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Appendix A.

Proof of Lemma 2.3

Proof. First, we prove that pB(aB
t ) > pG(aG

t ) ensues from the Spence-Mirrlees property. We

calculate
∂V i

t

∂zt+1
= βpi(ai

t)
∂V i

t+1

∂zt+1
= βpi(ai

t),

where we use the Envelope Theorem. The assertion now follows immediately.

Second, assume that pB(aB
t ) > pG(aG

t ) holds. In the case where s = 1, the Spence-Mirrlees

property follows from what we have shown above. So let s > 1. Then

∂V B
t

∂zt+s
− ∂V G

t

∂zt+s
= βpB

∂V B
t+1

∂zt+s
− βpG

∂V G
t+1

∂zt+s
,

where we have used the Envelope Theorem once more. The assertion follows by induction.

Proof of Proposition 3.2

Proof. Let assumption 3.1 hold. We prove the second assertion by contradiction: Assume that

there is a pooling instead of a separating solution to the principal’s problem, i.e. the problem is

solved by one contract p, {zp
1 , ..., zp

T−1, z
p
T }, for both agents that generates a total expected utility

of V B
t and V G

t in period t for agents B and G respectively.

To construct the contradiction, we first have a look at the ”pure moral hazard” solutions for

the last two periods that generate the same utilities V B
T−1 and V G

T−1 as p. Hereby, we refer to the

solution of the problem of guaranteeing agent i a utility of V i
T−1 at the lowest cost, where the choice

of effort by each agent is hidden action, but where the type of agent is known (i.e. the problem

considered by Shavell and Weiss [22] with full information on the agents’ search technology). We

want to show that the optimal Shavell-Weiss (SW) contract for agent B , (zb
T−1, z

b
T ), is ’flatter’

than that of agent G (zg
T−1, z

g
T ) (see the formal definition for ’flat’ below).

Formally, the problem is stated as follows:

minzi
T−1,zi

T
c(zi

T−1) + βpi(ai)c(zi
T )

s.t. V i
T−1 = zi

T−1 − ai + β[p(ai)zi
T + (1− p(ai))u(w)]

1 = βp′i(a
i)[zi

T − u(w)]
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This is the two-period cost minimization problem (the principal’s problem in this framework)

in the case of agent i, subject to the promise-keeping constraint and the first order condition of

the agent’s problem, determining the choice of effort ai. Plugging the entitlement constraint into

the objective function and making use of the Envelope Theorem, we derive the following first order

conditions for the principal with respect to zT (we abbreviate pi = pi(ai)):

c′(zb
T−1) = − (p′B)3

pBp′′B
c(zb

T ) + c′(zb
T ) (A.1)

c′(zg
T−1) = − (p′G)3

pGp′′G
c(zb

T ) + c′(zb
T ). (A.2)

The factor in front of the cost function c(.) on the right-hand side (RHS) of equations (A.1) and

(A.2) is:

− (p′i)
3

pip′′i
=

1
πi(zT )

∂πi(zT )
∂zT

,

and so we see that the RHS is identical to the relative expected marginal cost. By Condition 3.1,

part 1, we know that the factor of the cost function is higher for agent G than for agent B for a

given zT . By its second part we know that this has to hold in equilibrium, too, and so the RHS is

greater for agent G in (A.2) than for agent B in (A.1).1

We may therefore deduce that the SW contract of agent B is flatter than its counterpart for

agent G, where we define ”flatter” in the following sense:

zG
T−1

zG
T

>
zB
T−1

zB
T

.

In the following we will discuss the last two periods of the pooling contract only and show that

it cannot be optimal to offer it to both agents.

First, suppose that the pooling contract p is flatter than the SW contract g of agent G, denoted

by g. Then the principal can offer p and a second contract g’ that is identical to contract p except

1Note that we could weaken Condition 3.1: To ensure that the RHS of G is higher than the RHS of B it is

sufficient to assume that the relative marginal probability of remaining unemployed 1
πi(z)

∂πi(z)
∂z

is higher for agent

G than for agent B.
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for the last two periods, where zp
T−1 and zp

T are substituted by zg
T−1 and zg

T−1 from the SW

contract g. We show that offering these two contracts would be both feasible and less costly for

the principal, leading to a contradiction. Offering p and g’ is incentive-compatible: First, agent

G is indifferent between p and g’ by construction of g. Second, suppose that agent B (weakly)

preferred g’ over p. Then for period 1 to T −2, he can exert the same effort ag
1 to ag

T−2 (i.e. that he

chooses in the case of contract g’) when facing contract p, and thus the stochastically discounted

utility from the benefits z1 to zT−2 is identical for both contracts. In the last two periods, in

contrast, agent B - exerting effort optimally - gains a higher utility from the flatter contract p

than from contract g’ because of the Spence-Mirrlees property. So agent B cannot prefer g’ over

p. Offering the two contracts p and g’ is also cheaper for the principal, because g’ is the (unique)

cost-optimizing contract for agent G during the last two periods. So this contradicts the optimality

of the pooling contract p.

Second, suppose that the pooling contract p is identical to or steeper than the SW contract g

of agent G. The principal then offers p and a second contract b’ that is identical to contract p with

zp
T−1 and zp

T substituted by zb
T−1 and zb

T from the SW contract. Since the SW contract b of agent

B is flatter than the SW contract g of agent G, as we have seen, we can infer the contradiction in

the same way as in the first case.

Appendix B.

