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Environmental regulation, R&D and Technological change:

Case on Japanese automobile industry

Abstract

We empirically analyze environmental regulation on R&D expenditure and productivity in the 

Japanese auto industry using panel data from 1990 to 2002 of 75 firms, which includes 

assembling firms, manufacturing firms and body manufacturing firms. We find exhaust 

emission regulation stimulates R&D expenditure of the firm. Especially, the effect of the 

regulation on R&D expenditure of the assembling firms is larger than that of the parts 

manufacturing and the body manufacturing firms. Increase in R&D raises the productivity of 

the firms, while the stricter regulation does not directly raise the productivity in the auto 

industry. This indicates that the Porter Hypothesis is not supported. However, the stronger 

regulation is likely to increase the productivity indirectly, i.e. through the increase in R&D 

activity.
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1. Introduction

The effects of environmental policy on investment and productivity have been 

analyzed in previous studies. Environmental regulation adds the constraint in their production 

possibility set. Thus, theoretically, environmental policy lowers the productivity of firms facing 

these regulations at least in competitive markets. On the other hand, Michael Porter emphasizes

the agency costs, X-inefficiencies and managerial slackness and provides an alternative view on

the effects of environmental policy to productivity and innovation initiated (see Porter and van 

der Linde, 1995). When firms face with strengthened environmental regulation, they seek 

potential technological innovation. This innovation activity (i.e., research and development 

(R&D) expenditures) is costly and the potential gain as returns for technological innovation was 

unnoticed until firms realize strengthened international competition. 

This is known as Porter Hypothesis. If this hypothesis is valid, appropriate 

environmental regulation is not a burden for the firm but rather to increases the firms’ 

competitiveness. As environmental problems gain more attentions in public policy, the 

discussion on the effects of environmental policy become more salient to academics as well as 

policy makers. There are abundant studies on this subject and this brought controversy, but has 

not yet resolved.

Some theoretical studies have confirmed that, in principle, market failure associated 

with technological innovation (e.g., Romer, 1990) can imply circumstances under which 

environmental regulations can lead to long-term benefits to industry (e.g., Ulph 1996; Simpson 

and Bradford 1996; Bovenberg and Smulders 1996; Xepapadeas and De Zeeuw 1999; Mohr, 

2002).

Greaker (2003) assume that the environment is an inferior input in the production 

process due to the abatement technology. Environmental taxation is shown to increase
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competitiveness for some tax ranges. Imperfect competition plays important role in the theory. 

If the governments act strategically, but not for firms, firms can benefit from tighter 

environmental standards in the cost saving research (Ulph, 1996). Schmutzler (2001) 

investigates different incentives prevailing for firm managers who tend to be more risk averse 

than their owners. The regulation helps to re-align the preferences of principal and agent, and, 

therefore, increases the efficiency of the firm.

There are two paths that environmental policy can have effects on the productivity. 

The first path is direct effects on production. These direct effects include changes in inputs for 

the compliance of environmental regulation. This indicates that there are rooms for productivity

improvements. We can test this path by analyzing the effect of the regulation on productivity. 

The second path is indirect effects. As Popp (2005) pointed out, if the regulations reduce 

uncertainty related to investments, more stringent environmental regulation may stimulate 

profitable R&D activity that may lead to new technological development. This new 

technological frontier, in turn, may improve productivity of firms. We can test this path by 

analyzing the effect of the regulation on R&D, and then test the effect of R&D on the 

productivity.

Several studies explored the second path through the relationship between 

environmental policy stringency and innovation activities using industry level data (see Jaffe 

and Palmer, 1997). The use of the industry level data suffers from the following problems. First, 

Porter and van der Linde (1995) used firm level case studies as examples for which the Porter 

Hypothesis holds. However, this may not be supported when numerous firms are aggregated to 

construct industry level data. Previous studies such as Jaffe and Palmer (1997) pointed out the 

difficulties in their research are due to the aggregated nature of data set and that the application

of firm level micro data is necessary for further research. Even under the same environmental 
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regulatory scheme, some firms successfully increase the productivities and some firms do not. 

Our study overcomes this problem using firm level micro data. 

