 is included only for completeness.

These new findings on the model pair interestingly with the earlier result that, if
σ < 1, an economy that remains in the Harrod equilibrium maximizes the preference
functional (10), whereas the Harrod equilibrium is not the optimal path if σ > 1.7

Thus, our simple economy either has an optimal saddle-path stable equilibrium as in
the typical Neoclassical Growth Model, or a potentially unstable equilibrium that,
however, does not maximize the preference functional (10), and it is not grounded
in the available evidence on capital-labor substitution.8 Of course, when σ = 1 an
equilibrium with a role for the IPF doesn’t exist in this model, so that it is needless
to study its properties.

[Figure 1 about here]

Figure 1 displays the results of a simulation round over 200 periods of the model
without land under the following calibration: g(α) = q − a

να
ν , q = .02, ν = 2,

and a being calibrated internally so as to solve g(α) = 0. The discount rate is set

5See Nordhaus [33].
6In defining productive inputs as gross-substitutes if the elasticity of substitution is greater

than 1, I follow Acemoglu [1].
7See Nordhaus [33] for a proof.
8Drandakis and Phelps [12] studied a dynamical system without land in the plane (K, 1 − ω),

and found that the system is stable or unstable according to σ being less than or greater than
one respectively. The same result holds true in the Classical scenario without a land constraint
studied as a special case in Foley [13].
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exogenously at ρ = .05, equal to the depreciation rate, the population growth rate
n = .02 and the elasticity of substitution equals 1/2. The endogenous variable x
is set as to solve ω(xss) = 2/3, which is roughly the observed labor share in total
output in advanced market economies.9

2.4.2 Competitive Economy where Land is Unpriced

Consider a market economy (whose relative variables are denoted by the subscript
M) where land is not priced. In this case, −gαM = ω/(1− ω), but gτM = 0. This
is easily seen from the fact that the land share is zero, although the (negative of
the) elasticity of output with respect to land is not. Equivalently, p4 = 0 in the
market economy not pricing land, so that equation 13 implies gτ M = 0. Because of
our assumptions on the IPF,

−g−1
τM (0) < −g−1

τ

[
λ(θss)

1− λ(θss)
1

1− ω(xss)

(
ρ− αss

ρ− αss − n

)]
Hence, g−1

τM (0) = τM < αss + n, so that g(α, τM ) > 0. Depending on the actual
shape of the IPF, and provided that σ, η > 0, three cases may arise, but a steady
state is never reached in any of them. Hence, there is no need for the study of the
Jacobian matrix. The three possible scenarios are:

1. ẋ/x > 0 (Overaccumulation Catastrophe). From (23), we see that this case
occurs when g(α,τM )

α+n−τM > λ(θ)
η . The effective capital-labor ratio fails to reach

its steady state value, and grows forever at a strictly positive rate, as long as
σ, η > 0 (recall that although land is not priced the elasticity of output with
respect to land is never zero in this model). Failure to price land completely
overthrows the ability of an elasticity of substitution smaller than one to hold
back capital deepening, contrary to the typical feature of the early models
of induced innovation without externalities.10 As a consequence, θ̇/θ doesn’t
reach its steady state either and keeps growing at a negative rate, so that
land becomes increasingly congested reducing the production possibilities of
the economy. Output will inevitably tend to zero, due to the destructive in-
terplay of diminishing productivity of x in f and increasingly negative impact
of θ on h (recall that h′′ < 0).
Hence, the unpriced land scenario in this model is as hopeless as the correspon-
dent case in the Classical model by Foley [13]. The same forces of endlessly
increasing capital deepening that determine an always rising effective capital-
labor ratio are at work here, and their effect is enhanced by the congestion
externality on land. As a result, the market capital share rises depressing the
labor share. But the higher the capital share, the worse the impact of a rising
x on output per worker, as it is easily seen by differentiating y with respect
to x when land congestion is taken into account:

∂y

∂x
= Ah(θ)f ′(x)−Ah′(θ)(1− ω)f(x)

9Given that we are dealing with a two-point boundary value problem with a saddle-path stable
equilibrium, in order to compute the solution I specified an initial condition for the state variable x
and a terminal condition for the control variable α. Standard duality arguments guarantee that the
terminal condtion on α is equivalent to a terminal condition on p2. As expected, the eigenvalues
of the Jacobian matrix, evaluated numerically at several points along the optimal trajectories, are
of opposite sign. The software used for simulations is Mathematica 6, and the code is available
from the author upon request.