Proof of Proposition 3.3

Before proving the different parts of Proposition 3.3, we restate the problem of offering unem-

ployment insurance contracts to unemployed agents (ASUI):

min
{zb

1,...,zb
T },{z

g
1 ,...,zg

T }
q[c(zb

1) + βpB(âB
1 )[c(zb

2) + βpB(âB
2 )[c(zb

3) + ...]...]] +

(1− q)[c(zg
1) + βpG(âG

1 )[c(zg
2) + βpG(âG

2 )[c(zg
3) + ...]...]]
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subject to the entitlement constraints (EC)

V b,B
1 ≥ V , (B.1)

V g,G
1 ≥ V , (B.2)

the adverse selection incentive constraints (AS-IC)

V b,B
1 ≥ V g,B

1 , (B.3)

V g,G
1 ≥ V b,G

1 . (B.4)

and subject to the choice of effort by the agents. We can now begin the proof.

Proof. Proposition 3.3 gives a quasi-recursive - not a recursive - formulation of (ASUI) 2. By

this we mean that (ASUI) is decomposed into a minimization problem in two cost functions Cb
1

and Cg
1 , one for each contract, that are themselves solutions to recursive minimization problems.

Whereas the choice variables of the (ASUI) problem are the benefits of the contract for agent

B and agent G respectively, the quasi-recursive problem maximizes its objective function with

respect to the state variables in the two cost functions CB
1 and CG

1 , subject to the same entitlement

and incentive constraints as in problem (ASUI). The cost functions give the costs of contract b

and g (in period 1) respectively. The state variables are the lifetime utilities V i,B = V i,B
1 and

V i,G = V i,G
1 that contract i guarantees to agent B and G, for both contract i = b and i = g, which

are entitlements from the principal’s viewpoint. As V i,B and V i,G are generated by the same

contract i, their values are not independent and it is clear that the pairs (V i,B , V i,G) that actually

correspond to a contract will form a subset of R2. This holds true also for pairs (V i,B
t , V i,G

t ) that

indicate the remaining lifetime utilities in period t, engendered by the residual of contract i, i.e.

(zi
t, ..., z

i
T ). The variables (V i,B

t , V i,G
t ) are state variables in the recursive formulation of finding

the cost minimizing residual contract (zi
t, ..., z

i
T ), with cost function Ct(V

i,B
t , V i,G

t ). The choice

variables are (V i,B
t+1 , V i,G

t+1), together with zt. Economically speaking the pair (V i,B
t , V i,G

t ) indicates

the entitlement utilities that the principal has to observe in period t, while (V i,B
t+1 , V i,G

t+1) are the

2As explained in the text, we cannot obtain a recursive formulation, as the first period is distinguished from all
other periods by the revelation of the agents’ type.
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new entitlements for the subsequent period that he chooses to promise. State variables and choice

variables are related by a law of motion - in this case the agents’ problem that sums up current

utility and promised utility that have to add up to the entitlement utility. The first part of the proof

formalizes the notion of state and choice variables, defining a correspondence Γt(V
i,B
t , V i,G

t ) that

maps the pair of state variables (V i,B
t , V i,G

t ) onto the set of corresponding choice variables. It thus

establishes a -formal- characterization of those pairs (V i,B
t , V i,G

t ) that correspond to a contract i.

The geometric characterization of Γt, that serves as the basis for the numerical computation of the

UI contracts, is topic of Proposition 3.4. The second part decomposes ASUI into a minimization

problem with two minimization subproblems. The third part gives a recursive formulation of the

subproblems that define the cost functions Ci
t .

Formalizing correspondence Γt:. We give a formal definition of Γt(V
i,B
t , V i,G

t ). Recall that

V i,j
t = zi

t − âi,j
t + β(pj(â

i,j
t )[zi

t+1 − âi,j
t+1 + β(pj(â

i,j
t+1)[...] + ...)] + (1− pj(â

i,j
t ))Wt), (B.5)

where i denotes the type of contract, j the type of agent and âi,j
t the choice of effort by agent j,

given contract i at time t. Then the formal definition of Γt is straightforward:

Γt(V
i,B
t , V i,G

t ) = {(zi
t, V

i,B
t+1 , V i,G

t+1) | ∃(zi
t, ẑ

i
t+1, ..., ẑ

i
T )s.t. j ∈ {B,G}

V i,j
t = zi

t − âi,j
t + β(pj(â

i,j
t )[ẑt+1...]...) ∧

V i,j
t = zi

t − âi,j
t + β(pj(â

i,j
t )V i,j

t+1 + (1− pj(â
i,j
t )Wt)}.

In other words: The correspondence Γt maps a pair of state variables (V i,B
t , V i,G

t ) in a given

period t onto all triples (zt, V
i,B
t+1 , V i,G

t+1) (where zt denotes current utility and V i,j
t+1 promised utilities)

to which a contract (zt, ..., ẑT ) exists that generates the corresponding lifetime utilities for agents

B and G. Note that Γt(V
i,B
t , V i,G

t ) can be empty, because for some values of (V i,B
t , V i,G

t ) of pairs

of lifetime utilities of B and of G, there might be no sustaining contract.

Note also that the support of Γt is the “largest” set of pairs of lifetime utilities - all possible

contracts are represented. Thus, adding the constraint
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Γ1(V b,B , V b,G) 6= ∅ Γ1(V g,B , V g,G) 6= ∅,

to ASUI does not change the problem. It is, however, crucial for the subsequent decomposition in

two recursive subproblems.