Another problem with these industry level studies is the use of pollution abetment

expenditure（PACE）as a stringency of environmental regulation. The PACE is only an indirect 

measure of policy strength and does not necessary increase as the regulation become more 

stringent (Jaffe and Palmer, 1997). Consequently, they found mixed results on the Porter 

hypothesis.

In contrast, Berman and Bui (2001) successfully used unique a concrete measurement 

of policy stringency by focusing on oil refineries in US. They examined the first path: the direct 

effects of environmental regulation on productivity. They found that heavily regulated refineries 

in Los Angel’s area experienced productivity growth while less regulated refineries in other 

regions faced reduction in productivity in the same period. Our study follows their strategy to 

use a direct measurement of policy stringency by focusing exhaust gas emission standard. 

In addition, estimating productivity is also crucial. For example, Managi et al. (2005) 

examined the first path by examining the effects of environmental policy on total factor 

productivity (TFP). Following recent literature measuring TFP as an index of productivity, we 

measure TFP to examine the first path.

In this study, we empirically explore how the environmental regulation affects firm’s 

productivity and R&D in the Japanese auto industry and whether the Porter hypothesis holds

using panel data. The auto industry is chosen because the automobiles are known for its high 

environmental impacts. Moreover, the industry is known for larger extensive R&D activities. 

Finally, Japanese auto industry is known to have comparative advantage in environmental 

technology1.

                                                  
1 For detailed industry information, see Fujimoto and Takeishi (2001). See also Porter and Sakakibara 
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We apply exhaust emission regulation as the environmental regulation2,3. Even though 

the air quality in Tokyo has dramatically improved in 1980’s, several problems still remain. 

Especially, metropolitan areas such as Tokyo or Osaka have not met the ambient air quality 

standard of nitrogen oxides (NOx) and particulate matter (PM) set by Japanese Ministry of 

Environment until recently. Consequently, the tighter emission standards were introduced from 

1990’s to early 2000s. Therefore, the exhaust emission regulation is the appropriate policy to be 

scrutinized on its effects on productivity. 

The purpose of this paper is twofold. First, this study explores the determinants of 

R&D and especially how the regulation affects the productivity through R&D expenditures. 

However, R&D expenditures are costs and not necessarily supporting Porter hypothesis itself

although they may have the potential in the future. Thus, we consider the path that, if the 

environmental regulation simulates R&D expenditures, it may have effects on the productivity

as well. Second, this study analyzes how the exhaust emission control standard directly affects

the productivity of the firm, that is, to examine the Porter hypothesis.

The following section illustrates the situation of the auto industry and of the exhaust 

emission regulation. In section 3, model and data set are presented. Section 4 discusses the 

estimation results. Section 5 provides conclusion with possible extension.

                                                                                                                                                    
(2004) for industry structure in Japan. 
2 Top runner policy was expected to increase energy efficiency (sales divided by energy use) in Japan. 

However, Managi (2009) shows the policy encourage more capital cost and no statistically significant 

effect on the TFP in industries. Therefore, we do not control the policy effect in this study.
3 Jaffe and Palmer (1997) provided several different interpretations of the Porter hypothesis. In the 

narrow version of the Porter hypothesis, the regulation focused on outcomes stimulates innovation than 

the regulation on process. The exhaust emission regulation is based on emission, which is outcomes rather 

than process. Thus, this study indirectly examines the narrow version of Porter Hypothesis.
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2. Background

2.1 Empirical literature on Porter hypothesis

Previous studies find mixed results on the Porter hypothesis. There are cases 

supporting partial arguments of Porter hypothesis. This includes studies providing positive 

effects on R&D (e.g., Jaffe and Palmer, 1997) and cases of enhanced productivity (e.g., Berman 

and Bui, 2001). No support for productivity gain also found (e.g., Managi et al., 2005) and cost 

reduction effect but not offsetting regulatory cost is also found (Isaksson, 2005).

Jaffe and Palmer (1997) study industry level panel data of manufacturing industries

and find a positive effect of compliance cost variable on R&D but an insignificantly negative 

impact on patenting. Berman and Bui (2001) study petroleum refineries at the US South coast 

and find productivity gains compared to other areas with less environmental regulation. They 

point out the other areas do not adopt new technologies because of uncertainty about cost and 

efficiency of the technologies and future environmental regulation.

