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Abstract

The evolution of markets on which network externalities prevail can be ex-

pected to di�er from \classical markets" where no such externalities exist.

We suggest a 
exible formal model that describes the dynamics of both

types of markets. This leads to a stochastic version of the well known repli-

cator dynamics. Based on this approach we analyze the limit behaviour of

di�erent market types where consumers use stochastic decision rules. We

show that the market shares converge to the set of equilibria with prob-

ability one, where, even under network externalities, several technologies

can coexist. On the other hand, even if no network externalities prevail it

is possible that only one technology stays in the market. The paper ends

with an empirical study of the market of UNIX workstations in the U.S.

Regression results give evidence in favour of network externalitites.
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1 Introduction

The phenomenon of network externalities has received wide attention in the

economic literature. Rohlfs[1974] showed that this type of externalities play an

important role in the market of telecommunication where the utility of joining

a communication network is positively related to the number of its members.

This result was con�rmed by Callon [1993] and Capello [1994]. However, what

has been said for this market holds also for the market of consumption and

investment goods of high technological level (henceforth called complex tech-

nologies). This is due to two interdependent reasons:

First, complex technologies usually require some complementary investment

that puts the technology to work. Think of training costs or of some linked

product like computer software: once a buyer has chosen a certain technology

and realized the corresponding co-investment he very probably sticks to his

decision since the co-investment is experienced as sunk cost.1

Second, through this procedure, the market of complex technologies is linked

to some extent to the market of complementary goods. This implies that ease

of access to complementary products in
uences the preference a buyer has for a

technology standard as such. If one technology standard dominates the market,

its co-products can be expected to be cheaper and easier to obtain. More-

over, it can be expected that the variety among co-products is higher and thus

more attractive for a new buyer. Think of access to software or to persons who

are trained on a certain technology.2 Thus, the decisions of buyers are linked

through the market of co-products which leads to an investment network. Hence,

the market exhibits network externalities.

As an outcome of this \market failure", the dynamics of a market of such

complex technologies can be expected to be fundamentally di�erent to \classi-

cal markets". Our aim is to present a simple model that describes the dynamics

of markets where network externalities prevail, neither assuming rational ex-

pectations nor using a general equilibrium framework. We assume the agents to

use a simple stochastic decision rule based on demand functions that depend on

prices and market shares. This leads to a stochastic version of the well known

1See David [1985] and Arthur [1983], Arthur, Ermoliev and Kaniovski [1987].
2This topic has been extensively discussed in the literature. See again David [1985] who

discusses this relation for typewriters and the \market of secretaries". Cowan [1990] tells a

similar story for the market of energy providing systems. Katz and Shapiro[1985, 1986] dealt

with the question of network externalities for a market that exhibits investment networks.

Their studies are based on a comparative static approach involving the assumption of rational

expectations. Church and Gandal[1993] analyzed technology{co-product relations by explicitly

considering \hardware-software relations" in a general-equilibrium context.
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replicator dynamics.

In the following section we de�ne the model and introduce the market dy-

namics. In the subsequent section we give some general results on the conver-

gence of market shares. Finally we illustrate this approach for a limited number

of goods.

2 The Evolution of Markets with Network External-

ities

2.1 A Decision Process under Network Externalities

Consider a market characterized by investment networks. Several types of tech-

nologies compete that all ful�l the same task but have di�erent technological

characteristics and hence they work with di�erent standards3 . When a poten-

tial buyer decides which type of technology to purchase he or she looks at its

relative price, at its market share, and at the availability of its co-products.

Suppose at a certain time instant all competing technologies have the same

market share and are sold at the same price. We would expect a potential new

buyer to be indi�erent. Maybe he is indi�erent and his decision is random. Or

he prefers one of the technologies, for which the reasons can be manifold: he

may prefer certain special characteristics that are attractive only to a small

group of users. Or the outcome of the decision is due to the bounded rational-

ity of consumers: they might not be aware of all prices and market shares, just

imitate a friend, or do not like to follow the majority.4 Due to the manifoldness

of in
uences we do not expect the consumers' initial choice to appear determin-

istic. Instead, the outcome of the decision process appears random to us5. Once

the buyer made his �rst choice, he sticks with this initially chosen system (even

in the case of replacing investment) since otherwise the co-investment would be

useless and the sunk costs would be lost.

The consequence of a consumers' decision is twofold. First, the market share

of the product increases. This increases the market of co-products and thus

makes them easier available. This again increases the probability that the next

buyer chooses the same technology. Hence, via the market of co-products we can

expect a positive demand feedback on the market of technologies. We will de-

scribe this phenomenon with a parameter called network-elasticity. Second, the

3Think e.g. of di�erent computer systems, of digital cassette recorders (DAT and DCC-

systems) or { on another scale { di�erent energy providing systems[Cowan, 1990].
4Their motivation might be a \search for diversity". See the discussion in Dosi and Kan-

iovski [1994].
5For a similar argument see Arthur [1983]
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producers, now confronted with new market shares, might change the product-

prices. Several reasons can play a role in this regard. Producers with high market

shares are confronted with less costs and might reduce the price or they can

use their advantage in the market to increase it.6 Price 
uctuations change the

consumers' propensity to buy a product. The direction as well as the extent of

this change are given by the price-elasticity. This elasticity is usually expected

to be negative but we do not exclude positive price elasticities from our anal-

ysis. Thus, we can model negative and positive demand feedbacks with respect

to prices.7 Note that on a market with network externalities a negative feed-

back from price dynamics might be traded o� against a positive feedback from

market shares (see the discussion below).

2.2 The Model

Consider a market withK � 2 �rms, each producing one technology. We assume

a perfect correlation between the market of technologies and the market of co-

products.8 Thus, we can limit the analysis to the market shares of the base-

technologies. Let ntk be the number of units of technology k in the market

at time t. Hence, the market share stk of technology k at time t is given by

stk = ntk=
PK

i=1 n
t
i. We assume that initially all technologies are present in the

market, i.e. n1k > 0 for all k.

At each time t we assign a demand vector (Dt
1; : : : ;D

t
K) of non-negative

numbers to the technologies. The demand Dt
k for technology k is a measure for

the con�dence the buyers have in this technology.9 We assume that the demand

for each technology depends on its present market share. This maybe due to

network externalities as well as pricing policies that rely on market shares. Thus,

for each technology k there is a demand function Dk(�) : (0; 1]! IR+ such that

Dt
k = Dk(s

t
k); t > 0:

Note that t is not chronological time but is de�ned by the sequential moments

of buying. The probability that the t-th buyer purchases a certain product is

given by the relative propensity to buy this product, de�ned as

6See also the discussion in Dosi and Kaniovski [1994] and Dosi, Ermoliev and Kaniovski

[1994].
7This issue has been discussed in a number of papers. See e.g. Arthur[1983], Arthur et al.

[1987], David [1985] or Dosi and Kaniovski [1994].
8This implies that a certain technology cannot use co-products that �t a di�erent standard.

This assumption is straightforward for all types of technical co-products. The correlation can

be less than one in the case of human skills.
9This corresponds to the concept of strength in Arthur [1993].
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dk(s
t) =

Dk(s
t
k)

KP
i=1

Di(sti)

; 1 � k � K; (1)

where st = (st1; s
t
2; : : : ; s

t
K) 2 � = fsjs 2 IRK ; si � 0;

PK
i=1 si = 1g. Thus,

the k-th component of d(s) = (d1(s); : : : ; dK(s)) 2 �, which we call relative

demand or preference function, speci�es the conditional probabilities of choosing

technology k given the current market shares of all technologies (i.e. given the

vector st).10 This formalizes the decision process discussed in section 2.1.11 Let

nt = (n1t ; : : : ; n
t
K). Then the evolution of the market is given by

nt+1 = nt + �t(st); (2)

where �t(s) denotes a sequence of K-dimensional independent random vectors

whose distribution depends on s in such a way that Pf�t(s) = ekg = dk(s); 1 �

k � K, where ek; 1 � k � K denotes the k-th unit vector.