10This is just another way of saying that an equilibrium with induced innovation involves a
constant capital-labor ratio, and this condition will not be met in this case.
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If the effective capital-effective labor ratio keeps growing without reaching its
steady state value, the inability of a market economy to price land triggers all
forces driving technical progress to work in the wrong direction.

2. ẋ/x = 0 (Environmental Decline with Steady Capital Accumulation). The
effective capital-labor ratio is constant, but θ fails to reach a steady state,
shrinking forever toward zero. Induced technical change succeeds in holding
back capital deepening, but land augmentation is not enough to overcome the
congestion effect of production on land. The eventual state of zero production,
however, is reached at a slower pace than in the previous case, given that there
is no overaccumulation.

3. ẋ/x < 0 (Capital Decumulation). The forces at work (and the inequality dis-
cussed) in case 1 are reversed: capital decumulates forever, and land becomes
less and less congested without any need of land augmentation.11 At lower
levels of output, the effective capital-labor ratio becomes more productive,
but decreasing returns to effective land are also at work in lowering the im-
pact of diminishing factor intensity on production. Capital accumulation, and
output as a consequence, keeps tending to but never reaches zero because of
the Inada condition f ′(0) =∞ which rules out the option of not undertaking
production on the basis of economic convenience.12

We conclude that failure to price land is never harmless on a market economy. In
particular, case 2 must not be underestimated, in what it leads to a state of the
world similar to case 1 without sharing with the latter its evident catastrophic signs.

2.4.3 Competitive Economy where Land is Priced: Numerical Analysis

In this section, I analyze the stability properties of the full model numerically. From
a calibration standpoint, the moments of the endogenous variables to match are:
i) a long-run growth rate of labor productivity roughly equal to 2%; ii) a roughly
constant capital productivity; iii) a labor share of about 2/3 of output. Parameters
exogenously given to the model will be the discount rate ρ, the depreciation rate δ,
and the population growth rate n. The depreciation rate is assumed to be 5% per
period, and the population growth rate to equal 2% per period, both in standard
fashion in the macro literature. As for the discount rate, we need to assume ρ to be
big enough to ensure a positive and finite share of land in output.13 In particular,
the calibration of the discount rate must satisfy ρ > αss + n. Hence, for these
simulation rounds, I set ρ = .05.

The next step is to assume a functional form and calibrate the IPF. In what
above, I only required the function to be decreasing and concave in both α, τ . The
easiest specification one can think of is an exponential one:

g(α, β) = q − a

ν
(α+ β)ν

Under a quadratic exponent ν, the parameters a, q can be easily calibrated inter-
nally. In fact, observation of (28) reveals that the LHS of the equation doesn’t

11An issue not considered here is that, if idle machines cannot be destroyed completely, disposal
of capital in the environment may be a cause of land congestion, or more generally an environmental
threat too, as are for instance idle nuclear plants.

12Such feature refers to an elasticity of substitution smaller than 1.
13This follows from the assumed risk-neutrality in the utility function.
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depend on the intercept q. Evaluating the equation at (αss, τss) = (.02, .04)14 and
solving for a yields a = 33.333. Using this value, we can then set q so as to solve
g(αss, τss) = 0, which returns q = .06.