Decomposition of (ASUI):. Given the formal notion of state variables we can now reformulate

(ASUI) as follows:

min
(V b,B ,V b,G,V g,B ,V g,G)

(
min

{zb
1,...,zb

T },{z
g
1 ,...,zg

T }
q[c(zb

1) + βpB(âb,B
1 )[c(zb

2) + βpB(âb,B
2 )[c(zb

3) + ...]...]] +

(1− q)[c(zg
1) + βpG(âg,G

1 )[c(zg
2) + βpG(âg,G

2 )[c(zg
3) + ...]...]]

)
subject to

Γ1(V b,B , V b,G) 6= ∅ Γ1(V g,B , V g,G) 6= ∅, (B.6)

subject to (EC)

V b,B
1 ≥ V , (B.7)

V g,G
1 ≥ V , (B.8)

and subject to (AS-IC)

V b,B
1 ≥ V g,B

1 , (B.9)

V g,G
1 ≥ V b,G

1 . (B.10)

At this stage, the additional minimization over (V b,B , V b,G, V g,B , V g,G), together with the addi-

tional constraint (B.6) is empty since we allow for all pairs of utilities that correspond to a contract.

As in the formulation of (ASUI) we have not explicitly stated the implicit constraint on the choice

of (zb
1, ..., z

b
T ) and (zg

1 , ..., zg
T ) by definition (B.5) of V b,B

1 , V b,G
1 , V g,B

1 and V g,G
1 . At this stage, this

is an empty constraint because we minimize over all pairs (V b,B
1 , V b,G

1 ) and (V g,B
1 , V g,G

1 ), to which

a corresponding contract b and g exists. In the subsequent recursive formulation (V b,B , V b,G)
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become state variables (V g,B , V g,G) and thus part of a (binding) constraint, the law of motion.

Next, we decompose the objective function in the inner minimization problem into the sum of

two separate minimization problems:

min
{zb

1,...,zb
T }

q[c(zb
1) + βpB(âB

1 )[c(zb
2) + βpB(âB

2 )[c(zb
3) + ...]...]] +

min
{zg

1 ,...,zg
T }

(1− q)[c(zg
1) + βpG(âG

1 )[c(zg
2) + βpG(âG

2 )[c(zg
3) + ...]...]]

This decomposition is mathematically correct, because inside the brackets there is no interde-

pendence of the two summands of the objective function or the implicit constraints (B.5).

The recursive problems defining Ci
1:. We are left to show that the recursive formulation of the

contract problem, given by (16), solves the minimization problem

min
{zb

1,...,zb
T }

c(zb
1) + βpB(âB

1 )[c(zb
2) + βpB(âB

2 )[c(zb
3) + ...]...] (B.11)

subject to

V b,B = zb
1 − âb,B

1 + β(pB(âb,B
1 )[zb

2 − âb,B
2 + β(pB(âb,B

2 )[...] + ...)] + (1− pB(âb,B
1 ))W1)

V b,G = zb
1 − âb,G

1 + β(pG(âb,G
1 )[zb

2 − âb,G
2 + β(pG(âb,G

2 )[...] + ...)] + (1− pG(âb,G
1 ))W1)

and the choice of effort by the agents CE (compare equation (2)).

We prove the claim by induction over the number of periods T .

For T = 2 we have to show that the following two formulations are equivalent:
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min
{zb

1,zb
2}

c(zb
1) + βpB(âB

1 )c(zb
2)

s.t.

V b,B = zb
1 − âb,B

1 + β(pB(âb,B
1 )zb

2 + (1− pB(âb,B
1 ))u(w))

V b,G = zb
1 − âb,G

1 + β(pG(âb,G
1 )zb

2 + (1− pG(âb,G
1 ))u(w))

CE

and

CB
1 (V b,B , V b,G) = min

{z1,V b,B
2 ,V b,G

2 }∈Γ1(V b,B ,V b,G)
c(zt) + βpB(aB)CB

2 (V b,B
2 , V b,G

2 )

s.t.

V b,B = z1 − âb,B
1 + β[pB(âb,B

1 )V b,B
2 + (1− pB(âb,B

1 ))u(w)]

V b,G = z1 − âb,G
1 + β[pG(âb,G

1 )V b,G
2 + (1− pG(âb,G

1 ))u(w)]

CE

V b,B
2 = V b,G

2 = zb
2.

Recall that the last constraint is due to the death of the agents at the end of period T = 2.

Substituting zb
2 for V b,B

2 and V b,G
2 and c(zb

2) for CB
2 (V b,B

2 , V b,G
2 ) delivers the equivalence.

Now assume the claim holds for T −1. Then the problem (B.11) for T periods can be rewritten

as:

min
{zb

1}
c(zb

1) + βpB(âB
1 )

(
min

{zb
2,...,zb

T }
c(zb

2) + βpB(âB
2 )[c(zb

3) + ...]...
)

s.t.

V b,B = zb
1 − âb,B

1 + β(pB(âb,B
1 )V b,B

2 + (1− pB(âb,B
1 ))W1)

V b,G = zb
1 − âb,G

1 + β(pG(âb,G
1 )V b,G

2 + (1− pG(âb,G
1 ))W1)

CE
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Note that all we have done is:

1. to split up the summation in the objective function

2. to separate the choice variable zb
1 from the other choice variables zb

2, ..., z
b
T

3. to reformulate the constraints in terms of the lifetime utilities V i,j
t as defined by equation

(B.5).

By using the induction hypothesis we may identify the variables V b,B
2 and V b,G

2 with the state

variables and the term in the brackets with the recursive cost function C2(V
b,B
2 , V b,G

2 ) of the

T − 1 version of the problem. Limiting the choice of (zb
1, V

b,B
2 , V b,G

2 ) to elements of Γ1(V b,B , V b,G)

ensures by construction of Γ that the former correspond to feasible contracts (zb
1, z

b
2, ..., z

b
T ). This

proves the last claim of the Proposition.