If network externalities are present the demand of the consumer that buys

at time t + 1 depends not only on the price of the product at time t but also

on the present market share. A quite general class of demand functions that

depend on the market share and on price is given by

Dk(s
t
k) = (stk)

�k � [pk(s
t
k)]

�k ; (3)

where �k denotes the elasticity of demand for technology k with respect to its

price and �k stands for its elasticity with respect to its market share. In the

remainder of this paper we will refer to �k as network elasticity. Let us assume

that the pricing policy of �rm k can be described through a share-response

function that is denoted by pk(s
t
k).

12

It should be noted that the number of variables that can have an in
uence

on the choice { like di�erent technological characteristics or in
uences of friends

{ can be implicitly included in this demand function. Note that by equation (3)

the demand does not shift if the price rises (falls) but the market share falls

(rises) simultaneously.

10The concept of function (1) is very closely related to the notion of allocation function used

by Arthur et al. [1987], Dosi and Kaniovski [1994], Dosi et al. [1994].
11Another interpretation is the following: assume that Dt

k gives the number of potential

buyers that prefer technology k at time t. At every time t, indicating a moment of buying, a

buyer is randomly chosen from the set of potential buyers and buys the preferred technology.

Thus, the probability that at time t technology k is chosen is again given by dk(s
t).

12For a further discussion of this behaviour see section 4.
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3 Market Dynamics and the Replicator Equation

The dynamics of market shares can be interpreted as an urn scheme of the

type studied in Arthur [1983], Arthur et al. [1987], Dosi and Kaniovski [1994],

Dosi et al. [1994]: Consider an urn of in�nite capacity with balls of K di�erent

colors. At each time step a ball is added. The color is chosen randomly and the

probability for each color is given by a so called urn function q(�) : �! �which

is a function of the present distribution of balls in the urn. The application to

the market dynamics is straightforward. The urn is associated with the market.

Consumers choice among technologies corresponds to adding of a ball. The

market shares are identi�ed with proportions of balls in the urn. Finally, the

urn function is just the relative demand function d(s). In the following analysis

we extend some standard results on urn processes, i.e. on the limit distribution

of balls when the number of additions goes to in�nity.13

First we formulate the market dynamics for shares and establish the con-

nection to replicator dynamics. Then we prove that the market shares converge

almost surely to a random vector living on the �xed points (Theorem 1) of

the dynamics. In Theorem 2 we distinguish attainable and unattainable �xed

points, i.e. �xed points to which the process converges with positive resp. zero

probability. Finally, we handle two special cases, where the elasticity of the

demand functions with respect to market shares is always greater (resp. less)

than 1. We give here only sketches of the proofs. The exact proofs are given in

the appendix. Writing equation (2) in terms of market shares the evolution is

given by14

st+1 = st +
1

n+ t

�
�t(st)� st

�
; (4)

where n = n11+n12+ : : :+n1K denotes the initial number of goods in the market.

Adding and subtracting the term 1
n+t d(s) = 1

n+t (d1(s); d2(s); : : : ; dK(s)) to

equation (4) yields

st+1 = st +
1

n+ t

�
d(st)� st

�
+

1

n+ t

�
�t(st)� d(st)

�
: (5)

Since E (�(s)) = d(s) we have E(st+1jst) = st + 1
n+t

�
d(st)� st

�
and, conse-

quently, on average system (5) shifts from a point s at time t by 1
n+t [d(s)� s].

Hence, the limit points of the system (if any) belong to the set of zeros of

13See Arthur [1983], Arthur et al. [1987], Arthur, Ermoliev and Kaniovski [1988a, 1994],

Pemantle [1990] and Posch[1994].
14See Arthur et al. [1987], Dosi and Kaniovski [1994], Dosi et al. [1994].
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d(s) � s. At these points the expected motion is 0. We call these points the

�xed points of the system. The limit dynamics of the stochastic process (5) is

closely related to the asymptotic behaviour of the di�erential equation

_s = d(s)� s;

which can be written as

_sk =
Dk(sk)PK
j=1Dj(sj)

� sk; k = 1; : : : ;K: (6)

To prove convergence of the market dynamics we have to introduce some smooth-

ness conditions for the demand functions. For all s > 0 they have to be positive

and twice continuosly di�erentiable. For technical reasons we assume addition-

ally that D(0) := lims!0Dk(s) exists or Dk(s) ! 1 for s ! 0 (then we set

Dk(0) =1) and that lims!0Dk(s)=s exists or Dk(s)=s!1 for s! 0 (in the

latter case we write D0
k(0) =1). The �xed points of (6) are points �s 2 � such

that Dk(�sk) <1 and Dk(�sk)PK
i=1Di(�si)

= �sk for all k.

Replicator Dynamics By Hofbauer and Sigmund [1988, p. 92] the phase

portrait of di�erential equation (6) does not change if we multiply it by a

positive factor. Thus, multiplying by
PK

j=1Dj(sj), we get the new di�erential

equation

_sk = Dk(sk)� sk

KX
j=1

Dj(sj); k = 1; : : : ;K: (7)

We see that the market share of technology k increases (decreases, remains

constant) ifDk(sk) > sk
PK

j=1Dj(sj) (respectively \<" or \="). We now de�ne

the �tness of technology k by

Gk(sk) :=
Dk(sk)

sk
for all sk 2 (0; 1] and k = 1; : : : ;K: (8)

For the boundary we set Gk(0) = limsk!0Gk(sk) 2 IR[f1g. In the interior of

� and all boundary faces where the �tnesses are �nite, equation (7) becomes

_sk = sk (Gk(sk)� �G(s)); k = 1; : : : ;K; (9)

where �G(s) =
PK

j=1 sj G(sj) gives the average �tness. (9) restricted to � is

a well studied replicator equation (see Hofbauer and Sigmund [1988] and Hof-

bauer, Schuster and Sigmund[1981]).
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Hence, the dynamics of the market corresponds to a replicator dynamics,

where the \�tness" of a product is given by the ratio of demand and market

share. We see from equation (9) that, if the �tness of a technology is greater

(smaller) than the average �tness (which is equal to the sum of absolute de-

mand), its market share increases (decreases). Thus, the �tness of a product is

its capacity to stay in the market or even to take over the whole market.

Note that even a technology with a low absolute demand can have a high

�tness. Thus, a low absolute demand does not automatically lead to extinction

of the technology. Also a high absolute demand for a technology does not assure

that it will survive. Additionally, even if the relative demand for a product in-

creases with its market share, its �tness might decrease, if the absolute demand

grows slower than the market share. Also, if �k = 1 for all k (i.e. if network

externalities are present!), the �tness of a technology depends only on its price

level (see (3) and (8)).

Stochastic processes of the type studied here may not converge but exhibit a

cyclic behaviour.15 However, for the market dynamics we can show the following

Theorem:

Theorem 1 Let Z denote the set of �xed points of (7) and assume that Z is

�nite. Then the market shares converge almost surely and P (limt!1�st 2 Z) =

1:

The argument exploits that (7) is a Shashahani gradient system[Hofbauer and

Sigmund, 1988] and thus, all solutions of the di�erential equation converge

to �xed points. To reformulate this result to the stochastic process we need

an extension of standard stochastic approximation results to handle demand

functions that go to in�nity at the boundary (as e.g. the demand function

given by (3)).

Not all �xed points of (7) are attained in the limit with positive probability.

Denote the share elasticity of Dk with respect to s, by �k(s) =
D0
k(s)

Dk(s)
s. If, at a

�xed point �s in the interior of �, all �k(�sk) are less than 1 then the �xed point

is attained with positive probability. If two or more of these elasticities are

larger than 1 then the �xed point is attained with probability 0. If exactly one

elasticity is less than one then the �xed point can be attainable or unattainable

depending on a more complicated condition. This is summarized in the following

theorem.

Theorem 2 Let �s 2 Z be a �xed point and set supp(s) = f k j sk > 0; 1 � k �

K g. Assume that:

15See Posch [1997], Barucci and Posch[1996], Bena��m[1996].
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(a) �k(�sk) 6= 1, for all k 2 supp(�s),

(b) D0
k(�sk) 6=

PK
l=1Dl(�sl), for all k =2 supp(�s),

(c) the term in (10) is not zero.