Finally, we need to assign values to the substitution elasticities σ, η. The vast
literature on estimation of the elasticity of substitution between capital and labor
is far from conclusive, but most of the articles on the subject suggest that the ag-
gregate elasticity of substitution is significantly less than 1.15 Nadiri [31], Nerlove
[32] and Hamermesh [20] survey a range of early estimates of the elasticity of sub-
stitution, which are generally between 0.3 and 0.7. David and Van de Klundert
[11] provide an estimate of σ to be in the neighborhood of 0.3. Using the translog
production function, Griffin and Gregory [16] estimate elasticities of substitution
for nine OECD economies between 0.06 and 0.52. Berndt [4], on the other hand,
finds an estimate of the elasticity of substitution equal to 1, but does not control
for a time trend, creating a strong bias towards 1. Using more recent data, and
various different specifications, Krusell, Ohanian, Rios-Rull, and Violante [19] and
Antras [3] also find estimates of the elasticity significantly less than 1. Estimates
implied by the response of investment to the user cost of capital also typically yield
an elasticity of substitution between capital and labor significantly less than 1 (see,
e.g., Chirinko [8], Chirinko, Fazzari and Mayer [9] and [10], or Mairesse, Hall and
Mulkay [27]).

Assigning a value of .5 to the elasticity of substitution σ seems a fairly appro-
priate average of the estimation results surveyed above. On the other hand, an
estimate of the substitution elasticity between effective land and f is not only not
available but also in principle problematic to obtain. To break ties, I follow Foley
[13] in assuming η = σ, and as a robustness exercise I evaluate solutions for these
elasticities equal to 0.3, 0.5, 0.7, which imply steady a sequence of steady-state
values {(xss,i, θss,i)}3i=1 equal to {(1.35, 1.9), (2, 4.5), (5.04, 33.43)} respectively.16

[Figure 2 about here]

The Jacobian matrix, evaluated numerically, has four distinct eigenvalues inside
the unit circle, and therefore the equilibrium is locally stable. The simulation round
displayed in Figure 2 show that the model converges fairly quickly to its balanced
growth path. Given our calibration, labor augmentation settles onto a 2% growth
rate, land augmentation grows at 4%, and the labor share converges to a long-run
value of 2/3 of F . The land share stabilizes around 18% of total output, which
is fairly high compared to the results on mitigation appearing, for instance, in the
DICE model by Nordhaus [35]. The reason of this discrepancy has to be found in
the requirement on the discount rate. Typically, models of climate change assume
exogenous technical change, and for simulation purposes calibrate the discount rate
very low compared to macroeconomic growth models. Here, the discount rate has to
be set fairly high for consistency reasons: one the one hand, the use of the Maximum

14The calibration of τss follows from (26).
15The following survey closely follows Acemoglu [2].
16The simulation round for the full model depicted in Figure 2 is obtained by taking a discrete-

time approximation of the system. As it is clear from a close look at the dynamical system, this
approximation is harmless. The system is solved in Mathematica using the function ‘FindRoot’.
Due to the two point-boundary nature of the problem, initial conditions are given for the state
variables x, θ and terminal conditions for the variables α, τ . Standard duality arguments guarantee
that a terminal condition on the control variables is equivalent to a terminal condition on the
adjoint variables. On the other hand, as a consistency check on the optimality of the solutions, I
computed equilibrium paths assigning different values to the terminal t, up to 2000 periods, and
find that the solution for the first 200 periods is not sensitive to the choice of the terminal horizon.
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Principle to solve the planner’s problem requires ρ > αss. On the other hand, we
want the land share/mitigation to be positive and finite, which in turns imposes
ρ > αss + n.

2.5 Comparison of Growth Paths

The growth rate of the economy pricing land at a balanced growth path will be
given by:

ẏ
y = h′(θ)

h(θ) θ
(
φ̇
φ −

Ȧ
A −

xf ′(x)
f(x)

ẋ
x

)
+ Ȧ

A + xf ′(x)
f(x)

ẋ
x

= λ(θss)(τss − n− αss) + αss
= αss

(34)

On the other hand, a competitive economy with no externality from land grows at
the warranted rate αss + n. Finally, a competitive economy in the unpriced land
case will grow at the (unbalanced) rate:

˙yM
y

= λ

(
η + (1− λ)

η

)
(τ−α−n)+α+

ησ

ηω(x) + σ[1− ω(x)]λ(θ)
(1−ω)(1−λ)g(α, τ)

As it is intuitive, there is a one-to-one correspondence between the three scenarios
discussed above and ẏM

y R αss.