Appendix C.

Proof of Proposition 3.4

Use of the Proposition. In Proposition 3.3 we have given a formal definition of the correspondence

Γt(V B
t , V G

t ). It corresponds to the correspondence Γ in the formulation of the Bellman equation in

Stokey et al. [24] (see the functional equation (FE) on page 66).3 As its counterpart it characterizes

both the space of state variables and of choice variables in the recursive formulation (16) of contract

i: The support of Γt is the set of state variables (V B
t , V G

t ) feasible in period t, i.e. pairs of utilities

Γt(V B
t , V G

t ) for which there is a sustaining contract (zt, ..., zT ). Given such a pair (V B
t , V G

t ), Γt

maps onto the set of corresponding control variables in the recursive formulation, i.e. the triple

(zi
t, V

i,B
t+1 , V i,G

t+1), consisting of utility zi
t from the UI benefit in period t, and entitlement utilities

for the subsequent period t− 1. The formal version of the definition of Γt is, however, insufficient

for any computational implementation of the recursive formulation - an algorithm is needed to

calculate the support and the image of Γt, so that the minimization problem in (16) can be

computed subsequently. In giving a geometric characterization of Γt, proposition 3.4 provides the

basis for the algorithm in the computational section 4.

3Although we deal with the recursive formulation of a stochastic model, we give the reference to the deterministic
Bellman equation: Of our two (stochastic) states, employment and unemployment, employment is absorbing, so
that effectively only one state remains and the problem becomes formally equivalent to a deterministic one.
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The computation of the state space -and along with it, the space of control variables- is a

general challenge in this type of model. As pointed out in the main text, our model builds on the

strand of literature based on Spear and Srivastava [23], Thomas and Worrall [25], Abreu et al. [1],

Atkeson and Lucas [2] and Chang [5]. The sets of jointly feasible entitlements (V B
t , V G

t ), i.e. the

support of Γt, are the finite-dimensional analogue of the set of sequential equilibrium payoffs (of

the agents’ game) in the infinite-dimensional framework of Abreu et al. [1] or the set of sustainable

outcomes in the (again infinite-dimensional) framework of Chang [5]. Abreu et al. [1] and Chang

[5] characterize these sets as the largest fixed point of a set operator. Moreover, they show that the

fixed point can be obtained by a fixed-point iteration of sets. This is theoretically sound. However,

it does not provide a geometrical description of the sets, as subsets of Rn, nor a (good) algorithm

to calculate them numerically, in particular if the state space is more than one-dimensional. The

numerical determination of these sets is generally a tricky issue in simulations of models building

on these methods. Judd et al. [12] develop a general algorithm to calculate the sets of sequential

equilibrium payoffs in Abreu et al. [1] for the case where these sets are known to be convex.

Essentially, it approximates them by inner and outer hyperplanes (the authors refer to this as a

”ray method”). Our approach is different.

Proposition 3.4 gives - for our model - a geometric description of the sets of state variables,

i.e. the support of Γt, as well as a description of the corresponding sets of control variables.

First, the sets of state variables are limited by boundaries that are continuous functions. Thus in

particular, the sets are compact, connected and contractible.4 The characterization is crucial for the

numerical implementation of our solution. Our algorithm exploits the fact that the boundary can be

approximated by narrowing the distance between outer and inner points in a bracketing procedure.

To apply this algorithm, there must be no ”holes” in the set of state variables - the bracketing would

then stop without result. This is how we make use of the Proposition first. Second, Proposition 3.4

states that the principal’s choice problem in a given period is essentially one-dimensional (in the

sense that the correspondence describes a smooth one-dimensional path in the three-dimensional

real space, with this path being parameterized in a).5 By characterizing the sets explicitly, the

minimization problem in (16) is largely facilitated in the subsequent computation. This is the

4Here, “contractible” is a term from algebraic topology. Intuitively, a topological space is contractible if it
contains no holes. Formally, all closed loops in the space are homotopic to a single point.

5Except for the next-to-last period, where there is only one choice left.
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second use of the Proposition for the algorithm.

Strategy of the Proof. The basic structure of the proof is a backward induction over time periods.

Given the structure of the state space of entitlement utilities (V B
t+1, V

G
t+1) in period t + 1, we check

which entitlement utilities (V B
t , V G

t ) in period t give rise to non-empty sets of control variables.

To do so, we use the fact that state variables (V B
t+1, V

G
t+1) in t + 1 are control variables in period

t - economically speaking, we ask which utility triples (zt+1, V
B
t+1, V

G
t+1) are possible realizations

of the entitlement utilities (V B
t , V G

t ) in period t, given the search efforts by the agents and the

corresponding stochastic discounting. If there are such triples in the support of Γt+1, satisfying

the law of motion in (16), then (V B
t , V G

t ) are feasible state variables. The task is to show that

those pairs (V B
t , V G

t ) that map into non-empty sets of control variables take themselves the form

of subsets of R2 bounded by continuous functions (point 1 of the Proposition). The next-to-last

period is distinguished from the others in that the utility from the UI contract is the same for both

types in the last period - the different stochastic discounting, present in the previous periods, has

come to an end. The additional equality of utility V B
T = V G

T reduces the dimension of the control

space in period T − 1 to zero, i.e. there is at maximum one possible choice of effort (point 2 of the

Proposition).

From the geometric point of view, the set of control variables (zt+1, V
B
t+1, V

G
t+1) in period t

is -for a given pair of state variables (V B
t , V G

t )- a subset (more precisely: a submanifold) of R3

spanned by the law of motion (LOM) and the equations determining the choice of effort (MH-IC).