Then the necessary and su�cient conditions that P (limt!1 st = �s) > 0 are

D0
k(0) <

PK
l=1Dj(�sl); for all k =2 supp(�s); and

1) �k(�sk) < 1 for all k 2 supp(�s), or

2) there exists exactly one l 2 supp(�s) such that �l(�sl) > 1 and

X
k2supp(�s)

�s2k
Dk(�sk) (�k(�sk)� 1)

> 0: (10)

The argument exploits that the sinks of the di�erential equation correspond to

the maxima of the potential. By theorem 8 in (Posch[1994]) sinks are attained

with positive probability. For the non-convergence part, that is saddles and

sources, we extend results of Arthur et al. [1988a] and Pemantle[1990]. Namely,

we prove that unstable �xed points on the boundary of the simplex, i.e. where

the share of one color is zero, are attained in the limit with probability zero

(Arthur et al. [1988a] and Pemantle [1990] looked at interior points only).

In the next two statements we discuss the special case where the share-

elasticity of all demand functions is greater (resp. less) than 1 on the whole

interval (0; 1]. Then there exists at most one �xed point in the interior of �. If

these elasticities are all less than 1 this �xed point is attained with probability

one. Thus the outcome of the market dynamics is deterministic in this case. If

the demand functions for all technologies are the same, the �xed point is in the

interior of �. Hence, in the limit all technologies coexist.

Theorem 3 If for all s in the interior of �; �k(sk) < 1; k = 1; : : : ;K then

there exists an �s 2 � such that P (limt!1 st = �s) = 1:

If D0
k(0) = D0

l(0); 0 � k; l � K then �s is in the interior of �.

In the opposite case where all share-elasticities are greater than 1 the market

dynamics converges to one of the vertices of the simplex �. Hence, in the limit

only one technology survives. If the demand functions for all technologies are

identical, each vertex is attained with positive probability. Thus, the market

outcome is random and path dependent.
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Theorem 4 Assume that for all s in the interior of �; �k(s) > 1; k = 1; : : : ;K.

Then P (limt!1 st 2 E) = 1, where E = fe1; : : : ; eKg denotes the set of ver-

tices.

If D0
k(0) = D0

l(0); 0 � k; l � K, then P (limt!1 st = ek) > 0 for all k =

1; : : : ;K.

In the proofs of theorems 3 and 4 we adapt a result on replicator dynamics in

Hofbauer et al.[1981] and show that the potential of (7) has a unique extremum.

4 Dynamics of Markets Under Di�erent Scenarios

So far the model has been formulated for K goods. Let us now illustrate the

dynamic behaviour of a market with network externalities where three com-

modities compete (K = 3). In Section 2.1 we argued that �rms change the

price of their products as market shares change. That is we assume that the

pricing policy of �rm k can be described by a share-response function that we

denote by pk(s
t
k).

16 This implies the assumption that �rms base their price

settings on their average costs (which includes \normal pro�t", i.e. the oppor-

tunity costs of production) such that the minimum price of the product equals

its average costs. Moreover, we assume that with increasing market share �rms

can extend their production capacity and hence they experience a sinking long-

term average cost function17. A simple speci�cation of this behaviour is that

the price is just the reciprocal value of the market share:18

pk(sk) =
ak
sk
; (11)

where ak are constants. We call function (11) a share-response function and

assume for simplicity that this function is identical for all K �rms, i.e. ak = a.

Fig. 1 gives a graphical representation of the domain � projected on the plane.
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Figure 1: Graphical representation of the domain � (projected on the plane) where the dy-

namics of shares evolves.
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Figure 2: Graphical representation of the three scenarios in the �-�-space. For parameters in

the bright region only one technology survives in the limit. For parameters in the dark region

all technologies coexist in the limit with equal market shares. On the line separating the regions

the technologies coexist in the limit { their limit market shares are however random.

11



4.1 The Scenarios

Let us analyze the market behaviour under di�erent elasticity parameters �

and �. Basically, four areas of the (�; �)-space are conceptually interesting (see

Figure 2)19 We consider the demand to be

a) price- and network-inelastic: � 2 (�1; 0]; � 2 [0; 1),

b) price-inelastic and network-elastic: � 2 (�1; 0]; � > 1,

c) price-elastic and network-inelastic: � < �1; � 2 [0; 1),

d) price- and network-elastic: � < �1; � > 1.

The cases where � = �1 (resp. � = 1) are of special interest since then demand

is neither price- (resp. network-) elastic nor inelastic. We therefore will refer

to intermediate elasticity.20 Additionally, the cases where one of the elasticities

vanishes is of special interest: if � = 0 this corresponds to a \classical" mar-

ket without network externalities and if � = 0 to a market where consumers

are indi�erent with respect to prices. To investigate the dynamics for di�erent

elasticities we insert function (11) into (3) to obtain

Dk(sk) = a� s���k : (12)

4.2 Emerging Market Dynamics

Since the elasticity of (12) with respect to market share is ���, the above men-

tioned four cases can be analyzed by considering the following three scenarios:

� � � = 1, � � � > 1 and � � � < 1. We show in which of these scenarios all

three technologies coexist in the time limit and in which only one technology

survives. A summary of the results is given in Figure 2.

16We could also assume that the price depends on the market shares of the other technologies

or is also stochastic. To simplify the subsequent analysis we assume that it depends only on

its market share. A similar approach was chosen by Dosi and Kaniovski [1994] and Dosi et al.

[1994].
17The model studied here is intrinsically dynamic. Since the production structure, hence

costs, is subject to change with time we consider the long-term average cost function (see e.g.

[Varian, 1995]).
18A more complex price function is analyzed in Keilbach and Posch[1997]. See section 6 for

a brief discussion of the results.
19In the following discussion we consider neither positive price elasticities nor negative

network elasticities explicitly. Note however that these cases may be derived from the analysis

given in section 4.2.
20Some economic textbooks refer to unitary elasticity. See e.g. Pinola and Sher [1981].
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I. Let us start with ��� = 1, which encompasses the two reference cases � =

�1; � = 0, i.e. a \classical" market with intermediate price elasticity and

� = 1; � = 0, i.e. intermediate network externality and no price elasticity.

The demand functions simplify to Dk(sk) = a�sk and by (1) the relative

demand for k equals the existing proportion of k in the market (i.e. dk(s) =

sk). The �tnesses of the technologies are constants and independent of

market shares.

In this case the shares converge with probability one.21 Moreover, the limit

of shares is (conditional on the initial condition)Dirichlet-distributed with

the density function

fD(s) =

(
c � s

n11�1
1 s

n12�1
2 s

n13�1
3 for s 2 �

0 else
(13)

where n11; n
1
2; n

1
3 � 1 are the initial numbers of products of each technology

in the market and c = �(n1+n2+n3)
�(n1)�(n2)�(n3)

. Thus, we cannot predict to which

point in � the market shares converge. This implies, that even under

positive network externalities (namely in all cases where � = 1 + �), all

three technologies coexist in the limit. If n11 = n12 = n13 = 1 the limit

distribution is uniform on � (see Figure 3.I for an illustration). Note that

this case is not generic, i.e. small deviations from the condition �� � = 1

will lead to di�erent market behaviours. This will be discussed in turn.

II. � � � > 1. This scenario encompasses the scenarios b), c), d) and half

of the parameter space of scenario a) (see Figure 2). In these cases the

share elasticity �k(�) of the demand functions is greater than one. Thus, by

theorem 4 the process converges with probability one to one of the vertices

and each vertex, i.e. the point (1,0,0) and its permutations, is attained

with positive probability. Thus, the market locks into one technology but

we cannot predict into which one. To this case (illustrated in Figure 3.II)

the discussion on path-dependence and \lock-in" usually refers. However,

network externalities are not a necessary condition for lock-in and the

emergence of a monopoly. It can also be a result of the price dynamics if

the price elasticity is less than �1.22

21See Arthreya [1969].
22One might argue that a �rm will modify its pricing behaviour to stay in the market.