Isaksson (2005) estimates abatement cost functions for reduction of nitrogen oxide 

emissions from energy production in three industrial sectors. She finds extensive emission 

reduction was been possible by low costs. Managi et al. (2005) study the productivity in Gulf of 

Mexico offshore oil and gas industry. They find no evidence for the standard formulation of the 

Porter hypothesis. Instead, they support the recast version of Porter hypothesis, which examines 

productivity of joint production of market and environmental outputs.

2.2 R&D of the auto industry

The auto industry performs extensive R&D activities. We select the Japanese auto 

industry since it is well-known for its advances in environmental technologies. According to the 

Report on the Survey of Research and Development, the Japanese auto industry spent more than 



8

1 trillion yen in the fiscal year 2002 on research and development, which is 14.5% of total R&D 

expenditure spent by all industries. The auto industry had the largest R&D expenditure next to

information and communication electronics equipment industry.

Significant amount of R&D is spent on environmental conservation. For example, its 

share is next to life science and it is followed by nanotechnology and information technology

(see The Survey of Research and Development by Statistical Bureau, 2002). Approximately 500 

billion yen was spent on environmental conservation, which is approximately 5% of total R&D 

expenditure spent by all industries. Figure 1 shows the expenses spent on environmental 

conservation by industry.

The auto industry shows the highest environmental conservation research expenditure, 

which makes up 40% of total environmental conservation research expenditure spent by all 

industries. In addition, about 12% of R&D expenditure is towards the environmental related 

technologies. Therefore, the auto industry compared to other industries has spent a great deal of 

effort in environmental protection.

The structure of the Japanese auto industry needs to be explored. The auto industry 

consists of two sub sectors, assembling firms and body/part firms. Assembling firms include 

Toyota or Honda who sell vehicles as their products. Body firms deal with body as their final

products while parts makers are sellers of auto parts to assembling firms. The regulation is 

specifically targeted to assembling firms because they sell the final product to consumers who 

drive on the road. In addition to the assembling firms, we also include body/parts firms in our 

analysis because some of the industry innovation takes places in response to environmental 

regulation targeted to final product. That is, regulations add pressure not only on the firms that 

are subject to regulations (i.e, assembling firms), but also through the whole chain from 

suppliers of material and equipment (i.e, body/parts firms). This is important argument to 
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support Porter hypothesis (see Porter and van der Linde, 1995).

This process is likely to exist because of the market power in 9 assembling firms. 

Though there are 66 body/parts firms, sales and R&D of assembling firms is more than twice of 

body/parts firms. The non competitive market structure in assembling industry is one reason 

why Porter hypothesis is empirically more likely to be observed because X-inefficiency might 

exist (see Roediger-Schluga, 2003). 

2.3 Trend of emission control standards

Regulation of emission gases applied to automobiles began in 1966, where only the 

concentration of carbon monoxide (CO) was regulated. In 1978, hydrocarbon (HC) and nitrogen 

oxides (NOX) also became subject to regulation by the Japanese version of the Muskie Law. Up 

to this point, the main target of the regulation was gasoline-engine vehicles. Diesel engine 

vehicles were either exempted from the regulation or faced weak regulation. 

Despite these regulations, the standards of the “Total pollutant load controls” were not 

met for NOx by 1985. Thereafter, the regulation on NOX became more stringent. In 1997, in 

addition to the three substances (CO, HC, and NOX), a new regulation was introduced to control 

particulate matter (PM) from diesel engine vehicles. With regards to motorbikes, the same type 

of regulation was initiated in 1998.

With regard to the annual level of motor vehicle exhaust emission standards, Figure 2

shows the annual level of motor vehicle exhaust emission standards from 1989 to 2002. The 

level of the standard, depends on the type of automobile, is adjusted to unity for each type of 

automobile for 1989. Annual value for each year is calculated by summing the relative value for 

each type of automobile. As in Figure 2, the standard is increasing annually. This is because the

regulations on automobiles become more stringent over time and the extent of regulation to 
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automobiles is expanding.