In the proof we show that these four equations reduce the subset to a one-dimensional path in R3,

parameterized in one of the effort variables. Much of the calculations below are dedicated to this

task. Each pair of state variables (V B
t , V G

t ) gives rise to one such path. Whenever the projection

of the path into the R2 plane defined by the promise variables (V B
t+1, V

G
t+1) has an intersection with

the support of Γt+1, we know that the corresponding promise variables (V B
t+1, V

G
t+1) are sustained

as state variables in period t + 1 and thus are admissible. In that case (V B
t , V G

t ) are admissible

state variables in period t. This holds for the periods t < T − 1, in t = T − 1 the additional

restriction V B
T = V G

T reduces the path to a single point. The difficulty in the proof is to show that

the pairs (V B
t , V G

t ) of state variables that generate paths with an intersection in the continuously

bounded set of state variables of period t + 1, i.e. the support of Γt+1, form themselves a set

bounded by continuous functions. What is shown in the proof is essentially that the paths are
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parameterized in the difference V G
t − V B

t and that for small values of the difference the path lies

above the support of Γt+1 and for large values it lies below.

Proof.

In order to simplify the proof we introduce a normalization: The utility from consuming the

wage w is set to zero. Thus, all Wt become zero too, and the entitlement utilities of the unemployed

agents take non-positive values. Note that the lower bounds for the entitlements, stemming from

the lower bound on the benefit utility z, thus shift downward each period along the backward

induction.

A further comment before starting the proof is that the upper bound Wt on V G
t - stated in the

Proposition - is artificial: Of course the principal can ensure lifetime utilities above the value of

secure lifetime income from work. However, this reduces the search effort to zero. We therefore

exclude lifetime utilities above Wt from our considerations.

First, we look at the agents’ problem. Recall it takes the form

V i
t = max

a
zt − a + β[pi(a)V i

t+1 + (1− pi(a))Wt+1].

Given our normalization, we obtain the following first order condition at an interior solution:

p′i(a
i
t) =

1
βV i

t+1

(C.1)

By using the Inada condition in Condition 2.1 we ensure that the interior solution always applies.

The case of t = T− 1:. We start with the case of Γt(V B
t , V G

t ) with t = T − 1 (assertion 2 of

the Proposition). There are two points to show: First, for a given pair of (would-be) entitle-

ments (V B
T−1, V

G
T−1) there is either one or no corresponding value of the triple of control variables

(zT , V B
T , V G

T ), parameterized in one of the effort variables a. Second, the set of those (V B
T−1, V

G
T−1)

that give rise to a control variable is bounded by continuous functions. Mathematically speak-

ing, we analyze the space spanned by the law of motion (LOM) and choice of effort (MH-IC) in

the recursive formulation 16, as well as boundary conditions (19) and (20), which take the form

V B
T = V G

T = zT .

To show the first point, let us look at the Law of Motion (LOM) for the state variables V B
T−1

12



and V G
T−1:

zT−1 − aB
T−1 + βpB(aB

T−1)V
B
T = V B

T−1,

zT−1 − aG
T−1 + βpG(aG

T−1)V
G
T = V G

T−1,

where we will drop the time index from the effort variables ai
T−1. In the following, we will denote

the difference between the entitlements of the agents by:

∆t := V G
t − V B

t . (C.2)

With this new notation, and remembering both our normalization and V i
T = zT , we solve the LOM

for zT−1, equalize both equations and solve for ∆T−1:

∆T−1 = aB − aG + βpG(aG)zT − βpB(aB)zT (C.3)

We want to further simplify equation (C.3). In the next-to-last period, the first order condition of

the agents’ problem (C.1) takes the following form

p′B(aB) = p′G(aG) =
1

βzT
. (C.4)

Again by using Condition 2.1, the p′i are strictly increasing functions

p′i : (0,∞) −→ (−∞, 0).

Note that the normalization Wt = 0 implies V i
T = zT < 0. From this we deduce that the p′i are

one-to-one and onto. Therefore the following function γ(aG) is well-defined:

γ(aG) := (p′B)−1 ◦ p′G(aG).

Now we have everything at hand to define ∆T−1 as a function of aG:

∆T−1(aG) = γ(aG)− aG +
pG(aG)− pB(γ(aG))

p′G(aG)
(C.5)
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In order to show point 2 of Proposition 3.4, we have to demonstrate that ∆T−1(.) is invertible. We

do so by proving:

∆′
T−1(a

G) > 0. (C.6)

Using the agents’ first order condition (C.1) and

γ′(aG) =
p′′G(aG)

p′′B(γ(aG))

we calculate

∆′
T−1(a

G) = [pB(γ(aG))− pG(aG)]
p′′G(aG)

(p′G(aG))2
. (C.7)

By Condition 2.1 we know that p′′G(.) > 0, and since pB(γ(aG)) > pG(aG) by Condition 2.2,

assertion (C.6) follows.

Finally we observe that, again by Condition 2.1:

lim
aG→0

∆T−1(aG) = 0. (C.8)

Together with (C.6) we deduce that as agent B’s entitlement V B
T−1 approaches agent G’s one V G

T−1,

the effort of the agent G aG (as well as the effort of agent B) goes to zero. Because of (C.1) this

means that the benefit for the last period zT has to converge to zero, i.e. the wage consumption

utility.