However, as �rms base their pricing behaviour on average costs, small �rms may be driven

out of the market due to higher cost of production. Thus, a monopoly emerges with probability

one.
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Figure 3: Probability distribution of market shares at t = 30 given share response function

(11), n11 = n12 = n13 = 1 and the three scenarios: (I) �� � = 1, (II) ��� > 1, (III) �� � < 1.

14



Table 1: Evolution of market shares, prices and sales in the market of UNIX workstations

Sun Apollo HP DEC
year sales sales m-share sales sales m-share m-share m-share

(mill US$) (units) (per cent) (mill US$) (units) (per cent) (per cent) (per cent)
1983 15 760 15% 90 2,500 43% 10% {
1984 40 2,000 15% 220 6,200 40% 16% 0%
1985 130 6,000 16% 310 9,000 28% 22% 10%
1986 220 10,000 22% 400 15,000 27% 18% 13%
1987 550 25,000 26% 560 22,000 18% 16% 18%
1988 1,070 49,000 28% 670 30,000 14% 17% 20%
1989 1,780 80,000 29% { { {� 27% 16%
�in 1989 Apollo has been purchased by HP. Corresponding market shares are reported under HP

III. � � � < 1. This encompasses the other half of region a) where both

parameters are inelastic. It also includes conceptually less plausible cases

where � < 0 and � > 0. Now the share elasticities �k(s) are less than

one. Thus, by Proposition 3 there is an interior �xed point �s such that

P (limt!1 st = �s) = 1. By symmetry we have �s =
�
1
3 ;

1
3 ;

1
3

�
. See Figure

3.III for an illustration.

This result is somewhat counterintuitive since it encompasses the cases

� 2 [0; 1); � = 0. That is technologies will coexist although positive net-

work externalities prevail on the market. This is due to the fact that the

demand for a technology increases slower than its market share. Hence,

its �tness actually decreases with market share. Thus, positive network

externalities do not automatically imply lock-in e�ects.

Also if � = 0 and the price response is inelastic (� > �1) no monopoly

emerges in our model. Note �nally that scenario III includes also the case

� = � = 0, i.e. where consumers do not respond to any signal from the

market. Although admittedly implausible it is interesting to observe that

such a behaviour will equally lead to coexistence of all technologies.

5 Empirical evidence

Let us now illustrate the model with a market that can be assumed to be path-

dependend. We consider the market for UNIX workstations in the period 1983 {

1989.23 In that period this market has been dominated by two �rms, Apollo and

Sun Workstations. By 1989, Apollo was purchased by Hewlett-Packard. Table

1 reproduces the data. Annual unit sales and average unit price, as necessary

23Data on prices and shares in the market for microcomputers (PC's) could not be obtained.

Data on UNIX workstations are given by Garud and Kumaraswamy [1993, p.353]. We are

indebted to Marko Wallat for his support in obtaining these data.
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for the regressions, can be computed from these data24. The character of this

empirical study is tentative and explorative. We will therefore suggest three

regressions: in the �rst we take the model developed in the previous sections as

literal, moreover assuming that buyers are indi�erent with respect to the brand.

Thus, � and � are supposed to be identical for both brands. In the second, we

allow for di�erent parameter estimates for each brand and �nally in the third,

We will suggest a very 
exible empirical setup of the model.

5.1 Empirical evidence when buyers are indi�erent with re-

spect to the brand

equation (3)
Dependent Var. is logdemand
constant 91.386

(0.000)

share (�) 4.650
(0.000)

price (�) -7.523
(0.000)

R2 0.788
Note: Probabilities for

H0 : �i = 0 in brackets

equation (11)
Dependent Var. is price
1/share 4198.53

(0.000)

R2 0.723
Note: Probabilities for

H0 : �i = 0 in brackets

Table 2: regression results for demand function (3) and for share response function (11)

In this �rst setup we estimate equations (3) and (11). As indicated above,

we include two brands Apollo and Sun, thus referring to a two-dimensional

urn function. Table 2 reproduces the regression results. We see from the left

part of Table 2 that demand is highly elastic with respect to both, prices and

market share. The signs are as expected, i.e. price elasticity is negative and share

elasticity is positive. Both parameters are signi�cant, hence we have signi�cant

network externalities. From equation (12) we derive a share elasticity of ��� =

12:173 which is largely greater than 1. Thus, according to the analysis in section

4.2, the market will lock in to one of both technologies.

5.2 Empirical evidence when buyers are not indi�erent with

respect to the brand

Asuming that buyers react sensitive with respect to the brand implies to run

separate regressions for SUN and Apollo. Table 3 reproduces the results. We see

that for SUN workstations demand is sensitive with respect to the market share.

24The appropriate price de
ator has been taken from http://stats.bls.gov.
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However, the estimate for price elasticity is positive but highly insigni�cant,

i.e. demand is insensitive with respect to price. As to Apollo, demand elasticity

with respect to share is negative but all estimates are insigni�cant. We conclude

from these results that once we consider the market in more detail the suggested

demand function is too in
exible. We therefore suggest a more 
exible form in

the next section.

SUN
Dependent Var. is logdemand
constant 8.705

(0.873)

share (�) 6.198
(0.002)

price (�) 1.106
(0.844)

R2 0.964
Note: Probabilities for

H0 : �i = 0 in brackets

APOLLO
Dependent Var. is logdemand
constant 24.071

(0.340)

share (�) -1.400
(0.429)

price (�) -1.614
(0.461)

R2 0.910
Note: Probabilities for

H0 : �i = 0 in brackets

Table 3: results of regressions for demand function (3) when buyers are not indi�erent with
respect to brand

5.3 Empirical evidence from an enlarged 
exible demand func-

tion

Equation (3) can be decomposed as follows

Dk = (stk)
�k(ptk)

�k

= (ntk)
�k

 X
i

nti

!��k

(ptk)
�k

where ntk is the number of products k in the market at time t. Thus, the spec-

i�cation of demand equation (3) was based on the implicit assumption that

@ logDk=@ lognk = �@ logDk=@ log
P

i ni = �k. This simplifying assumption

allowed us to proceed with the theoretical analysis. In the empirical analysis

we are not bound to this assumption. Let us therefore in an ad hoc approach

modify this equation to obtain

Dk = (ntk)
�k

 X
i

nti

!��k

(ptk)
�k :

Thus we describe demand for technology k as a function of the absolute number

of k in the market and as a function of the absolute size of the market. Columns

1 and 3 of Table 4 report the results for SUN and Apollo respectively. We see
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SUN Apollo
constant 3.992 -1.187 7.007 -6.024

(0.712) (0.649) (0.179) (0.042)

� 1.183 1.009 0.885 2.076
(0.021) (0.027) (0.120) (0.015)

� 0.351 -0.139 0.164 0.297
(0.371) (0.788) (0.668) (0.108)

� -0.241 { -0.455 {
(0.828) { (0.273) {

� { -0.546 { -1.633

{ (0.287) { (0.025)

R2 0.999 0.999 0.999 0.999
Note: Probabilities for H0 : �i = 0 in brackets

Table 4: results of regressions of an enlarged 
exible demand function

that consumers' demand for a certain technology reacts stronger with respect

to the number of that technology than with respect to the installed basis. Note

that elasticities are estimated lower compared to those given in Table 3.

As an experiment we speci�ed demand as a function of time (expressed by

parameter � in Table 4) instead of price to capture the e�ect that prices in

the market of computer hardware strongly decrease over time and thus can

be interpreted as being a function of time. Column 2 and 4 of Table 4 repro-

duces the results which do not di�er signi�cantly from those in colums 1 and 3

respectively.

We see from these results that demand for a certain technology reacts pos-

itive with respect to the installed basis of this technology. Thus, although the

results cannot be included in function (3) this more 
exible speci�cation yields

again evidence for network externalities. Thus, as an overall result, we could �nd

empirical evidence in favour of network externalities. However, further research

in the empirical setup is necessary to explain the sometimes counterintuitive

results (the signs in Table 3).