2.4 Regulatory Stringency

One innovation of this study is to construct direct measurement of environmental 

policy stringency using environmental emission standard. We construct the regulatory 

stringency variable, tireg , , which the assembling firm i faces in the year t, using information 

on emission standard for each pollutant (CO, HC, NOX and PM) set for each vehicle type k. 

Emission standard for pollutant p applied to vehicle type k in the year t4 is defined as tkpE ,,

grams per km. We normalize the emission standard by using the emission standard for diesel 

trucks in announced in 1996, which is defined as the regulation intensity. It is expressed as 

1996,ˆ,,,,, /
Kptkptkp EEregulation 

where K̂ represents the diesel truck and T=1996. Figure 3 illustrates the transition of the 

regulatory intensity for each pollutant after the normalization.

Using this regulatory intensity for each vehicle type, we construct the regulatory 

stringency variable for the firm i as follows: 

 
p k

tkitkpti shareregulationreg ,,,,, (1)

where tkishare ,, is the ratio of type k motor vehicle produced within the assembling firm i to 

                                                  
4 It should be noted that we used the information of notice of change in regulation by 
the government instead of information on date of enforcement of changed regulation, 
since a firm is more likely to respond to notice of change in regulation,
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the total number of motor vehicle produced within each firm in the year t. We construct the 

regulatory stringency defined in (1) for the assembling firms. Therefore, each firm face different 

level of regulation stringency based on what they sell, and that is why we are able to control 

difference in stringency even the same year. 

Concerning regulatory stringency for firms which manufacture vehicle bodies and 

parts, we use information on contract relationship between assembling firms and the others. 

They do not explicitly face the regulation but are likely to be affected indirectly through 

business relationship with the assembling firms for which they produce bodies and parts. Thus, 

we construct the regulatory stringency variable for these firms based on which assembling firms

they cooperate with. In other words, firms that manufacture vehicle body and parts are 

influenced in the same manner as the assembling firm they cooperate with. Therefore, we apply 

the same regulatory stringency for the assembling firm to the firms manufacturing vehicle body 

and parts for it. For firms which cooperate with more than two assembling firms, the average of 

the emission stringency was taken. Likewise, when the firms manufacturing vehicle body and 

parts did not cooperate with specific assembling firms, the average of the entire assembling 

firms is used. Figure 4 shows the transition of the regulatory stringency at average for all firms.

3 Model and Data 

3.1 Determinants of R&D expenditure

As the first step, we empirically analyze the effects of exhaust emission regulation on 

the firm’s R&D activities. This study considers two types of factors as determinants of R&D 

expenditure. The first factor concerns with the expected profit of R&D investment. The second 

factor is the financial aspect. Our formulization is as follows.
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itAititititititit uIDREGREGBSCFKRE   2114131210    (2)

where uit is an error term and the definition of the variables is summarized in Table 1. The

effects of regulations on R&D investment depend on whether they are assembling firms or 

parts/body manufacturing firms. In order to capture this effect, we use the cross term of REG 

with IDA. The regulation is directly applied to the assembling firms and, therefore, we expect 

larger effect from the regulations on the assembling firms. 

3.2 Determinants of Productivity

(Productivity measure)

There are several techniques proposed in the literature of productivity (e.g., Olley and 

Pakes, 1996; Kumar and Russell, 2002). In this study, we apply deterministic frontier analysis, 

also known as data envelopment analysis (DEA). It is now common to measure the productivity

especially when inefficiency of firms is important to consider. For example, inefficiency in input 

usage or output production became crucial in measuring productivity change (Caves, 

Christensen, and Diewert, 1982). Though productivity analysis is well established, traditional 

approaches, such as econometrics, growth accounting and index number methods, should be 

treated with caution. This is because they have major limitations including: (1) all 

decision-making units are assumed to be efficient; (2) data on costs, input prices and output 

prices are required. We use the mathematical programming technique of DEA to compute in 

TFP. A main advantage of this approach is that it is suitable to describe multi-input, multi-output 

production technology without having to specify functional forms5. In our study, we measure

                                                  
5 DEA has strengths and weakness as in other techniques. The measurement error, missing variables, and 
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Luenberger productivity indicator to capture the productivity. (See Appendix for the detailed 

explanation on the indicator.) 