Summarizing our results so far, we can state the following: Given entitlements V B
T−1 and V G

T−1

such that ∆T−1 = V B
T−1 − V G

T−1 ≥ 0, we can -at least up to a certain value of ∆T−1- find a unique

corresponding choice of effort by agent G aG (for the time being, we neglect the lower bound z on

the benefits zt). From this we can calculate - uniquely - the choice of effort by agent B aB and

the benefit for the last period zT from equation (C.1), and the benefit of the next to last period

zT−1 from LOM. All these functions are differentiable. As ∆T−1 goes to zero, the benefit of the

last period zT goes to zero, i.e. the cost of the benefit converges to that of the wage. That proves

the first point.

The second point to show is the geometric form of the set of feasible entitlements (V B
T−1, V

G
T−1).

This amounts essentially to determining its boundaries. If z = −∞, so z can take any value, we

14



infer from (C.8) that the upper bound V
B

t (.) on V B
t , given V G

t , is

V
B

t (V G
t ) = V G

t .

As for the lower bound, we calculate

V B
t (V G

t ) = lim
aG→∞

V G
t −∆T−1(aG).

Now let z > −∞. Then there is a natural lower bound V G
T−1, namely the stochastically discounted

sum of the bounds on zT−1 and zT , discounted with pG(aG). Given V G
T−1 ∈ [V G

T−1, 0] we now

have to prove that there is a lower and an upper bound V B
T−1(V

G
T−1) and V

B

T−1(V
G
T−1) on the

corresponding feasible V B
T−1. Because of (C.1), the lower bound on zT translates into an upper

bound aG on the corresponding choices of effort of agent G. It is attained with equality. By (C.2)

and (C.6) we find the lower bound

V B
T−1(V

G
T−1) = V G

T−1 −∆T−1(aG).

As for the upper bound V
B

T−1(V
G
T−1), one can see intuitively that V B

T−1 is bounded by V G
T−1 (for

a rigorous argument, see point 1 in the proof of 3.5). However, V B
T−1 does not necessarily attain

this bound because of an additional constraint: zT−1 ≥ z. From the LOM and (C.1) we know

zT−1 = V G
T−1 + aG − pi(aG)

p′i(aG)

The RHS is increasing in aG, so a lower bound on zT−1 implies a lower bound on the effort of the

second type, aG (note that because of our normalization, the reference points for each period have

been shifted downwards). Because of (C.6), a lower bound on ∆T−1 ensues. Given V G
T−1, we thus

find the upper bound on V B
T−1:

V
B

T−1(V
G
T−1) = V G

T−1 −∆T−1(aG).

We see that V B
T−1 attains V G

T−1 only if the lower bound aG becomes zero (the smallest possible

effort). Since ∆T−1(.) is an increasing function, we see that all values V B
T−1 ∈ [V B

T−1, V
B

t−1]
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are attainable as long as aG > aG. This must be the case for V G
T−1 ≥ V G

T−1, since then there

are corresponding benefit values zT−1, zT such that zi ≥ z. Finally, because of the Theorem of

the Maximum, both aT−1 and aT−1 depend continuously on V G
T−1, and since ∆T−1 is a smooth

function, the lower and the upper bound V B
T−1 and V

B

T−1 are continuous functions of V G
T−1.

So for period T − 1, we have shown that the set of feasible values takes the form stated in the

theorem. Note in particular that this set is compact and connected.

The case of t ≤ T− 2:. In this subsection, we prove assertion 1 of Proposition 3.4 by backward

induction over t. The strategy is similar to the one of assertion 1: First, we have to show that

-for a given pair of state variables (V B
T−1, V

G
T−1)- the corresponding set of control variables takes

the form stated in the Proposition, i.e. the one of a path of choice variables (zt−1(.), V B
t (.), V G

t (.))

parameterized in a. It turns out that the proof is slightly more complicated than the corresponding

one in assertion 1, as we must not only derive the functional form of the path, but have to show

that it is connected as well. Second, we have to show that the the set of state variables in t, i.e. the

support of Γt, takes the form stated in the proposition, i.e. the one of a set bounded by continuous

functions. Again, we make use of the law-of-motion and the choice-of-effort by the agents to find

the geometric characterization of the space of state and control variables. As said before, the

crucial difference between the next-to-last period and the previous ones is the boundary condition

of the last periods (19) and (20).

To prove the first point, we have a look at the LOM once more. With the help of the agents’

first order condition we transform it into

zt − aB +
pB(aB)
p′B(aB)

= V B
t ,

zt − aG +
pG(aG)
p′G(aG)

= V G
t ,

where again we have dropped the time index from ai
t. This inspires the definition of the following

functions (i = 1, 2)

fi(ai) = ai − pi(ai)
p′i(ai)

.

From the LOM we can now derive a necessary equation for the choice variables (as represented by

16



the ais, replacing the V i
t s) to hold:

∆t + fG(aG) = fB(aB), (C.9)

where we have used definition (C.2).

Let us have a closer look now at fi. From

f ′i =
pip

′′
i

(p′i)2
> 0 (C.10)

we can see that it is a strictly increasing function (bearing in mind Condition 2.1). Moreover, we

calculate

lim
ai→0

fi(ai) = 0, (C.11)

lim
ai→∞

fi(ai) = ∞. (C.12)

Now note that there is a natural lower bound V G
t on each V G

t , namely the stochastically discounted

sum of the zt̂s (where t̂ = t, ..., T ). In the case of T−1, we have shown that the set of jointly feasible

values V B
T−1, V G

T−1 takes the form stated in the theorem. So let Γt(V B
t , V G

t ) be non-empty and

take the form of a path in the space (zt, V
B
t+1, V

G
t+1) for V B

t ∈ [V B
t (V G

t ), V
B

t (V G
t )] with V G

t ≥ V G
t .