6 Summary and Outlook

This paper deals with markets where di�erent technologies compete that all

ful�ll the same task but have di�erent characteristics. We analyze the behaviour

of such markets for di�erent levels of price- and network-elasticities. To this

purpose we specify demand functions that depend not only on the price of a

technology but also on its market share. Based on these functions we de�ne

conditional probabilities of buying a certain technology. Assuming that �rms

decrease their prices if their market share increases we can identify the dynamics
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and limit states of these markets.

The theoretical analysis is illustrated for a market where three goods com-

pete under several constellations of elasticity parameters. The model thus en-

compasses \classical" markets, i.e. markets where no network externalities pre-

vail. Several interesting results are obtained. First, if no network externalities

exist and demand is inelastic, none of the technologies is pushed out of the mar-

ket and all technologies have in the limit identical market shares. If however

demand is elastic only one of the technologies survives, i.e. monopoly emerges.

If demand is \intermediate" (i.e. neither elastic nor inelastic) all technologies

coexist but it is not possible to predict the distribution of market shares.

Second, even if network externalities prevail all technologies may coexist

in the market if the demand is network inelastic. Thus, a market dynamic as

we know it from the story of the QWERTY-keyboard or the market of video

recorders (as discussed in section 2.1) can only emerge in a relatively limited

area of the parameter space. Thus { to come back to the question asked in the

title { it is not certain that Bill Gates' operating system will oust the others

from the market.

In Keilbach and Posch [1997] we analyze the model for a di�erent share

response function. Here, �rms �rst decrease their prices with market share but

increase it once a certain critical market share is passed. Here we obtain a

whole spectrum of possible market outcomes. We show that even if network

externalities prevail on a market it is possible that several (but not necessarily

all) technologies coexist. Our approach is not restricted to simple continuous

share-response functions. On the contrary, the 
exibility of the chosen approach

allows for integration of arbitrary (or even stochastic) share-response behaviour.

The choice of this function is of course of decisive in
uence on the market

dynamics.

The paper ends with an empirical study of the market of UNIX workstations

in the U.S. where we consider two products: SUN and Apollo workstations.

Regression results give evidence in favour of network externalitites. However,

further research is necessary, at least to get a larger data base.
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Appendix

A note on the notation Since the dynamics given by (9) leaves the simplex

� invariant, we have stK = 1 �
PK�1

k=1 stk; 8t > 0. Thus, the system can be

reduced to the �rst K � 1 dimensions. Then we get a dynamics on �� = fs 2

IRK�1 j si � 0;
PK�1

i=1 si � 1g. In the literature on urn processes mainly the

K�1-dimensional notation is used, while the analysis of the replicator equation

was mainly done in the K�dimensional setting. To apply the results on urn

processes (including proposition 1) we have to translate the results between the

two setups. While the characterization of �xed points is the same in both setups,

the stability conditions have to be adapted. Let _s = g(s) denote a vector �eld on

� that leaves � invariant. Hence,
PK

k=1 gk(s) = 0; 8s 2 �. The equivalentK�1

dimensional system is then given by _sk = gk(s1; : : : ; sK�1; 1 �
PK�1

l=1 sl); k =

1; : : : ;K�1 and is de�ned on ��. Thus, the tangent space of each interior point

in �� is given by IRK�1. The tangent space for interior points in � for _s = g(s)

restricted to � is f� 2 IRK j
PK

k=1 �k = 0g. Denote the Jacobian of g(�) by Dg,

the one of
�
gk(s1; : : : ; sK�1; 1�

PK�1
l=1 sl)

�K�1

k=1
by D�g. Hence, a �xed point

s 2 � is a linearly stable �xed point of _s = g(s) restricted to � if

hDg(s); �; �i < 0; � 2 f� 2 IRK j
KX
k=1

�k = 0g

which holds if and only if

hD�g(s1; : : : ; sK�1; 1�

K�1X
l=1

sl) �; �i < 0; � 2 Rk�1;

i.e. that (s1; : : : ; sK�1) is hyperbolically stable for _sk = gk(s1; : : : ; sK�1; 1 �PK�1
l=1 sl); k = 1; : : : ;K � 1 .

Proposition 1 Let st be an urn process with a C1 urn function d as speci�ed

in (2) and let �s 2 � be a hyperbolically unstable �xed point of the vector �eld

_s = d(s)� s restricted to �.

Then

P ( lim
t!1

st = �s) = 0:

Proof Let I = f i j�si = 0g. By (if necessary) relabeling technologies we can

assume that I � f1; : : : ;K � 1g. Hence,

K�1X
k=1

�sk < 1: (14)
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For the proof we use the K � 1 dimensional notation. For simplicity we

denote the K � 1-dimensional vectors again by �s = (�sk)
K�1
k=1 and the K � 1

dimensional vector �eld by _s = f(s). Now, �s 2 �� is a hyperbolically unstable

�xed point of the K � 1 dimensional vector �eld f . If �s lies in the interior of ��

then the non-convergence follows from proposition 1 in Pemantle [1990]. Thus,

we assume in the following that �s lies on the boundary of ��.

For the proof we have to consider two cases. First, we assume that at least

one of the eigenvectors corresponding to an eigenvalue with positive real part

points away from a boundary surface of �� (lemma 2). Second we consider the

remaining case where all such eigenvectors lie in one of the boundary surfaces

(lemma 3). To make this exact we use the notion of saturated �xed points,

introduced by Hofbauer (1990).

De�nition: �s is said to be a saturated �xed point if all eigenvalues of the

matrix A :=
�
@fi
@sj

(�s)
�
i;j2I

have non-positive real part.

Lemma 1 If �s is not saturated then there is a d > 0, a neighbourhood U of �s,

and a vector v 2 IRK�1; vi � 0 i = 1; : : : ;K � 1; vi = 08i =2 I; jjvjj = 1 such

that for all �s 2 U

hf(s); vi > d hs;vi (15)

This is shown in the proof of proposition 1 of Hofbauer (1990).

Lemma 2 Assume �s is not saturated. Then P (limt!1 st = �s) = 0.

Proof: Assume to the contrary that P (limt!1 st = �s) > 0. Choose a neigh-

bourhood U of �s, a vector v, and a d > 0 as speci�ed in lemma 1. Then there

exists a T > 1 such that P (flimt!1 st = �sg \ fst 2 U; t > Tg) > 0 Let � be the

following stopping time

� =

(
min t > T : st =2 U; if there is a �nite t > T s.t. st =2 U ;

1 otherwise
:

We show that

P ( lim
t!1

hst;vi = 0 j � =1) = 0: (16)

Since vi > 0 for at least one i such that �si = 0 this proves the proposition. We

�rst show that

P ( lim
n!1

hnt;vi =1j � =1) = 1: (17)
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Let Jv = f i j vi > 0g. Then (17) holds if P (limt!1
P

i2Jv
nti =1j� =1) = 1:

Since the nti are monotonically increasing, we get

sti =
nti

n+ t
�

n1i
n+ t

�
1

n+ t
; i = 1; : : : ;K � 1: (18)

By (15), (18), and since jjvjj = 1 we get for all t > T

P (
X
i2Jv

�ti (s
t) = 1) � E

�X
i2Jv

�ti (s
t)
���Ft

�
� E

�
h�t(st);vi

���Ft

�

� E
�
h�t(st)� st);vi

���Ft

�
� d hst;vi �

d

n+ t

By construction of �t there exists a sequence of independent random variables

�t; t � 1 such that
P

i2Jv
�ti (�y

t) � �t � 0 and P (�t � 1) � d
n+t for all

(deterministic) sequences �yt 2 U satisfying �yti >
1

n+t ; i = 1; : : : ;K � 1. SinceP1
t=1 P (�

t � 1) = 1, by the Borel-Cantelli lemma we get
P1

t=1 �
t = 1 a.s.

Hence (17) holds true.