(Model of Productivity)

Research and development activities of firms are constructed by the accumulation of 

R&D expenditure flow. If economic growth depends on technological innovation rates and 

technological innovation rates depends on the accumulation of R&D activities, the R&D stock 

within the firm, which is the aggregate of R&D expenditure (flow), becomes important in the 

firms’ production activities. We estimate the relationship between R&D expenditures and 

productivity change.

The model to examine the effects of environmental regulations on productivity is expressed 

in equation (5). The cross term of the change in regulation and R&D productivity is added to 

test whether the stricter regulation weakens the effect of the R&D on the productivity.

, , 1 , , 1 , , 1
1 2

, 1 , 1 , 1

, 1 , , 1 , 1
1 2 ,

, 1 , 1 , 1

*k t k t k t k t k t k t
a

k t k t k t

k t k t k t k t
k k t

k t k t k t

TFP TFP REG REG REG REG
ID
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a u
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 
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   

    
           

    

(3)

where ak indicates the unobserved effect with mean zero for a random effect model and fixed for 

a fixed effect model, and uit is an error term. Here again we consider both of direct and indirect 

                                                                                                                                                    
unmeasured quality differences can cause problems because DEA is a data-driven technique. Analogous 

problems exist for econometrics and other empirical techniques. Confidence intervals and statistical 

hypothesis tests are difficult to implement within DEA.
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effects of regulations. The value of RE is predicted value from the results of R&D model 

(equation (2)) 

3.3 Data 

We construct the twelve-year panel data of 75 firms from 1990 to 2002 that belong to 

the auto industry defined by Nikkei Needs Database. Firm characteristics are collected from 

“Nikkei financial data” in Nikkei Needs Database.  The regulation values are measured values 

using from the Ministry of the Environment (http://www.env.go.jp/). The descriptive statistics 

are shown in Table 2.

We note that the minimum value of the regulation is zero. This is because no 

regulation was applied to several firms producing motorbikes before 1998. With regards to 

R&D expenditure, the mean and the standard deviation are 3,170 and 27,500 million yen, 

respectively, while the minimum and the maximum are zero and 486,000 million yen, 

respectively. We find that R&D varies widely. The size of the firm measured by sales also varies 

largely from 4,060 to 9,520,000 million yen. With regards to the cash flow, several firms have 

negative cash flow reflecting the long recession in Japan.

4. Results

4.1 Determinants of R&D expenditure

To analyze the effects of the motor vehicle exhaust gas emission regulation on the 

R&D, we estimate equation (2) as the base model. We apply fix effect model, random effect 

model, and dynamic Tobit model (see Arellano, Bover, and Labeaga, 2010). Table 3-1 and Table 

3-2 provide results of dynamic Tobit model and fix effect model, respectively. Table 3-2 only 

shows fix effect model because of the choice by Houseman test. We apply dynamic Tobit model 
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to equation (2) because several companies have zero for R&D expenditure in some years. We 

used 75 firm’s panel data from 1989 to 2002 for estimation. Total number of the observation is 

1028 after eliminating 22 samples with missing values.

(Insert Table 3-1 and 3-2)

The parameter on regulation is significant with positive sign in dynamic Tobit model 

while it is not in fix effect model. The parameter on the cross term of the regulation with 

dummy for assembling firms is significant with the positive sign in all cases. These indicate that 

the stronger regulation is likely to encourage the R&D activity of the assembling firms as well 

as the parts manufacturing firms and body manufacturing firms. However, the effects on the 

assembling firms are likely to be larger than that on the parts or boy manufacturing firms. The

latter finding is considered to result from the fact that the regulation is directly applied to the 

assembling firms.

Concerning the other variables, the sign of several parameters are as expected, while 

the others are not. The parameter on capital stock, K, is statistically significant with the positive 

sign in the fixed effect model as expected, but not in dynamic Tobit model. This indicates that 

the large size company is likely to have more R&D expenditure. The parameters for cash flow, a 

proxy for financial state, are significant with positive sign in all models. This result in the fixed 

effect model implies that firms with a larger cash flow are likely to be capable of conducting 

R&D activities because such firms can bear the higher risk of the R&D failure. The other 

financial variable, debt, was statistically insignificant in dynamic Tobit model and significant

and positive in fix effect model, contrary to the expectation. The Sales, the proxy for expected 

demand, was significant with negative sign in most of the cases. 
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4.2 The Productivity Analysis

In this section, we discuss the two-step approach to analyze productivity in the auto

industry. In the first step, productivity is measured by using Luenberger productivity indicator. 