We have to show first that Γt−1(V B
t−1, V

G
t−1) is then non-empty for V B

t−1 ∈ [V B
t−1(V

G
t ), V

B

t−1(V
G
t )]

for some continuous functions V B
t−1, V

B

t−1 when V G
t−1 ≥ V G

t−1, and takes the form of a path in

(zt−1, V
B
t , V G

t ).

Put differently, we have to ask for which pairs (V B
t−1, V

G
t−1) are there choice variables (zt−1, V

B
t , V G

t )

that are jointly feasible. By the agents’ first order condition (C.1) we can replace V B
t and V G

t

by the corresponding choices of effort aB
t−1 and aG

t−1 (we will drop the time index in the sequel).

The effort choices aB and aG have to satisfy equation (C.9). Since ∆t−1 ≥ 0 and by (C.10),

(C.11) and (C.12), for all aG ≥ 0 we can find a corresponding aB ≥ 0 - this gives a the variable

a = aG to parameterize the path of control variables. By the LOM, we can always determine zt−1

once aG is given. Thus the control variables (zt−1(aG), V B
t (aG), V G

t (aG)) are each parameterized

in the parameter aG - we have found the path (we still have to show that it is connected). All

functions are combinations of differentiable functions and thus differentiable - therefore the path
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is differentiable, too. The curve φ∆t−1 , which is parameterized in aG, is defined as the projection

of the triple of choice variables into the two-dimensional space (V B
t (aG), V G

t (aG)).

We have exploited the LOM and MH-IC to reduce the choice problem to a one dimensional

problem, but for which aG do the (zt−1, V
B
t , V G

t ) correspond to feasible choice variables? Two

further constraints are to be taken into account. First, we look at the constraint zt−1 ≥ z. As in

the preceding subsection, by using the LOM

zt−1 = V G
t−1 + fG(aG)

it translates into a constraint6

aG ≥ aG =

 f−1
G (z − V G

t−1) : V G
t−1 ≤ z

0 : V G
t−1 > z

(C.13)

Second we have to ask: Which of the pairs of entitlements (V B
t (aG), V G

t (aG)) are feasible? The

answer is, those for which Γt(V B
t , V G

t ) is non-empty. In other words: Given V B
t−1 and V G

t−1, the set

of feasible choices is the intersection of the curve φ∆t−1 defined by (C.9), parameterized in aG with

aG ≥ aG, and the support of Γt(., .). Figure 7 depicts the intersection for the case of period 4 of 12

in an example from our simulation. The solid lines represent the bounds V B
4 (V G

4 ) and V
B

4 (V G
4 ),

while the dotted and the dashed line are curves φ∆3 with two different values for ∆3.

Two things remain to be shown:

1. We have to show that the set of (V B
t−1, V

G
t−1), for which the intersection is non-empty, itself

takes the form of a set bounded by functions V B
t−1 and V

B

t−1 (point 2).

2. We have to show that if the curve defined by (C.9) intersects the set of feasible values

(V B
t , V G

t ), it cuts the bounds at most twice, so that the set of feasible choices is connected.

To show the first assertion, we look more closely at the family of curves

φ∆t−1 : aG −→ [φB(aG), φG(aG)]∆t−1 ,

6If z = −∞, by our definition there is no limit on aG.
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Figure C.1: Set of Jointly Feasible Entitlements in Period 4 of 12
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x-axis: Entitlements of type B, y-axis: Entitlements of type G
with projection of sets of agents’ choice sets

where

φB(aG) =
1

βp′B(f−1
B (∆t−1 + fG(aG)))

, (C.14)

φG(aG) =
1

βp′G(aG)
. (C.15)

Since φG is one-to-one, the curves can also be understood as a function

V B
t = φ∆t−1(V

G
t ).

We now want to prove the following. The curves are “decreasing” in ∆t−1, i.e.

∆t−1 < ∆∗
t−1 ⇒ φ∆t−1(V

G
t ) > φ∆∗

t−1
(V G

t ). (C.16)

We do so by calculating the derivative

∂∆t−1(φ∆t−1)(V
G) = − 1

(βp′1(aB))2
· βp′′1(aB) · 1

f ′θ1
(∆t−1 + fθ2(aG))

< 0,

which is negative because of (C.10) and Condition 2.1. The property of φ∆t−1 is reflected by its

dotted line and the dashed representation in Figure 7.
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By the induction hypothesis, the support of Γt(V B
t , V G

t ), is bounded by continuous functions,

in particular, it is compact and connected. From this and (C.16) we deduce that there are ∆t−1

and ∆t−1 so that the curves φ∆t−1 intersect the set for ∆t−1 ≤ ∆t−1 ≤ ∆t−1 and do not intersect

for ∆t−1 < ∆t−1 and ∆t−1 > ∆t−1 (of course ∆t−1 could be smaller than zero, the lower limit for

∆t−1). From this ensues the existence of two bounds, V B
t−1(V

G
t−1) and V

B

t−1(V
G
t−1), limiting the set

of feasible pairs (V B
t−1, V

G
t−1) from above and below.

To show the second assertion, we have to look more closely at the shape of the curve φ∆t−1 as

well as the limiting functions V B
t−1(.) and V

B

t−1(.). First, we prove that the derivative of φ∆t−1 is

smaller than one. We do so by showing that

D(.) ◦ φ−1
G (V G

t−1) := (φG(.)− φB(.)) ◦ φ−1
G (V G

t−1)

is increasing in V G
t−1, i.e. the derivative of φ∆t−1 is below the one of the diagonal:

∂V G
t−1

D(φ−1
G (V G

t−1)) = 1− ∂V G
t−1

φB(φ−1
G (V G

t−1)) > 0.