For a t > 0 let Et denote the set of all paths where hnt;vi > 1
d , i.e. E

t =

fhnt;vi > 1
dg. Note, that E

t is F t-measurable and since nt is increasing in t, for

all t0 > t we have Et0 � Et. Hence, by (17) we have limt!1 P (Et j � =1) = 1.

Now we prove (16) by contradiction. Assume that P (limt!1hs
t;vi = 0 j � =

1) > 0. Then there is a T 0 > T such that

P (ET 0

\ f� =1g \ f lim
t!1

hst;vi = 0g) > 0: (19)

Let Gt = ft < �g\ET 0
. We claim that 1Gt

1
hst;vi is a supermartingale. By (18)

we have sti > 0 for all t and thus, 1
hst;vi is �nite for all t. Let t > T 0 be arbitrary

but �xed. On the F t-measurable set Gt the process is not equal to zero and thus,

by (2)

1Gt E
� 1

hst+1;vi
�

1

hst;vi

���Ft

�
= 1Gt E

�n+ t+ 1

hnt+1;vi
�

n+ t

hnt;vi

���Ft

�

= 1Gt E
� hst;vi � (n+ t) h�t;vi

hst;vi hst + �t;vi

���Ft

�

� 1Gt
1

hnt;vi

�
1�

n+ t

hst;vi+ 1
E
�
h�t;vi

���Ft

��
(20)

On Gt we have st 2 U , and thus, by (15) we get 1Gt E
�
h�t;vi

���Ft

�
� 1Gt d hst;vi.

Substituting st by nt

n+t we get by (20)

1Gt E
� 1

hst+1;vi
�

1

hst;vi

���Ft

�
� 1Gt

1

hnt;vi

�
1�

(d+ 1) hnt;vi

hnt;vi+ 1

�
� 0:

Since Gt is F t-measurable and Gt+1 � Gt, we proved that E
�
1Gt+1

1
hst+1;vi �

1Gt
1

hst;vi

���Ft

�
� 0, and hence 1Gt

1
hst;vi is a non-negative supermartingale.



Appendix 23

Thus, the limit s� = limt!1
1

hst;vi �1Gt exists a.s. Now, by the Fatou lemma we

have

E(s�) � lim inf
n!1

E
�
1Gt

1

hst;vi

���Ft

�
�

1

hsT 0 ;vi
<1:

Hence, s� < 1 a.s. and thus, P (ET 0
\ f� = 1g \ flimt!1hs

t;vi = 0g) = 0,

which contradicts with (19). 2

Lemma 3 Assume �s is saturated. Then P (limt!1 st = �s) = 0.

Proof: Let E+ denote the eigenspace corresponding to the eigenvalues of

A with positive real part. We apply proposition 1 in Pemantle [1990], checking

conditions (i)- (iv). Conditions (i), (ii) and (iv) are straightforward. Condition

(iii) reads:

There exists a neighbourhood U of �s, a c > 0 such that for all unit

vectors � 2 E+, all s 2 U and all t > 1

E
�
h(�tk(s)� sk)

K�1
k=1 ;�i

+
���Ft

�
� c;

where h :; :i+ = max(0; h :; :i).

(Pemantle actually requires this inequality to hold for all � in the tangent space

of ��. However, in the proof he uses only the above weaker condition). Choose

a unit vector � in E+ and set � = mini=2I �si. Since �s is a �xed point, for all

i = 1; : : : ;K � 1; P (�i(�s) = 1) = �si. Thus,

E
�
h�t(�s)��s;�i+

���Ft

�

=
K�1X
i=1

P (�i(�s) = 1)

0
@�i � K�1X

j=1

�sj�j

1
A

+

+

 
1�

K�1X
i=1

�si

!0@�K�1X
j=1

�sj�j

1
A

+

� �
X
i=2I

0
@�i �X

j =2I

�sj�j

1
A

+

+

 
1�

X
i=2I

�si

!0
@�X

j =2I

�sj�j

1
A

+

: (21)

Since � lies in the tangent space of E+ we have �i = 0; 8i 2 I and �� :=

maxi=2I �i 6= 0. If �� > 0 then the �rst term in (21) is positive, since by (14)P
j =2I �sj < 1. If �� < 0 then the second term is positive.

By continuity there is a neighbourhood U of �s and a c > 0 such that for all

s 2 U

E
�
h(�tk(s)� sk)

K�1
k=1 ;�i

+
���Ft

�
> c:

2



Appendix 24

This completes the proof of proposition 1. In the following we use again

the K-dimensional notation. Let int� denote the interior of � in the relative

topology.

Proposition 2 Let �s 2 int� be a �xed point of (9) such that
PK

k=1
1

G0
k(�sk)

> 0

and G0(�si) 6= 0 for all i.

1. If G0(�sk) < 0; k = 1; : : : ;K or

2. if there is exactly one l s.t. G0
l(�sl) > 0 and

PK
k=1

1
G0
k(�sk)

> 0,

then �s is a sink. Otherwise �s is a saddle or source.

Proof: By Hofbauer and Sigmund[1988] (9) is a Shashahani gradient system

for the potential V (s) = �
R 1
s1
G1(t) dt�

R 1
s2
G2(t) dt� � � � �

R 1
sK

GK(t) dt. Thus,

the �xed points of (9) in int� are the critical values of V (�) restricted to �. To

see this, let � = f� 2 IRK j
PK

k=1 �k = 0g denote the tangent vector space of �.

Then for all �xed points �s 2 int�

hrV (�s); �i =

KX
k=1

Gk(�sk) �k = G1(�s1)

KX
k=1

�k = 0; 8� 2 �;

holds. The maxima of V (�) restricted to � are the asymptotically stable points

of (9). Since (9) is a gradient system �s is a sink, if and only if for the Jacobian

DV(�) of V (�) we have

hDV(�s) �; �i < 0; 8� 2 �: (22)

If there is a � 2 � such that the inequality in the other direction holds then �s is

a saddle or source. DV(�) is a diagonal matrix given by DV(�s) = (�ijG
0
i(�si))ij.

Thus, if condition 1 of the proposition holds (22) follows immediately.

If condition 2 holds then assume w.l.o.g. that G0
1(�s1) > 0 and G0

k(�sk) < 0

for k > 1. We give a proof by contradiction. Assume there exists a � 2 � such

that hDV(�s) �; �i > 0 we have j�1j > 0 and hence

G0
1(�s1) +

KX
k=2

G0
k(�sk)

�2k
�21

> 0:

Set �0k =
�k
�1

and note that j
PK

k=2 �
0
kj = 1. Hence,

max
x2IRK ; j

PK
k=2 xkj=1

G0
1(�s1) +

KX
k=1

G0
k(�sk)x

2
k = G0

1(�s1) +
1PK

k=2
1

G0
k(�sk)

> 0 (23)
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A straightforward calculation shows, that (23) holds if and only if
PK

k=1
1

G0
k(�sk)

<

0. This is a contradiction to condition 2. Hence �s is a sink. With the same

argument we see that if
PK

k=1
1

G0
k(�sk)

> 0, �s is not a local maximum of V (�)

restricted to � but a saddle or minimum, and hence its a saddle or source for

(7).

Finally, assume there exist k; l; k 6= l such that G0
k(�sk) > 0 and G0

l(�sl) > 0.

For � 2 � such that �l = 1; �k = �1 and �j = 0; j 6= k; j 6= l we have

hDV(�s) �; �i > 0, and hence the �xed point is a saddle or source.

2

Proposition 3 Let I � f1; : : : ;Kg and �I = f s j si = 0; 8 i 2 I g denote a

boundary face. Assume that Gi(0) < 1 for all i 2 I. Then �I is an invariant

set. If �s 2 �I is a sink for (9) restricted to �I and

1. for all i 2 I; Gi(0) <
PK

j=1 �sj Gj(�sj) =: �G(�s) then �s is a sink for (7) on

�.

2. there exists an i 2 I such that Gi(0) >
PK

j=1 �sj Gj(�sj) then �s is a saddle.