In the second step, we investigate the determinants of productivity change by using an 

econometric model.

First, we measure productivity changes in the auto industry. Separate frontiers are estimated 

for each year, and shifts in the frontiers over time are used to measure productivity changes. For 

each firm, we use the arithmetic mean of the productivity indicators to obtain a combined value 

for each indicator in each year (see Balk, 1998). The arithmetic mean value of their indicator is 

0.012. Values larger than zero represent increases in productivity and therefore the auto industry 

shows productivity increase on average. 

Second, we estimate equation (3) using 75 firm’s panel data from 1990 to 1999 for 

estimation. The total number of the sample is 738 after eliminating 12 samples with missing 

values. Estimation results are shown below in Table 4-1 and 4-2. The fixed effect model was 

selected by the Hausman test.

(Insert Table 4-1 and 4-2)

Table 4-1 shows that both the coefficient for the regulation and the coefficient for the 

cross term of the change of the regulation level with the dummy variable for the assembling 

firms were insignificant for the fixed effect model. This indicates that as a direct effect of 

environmental regulation on the productivity of assembling firms, the stricter regulation does 

not affect neither the productivity of the assembling firms nor the productivity of the parts 



17

manufacturing and the body manufacturing firms. Thus, this result does not support the Porter 

Hypothesis.

With regards to the effect of R&D on the productivity, the coefficient for the R&D was 

significantly positive. This indicates that the increase in R&D induces higher productivity. From 

this estimate, the marginal productivity of R&D is calculated as 0.27. This number is close to 

the estimate of Goto and Suzuki (1989), which analyzed the effect of the R&D of the Japanese 

manufacturing firms on their productivity.

Arimura and Sugino (2008) found that the stringent environmental regulation 

increases the ratio of environmental R&D to general R&D expenditures using Japanese 

manufacturing data. As such, the environmental regulation may crowd out some production 

R&D expenditure, which contributes to higher productivity consequently, by increasing the 

share of environmental R&D devoted for environmental purposes. However, it should be noted 

that the coefficient for the cross term of the regulation and R&D on productivity was 

insignificant. This indicates that the stricter regulation does not reduce the effect of increase in 

R&D on the productivity. It was expected that the increase in R&D expenditure due to the 

stricter regulation contributed to the improvement of the environmental performance of the 

automobile but no or less increase in the productivity of the firm. Increase in R&D due to the 

stricter regulation may be spent on the improvement of the fuel saving to reduce pollutant 

concentration as well as that of the environmental performance of the automobile and thus the 

positive effect on the fuel saving may offset the negative effect on the productivity.

5. Conclusion

We empirically analyze environmental regulation on the firm level R&D expenditure 
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and productivity in the Japanese auto industry. We find exhaust emission regulation stimulates 

R&D expenditure of the firm in the auto industry. Especially, the effect of the regulation on 

R&D expenditure of the assembling firms is larger than that of the parts manufacturing and the 

body manufacturing firms. The reason behind this finding may be due to the fact that the 

regulation is directly applied to the assembling firms.  We also find that increase in R&D raises 

the productivity of the firms, while the stricter regulation does not reduce the effect of R&D on 

productivity. On the other hand, the regulation does not directly raise the productivity in the 

auto industry. This indicates that the Porter Hypothesis is not supported. Thus, the stronger 

regulation is likely to increase the productivity indirectly, i.e. through the increase in R&D 

activity, though the Porter Hypothesis is not supported.

The analysis of the Japanese auto industry did not support the Porter Hypothesis..

However, this requires further analysis. When the exhaust emission standards become more 

stringent, firms have to produce new automobiles that comply with the new regulation. If a firm 

is successful in inventing these new automobiles, the firm will obtain a larger share than before. 

This will have effects on the consumer side of the auto markets. A structural approach that 

incorporates consumer’s behavior in analysis will clarify the impact on the demand side. 