2.6 Comparative Dynamics

In analyzing the dynamical properties of our solution path, we found that the long-
run equilibrium of the system is unique and locally stable. It is then of interest to
study the effect of changes in the exogenous variables of the model on its steady
state. Consider first an increase in the population growth rate. It is clear from (26)
that the long-run growth rate of land-augmenting technical change must increase.
On the other hand, differentiating the right-hand side of (29) with respect to n we
can see that the ratio λ/(1 − λ), and therefore the land share, will fall, as it is
intuitive given that there is full employment and the whole population growth will
be absorbed in production. Also, the savings rate responds positively, and in the
same way, to both n and δ, given ρ− αss > 0.

An increase in the discount rate ρ will reduce the optimal savings rate given
the higher degree of time-impatience, as it is standard in growth theory. What is
perhaps surprising is that a higher discount rate determines a higher share of land
in total output. In fact,

∂λ/(1− λ)
∂ρ

= −gτ,ss
(1− ω)n

(ρ− αss)2
> 0

This result is, however, much less counterintuitive than it seems. A look at (17) re-
veals that when the discount rate increases, the shadow-price of land augmentation
increases. The central plan office compensates for a higher time-impatience of its
citizens by increasing technical change directed at reducing congestion on land. To
put it differently, since an amount in ρ determines an increase in present consump-
tion, the social planner has to compensate for the higher consumption through an
increase in mitigation on land. Figure 3 plots the solution paths for ρ = .1. The
increase in time-impatience determines a dramatic increase in the equilibrium land
share. All the other parameters are calibrated as above.

[Figure 3 about here]
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On the other hand, an increase in population growth requires recalibration of
the IPF, and this is due to the fact that β = 0 must hold in equilibrium. In Figure
4, I increase population growth to .4, and consequently τss =.6, and reassign values
to a, q so as to ensure g(.2, .6) = 0.

[Figure 4 about here]

2.7 Optimal Rate of Technical Change

In the above setup, we studied the determination of the optimal direction of techno-
logical change. For the framework to become an endogenous growth model we need
to include also the planner’s choice of intensity, or rate, of technical change. The
conclusions about the long-run equilibrium of the system reached in the previous
section are not sensitive to the inclusion of the optimal rate of technical change in
the planner’s problem.

Consider again a representative agent determining both the direction and the
rate of technological change by allocating part of her labor time into the educational
sector, as in Uzawa [41]. Imposing full employment of labor, the amount of labor
in the educational sector will be a fraction of the total labor force: Le = (1− u)L.
To further simplify the analysis, normalize L = 1. Also, workers in Le can be
employed in any of the factor-augmenting technologies. To keep things simple, I
make the assumption that land augmentation is subject to the same technology as
other factor-augmentations, and that the planner chooses the portion ν of workers
Le employed on production of land-augmenting technologies. Therefore, we can
rewrite equations (6) as:

Ȧ = αξ(1− νu)A, Ṫ = τξ[1− u(1− ν)]T, Ḃ = g(α, τ)ξ(1− νu)B (35)

where g is exactly as above. Following Uzawa [41], we assume that the function
ξ is concave enough to ensure that the present discounted value of consumption
per capita converges as t → ∞, that is we assume: ξ(1) < ρ < ξ(0) + ξ′(0), and
ξ′ > 0, ξ′′ < 0. The planning problem is to choose s, α, τ, u, ν to maximize (7) under
the constraints (3), (35), (8) and (9). The Hamiltonian of the problem is:

H = e−ρt
{

(1− s)Ah
(

φ

Auf(x/u)

)
uf
(x
u

)
+ p1

[
sAh

(
φ

Auf(x/u)

)
uf
(x
u

)
− (δ + n)