Proof: 1. By (if necessary) relabeling technologies we can assume that

s1 > 0; : : : ; sm > 0; sm+1= � � �=sK=0 for some m. Then the gradient rV

is given by rV = ( �G; :::; �G;Gm+1(0); :::; GK(0))
T . The tangent vector space at

the boundary face �I is given by �I = f� 2 IRK j
PK

k=1 �k = 0; �i � 0; 8i 2 Ig.

Thus, if Gi(0) < �G;8i 2 I then hrV; �i � 0 for all � 2 �I. The inequality is

strict for all � 2 �I such that 9i 2 I; �i > 0. By our assumptions �s 2 �I is

a sink for (9) restricted to �I and hence a maximum of V restricted to �I . It

follows, that �s is a local maximum of V restricted to �. It remains to show that

�s is a hyperbolic �xed point. Since (9) is a gradient vector �eld, all eigenvalues

of its Jacobian are real. Thus, it su�ces to show that the determinant is not

zero. This follows straightforward. The proof of statement 2. is analogous and

thus omitted. 2

For every set A � IRK and � > 0 set U�(A) := f�s 2 � j D(�s; A) < �g, where

D(�s; A) = inf�s02A jjs�s
0jj. The following lemma is a modi�cation of proposition

7.3 in Nevel'son and Has'minskii [1973].

Lemma 4 Let D � � and consider the sequence

st+1 = st +
1

n+ t
f(st) +

1

n+ t
�t (24)

where st 2 �; 8t > 0. Assume there is a random time instant �1 such that a.s.

st 2 D for all t > �1 and �1 < 1 a.s., that f : int� ! IRK is bounded and
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continuous, and �t is a sequence of uniformly bounded random vectors such that

E
�
�t
��� st� = 0. Let c > 0 and assume that V is a strict C2 Liapunov function

on A = fs j 0 < V (s) < c g \D. Let E = D=A.

Then, for all � > 0 there is a random time �2 such that st 2 U�(E); 8t > �2

and �2 <1 a.s.

Proof:We extend the de�nition of V by setting V (s) = c; 8s 2 �=fsjV (s) <

cg. Let �(x) be a positive monotone C2 function such that �(x) = c; 8x � c and

such that � is strictly monotone for all x < c. Then �(V (s)) is again a C1 Li-

apunov function. To simplify notation we set V (s) = �(V (s)) in the following.

Note that hrV (s); f (s)i � 0 for all s 2 D. A Taylor expansion gives for t > 0

V (st+1) � V (st) +
1D(s

t)

n+ t

�
hrV (st); f(st)i+ hrV (st); �ti

�
�
L1�=D(s

t)

n+ t
�

L

t2
;

where 1D(s
t) is the indicator function of D, and L is an upper bound for

jhrV (st); f(st) + �tij and the absolute value of the second order terms in the

Taylor series. Then, for all T2 > T1 we have

V (sT2) � V (sT1) +

T2�1X
t=T1

1D(s
t)

n+ t
hrV (st); f (st)i+

T2�1X
t=T1

1D(s
t)

n+ t
hrV (st); �ti

�

T2�1X
t=T1

L1�=D(s
t)

n+ t
+

L

t2
:

The process
PT2�1

t=T1

1Uc�
(st)

n+t �t is an L2 martingale and converges a.s. for T2 !

1. Also
PT2�1

t=T1

L1�=D(st)
n+t converges almost surely, since from some time on the

process stays in D a.s. Thus, we have������
1X

t=T1

1D(s
t)

n+ t
hrV (st); f(st)i

������ <1; a.s.

Hence, almost surely the paths of the process (24) are of the form

st+1 = st +
1

n+ t
f(st) + �t; (25)

where �t is a deterministic vector sequence such that
��P1

t=1 �
t
�� <1,������

1X
t=T1

1D(s
t)

n+ t
hrV (st); f(st)i

������ <1; (26)

and there exists a T3 such that st 2 D for all t > T3.
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Now let � > 0 and set U c
� := D=U�(E). Assume that a path stays from some

time T1 onward in U c
� . Let d = mins2Uc

�
hrV (s); f(s)i. Then, d > 0 and������

1X
t=T1

1Uc
�
(st)

n+ t
hrV (st); f (st)i

������ �
������
1X

t=T1

d

n+ t

������ =1;

which is a contradiction with (26) since U c
� � D. Hence, after a �nite random

time the path leaves the set U c
� . Now we prove that the path cannot enter the

set U c
2� in�nitely often.

Assume it would. Then there are times T3 < tl < �tl < tl+1 such that s
�tl 2 U�,

stl 2 U c
2� and st 2 U c

� for all �tl � t � tl+1. Choose an l0 > 0 such that for all

t > �tl0 we have j
P1

l=t �
lj � �

2 . Thus, there is a C1 > 0 such that for all l > l0

� � jstl � s
�tl j �

tl+1�1X
t=�tl

1

n+ t
jhrV (st); f (st)ij+

�

2
� C1

tl+1�1X
t=�tl+1

1

n+ t
+

�

2

Hence, �
2C1

�
Ptl+1�1

t=�tl+1
1

n+t . Thus, we obtain

1X
t=T3

1Uc
�
(st)

t+ n
hrV (st); f (st)i �

1X
l=l0

tl+1�1X
t=�tl+1

1

n+ t
hrV (st); f (st)i

�
1X
l=l0

d

tl+1�1X
t=�tl+1

1

n+ t
�

1X
l=l0

d
�0
2C1

=1:

This gives again a contradiction with (26). 2

Let J = fi jGi(0) =1g.

Lemma 5 Consider the vector �eld (6) and let I � J . Then for all � > 0

there is a � > 0 such that for all s 2 UI(�; �) = f s j
P

i2I si < �; sj > �; 8 j 2

J=I g \� X
i2I

_si �
X
i2I

si:

Proof: Let � > 0. We distinguish two cases. First, assume that there is an

i� 2 I such that Di�(0) > 0. Let L1 := sups2�
P

i=2J Dj(sj). Then, L1 <1 and

for s 2 � we get by (7)

X
i2I

_si =

 X
i2I

si

! " P
i2I Di(si)�P

i2I si
�PK

i=1Di(si)
� 1

#

�

 X
i2I

si

! " P
i2I Di(si)�P

i2I si
� �P

i2I Di(si) + L1

� � 1

#
(27)
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Set L2 = infs2�

P
i2I Di(si)P

i2I Di(si)+L1
. Since Di�(0) > 0 we get L2 > 0. Now, let

� = L2
2 . Then, continuing (27), we get for all s 2 UI(�; �)

X
i2I

_si �

 X
i2I

si

! �
L2P
i2I si

� 1

�
�
X
i2I

si

Now consider the case where Di(0) = 0 for all i 2 I. Let L3 = sups2UI(�;1)
PK

i=1Di(si).

We have L3 < 1. Choose a � > 0 such that Di(s)
s > 2L3 for all s < � and all

i 2 I. Then, for s 2 UI(�; �) we get by (7)

X
i2I

_si =

 X
i2I

si

! " P
i2I Di(si)�P

i2I si
�PK

i=1Di(si)
� 1

#

�

 X
i2I

si

! "
2L3PK

i=1Di(si)
� 1

#
�
X
i2I

si

2

For I � f1; : : : ;Kg de�ne BdI = f s 2 � j 9i 2 I s.t. si = 0 g and let

J = f1 � k � K jGk(0) = 1g. Thus, BdJ is the union of all boundary faces

where at least one product has in�nite �tness. For all � > 0 and I � J let

�(I; �) > 0 be a number such that on UI(�; �(I; �)) we have
P

j2I _sj �
P

j2I sj.

Set �I = fs 2 � j si = 08i 2 Ig.

Lemma 6 Let I � J , and let V � BdJ=I . Assume there exists a neighbourhood

U of V such that on U ,
P

i2J=I si is a Liapunov function. Then

P ( lim
t!1

hst;vi = 0) = 0;

where v is a vector such that vi = 1 for all i 2 J=I and zero otherwise.