Furthermore, it is not clear if the result on productivity holds for other industries. It is desirable 

to expand this analysis to other industries by applying firm level micro data considering both 

direct and indirect effects. These will be an important extension of this study.

Kerr and Newell (2003) explored the relation between the policy instruments and the 

incentive of the US refineries to adopt the pollution abatement technology using the panel data. 

They found that new technology is implanted as the stringency of regulation increases and that 

economic instruments for environmental protection lead to the more cost-effective adoption of 

new technology than the non-market based instruments as the theory suggested (Malueg (1989)
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for example). It is interesting to see if different environmental policy instruments lead to 

different effects on productivity. This is another area of future research. 
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Appendix: Productivity measure

There are two indices to measure the productivity, the Malmquist Index and Luenberger 

productivity indicator. The Malmquist Index is either based upon Shephardian input- or output 

distance function compatible with the objectives of cost minimization or revenue maximization

(Färe and Primont, 1995). In contrast, we apply more generalized productivity measurement 

methodologies (called Luenberger productivity indicator) than the Malmquist Index. This is 

because it might be preferable to assume profit maximization, which is the traditional 

assumption in economic theory. In this study, we apply Luenberger productivity measurement, 

where the productivity is based on profit maximization (Chambers and Pope, 1996). 

We measure the productivity indicator employing a proportional distance function and 

allows for inefficiency in each decision-making unit as firm. Using the proportional distance 

function specification, our problem can be formulated as follows. Let x = (x1,...,xN) RN
+ and 

y = (y1,...,yM) RM
+ be the vectors of inputs and output, respectively, and define the technology 

set by Pt {(xt, yt): xt can produce yt}. The technology set, Pt, consists of all feasible input 

vectors, xt, and output vectors, yt, at time period t and satisfies certain axioms, which are 

sufficient to define meaningful proportional distance functions. The measurement of efficiency 

relative to production frontiers relies on the theory of distance functions6. Luenberger (1992) 

generalizes the previous notion of distance functions and provides a flexible tool to integrate

both input contractions and output improvements when measuring efficiency. This directional 

distance function is the dual to the profit function (Chambers, Chung, and Färe, 1998).

We define the directional distance function at t as:

                                                  
6 The distance functions are related to the notion of the coefficient of resource utilization (Debreu, 1951) 

and to efficiency measures (Farrell, 1957).
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    t tx , ytD = max t t: ((1 )x , (1 )y ) tP    

where   is the maximal proportional amount by which output, yt, can be expanded and input, 

xt, can be reduced simultaneously given the technology, Pt. The DEA formulation calculates the 

productivity indicator under variable returns-to-scale (VRS) by solving the following 

optimization problem:
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where   is the efficiency index for firm i in year t, N1 is an identity matrix,   is an N×1 

vector of weights which is the proportionality factor and same for both of inputs and output, and 

tY  and tX  are the vectors of output, ty , and inputs, tx . To estimate productivity change 

over time, several proportional distance functions, including both single-period and 

mixed-period distance functions for each firm and each time period, are needed. For the 

mixed-period distance function, we have two years, t and t+1. For example, 1 1( , )t
t tD x y   is 

the value of the proportional distance function for the input–output vector for period t+1 and 

technology in period t. Several proportional distance functions are needed to mesure the change 

in productivity over time as for Luenberger productivity indicators.
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Figure 1. R&D expenditure in Japan (100 million yen)

Figure 2. Motor Vehicle Exhaust Emission Standards in Japan
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Figure 3. Regulatory Intensity for each pollutant
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Figure 4. Aggregated Regulatory Intensity
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Table 1. Definitions of the Variables