A

B
x

]}
+e−ρt

{
p2e

αssφ(1−νssuss)tg(α, τ)φ(1− νu)B + p3αφ(1− νu)A+ p4τφ[(1− u(1− ν)]T
}

(36)

where the conjugate variable for B is now p2e
αssξ(1−νssuss)t because of the spec-

ification of the technology for production of factor-augmentation. The first-order
conditions for an ordinary maximum of (36) are:

(p1 − 1)Ah(θ)uf
(x
u

)
= 0 (37)

∂H
∂α

= p2e
assξ(1−νssuss)tgαξ(1− νu)B + p3ξ(1− νu)A = 0 (38)

∂H
∂τ

= p2e
αssξ(1−νssuss)tgτξ(1− νu)B + p4ξ[1− u(1− ν)]T = 0 (39)

∂H
∂u

= γA [h(θ)− θh′(θ)]
[
f
(
x
u

)
− x

uf
′ (x
u

)]
−ξ′

{
ν
[
p2e

αssξ(1−νssuss)tg(α, τ)B + p3αA
]

+ (1− ν)p4τT
}

= 0
(40)

∂H
∂ν

= p4ξ
′uτT −

[
p2e

αssξ(1−νssuss)tg(α, τ)B + p3αA
]
ξ′u = 0 (41)
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Equations (14)-(17) modify as follows:

ṗ1 = (ρ+ δ + n)p1 − γ [h(θ)− θh′(θ)] f ′
(x
u

)
B (42)

ṗ2 = [ρ− αssξ(1− νssuss)− g(α, τ)ξ(1− νu)] p2

− [h(θ)− θh′(θ)] γf ′
(
x
u

)
e−αssξ(1−νssuss)t ABx

(43)

ṗ3 = [ρ− αξ(1− νu)]p3 − γ [h(θ)− θh′(θ)]u
[
f
(x
u

)
− x

u
f ′
(x
u

)]
(44)

ṗ4 = {ρ− τξ[1− u(1− ν)]}p4 − γ
h′(θ)
L

uf
(x
u

)
(45)

while equations (18) and (28)-(30) become:

Bssf
′
(
xss
uss

)
=

ρ+ δ + n

[1− λ(θ)]h(θ)
(46)

g(αss, τss) = ψ(θss) {τssξ[1− uss(1− νss)− n− αssξ(1− νssuss)]} = 0 (47)

−gα =
ω(x)

1− ω(x)
(48)

−gτ =
λ(θss)

1− λ(θss)
1

1− ω(xss)

[
ρ− αssξ(1− νssuss)

ρ− τssξ[1− uss(1− νss)

]
ξ[1− uss(1− νss)]
ξ(1− νssuss)

(49)

sss = [1− ω(xss)][1− λ(θss)]
[
αssξ(1− νssuss) + δ + n

ρ+ δ + n

]
(50)

The difference with the equilibrium conditions in the previous section being only
the appearance of the intensity values multiplying the factor-augmentation rates.
Also, the equation determining the optimal innovation intensity is, from (40):

ξ′(uss) =
ω(x)

ν
[

(1−ω(x))λ(θ)(n−τss)
ρ−[αss+λ(θ)(n−τss)]ξ(1−νssuss) + ω(x)αssξ(1−νssuss)

ρ−αssξ(1−νssuss)

]
+ (1− νss)λ(θ)τssξ[1−uss(1−νss)]

ρ−τξ[1−uss(1−νss)]
(51)

and from (41) we have:

(1− ω(x))λ(θ)(n− τss)
ρ− [αss + λ(θ)(n− τss)]ξ(1− νssuss)

+
αssω(x)

ρ− αssξ(1− νssuss)
=

λ(θ)τss
ρ− τssξ[1− uss(1− νss)]

(52)
The long-run equilibrium of the model including the choice of intensity of tech-

nical change is exactly the same as the simpler case of choice of direction only, and
involves positive land and labor augmentation, zero capital augmentation, and con-
stant shares of all inputs. The conclusions we reached above extend to the market
economy where land is not priced. The same properties of the resulting dynamical
system can be derived by assuming u, ν to be constant over time at their equilibrium
values.