Proof: This follows by the arguments for step (16) in lemma 2. 2

Proposition 4 Let D(s; BdJ ) denote the distance between s and BdJ . Then

Pflim inf
t!1

D(st; BdJ) = 0g = 0

Proof: For simplicity we assume that J = f1; : : : ;Kg. The other case fol-

lows by analogy. In a �rst step we cover BdJ with sets of the form UI(�; �),

de�ned in the above lemma.

Let 0 < �1 < 1 and set �1 = mini2J(�(J=fig; �1); �1). Note, that

WJ=fig := UJ=fig(�1; �1)
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is a neighbourhood of the i-th vertex �J=fig. For a �nite set H, denote by jHj

the cardinality of H.

Let k > 1. Assume we have covered the edges �J=I ; I � J; jIj = k with the

neighbourhoods WJ=I :=
S
H�I;jHj�k UJ=H(�jHj; �jHj). Now choose an �k+1 < �k

and set �k+1 =
1
2 minI�J;jIj=k+1 (�(I; �k+1); (�k � �k+1)). Then for all sets I � J

such that jIj = k + 1 we have

�J=I �WJ=I :=
[

H�I;jHj�k+1

UJ=H(�jHj; �jHj):

Thus, using this procedure iteratively we get neighbourhoods Wfig covering �fig.

The union W = [i2JWfig covers BdJ .

To prove that the process does not approach the boundary BdI , we show by

induction in k, that from some time onwards the process does not belong to the

sets WJ=I for all I � J; jIj = k.

k = 1. Let i 2 J be �xed. By lemma 5 V (s) =
P

j2J=fig sj is a linear

Liapunov function on the set WJ=fig = fs j
P

j2J=fig sj < �1g. There is an � > 0

such that f is also a Liapunov function on A := fs 2 � j
P

j2J=fig sj < �1+ �g.

Hence, by lemma 4 the process a.s. either converges to the edge ei or it leaves

WJ=fig and does not return from some time onward. By lemma 6 the process

converges to ei with probability 0. Thus, a.s. from some time onward the process

does not belong to WJ=fig.

Induction step. Let k > 1, Assume that for all I � J; jIj = k� 1 from some

time onward the process is not in WJ=I . Let I � J; jIj = k.

By the induction assumption from some time onward the process belongs to

D = �=[I�J;jIj=k�1WJ=I . Since �k <
1
2(�k�1��k) there is an � > 0 such that on

A := D\UJ=I(�k; �k+�) = D\f�s jV (�s) � �k+�g the function V (s) =
P

j2J=I sj

is a strict Liapunov function. By lemma 4 the process converges either to the

set BdJ=I or it leaves the set WJ=I . By Corollary 6 the former occurs with

probability 0. This rights the result. 2

Proof of theorem 1: Assume �rst that all Gk; k = 1; : : : ;K can be

extended to continuous functions on the whole interval [0; 1]. Then, by Hof-

bauer and Sigmund[1988] (9) is a Shashahani gradient system for the potential

V (s) = �
R 1
s1
G1(t) dt�

R 1
s2
G2(t) dt� � � � �

R
sK

GK(t) dt. Thus, V is a strict C1

Liapunov function for (7). Now, the result follows by proposition 1 in Arthur,

Ermoliev and Kaniovski [1988b].

If some Gk cannot be continuosly extended to the whole interval by the con-

ditions on the demand functions it follows that lims!0Gk(s) = 1. By propo-

sition 4 P (limt!1 d(st; BdJ) = 0) = 0. Thus, there is an 
0 with P (
0) = 1

such that for every elementary outcome ! 2 
0 there exists an � > 0 and a
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T > 0 such that for all t > T we have D(st(!); BdJ ) > �. Additionally, since�PT2
t=1

1
n+t

�
�t(st)� d(st)

��
is an L2 martingale we can choose 
0 such that

every path in 
0 can be written as st+1(!) = st + 1
n+t f(s

t(!)) + �t(!), where

f(s) := d(s) � s and �t(!) is a deterministic sequence of vectors such that

jj
P1

t=1 �
tjj < 1. Let U�(BdJ) denote an �-neighbourhood of BdJ . Since the

vector �eld f is C2 in ��U�(BdJ) we can apply proposition 1 in Bena��m[1993]

to deduce that the limit sets are chain recurrent. Since f is a gradient vector

�eld on �� U�(BdJ) the only chain recurrent sets are the �xed points. 2

Proof of theorem 2: Since G0
k(sk) =

s2k
Dk(sk) (�k(sk)�1)

by propositions 2

and 3 �s is a sink for (7) if and only if the above conditions hold, otherwise it

is a source or saddle. In the former case by proposition 8 in Posch [1994] we

have P (limt!1 st = �s) > 0. In the latter cases we apply proposition 1 and get

P (limt!1 st = �s) = 0 2

Proof of theorem 3: Adapting the proof of proposition A in Hofbauer

et al. [1981] we prove the result. If the elasticity of Dk is less than one, then the

�tnesses Gk are strictly decreasing functions. Without restricting generality we

assume that G1(0) � G2(0) : : : � GK(0) � 0. We �rst compute the �xed point

�s and show that there exists a unique C � G1(0) and a unique �s 2 � such that

G1(p1) = � � � = Gm(pm) = K

and p1 > 0; : : : ; pm > 0, pm+1 = 0; : : : ; pK = 0, where m is the largest integer

k with Gk(pk) > C.

Let G�1
k (�) be the inverse of Gk(�) de�ned on [Gk(1); Gk(0)). For s > Gk(0)

we set G�1
k (s) = 0. The function

H(c) =

KX
k=1

G�1
k (c)

is de�ned for c 2 [max1�k�K Gk(1); G1(0)) and strictly decreases from some

a � 1 to 0. Thus, there exists a unique constant C � G1(0) such that H(C) = 1.

Let

�sk = G�1
k (C); k = 1; : : : ;K:

Then
PK

k=1 �sk = 1. If Gk(0) � C then �sk = 0, if Gk(0) > C then Gk(0) = K

and �sk > 0. It follows straightforward that �s is a �xed point. It is the unique

�xed point on the set fs 2 � j s1 > 0; : : : ; sm > 0g. In particular, if all Gk(0)

are equal, �s is in the interior of �.

Since (9) is a gradient system all solutions of the di�erential equation con-

verge to a �xed point. It remains to study the stability of all �xed points. We

show that �s is a sink and all other �xed points are saddles or sources.
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Since Gk(0) < K for all k � m and Gk(�sk) = K for all k > m we have

Gk(0) <
KX

l=m+1

slGl(�sl) =
KX
l=1

�slGl(�sl):

Since additionally �k(�sk) < 1, by theorem 2 �s is a sink.

Now let s0 be another �xed point. If Gk(s
0
k) =1 for some k, by proposition

4 s0 is attained with probability 0. Assume now that all G0
k(s

0
k) are �nite. Note

that s0 lies in some boundary face where sl = 0 for some l � m. Now we consider

the system restricted to this boundary face, and set

H 0(c) =
X

k2fljs0l>0g

G�1
k (c):

We have H 0(�) � H(�). There is a unique C 0 such that s0k = G�1
k (C 0); k 2

fljs0l > 0g. Since C 0 � C,

Gl(0) > C > C 0 >
KX
k=1

s0kG(s
0
k)

and by theorem 2 it follows that s0k is a saddle. 2

Proof of theorem 4 By theorem 1 the process converges a.s. to a �xed

point of (7). Since �k(sk) > 1, by theorem 2 all interior �xed points are attained

with probability 0. This argument also holds for �xed points in the interior of a

boundary face. (Here we consider the dynamics of (7) restricted to that boundary

face.) Thus, the process converges a.s. to one of the vertices.

If D0
k(0) = D0

l(0); 0 � k; l � K then all vertices are sinks. Let 1 � k � K

be arbitrary but �xed. Since the elasticities are greater than 1, we have Dl(0) =

0; 1 � l � K and that Gk(sk) is monotonically increasing. Hence,

D0
l(0) = D0

k(0) = Gk(0) � Gk(1) = Dk(1); l = 1; : : : ;K:

Thus, by proposition 3 ek is a sink, and by proposition 8 in Posch [1994] it is

attained with positive probability. 2
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