Since we know that

∂V G
t−1

(φ−1
G )(V G

t−1) < 0

from (C.1), it is sufficient to show that

D′(aG) < 0.

Using aB := f−1
B (∆t−1 + fG(aG)) we calculate

D′(aG) = − p′′G(aG)
β(p′G(aG))2

+
p′′B(aB)

β(p′B(aB))2
· f ′G(aG)
f ′B(aB)

= − p′′G(aG)
β(p′G(aG))2

+
p′′B(aB)

β(p′B(aB))2
· pG(aG)p′′G(aG)

(p′G(aG))2
· (p′B(aB))2

pB(aB)p′′B(aB)

=
(

pG(aG)
pB(aB)

− 1
)
· p′′G(aG)
β(p′G(aG))2

.

The last expression is negative by Conditions 2.1 and 2.2. Now, the second assertion follows if we

can show that the derivative of the boundary functions V B(.) and V
B

(.) is greater than one, for
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then φ∆t−1 crosses them at most once. So by the induction hypothesis, assume that V B
t (.) and

V
B

t (.) have a derivative greater or equal than one (note that this is certainly true for the case of

t = T − 1).

According to what we have shown above, ∆t−1 and ∆t−1 limit the set of values ∆t−1 =

V G
t−1 − V B

t−1 for which φ∆t−1 intersects the set of feasible (V B
t , V G

t ). From this we might be

tempted to deduce immediately both V B
t−1 and V

B

t−1 must be linear functions with derivative one,

for apparently the limits only depend on the difference ∆t−1 = V G
t−1 − V B

t−1. Note, however, that

the starting point aG (see equation (C.13)) for each curve φ∆t−1 is shifting upwards as V G
t−1 is

falling. Thus, since by induction hypothesis V B
t and V

B

t are increasing more steeply than the

φ∆t−1 , we may deduce that

1. V B
t−1(.) is indeed linear with derivative one because the φ∆t−1s cross the function V B

t (.) at

the lower bound V G
t at a high value for aG.

2. For lower values of V G
t−1, the smallest ∆t−1 for which φ∆t−1 intersects the set of feasible values

(V B
t , V G

t ) is below the one that would have been obtained with aG fixed. Since the latter

would have corresponded to a linear upper bound V
B

t (.) with derivative one, we conclude

that V
B

t (.) has to rise more steeply than this, i.e. that its derivative is greater than one.

Thus by induction, we have shown that φ∆t−1 and V B
t−1(.) and V

B

t−1(.) cross only once and the

second assertion about the form of the correspondence Γt−1 ensues. This concludes the proof of

Proposition 3.4.

A final remark on Proposition 3.4 concerns the sense of the lower bound z on utility from

consuming the benefit.

Remark Appendix C.1. The lower bound on zt in Proposition 3.4 is introduced for technical
reasons: Some utility functions map onto the real line R, while some only onto the half-line R+

(or R−). Constant Absolute Risk Aversion (CARA) are an example of the former kind and CRRA
utility functions of the latter. Without a lower bound we would allow

Proof of Proposition 3.5

Proof. Beginning with point 1 we show that for all contracts, V G > V B . The assertion then

follows by V b,G > V b,B and agent B’s entitlement constraint (14).

So we consider a feasible UI contract. Given any set of effort choices (aB
1 , aB

2 , ..., aB
T−1) of

agent B, the same set of choices would yield a higher value of total expected lifetime utility for
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agent G than for agent B, V G(~aB) > V B(~aB). This is the case because firstly (total) utility when

employed is higher than (total) utility when unemployed, and secondly by condition 2.2, first part,

pB(aB) > pG(aB) for any aB > 0. Thus, in particular, at the optimum V G > V B .

We now prove point 2 by contradiction. Suppose that for the solution contracts b, (zb
1, ..., z

b
T ),

and g, (zg
1 , ..., zg

T ), the constraint (14) did not bind. For sufficiently high V we may assume that

all zi
t > z for all t, in particular for t = 1. But then create new contracts b’ and g’ by replacing zi

1

by zi
1− ε (i = b, g) for some ε > 0 with zi

1− ε > z. These contracts are certainly feasible. They are

also incentive compatible, since the entitlements V i,j
1 are reduced by the same amount. However,

the new contracts b’ and g’ are less costly for the principal, since the cost function c(.) is strictly

increasing. This is a contradiction.

Point 3 is proved by an argument simular to the one in point 2.

Proof of Corollary 3.6

Proof. 1. Note that, given that V g,B is chosen optimally for each value of V g,G, the cost

function of contract g strictly increases in V g,G. Moreover, in a full information optimum (i.e. the

pure moral hazard case for both contracts), the optimal V b,G (optimal with respect to V b,B = V )

can be characterized by a first order condition. We thus obtain a first order reduction of costs for

contract g by lowering V g,G = V b,G (constraint (13) is binding) below the value of V b,G in a full

information optimum, whereas there is only a second order increase in costs for contract b.

2. In our framework, we can recover the SW contracts (i.e. the contracts from the pure moral

hazard environment) at a given level of entitlement V i,i by solving (i 6= j):

min
V i,j

Ci
1(V

i,i, V i,j)

s.t. LOM,MH − IC

and applying forward induction afterwards. This is because by minimizing the costs of contract

i with respect to its value for agent j, we simply neglect the impact of this value for the optimal

contract.

Now, if our objective function is optimized without further restriction, we recover the optimal

contract from the pure moral hazard environment, because the value V g,B of contract g for type

B does not appear in the cost function of contract b.
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