3 Discussion

Economists have been dealing with environmental issues for a long time. Sophis-
ticated models for environmental policy evaluation have been developed over the
past three decades, a recent example being the DICE-2007 studied by Nordhaus
[35]. In that model, the issue of direction of technical change in presence of ex-
ternalities from the atmosphere capacity is not addressed, as technical change is
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assumed to be Hicks-neutral. Hicks-neutrality of technical change is a natural out-
come of models of induced innovation when there is no accumulating factor,17 but
it is at odd with a basic stylized fact of capitalist development: increasing labor
productivity coupled with rising capital/labor ratio. The present model produces
a Harrod-neutral path of technological progress with respect to capital and labor,
and a long-run endogenous rate of land-augmenting technical progress equal to the
sum of population growth rate and the rate of growth of labor-augmentation.

The viewpoint I took in this paper is that induced technical change can be a
powerful determinant of patterns of economic growth, and that the early contribu-
tions on induced innovation have proved to be successful in reproducing some of the
long-run features of capitalist economies. Hence, I chose to generalize a fairly old
model of optimal technical change with induced innovation, first studied by Nord-
haus [33]. The model presented here can be seen as a Neoclassical counterpart of
the Classical framework developed more recently by Foley [13], and shares with the
latter the basic idea: assigning a (shadow-) price to land will induce cost-reducing
technical change directed at economizing the use of land in production, thus reduc-
ing environmental strees. Differently from Nordhaus, I introduced an externality
arising from a fixed natural resource, affecting production of output. Unlike Fo-
ley’s model, in which the dependence of each factor-augmenting technical change
on its own share in costs is assumed, I augmented the dimensionality of Kennedy’s
[24] IPF to include land-augmenting technical change. Such feature of the present
framework creates important equilibrium feedbacks among different kinds of factor-
augmentation, including land, that were ruled out by assumption in the previous
analyses of the subject. Another difference is that Foley’s model is closed by a
Goodwin predator-prey cycle, whereas full employment in the planned economy
is imposed here. This feature of the model calls for relaxing the assumption of a
fully-employed labor force in order to address the possible presence of trade-offs or
trade-ins between labor market institutions and environmental policies. Finally, the
scenario depicted by Foley in his discussion of the unpriced land case is only one
among the three possible cases arising in the present model. The reason behind this
different result lays in the different assumption on technology I made in this paper,
which explicitly considers land congestion through human activities in agreement
with the consensus reached by the nations participated in the IPCC.

The induced innovation approach has been sharply criticized for its lack of micro-
foundations, especially in [34], and this weakness, among others, was responsible for
the decline of growth models based on induced technical change. At the firm level,
in fact, it is not clear how innovation can be financed and priced if there are constant
returns to scale and competition. The problem of reconciling economic growth with
competition, however, is common to the whole early growth literature, and involves
removing the assumption of constant returns to scale in the production function.
Years of literature on Endogenous Growth have addressed this issue, spanning from
AK frameworks, to models of human capital accumulation, to R&D-based growth
models. All these strands of literature feature increasing returns. Recent models
with decreasing returns to scale reconciled growth and competition, using the fact
that firms in regime of decreasing returns have inframarginal rents to finance R&D
expenditure.18 Models of economically directed technical change adopting a differ-
ent approach than the one taken here (Acemoglu [2]) assume that production of

17See Samuelson [37] for an enlightening illustration of this point.
18A very recent example of a model with decreasing returns and induced innovation, also provid-

ing detailed references to the literature, is Zamparelli [43]. The price to pay for this reconciliation
between growth and competition, however, is that the optimal dimension of the firm tends to zero.
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the final good occurs competitively with constant returns to scale to effective in-
puts, but uses intermediate goods that are produced by technology monopolists. To
this extent, the model presented here provides a different microeconomic structure
underlying technical change.