Variable Name Definition

RE Annual R&D Expenditure Annual R&D expenditure

K Capital Stock Tangible Fixed Asset

CF Cash Flow Cash flow divided by the tangible asset

B Debt Debt divided by the tangible asset

S Sales Annual Sales divided by the tangible asset

IDA Dummy for Assembling Firms
IDA=1, if the firm is a assembling firm, IDA=0, 

otherwise

REG Level of Regulation -

Q Output Value added

Table 2. Descriptive Statistics

unit Observations Mean Standard Dev. Minimum Maximum

Output(Value added) Million yen 1028 130,000 361,000 2,090 3,440,000

R&D expenditure Million yen 1028 3,170 27,500 0 486,000

Capital Stock Million yen 1028 82,200 203,000 1,510 1,810,000

Debt Million yen 1028 150,000 390,000 1,470 3,120,000

Sales Million yen 1028 379,000 1,120,000 4,060 9,520,000

Cash Flow Million yen 1028 19,500 67,700 -34,200 699,000

Regulation *** 1028 6 3.76 1.99 12.9
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Table 3-1. Estimation Results for R&D model (Dynamic Tobit Model)

Specification 1 Specification 2 Specification 3

K
0.093

(1.20)

- -

CF
1.213***

(8.02)

1.155***

(8.05)

1.177***

(8.24)

S
-0.053***

(-2.88)

-0.037***

(-2.92)

-0.039***

(-3.03)

B
-0.028

(-1.14)

-0.020

(-0.84)

-0.023

(-0.96)

REG
2415.689**

(2.25)

2331.493**

(2.17)

-

REG*IDA
13491.290***

(4.75)

14618.21***

(5.42)

16017.77

(6.15)

Lagged R&D
0.006

(1.09)

0.010

(0.86)

0.009

(1.03)

Constant
-16289.360***

(-3.21)

-15170.71***

(-3.04)

-6869.33

(-2.19)

Log likelihood -6891.642 -6884.5024 -6886.870

Sample size 1028 1028 1028

The value in the parenthesis represents t-value. ***, **, and * indicates that the coefficient is 

significantly different from 0 at 1%, 5% and 10% respectively.
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Table 3-2. Estimation Results for R&D model (Fixed Effect Model)

Specification 1 Specification 2 Specification 3

K
0.236***

(2.70)

- -

CF
1.419***

(9.65)

1.272***

(9.26)

1.272***

(9.26)

S
-0.044**

(-2.10)

-0.021

(-1.09)

-0.021

(-1.10)

B
0.093**

(2.39)

0.099**

(2.53)

0.099**

(2.53)

REG
-295.704

(-0.30)

-211.136

(-0.21)

-

REG*IDA
8780.082***

(2.70)

10917.72***

(3.45)

10725.57***

(3.54)

Constant
-32108.03***

(-3.80)

-21690.61***

(-2.87)

-22223.34***

(-3.12)

R-squared 0.25 0.24 0.24

Sample Size 1028 1028 1028

The value in the parenthesis represents t-value. ***, **, and * indicates that the coefficient is 

significantly different from 0 at 1%, 5% and 10% respectively.
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Table 4-1. Estimation Results for Productivity Analysis (Fixed effect model)

Specification 1 Specification 2 Specification 3

ΔREG
-0.008

(-0.75)

-0.006

(-0.61)

-0.007

(-0.66)

ΔREG*IDA
0.014

(0.50)

- 0.015

(0.53)

(RE/Value Added)*ΔREG
0.011

(0.47)

0.011

(0.51)

-

RE/Value Added
0.271**

(2.46)

0.274**

(2.50)

0.263**

(2.41)

Constant
-0.032

(-1.67)

-0.033

(-1.70)

-0.031

(-1.63)

Sample Size 738 738 738

The value in the parenthesis represents t-value. ***, **, and * indicates that the coefficient is 

significantly different from 0 at 1%, 5% and 10% respectively.

Table 4-2. Estimation Results for Productivity Analysis (Random effect model)

Specification 1 Specification 2 Specification 3

ΔREG
-0.001

(-0.10)

0.000

(0.02)

-0.001

(-0.08)

ΔREG*IDa
0.043*

(1.79)

- 0.043*

(1.79)

(RE/Value Added)*ΔREG
0.001

(0.07)

0.002

(0.07)

-

(RE/Value Added)
0.019***

(3.32)

0.019***

(3.33)

0.019***

(3.48)

Constant
-0.010

(-0.76)

-0.011

(-0.77)

-0.011

(-0.78)

R-Squared 0.02 0.02 0.02

Sample Size 738 738 738

The value in the parenthesis represents t-value. ***, **, and * indicates that the coefficient is 

significantly different from 0 at 1%, 5% and 10% respectively.