Another matter of criticism is the assumed stationarity of the trade-off between
factor augmentations represented by the IPF. Magat [28], and Skott [39] explored
the implications of depletion of innovation possibilities on the dynamics of factor
shares in a model based on that of Drandakis and Phelps [12]. Depletion of innova-
tion possibilities can be seen as a way to capture environmental decline occurring
even at a faster pace than what is implied by the aggregate production function 1.
This extension is left for future research. On the other hand, in the market counter-
part of the present model based on imperfect competition, there is no need for an
explicit specification of the IPF (see Acemoglu [1]), because each factor-augmenting
technical progress will be determined by its own technology. ‘Innovation possibility
frontiers’ will be implicitly determined by the relative slopes of such technologies,
and their slope will be time-varying out of equilibrium. It is worth reiterating that
the purpose of this paper is to study the normative implications of the optimal direc-
tion of technical progress and this justifies my choice of not using the microfounded
IPF appearing in Acemoglu [1].

A key implication of the congestion hypothesis in the unpriced market case
is that labor and capital will each appropriate a portion of land’s contribution
to the productive process, so that the market will remunerate factors more than
it is socially optimal. As a consequence, if labor is fully employed in the planned
economy, it cannot be in the market economy not pricing land. This poses problems
additional to the ones already outlined in the comparisons of the two economies
regarding their innovative ability. On the other hand, it points toward extensions
of the framework to open economies in order to study the interaction between
environmental policies and movements of labor and capital across countries, with
the difficulty that such interaction will occur when the country not pricing land is
out of the steady state path.

4 Conclusions

In this paper, I generalized an early model of induced technical change first studied
by Nordhaus [33]. The extension amounts to: i) include a production externality
from a fixed resource representing atmosphere carrying capacity, which I called
‘land’ following Foley [13], and which is congested by the use of labor and capital
in production; ii) to increase the dimensionality of Kennedy’s [24] IPF by adding
land-augmenting technical change. In standard fashion, I was also able to study
both analytically and numerically the dynamical system that results out of the
infinite horizon problem (7), this way providing an account of the equilibrium and
out-of-equilibrium dynamics of the model, and addressing long-standing questions
remained unanswered in the framework. I showed that:

1. The competitive equilibrium without land is either saddle-path stable if the
elasticity of substitution between labor and capital is less than one, or stable if
the substitution elasticity is greater than one and the IPF is sufficiently steep
at the steady state, a precise meaning of the adjective ‘steep’ being given by
the fulfillment of the inequality (33).

2. A market economy not pricing land always fails to reach a steady state, and
may end up in either one of three worrying scenarios: (i) a catastrophe led by
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overaccumulation of capital: (ii) a slower environmental decline where capital
deepening is held back by Induced technical change but land congestion is
not; (iii) a path of industrial regress where capital progressively decumulates.

3. A competitive economy where land is priced has an equilibrium, unique when
σ, η 6= 1, in which the shares of all inputs are constant, the rates of labor and
land augmentation are positive, and the rate of capital-augmenting technical
change is zero. I showed that, under the calibration proposed, the equilibrium
path is locally asymptotically stable.

These findings lose some of their importance if we consider that the postulated
existence of an IPF is just a parable, as empirical tests of the link between rates of
factor-augmenting technical progress and relative factor shares are hardly available.
Also, a different type of exercise might be to study the role of land congestion in
the natural market counterpart of the growth model analyzed in section 2.7, that of
human capital due to Lucas [26]. I also don’t address intergenerational equity issues
(see for instance Greiner and Semmler [15]), nor the role played by uncertainty in
climate change (Weitzman [42]). All the above directions in which the induced
innovation framework can be extended to include externalities from the atmosphere
capacity appear to be fruitful areas for further investigation.
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Figures

Figure 1: Simulation results for the planned economy without land over 200 periods.
Elasticity of substitution: σ = {.3 (red), .5 (green), .7 blue}.

Figure 2: Simulation results for the full model: ρ = .05, δ = .05, n = .02. Elasticities
of substitution: σ = η = {0.3 (red), 0.5 (green), 0.7 (blue)}.
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Figure 3: Simulation results for ρ = .1, all the other parameters as above.

Figure 4: Simulation results for n = .025, all the other parameters as above.
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